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Abstract

Automated symmetry detection is still a difficult task in 2021. However, it has applications in
computer vision, and it also plays a large part in understanding art. This thesis will focus
on aiding the latter by comparing different state-of-the-art automated symmetry detection
algorithms. Furthermore, we propose post-processing improvements to an algorithm to find
more localised symmetries in images, improve the selection of detected symmetries and detect
rotational symmetries. In order to detect rotational symmetries, we contribute a machine
learning model which detects rotational symmetries based on provided reflection symmetry
axis pairs. We conclude that we have successfully extended an algorithm meant to detect
global reflection symmetries to detect localised symmetries and rotational symmetries. Some
detection methods did not perform well on our data set.
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1 Introduction

1.1 Problem Description

In everyday life, humans and animals use their innate perception of symmetry to identify objects
quickly. This very same application could be useful in computer vision. Symmetry also plays a
significant role in art as it is one of the main art principles with which artists create the composition
of an artwork [7]. Automated symmetry detection could therefore improve various computer tasks
and also aid art scientists and cultural heritage projects. This thesis aims to help the latter by
analysing the current state-of-the-art automated symmetry detection algorithms and propose
various ideas to improve them or make more use of these algorithms.

Ornaments & patterns online archive Ornamika [1] has kindly provided us with their database
containing diverse artistic images. Labelling these images with their symmetries and symmetry
types will help organise their database. This will, in turn, aid them in their work and aid other
designers who use their database. However, due to a large number of images, an automated approach
for labelling the images is required. The Ornamika data set is different from most other data sets
on which existing algorithms have been tested. Most papers test their algorithms on data sets
containing real-world photos. Such photos often contain complex backgrounds, lighting and depth.
In contrast, the Ornamika data set is mainly comprised of ornaments on a 2-d plane. Often the
image features a flat textile art piece without other irrelevant background objects. When an image
in the Ornamika data set is not a flat surface, it is often an object which has been photographed en
face in good lighting conditions. Since other papers have used a different kind of data, it is currently
unknown which algorithms perform best on a data set like the one from Ornamika. Additionally, it
is difficult to predict whether existing algorithms can be improved to yield better results.

Over the years, many papers [2, 16, 4, 19, 11] have been published proposing various symmetry
detection methods. Three different symmetry detection competitions have been held with increased
complexity in each competition. Further details about these competitions are shared in Section 2.
Despite the amount of work in the field, automated symmetry detection does still prove to be a
difficult task, as we can conclude based on the last symmetry detection competition, which was
held in 2017 [9]. Their conclusion states that an old algorithm of 2006 was still competitive.

1.2 Contribution

We performed a literature study on the current state-of-the-art algorithms. We then compared
different algorithms on the Ornamika data set to determine which algorithm works best on this
data set. We selected two different algorithms to include in our experiments. One for detecting
medial axis symmetries [25] and one for detecting global reflection symmetries [8] (see Section 1.3
for definitions).
We propose various improvements to the latter. First of all, we improve the selection of discovered
symmetries to lower the false-positive detection rate. Furthermore, we utilise this algorithm, meant
for detecting global symmetries, to find more localised symmetries in our images. Lastly, we use
the algorithm in order to detect rotational symmetries. We propose a set of rules with parameters
with which detected reflection symmetries can determine the existence of a rotational symmetry.
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We subsequently replace this rule-based method with a machine learning method and show that
Elawady’s reflection symmetry detection algorithm can detect rotational symmetries using our
model with an accuracy of over 90% on our test set. We note that, in theory, any reflection symmetry
detection algorithm will be able to use our trained model to detect rotational symmetries, as its
input only requires a set of coordinates of two lines and their respective symmetry score. Most
symmetry detection algorithms produce these attributes to draw symmetry lines. We tested our
final algorithm on 200 images. The results of this, together with the source code, can be found on
GitHub1.

1.3 Types of Symmetry

Symmetries can be categorised into four different types, namely:

• Reflection - where the image appears mirrored alongside a straight axis. Figure 1a shows an
example where the left half of the image is a mirrored version of the right half.

• Rotational - where elements are repeated around a centre point. Figure 1b shows an example
where all the spokes of the wheel are centred around the middle of the ferris wheel.

• Translation - where elements are repeated while rotated in a different direction. Figure 1c
displays an example where the metallic street stones are repeated in a different direction.

• Glide reflection - is a combination of reflection symmetry and translation symmetry. Figure 1d
shows an image where the footprints are mirrored along a straight axis and are also translated
in a forward direction.

Besides these four mentioned symmetry types, some algorithms focus on finding the medial axis
(skeleton) of objects inside images. An example is shown in Figure 2.

(a) Reflection (b) Rotation (c) Translation (d) Glide-reflection

Figure 1: The four types of symmetry with the symmetry axis shown in yellow (source: [7])

1https://github.com/Koen-Git/ColorSymDetect
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Figure 2: Medial axis symmetry with the axis drawn in yellow (source: [7])

1.4 Thesis Overview

In Section 2 we outline the related work. In Section 3 we describe the two algorithms on which
we experimented and list their initial results. Furthermore, we describe possible improvements to
these algorithms as well as describe and evaluate our machine learning approach to find rotational
symmetries. In Section 4 we summarise our findings and results. In Section 5 we discuss shortcomings
of our approach and outline future work.

This thesis is a bachelor project supervised by Bas van Stein and Anna Kononova and is performed
at the Leiden Institute of Advanced Computer Science (LIACS).

2 Related Work

The first symmetry detection method was proposed by Atallah in 1984 [2, 17]. This algorithm
focused on reflection symmetries, as shown in Figure 3. The main technique used has been called
intensity-based detection [7] and has been proven by Cicconet et al. [6] to still be competitive in
recent years [9]. However, this technique suffers most notably from requiring large computation
time. This problem has increased with time as images have grown in resolution.

Figure 3: First symmetry detection algorithm (source: [2])
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In more recent years, three different symmetry detection competitions were held in 2011, 2013 and
2017. We will now discuss each competitions findings and their key algorithms as the algorithms
participating in these competitions were state of the art during their respective time.

Table 1: Details about the first symmetry detection competition (2011)

First symmetry detection competition [22]
Year 2011
Organizer CVPR
Categories Reflection, rotation, translation
# participants Reflection: 3, rotation: 2, translation: 3 (8 total)
Baseline algorithms Loy and Eklundh [16] for reflection and rotation, [20] for translation.
Winners Reflection: Baseline, rotation: Baseline, translation: unknown

First Symmetry Detection Competition
The first competition featured three different categories: reflection, rotation and translation. A
total of 8 algorithms participated, with each category also featuring a baseline algorithm. The
algorithms performed best on reflection symmetry, second-best on rotation symmetry and last on
translation symmetry. For both the reflection and rotation category, all contestants were beaten
by the baseline algorithm published by Loy and Eklundh in 2006 [16]. The results for translation
symmetry can be disregarded as the participants did not conform to the evaluation standard and
could not properly be evaluated.

Table 2: Details about the second symmetry detection competition (2013)

Second symmetry detection competition [14]
Year 2013
Organizer CVPR
Categories Reflection, rotation, translation
# participants Reflection: 3, rotation: 1, translation: 2 (6 total)
Baseline algorithms [16] for reflection and rotation, [20] for translation symmetry.
Winners Reflection: Baseline or [21] in some categories such as multiple symme-

tries, rotation: [16] in single centre detection and [12] for multiple centres,
translation: [3].

Second Symmetry Detection Competition
The second competition, held in 2013, featured the same three categories. The baseline algorithm
was again very competitive and outperformed most algorithms in reflection and rotation symmetries
when only a single symmetry is considered. For multiple symmetries Patraucean [21] and Petrosino
[12] won these categories respectively. For translation symmetry, Cai and Baciu [3] beat the baseline
algorithm and the contestants, but it should be noted that this algorithm required manual input
while the others did not. The baseline algorithm and the last contestant [20] could not be compared
against each other.
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Table 3: Details about the third symmetry detection competition (2017)

Third symmetry detection competition [9]
Year 2017
organizer Organizer ICCV
Categories Reflection, rotation, translation, medial axis, 3-d data sets have also been

added for these categories
# participants 11 participants
Baseline algorithms reflection: [16] and [24], rotation: [16] and translation: [26].
Winners* Reflection: Baseline [16] for multiple symmetries and [24] for single sym-

metries. rotation: unknown, translation: [26]
*The winners listed are on only on 2-d data as 3-d images are beyond the scope of this thesis

Third Symmetry Detection Competition
The latest symmetry detection competition, held in 2017, featured the medial axis detection category
for the first time. Loy and Eklundh [16] still acted as the baseline for reflection and rotational
symmetries. A second baseline algorithm [24] for these categories was introduced and outperformed
Loy and Ekhlundh on single reflection symmetries. Surprisingly Loy and Eklundh once again won
in detecting multiple symmetries, with Elawady et al. [8] coming in second place. For translation
symmetries, the scores of the challenger [18] and baseline [26] algorithms were still relatively low,
with F-scores2 of 0.19 and 0.20 respectively. In the new category, medial axis, two algorithms
managed to beat the baseline algorithm. Liu et al. [15] came in first place with an F-score of 0.73.
For comparison, humans achieved an F-score of 0.80 [9]. Funk and Liu [10] participated in the
rotational symmetry category and the authors themselves claim better performance over Loy and
Eklundh. However, Funk and Liu only focus on finding the rotational centres. In the results of the
competition, no winner of the rotational symmetries category is discussed.

Figure 4: Example image of the deepflux algorithm [25]

2F-score (1) offers a single-value score for system performance comparison, by using the precision and recall [9]
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Later Works
Since the last symmetry detection competition, Wang et al. published a new deep learning algorithm
for finding medial axis symmetries [25]. In this paper, the authors claim equal or better performance
compared to the winner of the latest competition [15]. While Deepflux is still a deep learning
method, much like Liu’s algorithm, it differentiates itself in its learning objective. While earlier deep
learning-based methods trained their model as a binary classification problem, Deepflux focuses
on learning a context ’flux’ of the objects skeletons. This flux should result in more informative
non-local cues, which lowers inaccuracy. An example of this flux is pictured in Figure 4.
In 2019 Elawady published his thesis [7] in which he states the evaluation method for reflection
symmetry used in the competitions is unclear. Elawady explains how to evaluate symmetry axis to
their corresponding ground truths. Just like the competitions, he uses the max{F1} score (1) as a
global quality measure for comparing algorithms.

max{F1} = max{2PR×RC

PR + RC
} (1)

Furthermore, Elawady emphasizes that a pair of similar symmetry lines should not both be evaluated.
Instead, only the higher ranked symmetry line (with a higher score) should be considered. Next, he
states that multiple detected symmetry axes can be grouped to form a single ground truth. Both
practices are visualised in Figure 5. It is unclear whether the symmetry competitions also adopted
these methods, as they only list the precision and recall with their corresponding F-scores on a
single test set.

Figure 5: Example with two ground truths (red) and six detected symmetry lines (blue). The
detected symmetry lines are ordered by their respective symmetry score produced by the algorithm.
SC1 and SC2 are matched to GT1 (the difference in their slope and their centres are within some
threshold) and SC4 is matched to GT2. Furthermore, SC6 can be disregarded as it is similar to the
higher-ranked SC5. (source: [7])

Elawady has evaluated different versions of his algorithm on seven different symmetry data sets,
four for single symmetry detection and three for multiple axis detection. The results are listed in
Table 4. These results show that Elawady’s algorithm has a slight edge in the last competition’s
multiple axis training data set (ICCV17m). The test set of this same competition shows Loy has the
higher performance [9]. Nonetheless, when considering the other 6 data sets, we can see Elewady
has a clear advantage in each of them over Loy and Eklundh.
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Table 4: Elawady algorithm compared to Loy and Eklundh. and Cicconet et al. on seven different
data sets. Each cell lists the amount of top-ranked detected symmetry axis that corresponds with a
ground truth in the data set. Between brackets the max{F1} scores are listed. (data source: [7])

Dataset (#images) Loy [16] Cic [5] Elawady [8]

PSU (157) 81 (0.514) 90 (0.569) 113 (0.724)
AVA (253) 174 (0.690) 124 (0.493) 182 (0.729)
NY (176) 98 (0.528) 92 (0.526) 135 (0.766)

ICCV17 (100) 52 (0.507) 53 (0.536) 70 (0.713)
PSUm (142) 69 (0.292) 68 (0.159) 75 (0.338)
NYm (63) 32 (0.337) 36 (0.237) 40 (0.411)

ICCV17m (100) 54 (0.273) 39 (0.207) 57 (0.285)

Total (991) 560 (0.449) 502 (0.390) 672 (0.567)

Summary
Over the years, many papers [26, 10, 13] have proposed various algorithms to find symmetries
in an automated way, yet it still poses to be a complex problem. According to all competitions,
Loy and Eklundh [16] beat most other algorithms in various categories, even ten years after its
publication. We also note that F-scores were still quite low during the last competition for multiple
and single reflection symmetry detection (F=0.3 and F=0.52 respectively). Elawady has described
more clearly how reflection symmetries should be evaluated and tested his algorithm on seven
different data sets. His results show higher F-scores (0.73 for single reflection data sets and 0.34 for
multiple reflection data sets). However, it is clear that there is still much room for improvement in
this field.
For detecting medial axis symmetries, the F-scores are nearing those of humans [9]. This indicates
that automated medial axis symmetry detection is close to producing more accurate results than
humans would produce manually. Since the last symmetry detection competition, a more recent
algorithm[25] is proposed, which should make this gap between automation and manual work even
closer.
Detecting rotational symmetries has not received much attention in the last symmetry competition.
Loy and Eklundh [16] won this category in the first and second symmetry competition and is
considered the best baseline for this category. Funk and Liu [10] claim better performance but only
focus on finding the rotational centres in their work.
Translation symmetry detection has proven to be the most challenging category. In the latest
symmetry detection algorithm, the maximum achieved F-score was only 0.2.

3 Methodology

Based on our literature review, we conclude that for reflection symmetries, Elawady’s WaveletSym
algorithm [8] achieves the highest performance on the largest distribution of data sets while using
a clear evaluation method. Furthermore, We found that WaveletSym processes images in under
ten seconds on average. In Section 3.3, we compare the computation time of our work with Loy
and Eklundh. We find that Loy and Eklundh’s method requires four minutes on average to process
an image. This time is comparable to our proposed work in which we recursively use WaveletSym
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multiple times. For these reasons, we consider WaveletSym currently state of the art. In detecting
medial axis symmetries, we consider Deepflux [25] the state-of-the-art algorithm, as the authors
claim improved performance over the winner [15] in the third symmetry detection competition. To
summarize, we will compare state-of-the-art algorithms WaveletSym and Deepflux on our data.
WaveletSym uses an unsupervised method in order to find global reflection symmetries. Deepflux
uses a deep learning approach to find the medial axis symmetries. For these reasons, it will be
interesting to see which approach will work better on our data set and how we can best utilize
both existing algorithms on our data set. For detecting rotational symmetries, we will not use an
existing algorithm meant for this task. We instead propose a machine learning model in Section
3.3. This model uses reflection symmetry lines generated by WaveletSym. We will subsequently
compare the performance of our model against Loy and Eklundh [16] in the same Section. Due to
the current low performance of all translation symmetry detection algorithms [9], none of these
methods are considered.

3.1 Deepflux

We initially ran the Deepflux algorithm with default settings and a provided model on a subset
of images from our data set. We found that Deepflux with this provided model showed poor
results when directly applied to the Ornamika data set, as shown in Figure 6. The skeletons of the
important parts of the ornaments have not been identified, e.g. the bird (top left) or deer (bottom
right) have no skeleton drawn on them.

Figure 6: Deepflux [25] with default settings from left to right: initial image — drawn skeleton —
skeleton drawn on image

The provided models are trained on the SK-Large [23] and symPASCAL [11] data sets. These
data sets mostly contain real-life images, as seen for example in Figure 4. Because our data set
contains a different kind of images, we created a new model from our set of images to fully test
Deepflux.

8



(a) original image (b) Generated skeleton (c) Skeleton drawn on image

Figure 7: Deepflux [25] with a new model trained on a small subset of the Ornamika [1] data set.
These results show good performance for a small training set.

To train the new model, we started with a small set of 11 images and manually created ground
truths for each image. Then, we trained the model using the same approach as described in the
Deepflux paper [25], though with a different configuration of hardware and without using pycaffe’s
GPU mode. This should not impact any of the results, only the time it took to train the model.
While the model is only trained on a small set of images, it would give us insights into whether or
not creating a larger training set would be a worthwhile investment of time. Unfortunately, the
results show that it would not.

With the newly trained model, some images show that there is potentially more to gain from
increasing our training data size, as shown in Figure 7. We can see in the top images that the skeleton
is quite accurately drawn on the important parts of the ornaments, as is the case in the bottom
image. Even with a small training set, the shape of the bird is starting to form. Unfortunately,
most of the images we tested on showed a different kind of performance which we can see in Figure
8 and 9. Deepflux either produces seemingly random scattered dots in these images or has drawn
lines that did not form on the most important parts of the ornament.

Based on the resulting images (8, 9) and the viewed performance we just described, we conclude
that enlarging the training data would very likely not be a worthwhile investment of time. Medial
axis symmetry detection methods are, in their current state, probably not useful for our kind of
data set. This may be because the images often do not contain any depth, and a change of colour
may not always indicate a different object in the image. More research can be done in this field.
Some ideas are shared in Section 5.
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Figure 8: Deepflux [25] with a new model trained on a small subset of the Ornamika [1] data set.
These images show the model is not providing accurate results.

Figure 9: More examples of Deepflux [25] showing poor performance with our newly trained model,
as is the case in Figure 8.
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3.2 Wavelet-based Reflection Symmetry Detection

Elawady’s [8] WaveletSym algorithm produces a multidimensional array of symmetry lines with
their corresponding symmetry score. As shown in Figure 10, these lines are then drawn on the
image with the legend of the scores attached.

Figure 10: Results as produced by [7] without any alterations. The top 5 discovered symmetries are
drawn on the image. The numbers in the legend represent each lines symmetry score, how strong of
a symmetry is present.

Initial results
WaveletSym gives us pretty satisfying results, as is shown in Figure 10. With default settings, the
top 5 symmetries are drawn on the image. We can see WaveletSym often finds the main symmetry
axis, with secondary symmetries being found relatively accurate as well. We should note that in a
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data set mainly containing art pieces like the Ornamika [1] data set, the main symmetry axis is
often the least interesting. This is because in a vast majority of the images a reflection symmetry
exists in the centre of the image.

When inspecting the resulting images in Figure 10 we observe a few shortcomings of the
WaveletSym algorithm in its current state.

1. As is described in the paper [8], the algorithm only deals with global reflection symmetries,
while we are also interested in more localised symmetries. Especially when considering that
the main global symmetry axis is often the least interesting in our data set.

2. This algorithm only deals with reflection symmetries, but we are interested in other types as
well, such as rotational symmetries.

3. All symmetry lines with a score over 0 are returned by the algorithm, with no way to filter on
accurate symmetry lines. Yet, the scores themselves are not a very meaningful metric when
comparing scores from one image to another.

4. The algorithm produces many symmetry lines that are very similar to each other.

5. The symmetry detection itself could be improved.

Improvements
Despite these shortcomings, WaveletSym is still a promising algorithm, and some alterations will
mitigate these described problems. In the next paragraph, we will go through these problems one
by one and attempt to mitigate them as much as possible.

1. Localised symmetries: We will cut the images at certain points to find localised symmetries
in these smaller parts. Then, the resulting symmetry lines can be plotted on the original
image, revealing the more localised symmetries. For determining where to cut the image, we
could cut at as many places as possible. However, this results in undesired symmetry lines
and most notably increases computation time. Instead, we settled on recursively cutting up
the image at the top three symmetry lines. This created six new smaller images which can be
processed in the same manner. This resulted in a good balance between computation time
and retrieving accurate symmetries. The pseudo-code for this recursive function is displayed
in Algorithm 1.

2. Rotational symmetry: First, we observed that when two lines cross and are perpendicular,
there is likely a rotational symmetry around the intersection as shown in Figure 11a. The
rotational symmetries as drawn with this naive approach lead to some unwanted results, as
shown in Figure 11b. These results are partly caused by our earlier described problem of similar
symmetry lines being drawn close to each other; this also causes multiple rotational symmetries
to be drawn. The other problem is that there are not necessarily rotational symmetries at
the intersections between two perpendicular lines. Requiring the two perpendicular lines to
have similar symmetry scores will improve performance. Besides these simple rules, we also
contribute a machine learning approach for detecting rotational symmetries with symmetry
line pairs as an input. We will elaborate more on this in Section 3.3.
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3. Filtering: To determine if symmetries should be drawn on the image, we can use the
normalised score for each image or sub-image. First, we checked if the top symmetry found
reaches our parameter symmetry threshold, and then we check if the other detected symmetry
scores lie within a second threshold compared to the first one. Symmetries that do not reach
these thresholds can be removed.

4. Similar symmetries: Since WaveletSym is producing a lot of similar symmetry lines, we
can loop over each line and compare them to each other. If we find lines with a similar slope
and centre, we can discard the line with a lower symmetry score. The same procedure can be
performed on rotational symmetries, i.e. circles drawn with a similar radius and centre.

5. Improvements: In order to improve the detection, we could highlight the important details of
each ornament. We attempted this by using Deepflux [25] to draw skeletons on the ornaments.
However, as we described in Section 3.1, this approach yielded no good results.

(a) Naive approach for rotational symmetries in
a perfect scenario

(b) Naive approach for
rotational symmetries in
a bad scenario

Figure 11: Rotational symmetries drawn with with a naive approach. The red lines represent the
discovered reflection symmetries. Any perpendicular lines will draw a yellow rotational symmetry
in their intersection.

Results after improvements
The pseudo-code for the algorithm with our improvements is displayed in Algorithm 1. Figure 12
lists images with all our proposed adjustments. The rotational symmetries are detected in these
images using the described naive approach, not using machine learning. For this set, we have set
our first parameter, ’globalSymmetryThreshold’, to 0.20. This parameter dictates whether the top
symmetry of each image or sub-image should be kept or not. Any lines with scores below this
parameter are removed. Lines generated as part of the same recursive loop are removed as well.
We have set our second parameter, ’normalizedThreshold’, to 0.70. This parameter dictates which
other symmetry lines are kept. Lines with scores relative to the top symmetry score which are lower
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than this threshold, are removed. The third parameter, ’CircleSymThreshold’, was set to 0.75; this
implies the maximum difference in symmetry scores between two lines can at most be 25% for them
to create a rotational symmetry.
The resulting images show that with these adjustments, WaveletSym is capable of finding localised
symmetries and rotational symmetries. However, some rotational symmetries are still not found,
and some smaller ones are found inaccurately. Additionally, some localised symmetries which are
discovered are inaccurate.

Figure 12: Resulting images of WaveletSym with our alterations outlined in Section 3.2. The blue
lines are the discovered global symmetries. Other colours represent different depths of the recursive
function and, in turn, represent discovered localised symmetries. The colours of the different depths
are mapped in the colour map to the right. Colours presented lower on the map represent more
localised symmetries.
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Algorithm 1 WaveletSym with our post-processing improvements

1: function recursiveSymmetries(img, symmetries, minsize, rcAmount)
2: if img.height < minsize[0] or img.width < minsize[1] then
3: return
4: end if
5: newSymmetries = WaveletSym(img) [8] . newSymmetries is ordered by symmetry score
6: for i in range(0, rcAmount) do
7: (im1, im2) = cut image along newSymmetries[i]
8: symmetries + = recursiveSymmetries(im1, symmetries, minsize, rcAmount)
9: symmetries + = recursiveSymmetries(im2, symmetries, minsize, rcAmount)

10: end for
11: symmetries + = newSymmetries
12: return symmetries
13: end function

14: function rotationalSymmetries(symmetries, img, circleSymThreshold)
15: rotations = []
16: for sym in symmetries do
17: for subsym in symmetries do
18: if abs(sym.score - subsym.score) < circleSymThreshold then
19: if isPerpendicular(sym, subsym) then
20: intersect = calcIntersection(sym, subsym)
21: if intersect != None then
22: if checkDistance(intersect, sym, subsym) then
23: radius = minDistance(intersect, sym, subsym)
24: rotations.append([intersect, radius])
25: end if
26: end if
27: end if
28: end if
29: end for
30: end for
31: end function

32: for img in folder do
33: symmetries = recursiveSymmetries(img, [], (img.height/5, img.width/5), rcAmount)
34: symmetries = removeSymmetries(symmetries, symThreshold, normThreshold)

. Remove symmetries with low symmetry scores (under threshold)
35: rotations = rotationalSymmetries(symmetries, img, circleSymThreshold)
36: symmetries = removeSimilarReflections(symmetries, similarityThreshold)

. Remove lines with similar slope and centre
37: rotations = removeSimilarRotations(rotations, circleSimilarityThreshold)

. Remove rotations with similar radii and centre points
38: PlotSymmetries(symmetries, rotations)

. Plot each reflection symmetry and rotational symmetry
39: end for

15



Figure 13: The image on the left represents two symmetry lines with a rotational symmetry in their
intersection. In order to oversample, we rotate these lines around their centre point, as shown in
the right image. In the actual oversampling, this is done 720 times, each rotated 0.5 degrees.

3.3 Machine Learning for Rotational Symmetries

Discovering rotational symmetries as described in Section 3.2 amounts to reasonable results. In
order to improve these results we, propose to use a machine learning model to learn when reflection
symmetry lines indicate a rotational symmetry at their intersection. For this classification task,
we first had to label symmetry line combinations manually. We labelled lines that intersected and
had a rotational symmetry at the intersection as true. Lines were also required not to be parallel
or close to parallel. Other line pairs are labelled as false. In order to balance the data set, we
also rotated every true case by 0.5 degrees 720 times. This process is visualised in Figure 13. We
compared various machine learning algorithms trained on training data and validated on a different
set of validation data. These sets contain 153.785 and 517.213 samples respectively. The results for
each algorithm are shown in Table 5.

Table 5: Accuracy scores off various algorithms on our validation data. While SVC auto achieves the
highest accuracy, the ROC curve (Figure 14) shows that Random Forest and LinearSVC perform
the best.

Algorithm Parameters* Accuracy AUC

Log Regression max iter=10000 0.82181 0.5
Random Forest 0.85381 0.94
SVC 0.19588 0.51
SVC alt gamma=”auto” 0.88888 0.76
KNN 0.86131 0.71
Decision Tree 0.87025 0.67
SGDClassifier 0.46510 0.58
LinearSVC max iter=5000 0.88024 0.94

*All non listed parameters are default parameters. Using sklearn 0.24.2 (python 3.7.10).
Each algorithm, except for KNN, was also set with ”random state=44”

and ”class weight=’balanced’”.
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Figure 14: ROC Curve of the scores in Table 5. Random Forest and LinearSVC come out on top.

Table 6: KNN and SVC accuracy scores and AUC scores with different hyper parameters. The
algorithms are trained on our training data and validated on a separate validation set. The top
scores are listed in bold text.

Algorithm Parameters accuracy AUC

KNN 0.86131 0.71
KNN n neighbors=1 0.84903 0.65
KNN n neighbors=3 0.85738 0.69
KNN n neighbors=8 0.86407 0.72
KNN weights=”distance” 0.86069 0.71
KNN weights=”distance”, n neighbors=3 0.85513 0.69
KNN weights=”distance”, n neighbors=8 0.86213 0.72
SVC gamma=’auto’ 0.88888 0.75
SVC gamma=’auto’, kernel=’poly’ 0.17819 0.5
SVC gamma=’auto’, kernel=’sigmoid’ 0.31574 0.42

*All non listed parameters are default parameters. Using sklearn 0.24.2 (python 3.7.10).
All SVC configurations were also using ”class weight=’balanced’” and ”random state=44”.
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Table 7: Accuracy scores and AUC scores of Random Forest with different hyper parameter
configurations trained on training data and validated on a separate validation set. The highest
scores are listed in bold text.

id Parameters accuracy AUC

0 0.85381 0.94
1 n estimators=50 0.85419 0.91
2 n estimators=250 0.85496 0.95
3 n estimators=500 0.85651 0.95
4 criterion=”entropy” 0.87617 0.96
5 criterion=”entropy”, n estimators=250 0.87781 0.96
6 max depth=5 0.89620 0.96
7 max depth=20 0.88323 0.95
8 min samples split=4 0.85769 0.94
9 min samples leaf=3 0.88524 0.95
10 max features=”log2” 0.85381 0.94
11 max leaf nodes=10 0.87676 0.96
12 max depth=5, criterion=”entropy” 0.89622 0.96
13 max depth=10, criterion=”entropy” 0.90819 0.96
14 max depth=20, criterion=”entropy” 0.88375 0.96
15 min samples leaf=3, max depth=5 0.89620 0.96
16 min samples leaf=3, max depth=20 0.89225 0.95
17 min samples leaf=3, criterion=”entropy” 0.89420 0.96
18 min samples leaf=3, criterion=”entropy”, max depth=5 0.89622 0.96
19 min samples leaf=3, criterion=”entropy”, max depth=20 0.89559 0.97
*All non listed parameters are default parameters. Using sklearn 0.24.2 (python 3.7.10).

Each algorithm was also set with ”random state=44”
and ”class weight=’balanced’”.

The results show that SVC, with its ’gamma’ hyperparameter set to ”auto” achieved the highest
accuracy. However, in the ROC curve, it is clear SVC is scoring poorly with an Area Under Curve
(AUC) of only 0.76. Random Forest and LinearSVC achieved better performance with an AUC of
0.94.

We re-evaluated these three top-performing algorithms with different hyperparameter configura-
tions. Together with these algorithms, we also evaluated KNN, since it was the only other algorithm
achieving an AUC > 0.70. Both SVC and KNN showed no noteworthy improvements in their AUC
scores, as shown in Table 6. Different hyperparameters showed no improvements in LinearSVC
either but did show some small improvements in Random Forest. The results are listed in Table 7
and 8. We evaluated the top-performing Random Forest and LinearSVC configurations one more
time on a completely different test set, containing 263.569 samples. The final results of this test are
found in Table 9, and the ROC curve is found in Figure 15. We conclude that Random Forest with
”max depth=10” and ”criterion=’entropy’” performs the best on various sets of our data.
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Table 8: LinearSVC Algorithm accuracy scores and AUC scores with different hyper parameter
configurations. The algorithms are trained on our training data and validated on a separate
validation set. The top scores are listed in bold text.

id Parameters accuracy AUC

0 max iter=20000 0.88566 0.94
1 max iter=20000, loss=”hinge” 0.82690 0.91
2 max iter=20000, C=0.1 0.88107 0.94
3 max iter=20000, dual=False 0.45298 0.57
4 max iter=20000, dual=False, penalty=”l1” 0.86240 0.95
5 max iter=20000, dual=False, C=10 0.45298 0.57
*All non listed parameters are default parameters. Using sklearn 0.24.2 (python 3.7.10).

Each algorithm was also set with ”random state=44”
and ”class weight=’balanced’”.

Table 9: Accuracy scores of the best performing algorithms with their hyper parameters tuned.
These tests are performed on a separate test set, which is entirely different from the earlier validation
set.

algorithm Parameters accuracy AUC

Random Forest max depth 10, criterion=”entropy” 0.97348 0.996
Random Forest min samples leaf=3, criterion=”entropy”, max depth=20 0.87452 0.994
LinearSVC max iter=20000 0.92990 0.969
LinearSVC max iter=20000, dual=False, penalty=”l1” 0.92191 0.973

*All non listed parameters are default parameters. Using sklearn 0.24.2 (python 3.7.10).
Each algorithm was also set with ”random state=44”

and ”class weight=’balanced’”.
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Figure 15: ROC curves of the different hyper parameter configurations listed in Table 9

Instead of our earlier naive approach to detect rotational symmetries as described in Section 3.2,
we can now use our newly trained Random Forest model on each line pair that is found by the
algorithm. Any true case will have the centre of its symmetry at the intersection of the reflection
symmetry line pair.

We found that our model performs well in identifying rotational symmetries based on two given
reflection symmetry lines. However, this does mean that our detection method is still completely
reliant on the provided reflection symmetry lines. Due to this, we will now remove fewer symmetry
lines as we did in the previous Section (3.2) since we can use the model to determine if these lines
help detect rotational symmetries. After the predictions are made, we will remove the low scoring
symmetries as usual. This provides us with a better detection rate for rotational symmetries at the
cost of computation time. The final-pseudo code is listed in Algorithm 2.

Figures 16 and 17 display various images with the original algorithm on the left, our improvements
in Section 3.2 in the middle, and on the right our improvements with the machine learning model
for rotational symmetries. We can see the machine learning model has improved the detection
rate of especially the global rotational symmetries. In addition, some more localised rotational
symmetries are now captured as well. The results do, however, show an increased amount of false
positives.
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Figure 16: Original WaveletSym on the left, our work in Section 3.2 in the middle, and our machine
learning model approach on the right. Rotational symmetries are drawn in yellow. The colour map
on the right indicates different levels of localised reflection symmetries. Our machine learning model
on the right accurately detects each global rotational symmetry and even some localised symmetries
in the 2nd and 5th images. Our rule-based approach found no accurate rotational symmetries.
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Figure 17: Original WaveletSym on the left, our work in Section 3.2 in the middle, and our machine
learning model approach on the right. Rotational symmetries are drawn in yellow. The colour map
on the right indicates different levels of localised reflection symmetries. These images show fail
cases of our work. Both our rule-based method and machine learning method incorrectly identified
rotational symmetries. Our machine learning model detects more false positives in the fourth image.
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Algorithm 2 WaveletSym with our post-processing improvements and Machine learning model

1: function rotationalSymmetriesML(symmetries, img, model)
2: rotations = []
3: for sym in symmetries do
4: for subsym in symmetries do
5: intersect = calcIntersection(sym, subsym)
6: if intersect != None then
7: data = preprocess(sym, subsym)
8: if model.predict(data) then
9: radius = minDistance(intersect, sym, subsym)

10: rotations.append([intersect, radius])
11: end if
12: end if
13: end for
14: end for
15: end function

16: for img in folder do
17: symmetries = recursiveSymmetries(img, [], (img.height/5, img.width/5), rcAmount) . (1)
18: symmetries = removeSymmetries(symmetries, lowSymThreshold, lowNormThreshold)
19: rotations = rotationalSymmetriesML(symmetries, img, RF model)
20: symmetries = removeSymmetries(symmetries, symThreshold, normThreshold)
21: symmetries = removeSimilarReflections(symmetries, similarityThreshold)
22: rotations = removeSimilarRotations(rotations, circleSimilarityThreshold)
23: PlotSymmetries(symmetries, rotations)
24: end for

Comparison with Loy and Eklundh
In Section 2 Loy and Eklundh [16] is described as a good benchmark for rotational symmetry
detection methods, as it has won two competitions. Figure 18 and 19 show images of our proposed
machine learning model against Loy and Eklundh’s method. Our method shows superior performance
when it comes to detecting rotational symmetries in images that are completely defined as a
rotational symmetry (first, third and fifth image in Figure 18). Rotational symmetries have, by
definition, an infinite amount of smaller rotational symmetries with the same centre. Our model
will accurately draw the largest encompassing rotational symmetries in images defined entirely by
a rotational symmetry. Loy’s method does not always find the largest encompassing symmetry
or detects a greater symmetry strength in the wrong centre. Furthermore, in all of our tested
images, Loy’s method found rotational symmetries in each of them. Our method will more often
not produce false positives when there are no rotational symmetries in an image. Examples of
this are shown in the first, second and third image in Figure 19. The last two images in Figure 19
show greater performance for Loy and Eklundh. Both methods struggle with detecting multiple
rotational symmetries. However, Loy’s method has a slight edge in this category. Most of the
secondary rotational symmetries detected by our method are not accurate.
Since symmetries should often be detected quickly, or in our case, on a large number of images, the
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speed of each algorithm is an important factor. Table 10 lists the average and median time taken
by our work and Loy and Eklundh’s method to detect rotational and reflection symmetries in a
set of 10 images. As is clear from the low median, most rotational symmetries are detected very
quickly with our method. However, some outliers do significantly raise the average time taken. It
should be noted that our rotational symmetry detection method requires reflection symmetries
as an input. This means the reflection symmetries need to be computed first. On the other hand,
Loy and Eklundh’s method is able to detect rotational symmetries independently. Furthermore,
during testing, we found that Loy and Eklundh’s algorithm required a lot of computational power.
Running two instances simultaneously caused our computer to slow down severely during some
processing stages. In contrast, our method was efficiently running on 6 or 7 instances, only being
constraint by our RAM3. This means that, depending on the computer configuration, it will be
possible to decrease the average detection time by several factors. This greatly benefits cases where
lots of images need to be processed, such as with our case for labelling the Ornamika database.

Table 10: Average and median computation times of Loy [16] and our work in both rotation and
reflection symmetry detection on a set of 10 images. Our work requires reflection symmetries to be
detected before being able to detect rotational symmetries.

Our work (reflection) Loy (reflection) Our work (rotation) Loy (rotation)

Average time (s) 171 239 256 95
Median time (s) 109 103 3 38

3Our computer configuration contained an AMD Ryzen 3600, with 16GB of RAM.
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Figure 18: Our method (right) compared against Loy and Eklundh [16] (middle). The left column
contains the ground truths of the images drawn in red. These images show superior or equal
performance of our model over Loy and Eklundh in detecting rotational symmetries.
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Figure 19: Our method (right) compared against Loy and Eklundh [16] (middle). The left column
contains the ground truths of the images drawn in red. The first three images contain no rotational
symmetries. Our method is better able to detect this. The bottom three images show superior
performance of Loy and Eklundh over our model.
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4 Conclusion

In this thesis, we evaluated two state-of-the-art symmetry detection algorithms on the images of
the Ornamika data set [1] and made improvements to one of them.

We found that the Deepflux [25] algorithm for detecting medial axis symmetries did not perform
well on our data. We tried creating a new model trained on a small set of our data to see if it
improved the results. Unfortunately, this has not paid off. We conclude that current medial axis
symmetry detection algorithms appear to perform better on real-life photographic images.

The second algorithm [8] we evaluated did give us quite satisfactory results on our data set, even
without alterations. We made alterations to automate the identification of accurately detected
symmetries and removing others. We created a recursive function to apply the algorithm on smaller
parts of the image and, in turn, detect more localised symmetries. We also proposed a set of rules
with which the algorithm was able to identify rotational symmetries and draw them on the images.
Lastly, we proposed a machine learning model based on the Random Forest classifier to replace
our set of rules for detecting rotational symmetries. We found that with our model, rotational
symmetries are detected with an accuracy of 90% on our validation set and 97% on our final test
set. As such, we recommend using the machine learning approach, as it is better able to detect
rotational symmetries. We can conclude that, with our approach, it is possible to detect rotational
symmetries with reflection symmetry detection methods. Finally, we compared our method of
detecting rotational symmetries against Loy and Eklundh’s method and found our work to produce
more accurate results when a single rotational symmetry is considered.

5 Future Perspectives

Parallelization: Using multi threaded-processors would greatly benefit the computation time
of this algorithm since multiple images could be processed simultaneously. We, unfortunately, did
not get around to implementing this feature. However, in the current state, multiple instances can
easily be created manually.

Medial axis symmetry detection: We concluded that medial axis symmetry detection in
its current state is not suited for our kind of data set. We did, however, never entirely create a
model with sufficiently large enough training data. As such, we cannot definitively say whether
this approach leads to good or bad results. Furthermore, medial axis symmetry detection appeared
to show good results when focusing on animal-like shapes in our data set. As such, medial axis
symmetry detection could yield better results on similar data sets containing more animals as
ornaments.

Increasing accuracy of localised symmetries: We found, through observations, lower-resolution
images (or smaller parts of images) to produce higher symmetry scores in general with waveletSym.
This could imply that a fixed threshold for identifying accurate symmetries is not the right approach.
Instead, a higher threshold on each smaller part of images could improve the accuracy.
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Rotational symmetries: Because our method relies on reflection symmetry detection methods,
its performance should, in theory, increase as reflection symmetry detection methods improve. As
such, as reflection detection improves, our method can be re-evaluated.
Furthermore, while Funk and Liu [10] only focuses on finding the centres of rotational symmetries,
it could still be a useful algorithm, and we have not evaluated it. Our method uses the minimum
distance between the centre and any reflection line endpoint to find the radii of rotational symmetries.
It may be possible to use Liu’s algorithm in conjunction with reflection symmetries to determine
the sizes of the rotational symmetries in the same way.
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