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Abstract

This thesis presents Ursoup, a Primordial Particle System (PPS) simulator based on work by
Schmickl et al. At a specific parameter set, Schmickl et al. found a PPS that exhibits life-like
behaviour in the form of simple cellular life, capable of reproduction. However, the particles
in their PPS are homogeneous in nature. Ursoup is capable of running heterogeneous PPS
simulations. We have investigated the effects of the β, speed, and radius parameters of a PPS,
using heterogeneous two-species simulations, where we change one of these parameters in one
of the two species. Doing so, we attempt to gain a better understanding of the functions of
specific particle types participating in the life-like behaviour. In cell nuclei, for instance, we
find particles with high β and speed values, whereas in cell walls, we find the particles to
have low β and speed values. Additionally, we found cells that display a strict division of
roles between the two species, where species A homogeneously populates the cell nucleus, and
species B homogeneously forms the cell wall. Yet these two species come together to form one
heterogeneous cell.
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1 Introduction

The universe can be rather chaotic at times, and yet it gave rise to the complexity of life. Complexity
arising from chaos is called emergence. This emergence is fuelled by a set of rules. Gravity, for
example, is a rule that gathers matter in large dense clumps, forming stars. Thus, rule-based
emergence is key to complexity.

In the computer sciences, emergence is often seen in the field of artificial life (AL). AL is characterised
by a chaotic initial condition, and a (often small and simple) set of rules. For instance, Boids shows
emergent behaviour in the form of flocks of birds, guided by a small rule-set [Rey87].

Another example of AL is a so-called Primordial Particle System (PPS), presented by Schmickl et
al. [SS15, SSC16]. This system demonstrates a rich variety of emergence. At a specific parameter
setting, a self-reproducing cell-like structure has been found that displays a complex growth cycle.
Particles gather in small clumps, accumulate more particles and eventually expand into cells. These
cells may live on for quite a while, replicate, or die out. Overall, the cell population does grow. It is
unclear, though, as to why this behaviour emerges at precisely that specific parameter setting.

In the “classic” Primordial Particle System, all particles follow the same rules. In that sense, it
is a homogeneous system. Emergence is however not limited to homogeneous systems. After all,
life itself on earth is very much heterogeneous, not homogeneous. An example of heterogeneous
emergence is Clusters, a Magnetic Particle System, where multiple species of particles attract and
repel each other [Ven17]. This, too, facilitates the emergence of complex structures.

The research on heterogeneous PPS is severely limited. Thus, the aim of this research is to use
heterogeneity as a tool to gain a better understanding of the life-like structures in PPS.

1.1 Contributions

As Schmickl et al. did not provide any code, we decided to create our own PPS simulator. Therefore,
this thesis presents Ursoup (ur- meaning primordial). Ursoup is a PPS simulator program with a
graphical window (Figure 1), logging and screenshot functionality, as well as a headless mode. It
supports both heterogeneous and homogeneous simulations.

Ursoup is available on GitHub at https://github.com/ursoup/ursoup.

1.2 Thesis overview

This chapter contains the introduction; Section 2 discusses related work; Section 3 describes the
workings of Ursoup; Section 4 describes the experiments and their outcome; Section 5 presents the
conclusions. Lastly, also we discuss possible further research in that section.

This bachelor thesis is the result of research by Vincent Prins under the supervision of Mike Preuss
and Walter Kosters at the Leiden Institute of Advanced Computer Science (LIACS).
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Figure 1: The graphical window of Ursoup.

2 Background

In this section we will discuss two types of Particle Systems (PS): a Primordial PS and a Magnetic
PS. We argue that these systems can be considered simple programs. These PS also demonstrate the
difference between homogeneity and heterogeneity. Lastly, we will discuss the use of heterogeneity
in the analysis of life-like behaviour.

2.1 Simple programs

In A New Kind of Science, Wolfram discusses how many simple programs are counter-intuitively
capable of producing complex behaviour [Wol02]. The workings of any simple program can be
described with a couple of rules, a few lines of code or a simple graphic. The argument goes that
these programs cannot program for all the resulting complexity, thus emergence must be at play.

An example of a simple program is Conway’s Game of Life, a cellular automaton [Gar70]. Game
of Life is set in a 2D world consisting of discrete cell spaces, that can be alive or dead. A simulation
starts out with an initial configuration of alive and dead cells. The fate of each cell in the next
time step depends on its neighbours in the current time step. Dead cells come alive when they are
surrounded by three alive cells, including the diagonals. Living cells stay alive only when they have
two or three neighbours, if not, they die. The result is that some initial configurations die out, some
form stable patterns whether stationary or cyclic, and others continue indefinitely. An example of
the latter is the so-called glider pattern that indefinitely “glides” through the world.

The two particle systems that will be discussed hereafter are both moderately simplistic in nature.
Admittedly, they are more complex than Game of Life, but the interactions between particles are
local, the number of parameters is limited and the rules set is still quite small. Unlike cellular
automata, however, they operate in continuous space, as opposed to discrete space.
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2.2 Primordial Particle Systems

The basis of any Primordial Particle System (PPS) is its particles. Each particle has a position and
a rotation (also called φ). At each time step of a PPS simulation, a set angle called α is added to
the rotation. After the rotation has been applied, the particle moves forward by a set distance v,
also called its speed. Each particle has a perception radius in which it detects neighbours. At each
time step it will count up the number of neighbours, denoted as N . This value is multiplied by
a factor called β and is also added to the rotation. Thus, if a particle has no neighbours, β has
no effect. Likewise, a particle with two neighbours wil turn more than a particle with just one
neighbour.

Additionally, each particle keeps track of the number of neighbours to the left and the right of its
current heading. It will always turn towards the side with more particles. If both sides have an
equal number of particles, it will turn to the right. All of this is summed up in Figure 2.

Figure 2: The pseudocode describing the implementation of a PPS as seen in [SSC16].

Each PPS simulation is set in a 2D torus world, where the edges of space wrap around to the
other side. The PPS system has however also been shown to work in three dimensions [SS19]. A
simulation is run at a certain particle density, and the number of particles stays the same during
the entire simulation. The position and rotation of all particles are initialised randomly.

At the specific parameter set of [radius = 5, α = 180, β = 17, speed = 0.67], Schmickl et al. found
life-like cell structures that exhibit a complex cycle of life. Note that at α = 180 neighbourless
particles are effectively motionless, as each time step they undo the movement of the previous
time step. The cycle of life is depicted in Figure 3. The colours of the particles are based on the
number of neighbours in the perception radius of each particle (Table 1). Green particles are called
nutrients and have 13 or fewer neighbours. When these nutrients clump up they form premature
spores. At 14 or 15 neighbours, these premature spores turn brown. Once they grow further by
attracting more nutrients, they develop into mature spores. The particles in mature spores are
magenta and have more than 15 neighbours, measured in a radius of r = 1.3, unlike the other
colours that are measured at the full perception radius (in this case r = 5). Once the spores have
accumulated enough nutrients, they expand into ring-shaped structures. These rings are like the
cell walls of a cell. Particles in the cell walls are blue. However, these cells can still grow, and if
they grow enough, a cell nucleus will start to appear. Once the cell nucleus has emerged, we call
the structure a cell, as it has the characteristic cell wall and cell nucleus of a simple single-cell
organism (albeit simplified). The particles in the cell nucleus have over 35 neighbours, and turn
yellow. During its growth the cell also takes on different shapes. Cells eventually tend to die or
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reproduce. However, the overall “population” of cells does increase. Note how this is different from
an increase in particles. The number of particles always stays constant, it is the number of particles
that exist in cellular structures that increases. Lastly, it is unclear as to why this behaviour emerges
at this specific parameter set.

Colour Function Neighbours
yellow cell nucleus Nt,r=5 > 35
blue cell wall 15 < Nt,r=5 ≤ 35
brown premature spores 13 < Nt,r=5 ≤ 15
magenta mature spores Nt,r=1.3 > 15
green nutrients Nt,r=5 ≤ 13

Table 1: The function and number of neighbours of each particle type. Here, Nt,r represents the
number of neighbours N , at time step t in radius r. Note how magenta uses a different radius.

Figure 3: The cycle of life as seen in [SSC16].

2.3 Homogeneity and heterogeneity

The PPS, as presented by Schmickl et al., is a homogeneous system. Something is homogeneous
when all of its components belong to the same kind. Thus, if something has a homogeneous make-up,
swapping two of its components should have no effect. So, if all particles in a PPS are of the
same species, have the same attributes and follow the same rules, we can say that the PPS is
homogeneous. Heterogeneity, on the other hand, is simply the act of not being homogeneous. A
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water molecule, for example, is heterogeneous. Its consists of two component types, oxygen and
hydrogen, not just one.

2.4 Magnetic Particle Systems

One example of a heterogeneous system, is Ventrella’s Clusters (Figure 4) [Ven17]. Clusters is
best characterised as a heterogeneous Magnetic Particle System (MPS). All particles belong to
one of many species, signified by their colour. Each species has a separate attraction value towards
every other species. If that value is negative, it turns into repulsion. The particles only interact with
each other within a set radius. These interactions result in the emergence of complex, often moving
structures. Clusters also allows small groups of particles to be moved around by the mouse cursor.

Unfortunately, the code is not available. However, the YouTuber CodeParade, known on GitHub
as HackerPoet, tried to recreate this simulation and made the code available [Hac18]. For this
recreation, called Particle Life, HackerPoet also mentions that particles that chase each other
(due to A being attracted to B, but B being repulsed by A) could infinitely build up speed. Thus,
friction was introduced to counter this. Although Ventrella does not mention friction, seeing as
Clusters does not display infinite speed build-up, some speed limitation is presumable at play too.
Upon HackerPoet’s basis, Peterson created a version that runs in a web browser (Figure 5) [Pet21].

Unlike PPS and Particle Life however, Clusters does not operate in toroidal space. The result is
that most structures end up brushing against the walls, or even crashing apart.

Figure 4: Interface of J. Ventrella’s Clusters. Here, the program is displaying the Gems setting.
The larger structures pictured are predominantly stationary. Available at

http://www.ventrella.com/Clusters/.
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Figure 5: Examples of structures that emerge in Particle Life. From Peterson’s web browser
version available at https://fnky.github.io/particle-life/.

2.5 Heterogeneity in Primordial Particle Systems

Heterogeneity in PPS seems to be mostly unexplored. We could only find one example. A YouTuber
by the name of TheRainHarvester showcases a name-less heterogeneous PPS simulator in multiple
videos. Unfortunately, no code was made available. In one of these videos, TheRainHarvester
explores separating particles into species denoted by different colours, and changing the radius of
one species such that it differs from the rest [The20]. In Figure 6, the red species has a radius of 10,
whereas the other particles have a radius of 20. This being the case, all non-red particles actually
belong to the same species, despite their different colours. The red particles form a hexagonal
pattern, surrounding the other species that are pushed towards the centre of each hexagon. This
shows that complex behaviour can emerge from heterogeneous PPS.

Figure 6: A heterogeneous PPS simulation made by TheRainHarvester, in which the red particles
have a smaller radius than the other colours. The name of the simulator program used is unknown.
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Additionally, in another video TheRainHarvester explores the idea of “visibility” [The19]. This
means that certain species can or cannot see other species, including being able or unable to see
themselves. An example of behaviour that emerges from this method can be seen in Figure 7.
The behaviour shown resembles a heart and blood vessel system. Large groups of particles form
heart-like structures surrounded by a clear wall acting as a boundary. The surrounding vessels are
filled with individual “blood” particles, similar to the green nutrients in the classic PPS.

Figure 7: A heterogeneous PPS simulation with “visibility’ made by TheRainHarvester, where
some species cannot see other species or even themselves. The name of the simulator program used

is unknown.

2.6 Heterogeneity as a tool

It is unclear as to why the parameter set discovered by Schmickl et al. produces such intricate life
forms. In this thesis we want to further analyse the role that the values of β, speed and radius have
on each particle type (i.e., cell walls, nuclei, spores, etc.). We will not be changing α, as α = 180
is what creates the unique, stationary behaviour of nutrients that are vital to the system. The
main idea is to change one of these value for half of the particle population. Doing so, we create a
heterogeneous two-species system. The species at [radius = 5, α = 180, β = 17, speed = 0.67] shall
be referred to as the base species as it forms the basis of our investigations. All other species will
be called modified species. The usefulness of heterogeneity is that by changing one value at a time,
we can see what role the modified species takes on with regard to the base species (or vice versa).
We can measure this by looking at the number of particles of each type/colour. As the colours of
the particles represent the density of the particle’s perception radius we shall call this measurement
the particle density distribution (PDD).

For example, if increasing the β of the modified species results in more yellow particles of the
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modified species, we can conclude that cell nuclei (yellow) have a preference for containing particles
with a higher β. In this way, we hope to gain a better understanding of each particle type.

3 Ursoup

This thesis presents Ursoup, a Primordial Particle System simulator. In this section we shall
discuss the implementation details of our program. Additionally, we will go over the features that
Ursoup offers, and their usage.

Ursoup is has been made available on GitHub at https://github.com/ursoup/ursoup.

3.1 Implementation

The basis of our implementation is a Boids simulator written by R. Strauss that we have adapted
heavily [Str21]. The program is written in C++ and makes use of SFML (Simple and Fast Multimedia
Library). The Cxxopts library is used as its command line option parser [Bec21]. Additionally,
Strauss has implemented a k-d tree to speed up searching for neighbours. We have adapted the
k-d tree search function to work with toroidal space. Furthermore, we have implemented the
ability to run homogeneous and heterogeneous PPS simulations, as well as logging information and
screenshots.

Now, let us take a closer look at Ursoup in action. The program starts by parsing the command line
options and reading the config file. From the config file it constructs a list of species. It then starts
spawning particles at random positions, such that the average density of the simulation approximates
the set particle density. All species are made to occur equally frequent. The particles store three
core pieces of information: position, rotation, and species type. All species-dependant properties
can be deduced from the species type, so these properties are not stored in the particle, but globally.
Species-dependant properties are α, β, radius and species colour (as opposed to density colour, see
Section 3.2.3). Additionally though, particles keep track of the number of “regular” neighbours
(within their full perception radius) and close neighbours (always within r = 1.3, regardless of their
perception radius). This facilitates the neighbourhood colouring. For the colouring we attempted to
use the colouring conditions described by Schmickl et al. However, the magenta condition was never
triggered. As it turns out, the magenta condition should be the first condition to be checked, not
the last one, otherwise no magenta particles seem to appear at all. Hence, a revised list of colour
conditions is:

if (Nt,r=1.3 > 15)
return magenta;

else if (15 < Nt,r=perception ≤ 35)
return blue;

else if (Nt,r=perception > 35)
return yellow;

else if (13 < Nt,r=perception ≤ 15)
return brown;

else

return green;
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Once all particles have been spawned, the update loop starts running. Firstly, a k-d tree is
constructed. Secondly, the rotation of the particles is updated. This is where the k-d tree is used,
as particles need to know how many neighbours they have to correctly update their rotation.
Thereafter, the particles move forward by their speed value. At this point, it is time to start drawing
on the screen, for which we need colours. The correct density colouring is selected for each particle
based on their neighbour count. These values also form the particle density distribution (PDD). If
the logging interval has been reached, the program now logs the PDD to the output file. Lastly,
everything is drawn to the screen. However, the graphical window skips drawing every other frame.
This is to avoid excessive flashing at α = 180. Doing so shows neighbourless particles as stationary.
The update loop is then repeated. The loop exits once the --exit_after value has been reached
and the program shuts down.

3.2 Usage

In this section, we will explain in depth the function of each command line option and keyboard
option that Ursoup features. For quick reference, these are summarised in Table 2 and Table 3.

Option Default Function
--simulation_width, or height 150 for both defines the size of the simulation world
--window_width, or height 600 for both defines the size of the graphical window
--draw_size 2 defines the size at which particles are drawn
--exit_after 100, 000 exits program after the set number of time steps
--headless off disables the graphical window
--particle_density 0.08 approximate particle density
--config_file config.ini defines what file to use as species configuration
--log_interval 500 number of time steps between PDD logging
--log_file log.csv defines what file to log to
--log_screenshot off whether or not to log screenshots

Table 2: The function of each command line option in Ursoup.

Option Function
space pause simulation
F move forward by one frame when paused
S save screenshots of current time step
C change colour mode

Table 3: The function of each keyboard option in Ursoup.

3.2.1 Running simulations

By default, simulations are run in a 150×150 world. This can be adjusted with --simulation_width

and --simulation_height. The size of the graphical window is separate from the simulation size.
The relevant options here are --window_width and --window_height (default: 600 × 600). Due
to the scaling factor, it might be desirable to increase the size of the particles. This is what the
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option --draw_size provides. All simulations exit after n time steps. The exit point can be set
with --exit_after (default: 100, 000 time steps). Lastly, the graphical window can be turned off
with the option --headless.

The particle density of a simulation is measured in the number of particles in a 1 × 1 area. The
density is set using --particle_density (default: 0.08).

When the graphical window is used, the simulation can be paused by pressing space . Pressing F

while paused will progress the simulation by one frame (equal to two time steps). Screenshots can
also be taken at any time by pressing S . This produces two screenshots: one for each colour mode
(Section 3.2.3).

In the graphical window, the left mouse button can be used to add more particles to the simulation
at the location of the mouse cursor.

3.2.2 Configuration files

The configuration file determines what species will be run in the simulation. Each line corresponds
to one species and values are separated by spaces. Thus, a single line file constitutes a homogeneous
simulation. The format is as follows:

[speed] [perception radius] [α] [β] [R] [G] [B] [A]

By default, Ursoup will try to open config.ini. Custom config files can be loaded in with the
option --config_file my_file. An example two-species config file would look like this:

0.67 5 180 17.00 255 0 0 255

0.67 5 180 14.00 255 255 255 255

3.2.3 Colour modes

Ursoup’s graphical interface supports two colour modes: species mode and density mode (Figure 8).
Pressing C switches the view. In density mode, all particles are coloured based on their neigh-
bourhood density. This colouring matches that of Schmickl et al, as long as the perception radius is
equal to 5. For instance, a perception radius of 50 will (most likely) cause all particles to display as
yellow. In species mode, the particles take on the colour designated to their species as specified in
the configuration file.

3.2.4 Logging

Ursoup logs the particle density distribution (PDD) at set intervals, measured in time steps. This
interval can be set using --log_interval (default: 500). The PDD is the average number of green,
yellow, etc., particles over the last n time steps. The PDD of each species is tracked separately.
These values are logged in a csv file that can be set using the option --log_file (default: log.csv).

The output for one species may look like this:

Time,Yellow,Blue,Brown,Magenta,Green,

500,0,0,0.066,0,849.934,

1000,0,0.006,0.072,0,849.922,
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Figure 8: A heterogeneous simulation with two species, red and white;
left: density colour mode; right: species colour mode.

Additionally, Ursoup can output screenshots of the simulation (even in headless mode) at each log
interval. The option --log_screenshot enables this behaviour.

4 Experiments

In this section, we shall be investigating what effect a change in β, speed and radius has on the
density of each species in a two-species PPS. For each parameter, we want to analyse the effect
of values lower and higher that the base value. Thus, the following experiments will go through a
range of values, where the base value forms the centre value of each range (although for speed, 0.67
is rounded up to 0.675). Each range is kept somewhat small, such that the simulations could be
performed within a reasonable amount of time.

We shall be analysing the effects of each change in two aspects. The first aspect is the particle
density distribution (PDD) of each species. From the PDD of each species we should be able to
identify which species, base or modified, occurs more frequently for each particle type. With that,
we can establish a “preference” for either higher or lower values of β, speed and radius with regard
to the base value.

The second aspect is a visual inspection of the spore and cell-structures that form. This way
we can take a closer look at what kind of structure form and in what nature (homogeneous or
heterogeneous), as that cannot be deduced from the PDD. We hypothesise that any effects that
may occur due to changes in β, speed or radius will be most pronounced in the extremity values of
each value range. Thus, for each experiment we will only inspect the two extremities.

At the standard particle density of 0.08 used by Schmickl et al., the simulations would not always
form cell structures. Therefore, each simulation shall be run at a particle density of 0.1. This assures
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that cells will form within the first couple of time steps. The simulation then runs until time step
50, 000. However, if we were to include data from the early stages of the simulation, we would be
mostly looking at an undeveloped population, and nutrients would be overly represented. Thus, we
shall be looking at a post-initial stage of the simulation. We have determined that after 5000 steps,
the simulation has stabilised enough, so the results discard everything before that. The PDD is
logged every 500 time steps. Lastly, we always use a simulation world size of 100 × 100.

Unfortunately, Ursoup occasionally stopped updating all particles, yet kept logging the PDD for the
rest of the simulation until it reached the exit after value. When this bug occurred, it was obvious
from the repeated entries in the log file. During our experiments we had this happen occasionally.
Luckily, this could easily be solved by rerunning the simulation.

Lastly, In all screenshots of Ursoup simulations in species colour mode, we have used the colour red
to denote the base species and white to denote the modified species.

4.1 Experiments with β

In this experiment we gave the modified species the values β = 14.00, 14.25, . . . , 19.75, 20.00. For
the base species, β is 17.

4.1.1 Particle density distribution

In the following figures, we have split up the PDD into its separate colours. By looking at which
species occurs more frequently at which β, we can determine whether each particle type has a
consistent preference for lower or higher β–values.

In Figure 10 and Figure 12 we see that blue and magenta particles are more likely to belong to
the species with the lower β. In Figure 9, Figure 11 and Figure 13 on the other hand, we see that
yellow, brown and green particles are more likely to belong to the species with the higher β. In
conclusion, blue and magenta particles prefer low betas, whereas yellow, brown and green prefer
higher betas (see Table 4).

4.1.2 Visual inspection

We shall now continue with the visual inspection. In Figure 14 and Figure 15 a screenshot of a
simulation using the two extremes β = 14.00 and β = 20.00 is shown. Of particular note in these
simulations are the heterogeneous proto-cell-like structures highlighted in Figure 16. These cells
are not quite as large as the regular cells (hence the denomination proto), and do not contain any
yellow particles. Additionally, we see a strict division of roles between the two species, where one
homogeneously populates the cell nucleus and the other species homogeneously populates the cell
wall. Taking Figure 14 (β = 14) as an example, the modified species homogeneously forms the
cell nuclei of the proto-cells. Extrapolating this behaviour, one would expect the modified species
to also dominate the cell nuclei of the regular-sized cells, and by extension the yellow particles.
Counter-intuitively however, the opposite is true as seen in Figure 9. Lastly, the spores in both
simulations occur homogeneously as well as heterogeneously.
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Figure 9: Average number of yellow (“cell
nucleus”) base and modified particles per time

step.

Figure 10: Average number of blue (“cell wall”)
base and modified particles per time step.

Figure 11: Average number of brown
(“premature spore”) base and modified particles

per time step.

Figure 12: Average number of magenta (“mature
spore”) base and modified particles per time

step.
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Figure 13: Average number of green (“nutrient”)
base and modified particles per time step.

Colour Function β
yellow cell nucleus high
blue cell wall low
brown premature spores high
magenta mature spores low
green nutrients high

Table 4: Preferred β for each particle type.

Figure 14: Screenshot of a simulation at t = 8059 with the modified species at β = 14.
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Figure 15: Screenshot of a simulation at t = 8610 with the modified species at β = 20.

Figure 16: Close-up of the heterogeneous proto-cells with a clear division of roles;
left: modified species at β = 14; right: modified species at β = 20.

4.2 Experiments with speed

In this experiment we gave the modified species the values speed = 0.400, 0.425, . . . , 0.975, 1.000.
For the base species, speed is 0.67.
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4.2.1 Particle density distribution

In the following figures, we have split up the PDD into its separate colours. By looking at which
species occurs more frequently at which speed, we can determine whether each particle type has a
consistent preference for lower or higher speed values.

In Figure 18 and Figure 20 we see that blue and magenta particles are more likely to belong to the
species with the lower speed. By contrast, in Figure 17, Figure 19 and Figure 21 we see that yellow,
brown and green particles are more likely to belong to the species with the higher speed. The
difference is rather slim though for the yellow and brown particles. So overall, blue and magenta
particles prefer low speeds, whereas yellow, brown and green prefer higher speeds (see Table 5).

Figure 17: Average number of yellow (“cell
nucleus”) base and modified particles per time

step.

Figure 18: Average number of blue (“cell wall”)
base and modified particles per time step.

Figure 19: Average number of brown
(“premature spore”) base and modified

particles per time step.

Figure 20: Average number of magenta
(“mature spore”) base and modified particles

per time step.
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Figure 21: Average number of green (“nutrient”)
base and modified particles per time step.

Colour Function Speed
yellow cell nucleus high
blue cell wall low
brown premature spores high
magenta mature spores low
green nutrients high

Table 5: Preferred speed value for each particle
type.

4.2.2 Visual inspection

We shall now continue with the visual inspection. In Figure 22 and Figure 23 a screenshot of a
simulation using the two extremes speed = 0.400 and speed = 1.000 is shown. In both figures, cell
walls, cell nuclei and spores only seem to occur heterogeneously. There is however no clear division
of roles between the two species.

Figure 22: Screenshot of a simulation at t = 6285 with the modified species at speed = 0.4.
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Figure 23: Screenshot of a simulation at t = 6903 with the modified species at speed = 1.

4.3 Experiments with radius

In this experiment we gave the modified species the values radius = 3.00, 3.25, . . . , 6.75, 7.00. For
the base species, radius is 5. Of note is that the code that determines the colour of particles uses
the perception radius of that particle. A particle with a larger perception radius has an ’unfair’
advantage in that it will turn yellow/blue/etc. much more easily. Therefore, any increase in the
number of dense modified particles could be attributed to a change in the density calculation itself.
The radius of the base species does however stay the same, so we can still use those results. We will
still include the modified species in the results for completeness sake, though.

4.3.1 Particle density distribution

In the following figures, we have split up the PDD into its separate colours. By looking at which
species occurs more frequently at which radius, we can determine whether each particle type has a
consistent preference for lower or higher radius values.

In Figure 24 and Figure 25 we see that the number of yellow and blue particles of the base species
greatly diminishes once it no longer has the highest radius in the simulation. On the other hand, in
Figure 26 and Figure 27 we see a v-shaped pattern for the brown and magenta base species. From
this we cannot conclude any preference, as the brown and magenta neither consistently prefer the
lower nor the higher radius. Lastly, in Figure 28 we see that the number of green particles of the
base species increases once it has the lower radius of the two in the simulation. Overall, we can say
that yellow and blue particles prefer high radii, green particles prefer lower radii, and brown and
magenta particles are inconclusive (see Table 6).
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Figure 24: Average number of yellow (“cell
nucleus”) base and modified particles per time

step.

Figure 25: Average number of blue (“cell wall”)
base and modified particles per time step.

Figure 26: Average number of brown
(“premature spore”) base and modified particles

per time step.

Figure 27: Average number of magenta (“mature
spore”) base and modified particles per time

step.

4.3.2 Visual inspection

We shall now continue with the visual inspection. In Figure 29 and Figure 30 a screenshot of a
simulation using the two extremes r = 3.00 and r = 7.00 is shown. Figure 29 (r = 3.00) shows
both homogeneous and heterogeneous spores. Cells, however, only occur homogeneously. Figure 30
(r = 7.00) on the other hand, shows four different cell types. Firstly, there are homogeneous cells
of both species. The homogeneous cells of the modified species are much larger than those of
the base species, which may be attributed to their larger perception radius. Additionally, there
are two types of heterogeneous cells (Figure 31), similar in nature to those in the β–experiments
(Section 4.1). In these cells, the cell walls homogeneously consists of species A, whereas the cell
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Figure 28: Average number of green (“nutrient”)
base and modified particles per time step.

Colour Function Radius
yellow cell nucleus high
blue cell wall high
brown premature spores —
magenta mature spores —
green nutrients low

Table 6: Preferred radius value for each particle
type.

nucleus is homogeneously made up of species B (and vice versa). Having said that, unlike the
proto-cells in the β–experiments, we do see yellow particles in (only) one of the types. The modified
particles in the cell nucleus can turn yellow, which is most likely due to their unfair colouring
conditions. It is however rather difficult to capture all four cell types at once, as they rarely occur
all at the same time. Lastly, the spores occur homogeneously as well as heterogeneously.

Figure 29: Screenshot of a simulation at t = 7885 with the modified species at r = 3.
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Figure 30: Screenshot of a simulation at t = 32, 571 with the modified species at r = 7.

Figure 31: Close-up of the heterogeneous cells with a clear division of roles, found in a simulation
with the modified species at r = 7.

5 Conclusion and further research

In this thesis, we have used heterogeneity as a tool to gain a better understanding of the cell-like
structures in Primordial Particle Systems that emerge at the parameter set [radius = 5, α =
180, β = 17, speed = 0.67]. The particles in these cell structures take of various roles, namely that of
cell walls, cell nuclei, spores and nutrients. In heterogeneous two-species PPS simulations, we have
separately changed the β, speed and radius parameters of one of the species, called the modified
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species as opposed to the none-modified base species. In these three experiments we have observed
the resulting changes in the particle density distribution (PDD) of each species. From the PDD of
each species we were able to identify which species, base or modified, occurred more frequently for
each particle type. With that, we could establish a “preference” for either higher or lower values of
β, speed and radius with regard to the base value.

The results of the experiments have been combined in Table 7. Here we have summarised the
conditions that favour each particle type. In a heterogeneous PPS close to the parameter set
[radius = 5, α = 180, β = 17, speed = 0.67], particles that are found in the cell nuclei are more
likely to belong to a species with a higher speed, β, or radius (or a combination of those) than
any other species. Cell wall particles are likely to have low speed or β; or a high radius value.
Furthermore, the particles that make up nutrients are likely to have a high speed and β, whereas
their radius value tends to be low. A low perception radius in particular makes sense for nutrients,
as having a low radius means having fewer neighbours and hence more chance of turning green.
Now for spores, it is hard to say what influence the perception radius has. As for speed and β
though, premature spores will most likely contain particles with high speed and β–values. Mature
spores on the other hand, most likely consist of particles with low speed and β. Overall, we can
also see that there seems to be a relation between β and speed.

Colour Function Speed β Radius
yellow cell nucleus high high high
blue cell wall low low high
brown premature spores high high —
magenta mature spores low low —
green nutrients high high low

Table 7: Characteristics of particle types.

Furthermore, in our experiments with β and radius we have found cells that show a distinct
division of roles between the species. These cells contain homogeneous cell walls of species A, and
homogeneous cell nuclei of species B. Together, however, they form one heterogeneous cell. In our
experiments with β, these cells where considerably smaller then any other cells. Thus we coin the
term proto-cells for these structures.

5.1 Further research

In this thesis we have shown the existence of proto-cells in a heterogeneous two-species PPS near
[radius = 5, α = 180, β = 17, speed = 0.67], whose species differ slightly in their β–value. That
being said, we have not documented if these participate in a similar cycle of life. The same can be
said for the other heterogeneous cells that exhibit a strict division of roles seen in the experiments
with radius.

Additionally, we have limited ourselves to two-species PPS, but looking at more species could be of
interest too. Likewise, we have only looked at changing β, speed and radius. One property that
we have not looked at is visibility. The YouTuber TheRainHarvester has already shown that this
can achieve complex emerging behaviour (Figure 7), thus a further inspection could be worthwhile,
especially when making use of the PDD to analyse what changes occur.
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