
Master Computer Science

Predicting Disease Progression in

Huntington’s Disease

Name: Jasper Ouwerkerk
Student ID: s2494876

Date: 13/07/2021

Specialisation: Bioinformatics

1st supervisor: Dr. Eleni Mina
2nd supervisor: Dr. Katherine Wolstencroft

Thesis Project in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 1
1.1 Huntington’s Disease . 1
1.2 Goals and Problem Definitions . 2
1.3 Structure . 4

2 Data 5
2.1 Enroll-HD . 5
2.2 Pre-Processing . 6
2.3 Dataset Statistics . 7

3 Background 9
3.1 Machine Learning (ML) and Deep Learning (DL) 9
3.2 Training . 9
3.3 Train and Test Sets . 10

3.3.1 Class Imbalance . 10
3.3.2 Holdout Validation & K-Fold Cross Validation 11

3.4 Regularization and Overfitting . 11
3.5 Evaluation Methods . 12

3.5.1 Classification Metrics . 12
3.5.2 Regression Metrics . 14

4 Proposed Models 15
4.1 Neural Networks . 15

4.1.1 Design . 16
4.1.2 Activation Functions . 17
4.1.3 Fitting . 19

4.2 Recurrent Neural Networks . 20
4.2.1 SimpleRNN Cell . 21
4.2.2 Long Short-Term Memory (LSTM) Cell 22
4.2.3 Gated Recurrent Unit (GRU) Cell 24

4.3 Convolutional Neural Networks (CNN) 26
4.4 Machine Learning Models . 27

4.4.1 Random Forest . 27
4.4.2 Linear Support Vector Machine (SVM) 28

4.5 Baseline/Constant Model . 29

5 Methods 30
5.1 Software & Data Availability . 30
5.2 Predicting Disease Progression/Prognosis 30
5.3 Pre-Processing . 30

5.3.1 Feature Engineering . 31
5.3.2 Feature Selection . 32
5.3.3 Feature Selection - Drive . 32
5.3.4 Reshaping the Data . 32
5.3.5 Train and Test Split . 33
5.3.6 Model Input . 33
5.3.7 Data Scaling . 35
5.3.8 Assigning Labels and Sample Weights 35
5.3.9 Overview . 35

5.4 General Neural Network Design . 37
5.5 Hyperparameter Tuning . 38

5.5.1 Neural Networks . 38
5.5.2 Linear Support Vector Machine (SVM) 39
5.5.3 Random Forest . 39

5.6 Analyses . 40
5.6.1 Overall Performance . 40
5.6.2 Interpreting the Model (SHAP) 40
5.6.3 Overview . 40

6 Results 42
6.1 Driving Capability . 42

6.1.1 Model Performance . 42
6.1.2 Model Interpretation . 47

6.2 Composite Unified Huntington Disease Rating Scale (cUHDRS) Progression 51
6.2.1 Model Performance . 51
6.2.2 Model Interpretation . 56

6.3 Total Motor Score (TMS) Progression 60
6.3.1 Model Performance . 60
6.3.2 Model Interpretation . 64

6.4 Total Functional Capacity (TFC) Progression 67
6.4.1 Model Performance . 67
6.4.2 Model Interpretation . 71

6.5 Symbol Digit Modality Test (SDMT) Progression 72
6.5.1 Model Performance . 72

6.5.2 Model Interpretation . 76
6.6 Stroop Word Reading Test (SWRT) progression 76

6.6.1 Model Performance . 76
6.6.2 Model Interpretation . 81

6.7 Summary . 81

7 Discussion & Conclusion 83
7.1 Research Questions . 83

7.1.1 Can ML models provide an accurate advice on driving capability
to HD patients and clinicians? 83

7.1.2 Can ML models provide a personalized prognosis on HD progres-
sion, defined by the cUHDRS, to HD patients and clinicians? . . 85

7.1.3 Do the variables making up the cUHDRS also affect the progres-
sion of cUHDRS the most? . 86

7.1.4 Which variables affect the components of the cUHDRS the most? 88
7.1.5 Summary . 91

7.2 Future work . 91
7.2.1 Data . 91
7.2.2 Temporal Resolution . 92
7.2.3 Feature Selection . 92

7.3 Conclusion . 93

Appendices 99

A TMS Components 100

B Variable Statistics 102

C Categorical Variable Distribution 107

D Numerical Variable Distribution 112

E Dummy Encoded Variables 118

F Metrics drive Models 119

G Metrics cUHDRS Models 121

H Metrics TMS Models 123

I Metrics TFC Models 125

J Metrics SDMT Models 127

K Metrics SWRT Models 129

Abstract
Enroll-HD is a longitudinal study of Huntington Disease (HD) patients. HD is a neurode-
generative disease which is caused by a mutation on the HTT gene, causing an aberrant
CAG repeat at the N-terminus. The Enroll-HD dataset is a high quality dataset which
has not yet been fully explored. In this study we propose a data-driven approach to give
a prognosis on disease progression and to deduct which variables impact disease pro-
gression. In this study another model is created to give an advice on driving capability.
Multiple machine learning algorithms were trained and tuned, namely random forest, sup-
port vector machine, convolutional, recurrent, long short-term memory, gated recurrent,
and feed forward neural networks. These algorithms were applied to allow for a longi-
tudinal personalized prediction per patient on driving capability and disease progression.
It was found that generally the GRU had the best performance. The driving capability
was predicted accurately in 91% of the positive (able to drive) and 85% of the negative
(unable to drive) samples. This system allows for a more nuanced advice on driving capa-
bility and can help clinicians in advising patients on their driving capability. The disease
progression was modelled in terms of total motor score (TMS), total functional capacity
(TFC), cognitive measures (SDMT, and SWRT), and a combination of these variables
(cUHDRS). These models showed that, aside from the cUHDRS itself, the cUHDRS pro-
gression is mainly influenced by the cognitive measures. This showcases that TMS and
TFC might be less important in predicting the progression of the cUHDRS even though it
is a measure of motor, functional, and cognitive symptom progression. It was also found
that different components of the TMS and TFC vary in influence on the model for both
the cUHDRS, TMS, and TFC progression. Suggesting that components of the TMS and
TFC have a varying impact on the disease progression. The SDMT and SWRT were
mainly influenced by the SDMT and SWRT in the last year respectively. In conclusion,
accurate predictions could be made on disease progression and driving capability. It was
also shown that some variables have a bigger or smaller impact than previously thought.

Acknowledgement

I would like to thank Dr. Eleni Mina for her feedback on the analysis of the dataset and
for her guidance during the project. I would also like to thank Dr. Susanne T. de Bot, Dr.
Willeke M.C. van Roon, MSc Stephanie Feleus and MSc Kasper F. van der Zwaan from
the Leiden University Medical Center for their expertise and input on Huntington Disease
and the results. Lastly, I would like to thank my academic supervisor Dr. Katherine
Wolstencroft for her feedback, time and for giving me the opportunity to work on this
project.

Chapter 1

Introduction

1.1 Huntington’s Disease

Huntington’s disease is an incurable neurodegenerative disease causing involuntary move-
ments, cognitive impairment, psychiatric and behavioral problems and progressive weight
loss.1 HD is mainly caused by a mutation in the HTT gene. The mutation causes an
extended CAG repeat at the N-terminus of the HTT gene, which results in a long PolyQ
(glutamine) tail in the Huntingtin protein.1,2,3 Wild type HTT has 6-35 CAG repeats and
mutant HTT (mHTT) has more than 35 CAG repeats. Symptom onset for 40 or more
repeats is between 30-50 and more than 60 CAG repeats cause juvenile HD, which is a
severe form of HD that manifests very early in life.4

The number of CAG repeats on the mHTT is inversely correlated with the age at
onset (AAO) and can therefore give a good prediction of disease onset. The number of
CAG repeats accounts for 47% to 72% of the variation in the disease onset in different
HD populations and the remaining factors are caused by interactions with variations in
other genes and environmental factors.5

In addition to the AAO, the CAG repeat size is also a good determinant for age
at death, however it was found that the time between AAO and age at death (disease
duration), is independent of the CAG repeat size.6 It was also found that “two-thirds
of the rate of functional, motor, and cognitive progression in HD is determined by the
same factors that also determine age at onset, with CAG repeat–dependent mechanisms
having by far the largest effect” Aziz et al.5 (2018). The remaining one-third is still
unknown. This might indicate that other variables exist, not included in the previous
analysis, that affect disease progression/duration and that a closer examination of clinical
data might provide further insight into assessing the disease progression and duration in
HD. Determining the remaining factors that influence disease progression and thus, being
able to model disease progression can be beneficial for clinical trials and for future disease
prognosis and diagnosis of individual patients.5,6

Currently, nearly all research on disease progression is conducted using traditional
statistical models, which can be limiting. Previous research Aziz et al.5 (2018) on model-

Page 1 of 130

Chapter 1. Introduction

ing disease progression, using linear mixed models, predicted the longitudinal development
of symptoms using mostly the age and the number of CAG repeats on the mHTT gene.5

In another study 39 variables of interest were used to create imaging and clinical
markers of premanifest HD progressions, which can be used in clinical trials as outcome
measures..7

In these papers, models are generally fed a limited number of variables which are of
interest to the researcher. This might introduce bias and might cause them to discard
relevant information. Also, these models have assumptions about the data, like normal-
ity, equal variance, and absence of disproportionately influential observations in the data.
Complying with these assumptions generally results in filtering out participants and lon-
gitudinal data, which might introduce bias and might limit the model’s predictive power,
e.g. variables and patients might be filtered out that play a large role in the analysis, but
they are simply discarded.5,6

To overcome the limitations explained above we propose a machine learning ap-
proach. Using machine learning we want to improve the understanding of HD and assist
future research and clinical trials. Machine learning algorithms and AI are increasingly
used in medicine and healthcare8,9 and are beginning to achieve or even surpass hu-
man performance. For example, previous research has shown that an AI can potentially
accelerate rare disease diagnoses, by calculating disease probabilities based on patient
symptoms.10 In another paper it was found by McKinney et al.11 (2020) that a machine
learning algorithm can classify breast cancer, based on images, better than radiologists.
This might suggest that machine learning could also be useful for researching HD, how-
ever to our knowledge there have only been a few attempts to apply machine learning
in HD research, e.g. evaluating the frequency and factors associated with psychosis in
HD,12 predicting the development of suicidal ideas in HD patients13 and predicting the
size of the CAG-expansion based on phenotypical data.14

1.2 Goals and Problem Definitions

To further the understanding of HD our main goal is to model disease progression in
HD a data-driven approach, to study which variables contribute the most to disease
progression.

This can be achieved by applying machine learning on the Enroll-HD dataset, which
is a growing worldwide longitudinal study consisting of 21,116 participants. The Enroll-
HD dataset has barely been analysed using machine learning and this large dataset is
perfect for machine learning models, which require a lot of data.15 Here five machine/deep
learning methods are proposed, namely Support Vector Machine, Random Forest, Neural
Networks, Convolutional Neural Networks, and Recurrent Neural Networks to model the
longitudinal HD data from the Enroll-HD study.

To model disease progression the composite Unified Huntington Disease Rating Scale
(cUHDRS) is used, which is an indicator for disease progression.16 The cUHDRS is a

Page 2 of 130

Chapter 1. Introduction

combined score of Motor Score (TMS), Functional Score (TFC), total correct answers
on the Stroop Word Reading Test (SWRT), and total correct answers on the Symbol
Digit Modality Test (SDMT). The TMS and TFC score are the sum of other variables that
measure a specific motoric/functional component, e.g. tapping your left finger (fingtapl)
or how well a patient can do their domestic chores. All the components of the TMS
are shown in appendix A and the TFC components consist of: Occupation, Finances,
Domestic chores, ADL, and Care level.

The cUHDRS was developed by Schobel et al.16 (2017) to ‘identify an improved
measure of clinical progression in early HD’ and the cUHDRS is now also used as a primary
outcome in clinical trials.17 In addition to being a good measure of disease progression, it
has also been found by Estevez-Fraga et al.17 (2021), that cUHDRS correlates with the
progression of imaging bio-markers, which is an extra validation of its biological relevance
in developing clinical trials.17

Modelling the progression of cUHDRS can have an impact on quality of life, since the
onset or change of symptoms can be foreseen. This can ensure that a patient is treated
at the right time and to identify the optimal moment for intervention. In addition, what
impacts a patient’s disease progression is also deducted, i.e. a personalized impact panel.
Here we want to find out whether the variables making up the score are able to predict the
cUHDRS (disease progression) or not and whether new knowledge can be identified as
in other variables that might contribute more to disease progression that were previously
unknown.

In addition to disease progression, the driving capability is modelled to give an
advice on driving capability for HD patients. This problem arises from patients in the
clinic that asked whether an advice could be given on when their disease becomes a
burden to their driving performance. Currently, the driving capability is a binary indicator
whether the patient is driving or not, which can be used to make an estimation on
their driving capability compared to other patients. This project should illustrate whether
machine learning is a feasible method for helping clinicians and HD patients as an advisory
system. It should also be a simple case, to develop the methods and show feasibility of
the proposed machine learning models for modelling disease progression.

HD progression has typically been model by linear mixed models and not so much
by machine learning models. The machine learning models also allow us to analyze
the dataset using a data-driven approach. With this approach we can use all variables
within the dataset to see how much each variable affects the output of the model.
Therefore, we propose using machine learning models to predict driving capability and
disease progression, defined by cUHDRS, in HD patients. With this research we want to
introduce the HD research field to machine learning approaches and with these models
we potentially want to answer the following research questions:

1. Can ML models provide an accurate advice on driving capability to HD patients
and clinicians?

2. Can ML models provide a personalized prognosis on HD progression, defined by
the cUHDRS, to HD patients and clinicians?

Page 3 of 130

Chapter 1. Introduction

3. Do the variables making up the cUHDRS also affect the progression of cUHDRS
the most?

4. Which variables affect the components of the cUHDRS the most?

1.3 Structure

First, the data used in this project is discussed in chapter 2. Secondly, all background
information is explained to understand how neural networks and machine learning models
work in chapter 3. Thirdly, the proposed models used to answer the research questions
are explained in chapter 4. Fourthly, how the data is pre-processed and how each model
is trained and evaluated is explained in chapter 5. Next, the results of these models are
shown in chapter 6 and lastly the results are discussed, concluded, and a future prospect
is given in chapter 7.

Page 4 of 130

Chapter 2

Data

2.1 Enroll-HD

In this project the Enroll-HD dataset is used, which is a growing worldwide longitudinal
study of HD patients. One of the many objectives of Enroll-HD is to facilitate disease
modeling studies, assisting in the identification of beneficial interventions, and promoting
interrogatory studies that may provide clues to the parthenogenesis of HD. The study
collects baseline and follow-up data from multiple sites worldwide of control, pre-manifest,
and manifest patients.

Enroll-HD is built upon three studies, namely Ad Hoc, REGISTRY, and Enroll. The
Ad Hoc study was conducted before REGISTRY, which was active between 2004-2015
and originated from the European Huntington Disease Network (EHDN). The REGISRTY
study is included in the Enroll-HD study under protocol 2 and 3. The most recent and
biggest study included in Enroll-HD is the Enroll study, which started in 2012 and is still
on-going. The Enroll study has research sites in North America, Europe, Australasia, and
Latin America. The sizes of these studies are shown in table 2.1. In addition to a large
number of participants/visits, the studies also include a lot of variables, including motor,
functional, cognitive, and behavioural assessments and information about nutritional and
medication supplements. The studies also have some overlap in terms of variables mea-
sured and patients participated, see figures 2.1 and 2.2 respectively. As shown in figure
2.1, most variables are shared between registry (65.7%) and all three studies share 30%
of the variables. In terms of patients, see figure 2.2, 295 patients are shared between all
studies and most new patients are included in the Enroll study (78.7%).

In short, the dataset is a rich source of high quality information about longitudinal
data of HD patients, which can be utilized by machine learning algorithms. However,
in order to utilize the dataset using machine learning the data has to be pre-processed
first.15,18

Page 5 of 130

Chapter 2. Data

Table 2.1: The number of participants and visits for each study according to the
latest version (PDS5) of the Enroll-HD dataset.15

Study Participants Visits Variables

Enroll 21,116 55,975 304

Registry 6,247 14,737 287

Ad Hoc 302 970 109

Figure 2.1: A venn diagram of the
columns, i.e. measured variables in each
study.

Figure 2.2: A venn diagram of the pa-
tients, i.e. the unique subject ids in each
study.

2.2 Pre-Processing

In this project the Fifth Periodic Dataset (PDS5) of Enroll-HD is used. In this dataset
around 47.15% of all values were missing values. This can be attributed to many factors,
e.g. errors, inconsistencies, the variable is not applicable for a specific patient and simply
missing data. This is a problem since machine learning models generally can not handle
missing values. Therefore, the dataset had to be pre-processed before using machine
learning algorithms.

In the introductory research project a workflow was developed to pre-process the
PDS4 version of the Enroll-HD dataset. Here we re-applied the same workflow for the
new PDS5 version. The workflow includes, separating HD and control patients, detecting
outliers, feature engineering and imputation using machine learning models (linear regres-
sion, random forest, and K-nearest Neighbours). In this workflow only the enroll dataset
is used, since enroll is the largest dataset and describes all patients found in Enroll-HD,

Page 6 of 130

Chapter 2. Data

see figure 2.2. Also, combining the other studies by including all variables would result
in many missing values or the reduction of variables, by only keeping variables shared
between the studies, see figure 2.1.

To summarize a flowchart of the workflow of the introductory research project is
shown in figure 2.3. From this workflow two datasets arise, namely the pre-imputed
dataset and the imputed dataset. Here the pre-imputed dataset is the dataset before
imputing the dataset using the machine learning models.

Enroll-HD Pre-ProcessingSeparate Patients

Impute

Pre-Imputed
Dataset

Imputed
Dataset

Figure 2.3: Flowchart of the workflow created in the introductory research project.

2.3 Dataset Statistics

Some basic statistics of these datasets are shown in table 2.2. This table shows that
the imputed dataset has no missing values and the pre-imputed dataset only has 6.84%
missing values. The distribution of all the variables in the imputed dataset are included
in the appendices B, C, and D.

Table 2.2: Basic statistics of the pre-imputed and imputed dataset, including the
number of participants, visits, and variables.

Dataset Variables Participants Visits Visits/Participant Missing (%)

Pre-Imputed 498 15427 49082 3.2 (+/-1.8) 6.84

Imputed 498 15427 49082 3.2 (+/-1.8) 0.0

Table, 2.2 also shows that the participants have an average of 3.2 visits (sd: 1.8).
The exact number of participants per visit can be seen in figure 2.4a. This figure shows
that there are participants that have a total of 14 visits, however figure 2.4b shows that
the longest time between the first and last visit is 8 years. Even though each visit should
be 1 year apart, the figures 2.4a and 2.4 indicate that this is not the case.

The exact distribution of the years between the current and next visit is shown in
figure 2.5. This figure shows that indeed most visits are 1 year apart, however in some
cases the visits can only be 1 month apart or even 5 years apart. However, it is essential
that the time between each visit is consistent. How this is achieved is explained in the
next section.

Page 7 of 130

Chapter 2. Data

(a) Number of unique participants per visit. (b) Number of unique participants per year.
The year is calculated using equation 5.2.

Figure 2.4: The distribution of the number of participants per visit. In figure 2.4a
the number of visits is shown and in figure 2.4b the number of yearly visits is shown.

Figure 2.5: The distribution of years between the current and next visit.

Page 8 of 130

Chapter 3

Background

3.1 Machine Learning (ML) and Deep Learning

(DL)

There are many types of machine and deep learning algorithms that can solve different
problems, revolving around pattern recognition. How these algorithms learn these pat-
terns can be very different, however how they are trained is very similar. In this chapter
the general strategies of training machine and deep learning algorithms is explained and
how the proposed models work themselves is further elaborated in chapter 4.

3.2 Training

In this section, it is explained how machine and deep learning can be applied to solve
pattern recognition problems. To make such an algorithm useful it has to be “trained”,
which refers to optimizing their parameters, e.g. weights and bias values, to fit a preferred
output using a specific input. So in order to train such an algorithm input data is required
with known outputs, also known as labeled data. In this case Enroll-HD data (input)
is used to predict for example the age of onset (output/label). These predicted values
from the model are then used to calculate the error/loss between the predicted and real
outputs/labels. This error/loss is then used to update the model’s parameters to better
fit the labels, until the model does not improve anymore. This can be the root mean
squared error (RMSE) for regression problems and cross entropy (CE) for classification
tasks, the formulas to calculate the error for one predicted label can be seen below.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.1)

Page 9 of 130

Chapter 3. Background

CEM=2 =

{
−log(p̂) if y = 1

−log(1− p̂) if y = 0
(3.2)

CEM>2 = −
M∑
c=1

yo,c × log(po,c) (3.3)

For the SE, yi is the predicted value and ŷi is the real value (label), i.e. the squared
difference. For the cross entropy loss where the number of classes is 2 (M = 2), p̂ is
the predicted label and y is the true label. This makes sense, since −log(P̂) (the loss)
increases when it approaches 0 and −log(1− p̂) increases when it approaches 1. For the
cross entropy where M>2, y equals 0 (correct) or 1 (incorrect) depending on whether
o is equal to the label c and p is the output value (probability) that instance o equals
c. In short, the cross entropy loss is used to measure how well a set of estimated class
probabilities matches a target class, which is calculated using the softmax activation
function, see equation 4.4.

3.3 Train and Test Sets

In machine learning the dataset is divided into two datasets, namely the train and test set.
Here the training set is used to fit the algorithm. After training the model on the training
set it is evaluated on the test set. At the evaluation step it is calculated how accurate the
model is for predicting the output labels for the test set. This is done using measurements
like accuracy, recall, precision, and F1-score for classification problems and the MSE for
regression problems. So the backpropagation algorithm is never performed on the test
dataset. This is split up since it prevents overfitting and allows to evaluate if the model
is generalised. When a model is overfitted it means that the model “learns” patterns
in the training data which are specific for that dataset, making the model not ideal for
other datasets. The test set shows that a model is overfitting when the performance on
the training set keeps increasing and the performance on the test set decreases. When
this happens, training should stop, this is known as early stopping. With early stopping
a patience is given, which are the number of consecutive iterations of unimproved loss
on the test set needed to stop training.19

3.3.1 Class Imbalance

When dividing the dataset into train and test sets it is important to have a train and test
set that both represent the original dataset. For example the distribution of predictable
labels/classes should be close to the original dataset in both the train and test set. This
is important, because the model should be able to predict the patterns within the whole
dataset. Therefore, the train and test should be as representative to the original dataset
as possible, e.g. the distribution of the classes between the original, train, and test

Page 10 of 130

Chapter 3. Background

datasets needs to be the same. This is generally achieved by randomly sampling from
the dataset to create the train and test dataset.19

Another problem to keep in mind is the class imbalance in the dataset. When dealing
with a classification problem the number of classes in the dataset might include 90% of
label A and only 10% of label B. When training on this dataset the model is biased to
learn to predict label A more, since most of the time it would encounter such a sample.
Therefore, the loss for predicting all classes are weighted by their presence in the training
dataset. A lower presence would mean a higher weight, i.e. a higher loss.20 This weight
(wc) is calculated using equation 3.4, where n are the number of samples in the dataset,
C the total number of unique classes, and nc the number of samples labelled with class
c. This equation was inspired by King and Zeng21 (2001).

wc =
n

(C ∗ nc)
(3.4)

3.3.2 Holdout Validation & K-Fold Cross Validation

There are two methods of splitting the train and test set, namely holdout validation and
K-fold cross validation. Holdout evaluation is simply the splitting of the dataset into one
train subset and one test subset. Common split percentages are 80/20, 67/33 or 50/50,
where a split of 80/20 is commonly used when there is not much data to train the model
on.

An alternative to the holdout evaluation method is the K-fold cross validation
method. With this method the dataset is split into K subsets, where K generally has a
value of 10. After splitting the dataset K models are trained on K-1 subsets and the left
out subset is used as a test set. This results in K evaluation scores, which can give a
good indication of how precise the evaluation score is by looking at the standard devia-
tion of the evaluation score. The only disadvantage to this method is that it requires the
training of multiple models, which sometimes might be infeasible since training a model
can take a very long time depending on the size of the dataset.

In the introductory research project the K-fold cross validation method was used.
In this project the holdout evaluation method is used, since neural networks can have a
long training time.19

3.4 Regularization and Overfitting

There are several methods that reduce overfitting of the models. These are l1 regular-
ization, l2 regularization, Dropout, and early stopping discussed in section 3.3. In this
research only the early stopping and l2 regularization techniques are used. With l2 regu-
larization a penalty is added to the normal loss function, which is shown in equation 3.5.
Here the error is normally calculated using the real labels (y) and the predicted labels
(ŷ) and the penalty is calculated using the size of the regularization factor (λ) times half

Page 11 of 130

Chapter 3. Background

the squared sum of the weights (1
2

∑n
i=1w

2
i). This penalty forces the model to keep the

weights as small as possible, which regularizes the model, while still allowing the model
to fit to the data depending on the size of the regularization factor (λ).19

loss = error(y, ŷ) + λ
1

2

n∑
i=1

w2
i (3.5)

3.5 Evaluation Methods

In the previous sections some evaluation methods were mentioned, namely accuracy,
recall, precision and F1-score. In this section these measurements are explained.

3.5.1 Classification Metrics

Firstly, the accuracy is simply the fraction of correctly predicted labels, true positives
(TP) and true negatives (TN), and the total labels, TP + TN + false positives (FP) +
false negatives (FN), as shown in equation 3.6. The accuracy is a simple, but misleading
metric, since it does not evaluate whether the model is actually learning. For example,
a model could achieve a very high accuracy by only predicting one class, where 90% of
the observations are labelled with class 1 and the other 10% are labelled with class 2.

Accuracy =
TP + TN

TP + TN + FN + FP
(3.6)

A similar metric to the accuracy is the F1-score. The F1-score is the harmonic mean of
the precision and recall (a.k.a. sensitivity), see equation 3.7.19

F1− score = 2× Precision×Recall
Precision+Recall

(3.7)

Here the recall is defined as the fraction of “relevant” labels that were actually correct,
i.e. how many of the actual positive labels (TP + FN) were actually correctly predicted
(TP), which is calculated using equation 3.8.

Sensitivity = Recall =
TP

TP + FN
(3.8)

The precision is defined as the fraction of predicted positive labels that were actually
correct, i.e. how many of the predicted positive labels (TP + FP) were actually correct
(TP), which is calculated using equation 3.9.

Precision =
TP

TP + FP
(3.9)

Both recall and precision give a better perspective of what the model is actually learning,
namely the recall shows how many positive labels are detected by the model and the

Page 12 of 130

Chapter 3. Background

precision shows how accurately it detects positive labels. These measures can therefore
show if a model is actually learning, for example when the recall is very high and the
precision is very low it will be clear that the model is most likely predicting a single class.
However, to show the overall performance of the model the F1-score is used, since it is
easier to interpret a single value.

Another well-established classification metric is the area under the receiver operating
characteristics also known as AUROC or the area under the curve (AUC) and the ROC-
curve. The ROC-curve is a plot showing the recall / true positive rate (TPR) versus the
false positive rate (FPR), which is the ratio of actual negative labels predicted as positive
labels, at different classification threshold values. An example of a ROC-curve is shown
in figure 3.1. Here the blue line represents a trained model and the dashed line represents
a random model. The ROC-curve shows that the trained model performs much better
than the random model, since it is near the top left corner, i.e. it has a high TPR at a
low FPR. The performance of each model is translated into a single metric namely, the
AUC which indicates how well the model can distinguish the classes. Aside, from the
AUC, the ROC-curve can also indicate which classification threshold is most optimal for
the task at hand. This depends on whether TPR should be maximized or FPR should be
minimized. For example, when diagnosing patients with a devastating disease it would be
favorable to reduce falsely diagnosing patients, i.e. reduce the FPR. When no particular
measure should be optimized the optimal threshold can be determined by finding the
threshold that maximizes the TPR− FPR.

Figure 3.1: An example of a ROC-curve.19

Another, visual metric is the confusion matrix. A confusion matrix displays the
actual number of true positives, false positives, true negatives and false negatives in one
figure, see figure 3.2. This visualization directly shows which class is hard to predict.

Page 13 of 130

Figure 3.2: An example of a confusion matrix.22

These performance measures are all related to (ordinal) classification problems, how-
ever for regression problems these scores are not applicable. For regression problems other
metrics are used, which are explained in the next section.

3.5.2 Regression Metrics

The R2 compares the trained model to a baseline model which always predicts the mean.
The R2 score ranges from (−∞, 1]. When the R2 score is 1 it means that the model
perfectly fits the data, 0 means that the model is just as good as taking the mean and
lower than 0 means the model is worse than just taking the mean.

SStot =
n∑
i=1

(yi − y)2

SSres =
n∑
i=1

(yi − ŷi)2

R2 = 1− SSres
SStot

(3.10)

In addition to the R2 score, the mean absolute error MAE and the RMSE are also
good measures for evaluation. The RMSE is also used as a measure of loss which has
already been discussed, see equation 3.1. The MAE, see equation 3.11, is a bit more
interpretable than the RMSE, since it uses the absolute difference instead of the squared
difference between the real value (y) and the predicted value (ŷ), i.e. the MAE is the
average absolute prediction error.

The RMSE is always greater or equal to the MAE and if the RMSE is close to the
MAE then the model generally does not overestimate or underestimate the prediction
value, which gives a nice performance oversight of the model.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.11)

Page 14 of 130

Chapter 4

Proposed Models

4.1 Neural Networks

First the “standard” (feed forward) neural network (NN) is explained. A NN takes
variables/features as input data and can output one or multiple float numbers, known as
a regression model or the output can be one or multiple classes/labels, which is known
as classification model. An example of input and output data for a feed forward neural
network for a classification problem can be seen below in table 4.1. As shown in the
table multiple input types are also possible for the network to take into account. In
table 4.1 the input variable types are: a date, a continuous value that can represent a
concentration, a binary categorical value representing the presence of a feature or gender,
a categorical value representing one of more than three possibilities, and a discrete value, a
value ranging from 0 to infinity, which can represent for example age. However, all these
values are transformed into numerical values, since a neural network can only process
numbers.

Table 4.1: An example of input data for a classification problem.

Var 1 Var 2 Var 3 Var 4 Var 5 Output (class)

13-10-2020 0.23 True (1) Low (1) 26 Sick (0)

01-01-2020 5.25 False (0) High (3) 50 Healthy (1)

The idea/theory for neural networks has been around for quite some time, however
they only became very popular in the last decade. This is because these networks require
a lot of high quality data and are computationally intensive to use.23,24,19

Page 15 of 130

Chapter 4. Proposed Models

4.1.1 Design

A neural network is simply put a layered network of neurons, where data is processed
through the network layer by layer, see figure 4.1. As shown in the figure each neuron from
the previous layer is connected to all the neurons in the next layer. Each connection/line
has a weight and each neuron has a bias, where the neurons follow a linear function:
y = b+

∑n
i=1 xi ∗wi, where n is the number of incoming connections, xi is the variable

from a neuron in the previous layer, wi is the weight of the connection/line between the
previous and next neuron and b is the bias of the output neuron. In this case a neuron
in the hidden layer receives four inputs from the previous layer (input layer). A neuron
in a neural network is actually exactly the same as a linear regression model, another
machine learning technique. Such a model also takes input variables and calculates the
weighted sum plus the bias and the result is the output of the model. However, in a
neural network such models are connected with one another and all the input values
are aggregated into one value in each neuron which is done using so called activation
functions. These activation functions transform all the values into one value that falls
within a desired range, depending on the activation function used, see figure 4.2. In this
figure the activation function simply takes the sum of all output values. These activated
values are then again processed to the next layer, the output layer, and these values are
also aggregated and activated which gives a particular output. In this case there is only
one output neuron, so this network solves a binary classification problem or a regression
problem where the expected output is one value.23,24,19

Figure 4.1: A neural network with one hidden layer of three neurons.25

Page 16 of 130

Chapter 4. Proposed Models

Figure 4.2: A neuron in a neural network with an activation function that aggregates
all the input values into one value.25

4.1.2 Activation Functions

Activation functions used in this study include linear activation, the rectified linear unit
(RELU), tanh, sigmoid, and softmax. The linear activation function is simply the weighted
sum of the input values shown in figure 4.2 and 4.3a. RELU is an activation function
that follows:

f(x) = max(0, x) (4.1)

which transforms the output to fit [0,∞), which is shown in figure 4.3b.26

The tanh function

f(x) =
ex − e−x

ex + e−x
(4.2)

transforms the output to fit (−1, 1), which is shown in figure 4.3c. The tanh function is
commonly used in recurrent neural networks (RNNs).19

Sigmoid follows the function:

f(x) =
1

1 + e−x
(4.3)

which transforms the output to fit (0, 1), this is shown in figure 4.3d. This is very handy
for predicting binary outputs like sick or healthy.27 When trying to predict from multiple
classes softmax is used. Softmax simply computes the exponential of each output neuron
(linear output value) and then normalizes them using the sum of all the exponentials, see
below:

P̂k = σ(s(x))k =
exp(sk(x))∑K
j=1 exp(sj(x))

(4.4)

where K the number of classes, s(x) a vector containing the scores (linear output value)
of each class/neuron for the instance x (input) and σ(s(x))k is the estimated probability
that the instance x belongs to class k, given the scores of each class for that instance.
This function calculates the probability for each class (summing up to 1), which could
be handy if multiple outputs are possible, however when there is one correct output the
highest probability is simply taken using an argmax function. For example for the scores
in the set 2, 1, 5, 4, 3 the softmax function transforms the values to sum up to 1, see
figure 4.3e. In this case the class corresponding to value 3 will be predicted when the
argmax is applied.19

Page 17 of 130

Chapter 4. Proposed Models

4 2 0 2 4
x

4

2

0

2

4
y

(a) The linear activation for x in (−5, 5).

4 2 0 2 4
x

0

1

2

3

4

5

y

(b) The RELU activation for x in (−5, 5).

4 2 0 2 4
x

1.0

0.6

0.2

0.2

0.6

1.0

y

(c) The tanh activation for x in (−5, 5).

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(d) The sigmoid activation for x in (−5, 5).

2 1 5 4 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y

(e) The softmax activation for the x values
[2, 1, 5, 4, 3] respectively.

Figure 4.3: Five activation functions used in this project.

Page 18 of 130

Chapter 4. Proposed Models

4.1.3 Fitting

To fit a model for a specific problem, the neural network’s weights and biases are optimized
using the backpropagation algorithm. Backpropagation is an algorithm that allows to
compute the gradient of the network’s error for each parameter (θj) (weights and biases).
The gradient is a direction pointing towards a value for the current bias or weight that
is most optimal from the current point of view. This requires the algorithm to calculate
the direction of the slope and how much the loss will change when taking a step in that
direction, see figure 4.5. This is done using partial derivatives, noted as ∂

∂θj
Loss(θ), here

the partial derivative is calculated with regards to the loss of all the parameters (θ).
The size of the steps taken is determined by the learning rate (lr). This learning rate

is generally around 0.0001, but that depends on the dataset and neural network. When
the learning rate is too low it takes too much time to ever find the local minima for the
weights. It can also cause the parameter to get stuck in a local minima very quickly when
there are many minima’s. This is where the gradient is 0, but the value for the weight
is not the most optimal to reduce the loss as much as possible, see figure 4.4. When
the learning rate is very high, e.g. lr=1 training becomes very unstable, see figure 4.6.
This makes it almost impossible to ever find a minimum. Therefore, it is key to find an
optimal learning rate.

The previously mentioned backpropagation step can use different optimization al-
gorithms to determine what to do with the gradients to optimize the weights. For this,
mini-batch Gradient Descent (GD) is generally used. Both algorithms are illustrated
below.

1. Take a mini-batch from the dataset, i.e. rows where the number of rows is known
as the batch size. This mini-batch allows the parameters to jump out of local
minima, since the landscape of the minima’s changes with each new sample.

2. Predict for each instance/row in the mini-batch the given output with the current
network. This is known as the forward pass, since the information goes through
the network.

3. Measure the loss of the batch accordingly using the formulas described above, see
equation 3.1, 3.2 and 3.3.

4. Compute for each connection in the previous layer how much each weight and bias
contributes to the error using the chain rule. This is known as the backward pass,
since the error is calculated from the output layer to the input layer.

5. Perform GD to tweak the weights and biases using the calculated gradients of the
mini-batch.

This algorithm is performed on the whole dataset using the mini-batches, where each
mini-batch is sampled from the unsampled dataset. Training one iteration on a mini-
batch is called an epoch and training on all the samples is done in an iteration.19,28

Page 19 of 130

Chapter 4. Proposed Models

Figure 4.4: This figure shows the gradient for two different points. Here the y-axis
is the loss and the x-axis is the value of the weight.19

Figure 4.5: This figure shows the gradi-
ent descent algorithm for one parameter
(θ). Here the y-axis is the loss and the
x-axis is the value of the parameter.19

Figure 4.6: This figure shows the gradi-
ent descent algorithm for one parameter
(θ) where the learning rate is too big caus-
ing big steps which makes it very hard to
reach the minima.19

4.2 Recurrent Neural Networks

In this section, the difference between RNNs and the feed forward NN is highlighted.
Firstly, a RNN is typically used for data where previous events are relevant for future
events, e.g. stock price predictions or disease prognosis, i.e. sequential data. Secondly,
the architecture of a RNN is different from a NN, namely a RNN can be seen as a stacked
NN. An example of a recurrent neuron is shown in figure 4.7, which shows on the left a
recurrent neuron and on the right the unfolded recurrent neuron. The recurrent neuron
is actually processing each time step using the input data of the current time step x(t)

Page 20 of 130

Chapter 4. Proposed Models

and the processed output of the previous time step h(t−1) also known as the hidden state.
Here the input (x) has the same weight wx(t) for each time step and the hidden state
also has a trainable weight wh. Note that both the input and hidden state have the same
weights for each time frame, which allows the network to use a flexible number of time
frames. Here the hidden state of the current time frame h(t) is a function of the input
of that time frame and the hidden state of the previous time step: h(t) = f(h(t−1), x(t)),
here h(t−1) for t=0 is typically set to 0. How h(t−1), x(t) are used in function f to calculate
h(t) depends on the cell type used, which is explained in the next section. Lastly, the
inner workings of a recurrent neuron are different from a normal neuron. In this study
3 types of recurrent neurons are discussed, namely the SimpleRNN neuron, the LSTM
neuron, and the GRU neuron.19

Figure 4.7: An example of a recurrent neuron on the left, which can use the pro-
cessed output h(t−1) of the previous time frame x(t−1). Note that a single neuron is
displayed in this figure using the same weights for each time step.19

4.2.1 SimpleRNN Cell

In this section the simpleRNN cell is explained. In figure 4.8 an example of a simpleRNN
cell is shown. The parameter used in this cell are listed below:

• xt is a one dimensional input vector of m features.
• ht−1 is the hidden state of the previous RNN cell.
• ht is the hidden state of the current RNN cell, i.e. the output, which is the same

as ot, however ot can be used as an output for the next layer.
• bh is the bias vector for the RNN neuron, i.e. the bias for all the cells.
• Wx is the weight vector of the input of the RNN neuron, i.e. the input weight for

all the cells.
• Wh is the weight vector of the hidden state of the RNN neuron, i.e. for all the

cells.
Now that all parameters are known the hidden state (ht) is calculated as follows:

ht = tanh(Whht−1 +Wxxt + bh) (4.5)

Page 21 of 130

Chapter 4. Proposed Models

Note that to calculate the current hidden state ht the previous hidden state ht − 1 and
current time step input xt is used. Note that the next hidden state ht+1 uses the current
hidden state ht, therefore the next hidden state ht+1 is also depending on the previous
hidden state ht−1 and the current time frame input xt, i.e. the cell ‘memorizes’ the
previous time step.19

Figure 4.8: An example of a simpleRNN cell.29

A simpleRNN can learn very short patterns “typically about 10 steps long, but this
varies depending on the task” Géron19 (2019), p500. This is due to the fact that a sim-
pleRNN quickly ‘forgets’ the important features from the previous time steps. Therefore,
the LSTM and GRU might be a better option for longer sequences.

4.2.2 Long Short-Term Memory (LSTM) Cell

The LSTM cell can handle much longer sequences and is also more complex than the
simpleRNN cell, since it has much more trainable parameters than a simpleRNN cell and
so called gates, see figure 4.9. Also the hidden state is split up into a short-term state ht
and a long-term state ct. The LSTM cell works better on longer sequences, since it can
learn what to store in the long-term state ct, what to discard and what to read from it.
As shown in figure 4.9 the previous long-term state ct−1 first discards some memory in the
forget gate and then adds some new memories in the addition gate, which were selected
using the input gate. After that the long-term memory ct−1 goes two ways (1) it is fed
to the next cell without any transformation as the new long-term memory ct and (2) it is
transformed using a tanh activation function and together with the processed short-term
memory ht−1 transformed into the output of the cell yt and the next short-term state ht
which is propagated to the next cell.19

Page 22 of 130

Chapter 4. Proposed Models

Figure 4.9: An example of a LSTM cell.19

The forgetting and memorizing of information is simply achieved by using addition
and multiplication using the long-term memory ct−1, the short-term memory ht−1, and
the input vector xt, with the functions ft, gt, it, and ot. How these functions use the
long-term memory ct−1, short-term memory ht−1, and input vector xt to calculate the
new long-term memory ct and the new short-term memory ht is listed below. Firstly,
function f ,

ft = σ(Wxfxt +Whfht−1 + bf) (4.6)

here bf is the bias of function f , Wxf the weight matrix of f for input xt, and Whf

the weight matrix of f for the short-term state ht−1. Again Wxf and Whf is the same
for the same cell between the time steps. The output of function f is activated using
a sigmoid function, denoted by a σ, transforming the output to a range between 0 and
1. This output is then factored with ct−1 at the forget gate to ‘forget’ or ’remember’
some long-term memory, i.e. reducing the values in ct−1 or increasing the values in ct−1
respectively. Next is function g,

gt = tanh(Wxgxt +Whght−1 + bg) (4.7)

here bg is the bias of function g, Wxg the weight matrix of g for input xt and Whg the
weight matrix of g for the short-term state ht−1. Again Wxg and Whg is the same for
the same cell between the time steps. The output of function g is activated using tanh
transforming the output to a range between -1 and 1. This output is later ’forgotten’ or
’remembered’ by multiplying the outputs of gt with the output of it at the input gate.
How it is calculated is shown below

it = σ(Wxixt +Whiht−1 + bi) (4.8)

Page 23 of 130

Chapter 4. Proposed Models

here bi is the bias of function i, Wxi the weight matrix of i for input xt and Whi the
weight matrix of i for the short-term state ht−1. Again Wxi and Whi is the same for the
same cell between the time steps. The output of function i is activated using a sigmoid
function (σ) transforming the output to a range between 0 and 1. This output is then
factored with the output of gt at the input gate to ‘forget’ or ’remember’ the output
from gt. Which is then added to ft × ct−1, which is the final long-term memory output
of the cell ct. Finally, the function ot is used to create the short-term memory ht. How
ot is calculated is shown below,

ot = σ(Wxoxt +Whoht−1 + bo) (4.9)

here bo is the bias of function o, Wxo the weight matrix of o for input xt and Who the
weight matrix of o for the short-term state ht−1. Again Wxo and Who is the same for the
same cell between the time steps. The output of function o is activated using a sigmoid
function (σ) transforming the output to a range between 0 and 1. The output of ot
is then factored with the tanh of the long-term memory of the current cell ct, which is
calculated as: tanh(ct) = tanh((ct−1 × ft) + (gt × it))

In short the current long-term memory ct is calculated as:

ct = ft · ct−1 + gt · it (4.10)

And the current short-term memory ht is calculated as:

ht = tanh(ct) · ot (4.11)

Which variables are memorized and forgotten is all determined by the trainable parameters
of the functions f, g, i and o, the trainable parameters include the biases of the functions
b, the weights of the input vector Wx and the weights of the short-term state Wh.19

4.2.3 Gated Recurrent Unit (GRU) Cell

Finally, Gated Recurrent Unit (GRU) cell was proposed by Cho et al.30 (2014). The GRU
is a simplified version of the LSTM cell since it has less trainable parameters, making it
faster to train, however it generally achieves the same results. The GRU cell is shown
in figure 4.10, which shows that the short-term state (ht−1) and long-term state (ct−1)
from the LSTM cell are combined into one hidden state (ht−1) and that there are 3 main
functions within the cell, namely rt, zt and gt. These functions achieve the same effect
as the LSTM functions. To start with, function rt,

rt = σ(Wxrxt +Whrht−1 + br) (4.12)

here br is the bias of function r, Wxr the weight matrix of r for input xt, and Whr the
weight matrix of r for the hidden state ht−1. Again Wxr and Whr is the same for the
same cell between the time steps. The output of function r is activated using a sigmoid

Page 24 of 130

Chapter 4. Proposed Models

function (σ) transforming the output to a range between 0 and 1. This output is then
factored with ht−1 to determine how much information needs to be forgotten/remembered
from previous information, i.e. reducing/increasing the values in ht−1. Next, function
zt is used to determine how much information from previous time steps (ht−1) needs to
remain in the future hidden state (ht). How zt is calculated is shown below.

zt = σ(Wxzxt +Whzht−1 + bz) (4.13)

here bz is the bias of function z, Wxz the weight matrix of z for input xt, and Whz the
weight matrix of z for the hidden state ht−1. Again the weights in Wxz and Whz are the
same for the same cell between the time steps. The output of function z is activated
using a sigmoid function (σ) transforming the output to a range between 0 and 1. Finally,
gt is calculated to determine how to transform the previous hidden state ht−1, the formula
is shown below.

gt = tanh(Wxgxt +Whg(rtht−1) + bg) (4.14)

here bg is the bias of function g, Wxg the weight matrix of g for input xt, and Whg the
weight matrix of g for the hidden state ht−1. Again the weights in Wxg and Wgz are the
same for the same cell between the time steps. The output of function g is activated
using a tanh function transforming the output to a range between -1 and 1. This output
is then used together with zt to calculate ht and yt, which is shown below.19

yt = ht = (1− zt)gt + ht−1zt (4.15)

Figure 4.10: An example of a GRU cell.19

Page 25 of 130

Chapter 4. Proposed Models

4.3 Convolutional Neural Networks (CNN)

Another type of neural networks are convolutional neural networks (CNNs), which are
also almost the same as normal neural networks, however the normal neurons are replaced
with convolutional filters. These convolutional filters can work on two dimensional data,
like longitudinal data or image data. An example how these convolutional filters work is
shown in figure 4.11. This figure shows that filter f moves over the input matrix with
a step size (stride) of 1 to create a feature map. The values of the feature map are
calculated by multiplying the filter’s trainable weights with the input. In this example
the filter is two dimensional and has 9 (3 × 3) trainable weights the image is also zero
padded to ensure that the input size equals the output size. In this case only the filter
is shown, however many more filters can be trained alongside this filter to increase the
number of useful patterns.

Figure 4.11: Two examples of an one dimensional convolution.19

The above example shows how a two dimensional convolutional layer works, however
for time series a one dimensional convolution can also be used. In this case the width
of the filter is always the width of the input vector and only the height can vary. This
means that the filters only move over the time sequence in the input matrix.

After a convolution layer (series of convolutional filters), the output of that layer is
generally pooled. These pooling layers take a sub-sample of the input matrix to reduce
the computational intensity. The pooling layers work similar to the convolution layers,
however there are no trainable parameters and the filters use an aggregation function to

Page 26 of 130

Chapter 4. Proposed Models

sub-sample the input. An example of such a pooling layer is shown in figure 4.12, where
the maximum function is used as an aggregation function.19

Figure 4.12: An example of a max pooling layer.19

4.4 Machine Learning Models

4.4.1 Random Forest

Random forest is a collection of decision trees which are trained via the bagging method.
A decision tree is made up of nodes, branches and leafs. The nodes represent a question
or statement, the branches are the possible answers/directions that connect the nodes in
the tree and the leafs represent the predicted outcome, see figure 4.13 for an example of a
decision tree. A decision is usually constructed from top to bottom where each condition
is chosen based on how well it can separate the data to predict the correct label. [31]
The “best” condition can be defined by the Gini Impurity measure (GI), where a low
GI indicates a good condition. The GI measure calculates the probability that a random
instance is incorrectly classified in the subsets created by the condition. This is calculated
in equation 4.16, where C is the number of classes and p(i) is the chance of picking a
data point with class i. For example, assume that the first condition, caghigh >50 in
figure 4.13, splits 90% of class 3 in finances and the other 10% is wrongly classified as
another class. This would result in a GI measure of 0.9 * (1-0.9) + 0.1 * (1-0.1) = 0.18
for the finances=3 leaf. The GI of the decision tree is the loss/error which the decision

Page 27 of 130

Chapter 4. Proposed Models

tree tries to minimize, in order to make the best predictions.32

G =
C∑
i=1

p(i) ∗ (1− p(i)) (4.16)

Figure 4.13: Example of a simple decision tree that predicts the finances variable.
Here the rectangles are the nodes and the circles are the leafs.

The bagging method is used to obtain a diverse set of models (decision trees) by
training the models on randomly sampled subsets, with replacement, on the training set.
After training each predictor the random forest model makes a prediction by aggregating
the predictions of all models. Here the most frequent prediction is taken for classification
problems and the mean is taken for regression problems. One of the advantages of
random forest is that the random forest generally has a similar bias but a lower variance
than one decision tree trained on the whole training set.19

4.4.2 Linear Support Vector Machine (SVM)

The fundamental idea behind a Support Vector Machine (SVM) is that a hyperplane
can be drawn that separates two classes for classification or that tries to fit as many
observations as possible on the hyperplane and within the margin for regression. This
hyperplane is drawn based on support vectors, which are the data points nearest to the
hyperplane. The space between the support vectors and the hyperplane is called the
margin.19

Page 28 of 130

Chapter 4. Proposed Models

Figure 4.14: An example of a SVM clas-
sification here the SVM tries to increase
the distance between the hyperplane.

Figure 4.15: An example of a SVM re-
gression here the size of the margin is de-
termined by epsilon (ε).

4.5 Baseline/Constant Model

To have a good performance evaluation a baseline model is also evaluated, namely the
constant model. This model simply predicts the latest known label, e.g. to predict the
label at time point 1 the label at time point 0 is used, which is illustrated in the figure
below. Here i is the position of the label in the input matrix given to the model.

x00 x10 . . . xn0
x01 x11 . . . xn1
x02 x12 . . . xn2
. .
x0t−1 x1t−1 . . . xnt−1

 −−−−→predict


xi0
xi1
xi2
. . .
xit−1

 =


ŷ1
ŷ2
ŷ3
. . .
ŷt


Figure 4.16: An example of how the baseline model predicts the next time step using
the label at position i in the previous time step.

Page 29 of 130

Chapter 5

Methods

5.1 Software & Data Availability

All the work was done in Python 3.8.5 and Jupyter Notebook 1.0.0 using the libraries
numpy 1.19.5 and pandas 1.1.3 for handling the data, tensorflow 2.4.1 and sklearn
0.24.1 for training the models and seaborn 0.11.1, Venny 2.1.0, and matplotlib 3.3.3 for
plotting figures and finally shap 0.39.0 also for plotting and interpreting the models. In
this report the fifth Enroll-HD periodic dataset (PDS5) was used, which is available at:
https://enroll-hd.org/for-researchers/access-data. The code used in this
research is available at: https://git.liacs.nl/s2494876/thesis.

5.2 Predicting Disease Progression/Prognosis

As mentioned in the goals of the project (section 1.2), the primary goal is to give a
prognosis on the progression of the cUHDRS and highlight if the variables affecting
the cUHDRS are the same as the variables that make up this score (TMS, TFC, SWRT,
SDMT). After that a deeper analyses is done on the components making up the cUHDRS
to show which variables affect the components making up the cUHDRS. This is done by
predicting one time step ahead in time, circa one year ahead in time, for the cUHDRS
and the variables making up the score. For the driving capability the current time point is
predicted, since an advice on driving capability needs to be given on the current situation
for the patient. How the data is transformed is explained in more detail in the next
section Model Input.

5.3 Pre-Processing

In addition to previous pre-processing and imputation steps, more pre-processing steps
are needed to use machine learning and deep learning models for longitudinal data, these

Page 30 of 130

https://enroll-hd.org/for-researchers/access-data
https://git.liacs.nl/s2494876/thesis

Chapter 5. Methods

steps include reshaping the data and transforming the input to let the machine learning
and deep learning models understand what time step to predict. Also, some general
pre-processing steps are explained, these include: feature selection, train and test split,
data scaling, and assigning train and test labels, i.e. what to predict. In the following
sections these steps are elaborated in the order of how the data is processed.

5.3.1 Feature Engineering

Most feature engineering was done in the previous project, however two additional features
were created, namely the cUHDRS variable and the cognitive score (cogscore), to make
the variables included in the cognitive assessment more interpretable.

The cUHDRS can be created using equation 5.1, which was deducted from Schobel
et al.16 (2017). The cUHDRS is made up of the Motor Score (TMS), Function Score
(TFC), Symbol Digit Modality Test (SDMT), and the Stroop Word Reading Test (SWRT).

cUHDRS =
TFC− 10.4

1.9
− TMS− 29.7

14.9
+

SDMT− 28.4

11.3
+

SWRT + 66.1

20.1
+ 10

(5.1)
The cognitive score was created by taking the first principal component (PC) of a

principal component analyses (PCA) on all the main cognitive variables, namely: sdmt1,
verfct5, scnt1, swrt1, sit1, trla1, trlb1, and verflt05. These variables measure either the
number of correct answers or the time needed to complete a cognitive test. The PCA
and how much each PC explains the variance in percentages is shown in figure 5.1. This
figure shows that the the first PC (PC1) explains the variance for 77.7% which was
sufficient for our use case.

Figure 5.1: The explained variance in percentage for each PC. This first PC (PC1)
explains the most variance with 77.7%.

Page 31 of 130

Chapter 5. Methods

5.3.2 Feature Selection

Before modeling some variables are discarded beforehand. Variables that are discarded
include variables that refer to a date, whether a specific test was done during a visit,
and low quality variables. Low quality variables include variables that can be inferred
from other variables, e.g. whether a patient drinks alcohol (alcab) can be inferred from
the number of alcohol units they drink per week (alcunits) or variables that are almost
always equal to one value. All the selected variables and their statistics are shown in
appendix B and the distribution of the selected variables is shown in appendices C and
D. In appendices B and C all the categorical variables are displayed as single variables
to make the distribution and statistics of these variables more interpretable. However,
some of these variables are encoded using dummy encoding, since the variables contain
missing values. Dummy encoding ensures that missing values are pre-processed in a way
that the models can interpret them. An example of a dummy encoding of the categorical
variable ‘handedness’ is shown in table 5.1. Which variables are transformed using this
encoding are shown in appendix E. In total 191 variables are given as input to the models
after dummy encoding.

Table 5.1: Illustration of dummy encoding, here each row represents a visit.

Handedness
right (1)
left (2)

mixed (3)
NaN

→
handedness 1 handedness 2 handedness 3

1 0 0
0 1 0
0 0 1
0 0 0

5.3.3 Feature Selection - Drive

When modelling the driving capability one feature is removed from the dataset, namely
the functional assessment score (fascore). The fascore is the sum of all variables measures
in the functional assessment form, which includes the drive variable. All variables making
up this score are also added to the data, which makes it quite simple to deduct the
drive variable, namely the fascore minus the sum of all components would equal the drive
variable. Therefore, the fascore is removed and of course the driving capability is also
removed since the current time step is predicted.

5.3.4 Reshaping the Data

To allow for accurate and faster training of the NN models it is necessary to reshape
the datasets in a way that each participant has the same number of visits and that the
time between the visits is consistent. In our case there are around 1.4-5.0 visits for each
participant and the visits are generally 1 years apart. With this in mind, it was decided to

Page 32 of 130

Chapter 5. Methods

have a maximum of five visits that are 1 year apart, i.e. the dataset is transformed from
(#participants×#visits,#features) to (#participants, 5,#features). To achieve
this the index of each existing visit is first calculated using the equation below, where
vpi is the new visit index of visit i for participant p, d is the number of days from the
baseline visit (visdy) and t is the desired number of days between each visit.

vpi = b(dpi − dp0)/te (5.2)

In our case t = 365, this ensures that all patients have a first visit and that the next visits
are around 1 years apart. As mentioned before not all participants have the same number
of visits or time between visits. Therefore, any remaining missing visits are masked. This
is done by filling the visit vector with an arbitrary mask value, which the RNN can detect
and skip using a masking layer, making training faster. This is further elaborated in
section 5.4 General Neural Network Design.

5.3.5 Train and Test Split

To create the train and test subsets the holdout strategy is used, i.e. the dataset is split
into two by randomly picking 80% of the patients for the training set and the other 20%
are assigned to the test set. However this splitting is done on groups of samples. These
groups are defined by the number of missing visits for the patient. This will ensure that
both the training set represents the test set. For the progression models a sample/patient
is discarded if only one visit is available, since there is no visit to train on in that case.

5.3.6 Model Input

To ensure that all the proposed models can be compared fairly, the models need to be
trained on the same labels. Since, the predictions on all the time steps are of interest, the
models have to predict a value at each time point. This is quite straightforward for RNNs,
since the RNN loops over each time point one by one and can output the prediction made
at each iteration, which results in a prediction for each time point, without the model
being able to look ahead into the next time point, where the label is known, see figure
4.7.

Page 33 of 130

Chapter 5. Methods


x00 x10 . . . xn0
x01 x11 . . . xn1
x02 x12 . . . xn2
. .
x0t−1 x1t−1 . . . xnt−1

 −−−−→predict


ŷ1
ŷ2
ŷ3
. . .
ŷt


Figure 5.2: Example of how a RNN predicts the labels (ŷ). Note that for time step
(t) a value (the label) from the next time step (t+1) is predicted, since the models are
trained to predict one time step ahead for the cUHDRS and for the driving capability
the current time step is predicted.

This is not the case for CNNs and the ML models, since those models look at the
whole input directly and predict t labels or even only one, since not all machine learning
models support multi-output problems. This is illustrated in figure 5.2, where there are
n input variables and t time steps. This is a problem, since to allow for a fair comparison
between RNNs, CNNs and ML models the models need to be trained on the same input
data and labels. To achieve this the input for the NNs, CNNs, and ML models are
transformed. This is done by duplicating the input matrix in figure 5.2 into t copies, one
for each time point. After that the time point that has to be predicted is masked using
a masking value m, indicating to the model which time step has to be predicted, see
figure 5.3. Which time point needs to be predicted is learned by the models, however
this might cause some issues when a time point is missing, since missing visits are also
masked using the same value m. An example of such a case is shown in figure 5.4, where
time point 1 is missing. This would indicate that the first time point has to be predicted
(ŷ1). Therefore, all missing time points are filled in with the last non-missing visit.

x00 x10 . . . xn0
m m . . . m
m m . . . m
.
m m . . . m

 −−−−→predict
ŷ1


x00 x10 . . . xn0
x01 x11 . . . xn1
m m . . . m
.
m m . . . m

 −−−−→predict
ŷ2

Figure 5.3: Example of how CNN and ML get their input like a RNN to predict
time point 1 (left) and 2 (right). Note that ML models require one dimensional data,
so the matrix in this example will be flattened when provided to the model.

Page 34 of 130

Chapter 5. Methods


x00 x10 . . . xn0
m m . . . m
m m . . . m
.
m m . . . m

 −−→fill

x00 x10 . . . xn0
x00 x10 . . . xn0
m m . . . m
.
m m . . . m

 −−−−→predict
ŷ2

Figure 5.4: Example of how a missing visit is filled in, when ŷ2 needs to be predicted
for the NN, CNN, and ML models.

5.3.7 Data Scaling

Before any modelling can take place the continuous input data is scaled to a range of
-1 to 1 using the MinMaxScaler from sklearn.33 This function transforms the input data
as shown in equation 5.3. Scaling the data is essential before training a NN, since a NN
generally does not perform well when the features are on different scales.19

x′ =
x−min(x)

max(x)−min(x)
× 2− 1 (5.3)

5.3.8 Assigning Labels and Sample Weights

When assigning labels for each time point the desired value at the next visit is taken. In
this way the model tries to predict a value at the next visit for each time point.

However, in some cases there is no data for a patient at that specific time point
which means that the label is missing and masked with the masking value m. In such a
case the weight for that label is set to 0, i.e. it is not used to calculate the loss of the
model. This ensures that the model is not trained on the masking value m.

A second problem is that a label might be imputed. However, it was decided not
to train on imputed labels, since such data can contain errors and is therefore of lower
quality. In such a case the sample weight is also set to 0. Whether a label is imputed or
not can be deducted from the pre-imputed dataset.

Lastly, when predicting a class variable, e.g. the driving capability a sample weight
is calculated based on the frequency of the different classes. To calculate this weight
equation 3.4 is used. This class weight is calculated based on the pre-imputed dataset,
since the frequency of each class can be different for the imputed dataset.

5.3.9 Overview

To summarize a flowchart of the pre-processing steps is shown in figure 5.5. Here the pre-
imputed and imputed dataset was created in the previous introductory research project,
see figure 2.3. Firstly, both datasets are reshaped to make longitudinal predictions,
described in section 5.3.4. Secondly, both datasets are split in the train and test sets,
described in section 5.3.5. Thirdly, both datasets are transformed to fit the specific model

Page 35 of 130

Chapter 5. Methods

that needs to be trained on, described in section 5.3.6. After that the imputed dataset
is normalized/scaled, described in section 5.3.7, and the sample weights are calculated
based on the pre-imputed and imputed dataset, described in section 5.3.8.

Train Set Test Set

Imputed
Dataset Reshape

Train & Test Split

Data Scaling

Change input
based on

model type

Calculate
Sample Weight
for Labels (y)

Pre-Imputed
Dataset Reshape

Train & Test Split
Change input

based on
model type

Training
Input

Training
Labels Test Input Test Labels

Training
Sample
Weights

Test
Sample
Weights

Figure 5.5: The general workflow of pre-processing the pre-imputed and imputed
dataset to train all the models. Here specific feature selection/engineering steps re-
quired for the different labels are ignored.

Page 36 of 130

Chapter 5. Methods

5.4 General Neural Network Design

In this section the chosen network design is illustrated for the RNNs, the CNNs and the
normal NNs. The design of the networks is an important factor when creating networks.
In this case the networks were designed by only using the network specific layers until the
last layer. The last layer is a normal dense layer to make a prediction. An example of
the network design, with three layers (a hyper-parameter), for each type of network can
be seen below in figure 5.6.

The NN design, shown in figure 5.6a, starts with a normal input layer followed by
a flattening layer, since the NN can not handle two dimensional data. After that the
input flows through the dense layers (two layers in this example) and the output of those
layers is activated using a RELU function, see figure 4.3b. After that the output of
the last dense layer is reshaped to the proper shape and the last dense layer creates
the final prediction using either a linear activation function (figure 4.3a) for a regression
problem or a sigmoid/softmax activation function (figure 4.3d/4.3e) for a binary/multi-
class classification. The last dense layer uses the same design for both the RNNs and the
CNNs.

The RNN design, shown in figure 5.6b, starts with a normal input layer followed by
a masking layer. The masking layer tells the RNN to skip missing visits, i.e. visits which
are completely filled with masking value m. This masking layer is followed by recurrent
layers, in this example LSTM layers are used, which are always activated using a tanh
function (figure 4.3c) and the network ends with a time distributed dense layer. The
time distributed layer simply tells the model to apply the dense layer to each time step
to predict the desired value.

The CNN design, shown in figure 5.6c, starts with a normal input layer followed
by a convolutional layer and a max pooling layer. This is repeated for the number of
layers given, i.e. the combination of the convolution layer and the max pooling layer is
considered as one layer. Here the convoltion layers are always activated with a RELU
(figure 4.3b). After the convolution and pooling layers the output is reshaped into the
proper shape and ends with the dense layer as the output layer.

Page 37 of 130

Chapter 5. Methods

(a) The NN design, the in-
put and output need to be re-
shaped since a NN can not
handle two dimensional data.

(b) The RNN design with a
LSTM layer as the recurrent
layer.

(c) The (1D) CNN design,
after each convolutional layer
a maxpooling layer is used.

Figure 5.6: The designs of the NN, RNN, and the CNN when two layers are used.

5.5 Hyperparameter Tuning

5.5.1 Neural Networks

All the neural network hyperparameters are shown in table 5.2, this table shows that only
the hyperparameters L2 regularization, and the hidden size/filters are tuned. Here the
hidden size indicates the number of neurons in each layer for the NN and the RNN and the
filters indicates the number of filters per layer in the CNN. The static hyperparameters
for the networks are the maximum iterations, the patience, batch size, the learning
rate, the optimizer, and the number of layers and the CNN has three additional static
hyperparameters, namely the filter size, the padding and the stride, which are shown in
table 5.3. Any unnamed hyperparameters are set to the default value, which results in 6
neural network models per type, i.e. NN, CNN, SimpleRNN, LSTM, and GRU.

Page 38 of 130

Chapter 5. Methods

Table 5.2: All the hyperparameters tested
for all the types of neural networks.

Hyperparameter Range Step

Maxiter 10,000 -

Patience 100 -

Batch Size 128 -

Learning Rate 10−5 -

Optimizer Adam -

#Layers 3 -

L2 regularization 10−7-10−3 ×102

Hidden Size/Filters 128-256 ×2

Table 5.3: All the constant hyperpa-
rameters specific for the CNNs.

Hyperparameter Value

Filter Size 3

Filter Strides 1

Padding same (zero)

5.5.2 Linear Support Vector Machine (SVM)

All the SVM hyperparameters are shown in table 5.4, this table shows that the parameters
Epsilon and Penalty (C) are tuned. One static hyperparameter is given, the maximum
iterations, which is set to 10,000. All combinations of these parameters are tuned which
results in 9 SVM models. All other unnamed hyperparameters are set to the default
value.

Table 5.4: All the hyperparameters tested for all the SVMs.

Hyperparameter Range Step

Maxiter 10,000 -

Epsilon 10−2 − 100 ×101

Penalty (C) 10−1 − 101 ×101

5.5.3 Random Forest

All the Random Forest hyperparameters are shown in table 5.5, this table shows that
the Criterion and n estimators parameters are tuned. Here the criterion is either Gini
or Entropy when predicting the driving capability and for the other variables the MSE
is used. All combinations of these parameters are tuned which results in 5/10 Random
Forest models. All other unnamed hyperparameters are set to the default value.

Page 39 of 130

Chapter 5. Methods

Table 5.5: All the hyperparameters tested for all the random forest models. Here
the criterion is either Gini or Entropy when predicting the driving capability and for
the other variables

Hyperparameter Range Step

Criterion MSE / Gini or Entropy -

n estimators 100-1600 ×2

5.6 Analyses

5.6.1 Overall Performance

After all the models have been trained and tuned a performance evaluation is done. In
this evaluation the performance of all tuned models are shown and based on the best per-
forming tuned models it is decided which type of model performed the best, e.g. LSTM
or CNN. The models are evaluated on average performance, temporal performance (per-
formance for each year ahead in time), and performance per status group (performance
based on how the label changed over time). The models that were defined as the best
model based on previous criteria are further analyzed using the SHAP algorithm and more
performance evaluations, e.g. ROC curve and confusion matrix.

5.6.2 Interpreting the Model (SHAP)

One of the downsides of NNs is that they are not very interpretable on their own. There-
fore, SHapley Additive exPlanation (SHAP) is used to make the best performing model
more interpretable. SHAP is a method of measuring a sample’s (patient’s) variable im-
portance on the predicted outcome, i.e. a personalized impact panel. This is done by
measuring how a feature affects the expected outcome of a model, e.g. if the feature
has a negative effect the SHAP value of that feature will be negative. This means that
the sum of the expected value and all the SHAP values should equal the predicted value.
Here the global feature importance of each variable is measured by taking the mean
absolute SHAP value of each feature for each prediction.34

5.6.3 Overview

To summarize a flowchart of the hyperparameter tuning and analysis steps are shown in
figure 5.7. First all the models are trained tuned on different hyperparameters on the train
set. Next, all the trained models are evaluated on the test. Based on these evaluation
metrics the best model is chosen, which include the average results, the temporal results,
and the results based on different status groups. When the best model is selected the
SHAP analysis is done to deduct which variables were important in predicting the output.

Page 40 of 130

Chapter 5. Methods

Test Set

Hyperparameter
TuningTrain Set Select Best

Model
Evaluate on Test

Set

Trained
Models

SHAP Analysis

Further
Performance
Evaluation

Figure 5.7: Flowchart of the hyperparameter tuning and analysis steps.

Page 41 of 130

Chapter 6

Results

Here all the results are presented for modeling the driving capability and the disease
progression. First the results for modelling the driving capability are shown. Secondly,
the results for modelling the cUHDRS progression are shown, which is followed by the
TMS, TFC, SDMT, and the SWRT. First, for each variable modelled the statistics of the
train and test set are presented. This is followed by the results of all the tuned models.
Here the best performing model is deducted based on the performance of each machine
learning model. With this best model the SHAP values are calculated and presented to
deduct which variables affect the outcome of the model.

6.1 Driving Capability

6.1.1 Model Performance

First the driving capability was modelled. The driving variable is equal to 0 when a HD
patient is unable to drive and the driving variable is equal to 1 when a HD patient is
able to drive. Here the drive variable was predicted for each current visit, while also
considering information from previous visits. The distribution of the labels in both the
training and test set are shown in figure 6.1. In total around 58% of the training and test
data is labeled. Some visits are not labelled, since not all patients visited the clinic each
year, see figure 2.4b. In total 50% of the labels were masked simply because the drive
variable was not filled in and the models are not trained on imputed data. The shape of
the train and test sets are shown in table 6.1. Here the dataset for the RNN models is
smaller than the dataset for the other models, since the samples had to be duplicated for
each time step for the non-RNN models, which is descried in the Model Input section.

All the models were evaluated on three performance measures, namely the AUC, F1,
and accuracy score. All the models and their evaluation metrics are shown in appendix
F. All the models are also evaluated to define which model works best for each output.
To define the best model the average metrics, the metrics per time step, and the metrics

Page 42 of 130

Chapter 6. Results

Table 6.1: All the train and test stats of for modelling the driving capability.

Model Subset Shape x
Shape y &

sample weights

RNN Train (12396, 5, 191) (12396, 5, 1)

RNN Test (3031, 5, 191) (3031, 5, 1)

Other Train (61980, 5, 191) (61980, 1, 1)

Other Test (15155, 5, 191) (15155, 1, 1)

0 1 2 3 4
Time Point (t)

0

1000

2000

3000

4000

5000

6000

7000

co
un

t

Dataset = train

0 1 2 3 4
Time Point (t)

Dataset = test

drive
0
1

Figure 6.1: Labels of the train and test set for the driving capability.

per status group are shown. Here the best model can be deducted by evaluating which
model performed best at each evaluation step.

Below the average over all visits of all the metrics are shown in figure 6.2. This
figure shows that all the neural network models perform the best and their values are
comparable to all metrics, however the GRU has the highest F1 and Accuracy score.
Another thing to note is that the RF and SVM models always perform worse than the
neural network models, especially in the AUC metric with a difference around 0.08 in
AUC.

Figure 6.3 shows that the AUC is very similar along all neural network models
between all time points. The metrics for the neural networks are different in terms of F1
and accuracy, however the difference is negligible.

Lastly, the performance per progression group is shown in figure 6.4. Here the groups
are defined by the change in the driving capability between the first visit and last visit.
The different groups are defined as follows, the stable group includes patients which had
no change in the driving capability between the first and last visit, the recovered group
includes patients which did not drive in the first visit and started driving again in the last
visit, and lastly the progressive group includes patients which drove in the first visit and
stopped driving in the last visit. Figure 6.4 shows that the stable group (n=2693) is best

Page 43 of 130

Chapter 6. Results

predicted by the neural network models. The recovered group (n=28) is best predicted
by the NN in terms of AUC, the CNN or NN in terms of F1, and the SVM in terms of
accuracy. This difference in best models might be caused by the small size of this group
(n=28). The progressive group (n=267) is best predicted by the neural network models,
specifically the CNN, however the difference is negligible. Here the sample size is again
quite low (n=267). These low sample sizes show that the models do not have many
examples like this to train on, which might explain why the metrics for these models are
lower than the larger stable group.

Considering that the GRU had the highest AUC, F1, and accuracy on average it is
decided to further analyze the GRU model, even though all the neural networks perform
similarly in all other aspects.

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

0.88

0.89

0.90

0.91
F1

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM

0.87

0.88

0.89

0.90

Ac
cu

ra
cy

Figure 6.2: The AUC, F1, and accuracy score of all the tuned models for the driving
capability. Here the bars correspond to the best score and the error bars represent the
scores of the other tuned models.

Page 44 of 130

Chapter 6. Results

0.86
0.88
0.90
0.92
0.94
0.96
0.98

AU
C

0.87

0.88

0.89

0.90

0.91

0.92

F1

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM

1 (n=2960)2 (n=1808)3 (n=1292) 4 (n=938) 5 (n=534)
0.86
0.87
0.88
0.89
0.90
0.91
0.92

Ac
cu

ra
cy

Figure 6.3: The AUC, F1, and accuracy score of all the tuned models for the driving
capability over all the time points. Here the bars correspond to the best score and the
error bars represent the scores of the other tuned models.

Page 45 of 130

Chapter 6. Results

0.4

0.5

0.6

0.7

0.8

0.9
AU

C

0.5

0.6

0.7

0.8

0.9

F1

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM

Progressive
(n=267)

Stable
(n=2693)

Recovered
(n=28)

status

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Figure 6.4: The AUC, F1, and accuracy score of all the tuned models for the
driving capability over all the status groups consisting of stable (no change in driving
capability between first and last visit), progressive (patient drove a car in the first
visit, but stopped in the last visit), and recovered (the patient did not drive a car in
the first visit and started driving again in the last visit). Here the bars correspond to
the best score and the error bars represent the scores of the other tuned models.

Page 46 of 130

Chapter 6. Results

6.1.2 Model Interpretation

In this section the GRU model, which performed the best to predict the driving capability,
is further analyzed. In figure 6.5, the confusion matrix is shown. This figure shows that
the percentage of true positives (TP) and true negatives (TN) is quite similar. Around
91% percent of the positive samples (1, able to drive) are actually predicted as positive
and around 85% percent of the negative samples (0, unable to drive) are actually predicted
as negative. This means that the model is somewhat better at predicting true samples
than negative samples. This might be due to the higher number of training samples for
the positive label than the negative labels, see figure 6.1.

Positive Negative
Predicted Value

Po
sit

iv
e

Ne
ga

tiv
e

Tr
ue

 V
al

ue

TP
91.41% (3833)

FN
8.59% (360)

FP
14.53% (485)

TN
85.47% (2854)

0

20

40

60

80

100

Figure 6.5: The confusion matrix on the test set. Here the percentages refer to the
percentage of positive samples (able to drive) predicted as a positive (TP) and the
percentage of positive samples predicted as a negative (FN). The same is true for the
negative samples (unable to drive).

In figure 6.6 the personalized predictions at each time step are plotted for one
patient, regarding their ability to drive. Note that the true labels are either 0 or 1 and
the predicted labels can range from 0 to 1, where a value above the threshold of 0.5 are
predicted as label 1 and a value below the threshold is predicted as 0. In figure 6.6 the
labels are also plotted against a heatmap which is made up of ten rows/bands with an
accuracy score, depicted by the color. This accuracy is deducted by taking all samples

Page 47 of 130

Chapter 6. Results

from the test set which were predicted within in this band and calculating the accuracy
within this sample, which results in an accuracy score for each row, making the prediction
more interpretable, i.e. a predicted value close to the threshold is less accurate than a
predicted value close to 0 or 1.

This figure also shows that at one time step the predicted value does not match
the actual label, however this does not necessarily imply a prediction error. It could also
indicate a wrong assessment by the clinic. In this case the patient might still have been
able to drive, according to the model, which would be an improvement of their quality
of life, since the patient has more freedom of movement. On the other hand it might be
unsafe for the patient and others to let the patient drive. In such a case it might be better
that the clinician and patient have a deeper look into the patients driving capability. Note
that this model is an advisory system. No definitive answers should be drawn from these
predictions.

0 1 2 3 4
Visits / Time Points (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

dr
iv

e

Classification Threshold (0.500) Ground Truth Predicted

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Figure 6.6: An example of estimating the driving capability of a patient at each
time step. Here one misclassification is shown at time step 1, however this can also
be interpreted differently.

Theoretically these uncertain cases can be negated by deciding what is more im-
portant, the safety of others and the patients or the freedom of the movement of the
patient. How these theoretical cases would affect patients is shown in the ROC curve,
see figure 6.7. Here the ROC curve of the model on the test set is shown.

The safety of the patient and others can be prioritized by setting the classification
threshold to 0.94 (T=0.94) and thus not allowing any patient to drive when predicted
below this threshold. This would increase the true negative rate (TNR) to 0.99 (TNR
= 1-FPR), see figure 6.7, however that would result in many patients getting a negative

Page 48 of 130

Chapter 6. Results

advice while they could still drive according to the data, which is shown by the high false
negative rate (FNR) of 0.38 (FNR = 1-TPR).

The freedom of movement can be prioritized by setting the classification threshold to
0.11 (T=0.11) and thus allowing all patients to drive when predicted above this threshold.
This would increase the true positive rate (TPR) to 0.99, see figure 6.7, however that
would result in many patients getting a positive advice while they do not drive according
to the data, which is shown by the high false positive rate (FPR) of 0.34.

Here we do not make the decision for the patient and clinician. For now the decision
is left to the patient and clinicians, since the intention is to use the model as an advisory
system. Therefore, the threshold is set to a default of 0.5, which results in a TNR of
0.86 (TNR = 1-FPR) and a TPR of 0.91, see figure 6.7. In general the GRU can also
almost perfectly separate the two classes, since the AUC is close to 1 and the ROC line
is close to the top left corner.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Specificity)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
sit

iv
ity

)

(T=0.94, FPR=0.01, TPR=0.62)

(T=0.11, FPR=0.34, TPR=0.99)
(T=0.50, FPR=0.14, TPR=0.91)

ROC curve on test set (AUC: 0.960)
Random model

Figure 6.7: The ROC curve calculated on the test set, resulting in an AUC of 0.96.

In figure 6.8 the top 20 highest mean absolute SHAP value of all patients in the
test set for each variable is shown. The SHAP values represent the importance of each
variable to predict the output variable. This figure shows that the indepscl (subject’s
independence in %) and supchild (could subject supervise children without help) variables
have the highest mean absolute SHAP value to predict the driving capability of a patient.

Page 49 of 130

Chapter 6. Results

This figure also shows that many components of the functional assessment score
(fascore), which includes the drive variable, are present in the top 20 SHAP values.
The other fascore components are indepscl, supchild, grocery (could subject shop for
groceries without help?), housewrk (could subject do his/her own housework without
help?), volunt (could subject engage in any kind of volunteer or non-gainful work?),
toilet (could subject use toilet/commode without help?), walknbr (could subject walk to
places in his/her neighbourhood without help?), ownmeds (could subject take his/her
own medications without help), pubtrans (could subject use public transport to get to
places without help?), fafinan (could subject manage his/her finances (monthly) without
any help?), and bathe (could subject bathe himself/herself without help?). This shows
that the driving capability is very related to these other functional components.

What is odd, is that no components of the TMS are in the top 20 SHAP values. It
is quite odd that motoric issues are less important in predicting driving capability than
all the other variables in the top 20 SHAP values. On the other hand it is not that odd,
since the fascore components should be related to each other, since they form a single
score.

0.00 0.01 0.02 0.03
mean(|SHAP|)

average impact on model output magnitude

momhd_1.0
bathe
trla1

fafinan
bp
adl

pubtrans
ownmeds

jobpaid_1.0
vt

carelevl
walknbr

manifest
toilet

volunt
sex

housewrk
grocery

supchild
indepscl

Figure 6.8: The mean absolute SHAP value over all patients to predict the driving
capability.

Page 50 of 130

Chapter 6. Results

6.2 Composite Unified Huntington Disease Rat-

ing Scale (cUHDRS) Progression

6.2.1 Model Performance

Next the cUHDRS progression was modelled, here the cUHDRS was predicted for each
visit 1 year ahead in time. The distribution of the labels in both the training and test
set are shown in figure 6.9. In this figure only four of five time steps are shown, since
the predicted time step is one year/time step ahead from the current visit, i.e. only a
maximum of five visits. Therefore, there is no label for visit five (t = 4). In total around
60% of the training and test data is labeled, since not all participants visited the clinic
five years in a row, which is shown in figure 2.4b. The number of unmasked labels, i.e.
the labels that are actually trained on is around 49%, since the models are not trained on
imputed labels, which is discussed in Assigning Labels and Sample Weights. The shape
of the train and test sets are shown in table 6.2. Here the datasets for the RNN models
is smaller, since for the other models the samples had to be duplicated for each time
step, which is described in Model Input. The total number of samples/patients in this
experiment are less than the previously modeled driving capability, see table 6.1, since
samples that had only one visit had to be discarded, which is described in Train and Test
Split.

0 1 2 3
Time Point (t)

100

0

100

200

cU
HD

RS

train test

Figure 6.9: Labels of the train and test set for the cUHDRS.

Page 51 of 130

Chapter 6. Results

Table 6.2: All the train and test stats of for modelling the cUHDRS, TMS, TFC,
SDMT, and SWRT.

Model Subset Shape x
Shape y &

sample weights

RNN Train (9861, 4, 191) (9861, 4, 1)

RNN Test (2415, 4, 191) (2415, 4, 1)

Other Train (39444, 4, 191) (39444, 1, 1)

Other Test (9660, 4, 191) (9660, 1, 1)

All trained models were evaluated on four performance measures, namely the MAE,
RMSE, Maximum AE, and the R2 score. All the models and their evaluation metrics are
shown in appendix G. To define the best model the average metrics, the metrics per time
step, and the metrics per status group are shown. Here the best model can be deducted
by evaluating which model performed best at each evaluation.

In figure 6.10 the average over all visits of all the metrics are shown. This figure
shows that the LSTM, GRU, and CNN have similar and the best performance in terms
of MAE, RMSE, and R2, however the LSTM has the lowest Max AE.

When looking at the temporal results of the models, see figure 6.11, all the neural
network models generally increase in performance over time and the machine learning
models decrease in performance. Even the baseline/constant model outperforms the
Random Forest and SVM model in terms of MAE, RMSE, and R2 at the last time point.
Something else to note is that the CNN outperforms both the LSTM and GRU at 2 and
4 years into the future in all metrics except the max MAE.

Lastly, the performance per progression group is shown in figure 6.12. Here the
groups are defined by the change in the cUHDRS score between the first visit and last
visit. The different groups are defined as follows, the stable group includes patients
which had no change in the cUHDRS between the first and last visit, the recovered
group includes patients which had an increase in the cUHDRS between the first and
last visit, and lastly the progressive group includes patients which had a decrease in the
cUHDRS between the first and last visit. Figure 6.12 shows that the stable group (n=32)
and recovered group (n=506) are generally best predicted by the constant model, however
it is the worst model for the progressive group (n=1406).

Considering that the CNN, LSTM, GRU generally had a similar performance, it was
decided to look deeper into the performance of the GRU model, since it is more suitable
for temporal data than the CNN in this case and it performed similar or better than the
LSTM.

Page 52 of 130

Chapter 6. Results

12.5

13.0

13.5

14.0

14.5
M

AE

17

18

19

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

100

110

120

M
ax

 A
E

0.91

0.92

0.93

0.94

0.95

R2

Figure 6.10: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for cUHDRS. Here the bars correspond to the best score and the error bars represent
the scores of the other tuned models.

Page 53 of 130

Chapter 6. Results

12

14

16
M

AE

16

18

20

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

80

100

120

M
ax

 A
E

1 (n=1726) 2 (n=1169) 3 (n=817) 4 (n=491)

0.90

0.92

0.94

R2

Figure 6.11: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for cUHDRS over all the time points. Here the bars correspond to the best score and
the error bars represent the scores of the other tuned models.

Page 54 of 130

Chapter 6. Results

7.5

10.0

12.5

15.0
M

AE

10

15

20

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

50

100

M
ax

 A
E

Stable
(n=32)

Progressive
(n=1406)

Recovered
(n=506)

status

0.85

0.90

0.95

R2

Figure 6.12: The MAE, RMSE, Max AE, and the R2 score of the tuned models
for cUHDRS over all the status groups consisting of stable (no change in cUHDRS
between first and last visit), progressive (decrease in cUHDRS between first and last
visit), and recovered (increase in cUHDRS between first and last visit). Here the bars
correspond to the best score and the error bars represent the scores of the other tuned
models.

Page 55 of 130

Chapter 6. Results

6.2.2 Model Interpretation

In this section we will further analyze the GRU. First the performance of the GRU is
further analyzed and the SHAP algorithm is again applied to find the most important
variable in predicting the cUHDRS.

In figure 6.13 the distribution of the absolute error per time step/year ahead on the
test set is shown. This figure shows that a lot of predictions have a low absolute error
(<5) and that only some predictions have a high absolute error (>35). This suggests
that the model has a low error margins for a lot of samples and a higher error margin
for some samples. For now it is unknown why some samples have a higher error margin.
This can be due to noise in the data or there are not enough training samples for some
types of patients or some essential data variables are missing. The figure also shows that
the error in predictions is very similar for each year ahead. Suggesting that the model
could also be used on cross-sectional data. However, the MAE is slightly higher on the
first year than the following years, see the GRU in figure 6.11.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
105
110
115
120
125

Absolute Error (AE)

1 (n=1726)

2 (n=1169)

3 (n=817)

4 (n=491)

Ye
ar

s A
he

ad

Figure 6.13: The absolute error distribution of the test set for all predictions/years
ahead. This figure shows that a lot of predictions have a very low error margin (<10)
and that some predictions have a very high error margin (>35).

In figure 6.14 the top 20 highest mean absolute SHAP value of all patients in the
test set for each variable is shown. The SHAP values represent the importance of each
variable to predict the output variable. This figure shows that the SWRT has a slightly
higher mean absolute SHAP value than the cUHDRS to predict the cUHDRS in the next

Page 56 of 130

Chapter 6. Results

year. Also, the sdmt1 (SDMT) and cognitive score (cogscore) variables have a high
SHAP value. The cUHDRs and cogscore variables might have a high SHAP value, since
they include the SWRT.

Not all components of the cUHDRS (TMS, TFC, SDMT, SWRT) are in the top
20 highest SHAP values, namely the TMS is missing. Only one component of the
TMS is present, the tandem walking (tandem) variable. This might suggest that the
progression of cUHDRS is not so much influenced by the TMS and that it is more
influenced by cognitive abilities, measured by SWRT, SDMT, cognitive score, and Stroop
Colour Naming Test (SCNT).

In figure 6.16 the SHAP values of the diagnosic confidence for motor abnormalities
(diagconf) and the TMS score (motscore) variables are shown. This figure also includes
all components that make up the TMS score (motscore), which are shown in appendix
A. This figure shows that some components making up the TMS have a higher SHAP
value than the TMS itself, e.g. gait, tandem walking (tandem), and dysarthria (dysarth).
Also, some components have a lower SHAP value than the TMS, e.g. retropulsion pull
(retropls), rigidity-arms right (rigarmr), and maximal chorea face (chorface). Suggesting
that some TMS components are more important in predicting the progression of the
cUHDRS than other TMS components or the sum of those components, i.e. the TMS.

In figure 6.15 the SHAP values of the TFC (tfcscore) and all the TFC components
to predict the cUHDRS are shown. This figure shows that the TFC itself has the highest
SHAP value than any TFC component. However, some TFC components have a higher
SHAP value than others, e.g. finances has the highest SHAP value (0.4) and the Care
Level (carelevl) has the lowest SHAP value (0.1). Again, this might suggest that some
TFC components are more important in predicting the progression of the cUHDRS than
other TFC components. However the TFC score (the sum of the TFC components)
seems to be more important than any other component.

Page 57 of 130

Chapter 6. Results

0 1 2 3 4
mean(|SHAP|)

average impact on model output magnitude

fascore
diagconf
caghigh
verflt05

drive
ccpob_1.0
ccpob_0.0
ccdep_0.0

tfcscore
ccdep_1.0

sxsubjm_4.0
tandem

dadhd_0.0
ccpsy_0.0

drugab_0.0
scnt1

cogscore2
sdmt1

cUHDRS
swrt1

Figure 6.14: The mean absolute SHAP value over all patients to predict the cUH-
DRS.

tfcscore
TFC Score

occupatn
Occupation

finances
Finances

chores
Domestic
Chores

adl
ADL

carelevl
Care Level

Variable

0.0

0.2

0.4

0.6

m
ea

n(
|S

HA
P|

)

Figure 6.15: The mean absolute SHAP value of all the components of the TFC. Here
it is shown that some components have a higher SHAP value than other components
to predict the cUHDRS in the next year.

Page 58 of 130

Chapter 6. Results

mots
cor

e

dia
gco

nf

dy
sar

th
ton

gu
e

lur
ia

bra
dy ga

it

tan
de

m
ret

rop
ls

0.0

0.5

1.0
m

ea
n(

|S
HA

P|
)

(a)

ocularh ocularv
Ocular Pursuit

0.0

0.5

1.0

m
ea

n(
|S

HA
P|

)

(b)

sacinith sacinitv
Saccade Initiation

0.0

0.5

1.0
m

ea
n(

|S
HA

P|
)

(c)

sacvelh sacvelv
Saccade Velocity

0.0

0.5

1.0

m
ea

n(
|S

HA
P|

)

(d)

fingtapr fingtapl
Finger Taps

0.0

0.5

1.0

m
ea

n(
|S

HA
P|

)

(e)

prosupr prosupl
Pronate Supinate-hands

0.0

0.5

1.0

m
ea

n(
|S

HA
P|

)

(f)

rigarmr rigarml
Rigidity-arms

0.0

0.5

1.0

m
ea

n(
|S

HA
P|

)

(g)

dysttrnk dystrue dystlue dystrle dystlle
Maximal Dystonia

0.0

0.5

1.0

m
ea

n(
|S

HA
P|

)

(h)

chorface chorbol chortrnk chorrue chorlue chorrle chorlle
Maximal Chorea

0.0

0.5

1.0

m
ea

n(
|S

HA
P|

)

(i)

Figure 6.16: The mean absolute SHAP values of all the TMS components.

Page 59 of 130

Chapter 6. Results

6.3 Total Motor Score (TMS) Progression

6.3.1 Model Performance

In this section the results of the TMS model is shown, which is a component of the
cUHDRS. Here we want to find the best model to predict the TMS in the next years and
to deduct which variables affect TMS progression and relate that to cUHDRS. Here the
same train and test subsets are used, see table 6.2. The distribution of the TMS labels
in the train and test set are shown in figure 6.17. In total around 60% of the training and
test data is labelled. The number of unmasked labels, i.e. the labels that are actually
trained on is around 49%.

0 1 2 3
Time Point (t)

0

20

40

60

80

100

120

m
ot

sc
or

e

train test

Figure 6.17: Labels of the train and test set for the TMS.

All models were evaluated on four performance measures, namely the MAE, RMSE,
Maximum AE, and the R2score. All the models and their evaluation metrics are shown
in appendix H. All the models are also evaluated to define which model works best for
the TMS. Below the average over all visits of all the metrics are shown in figure 6.18.
This figure shows that the LSTM, GRU, and CNN perform similarly, however the CNN
has the best performance overall.

Page 60 of 130

Chapter 6. Results

5.4

5.6

5.8

6.0
M

AE

7.5

8.0

8.5

9.0

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

45

50

55

60

65

M
ax

 A
E

0.88

0.89

0.90

0.91

0.92
R2

Figure 6.18: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for TMS. Here the bars correspond to the best score and the error bars represent the
scores of the other tuned models.

When looking at the performance for predicting each year ahead in time, see figure
6.19, it is shown that the CNN has the best or second best performance of all models,
except for the fourth year. It is also shown that the RF and SVM decrease in performance
for each year further ahead.

In figure 6.20 the performance per status group is shown. This figure shows that
the constant model is the best for the recovered (n=470) and stable (n=272) group,
however it is the worst model for the progressive (n=1354) group. In the progressive
group it is not clear which model is the best, since all neural network models and the
Random Forest model have a similar performance.

Considering the CNN was overall slightly better overall, see figure 6.18, it was decided
to further investigate the model.

Page 61 of 130

Chapter 6. Results

6

7

M
AE

8

9

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

30

40

50

60

M
ax

 A
E

1 (n=1908) 2 (n=1305) 3 (n=940) 4 (n=574)

0.875

0.900

0.925

R2

Figure 6.19: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for TMS over all the time points. Here the bars correspond to the best score and the
error bars represent the scores of the other tuned models.

Page 62 of 130

Chapter 6. Results

2

4

6
M

AE

4

6

8

10

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

20

40

60

M
ax

 A
E

Recovered
(n=470)

Progressive
(n=1354)

Stable
(n=272)

status

0.80

0.85

0.90

0.95

R2

Figure 6.20: The MAE, RMSE, Max AE, and the R2 score of the tuned models for
TMS over all the status groups consisting of stable (no change in cUHDRS between
first and last visit), progressive (increase in TMS between first and last visit), and
recovered (decrease in TMS between first and last visit). Here the bars correspond to
the best score and the error bars represent the scores of the other tuned models.

Page 63 of 130

Chapter 6. Results

6.3.2 Model Interpretation

For the TMS the CNN was further analyzed by using the SHAP algorithm. In figure
6.21 the top 20 highest mean absolute SHAP value of all patients in the test set for each
variable is shown. This figure shows that the diagnostic confidence of motor abnormalities
(diagconf) and tandem walking (tandem) variable have the highest mean absolute SHAP
value to predict the TMS in the next year. Many of the components of the TMS are found
in the top 20 highest mean absolute SHAP values, which is to be expected. However
the figure also shows that some components have a higher SHAP value than others e.g.
tandem has the highest SHAP in the TMS.

In figure 6.22 the SHAP values of the TMS (motscore), diagnostic confidence of
motor abnormalities (diagconf), and all the TMS components are shown. Here some TMS
components are grouped by a specific group component, e.g. the finger taps includes the
variables finger tap right hand (fingtapr) and the variable finger tap left hand (fingtapl),
see figure 6.22e. The saccade initiation, saccade velocity, and rigidity-arms groups have
similar SHAP values between the components.

When looking at all the components it is clear that the tandem walking (tandem)
variable is the most important TMS component that makes up the TMS score (motscore).
This does not include the diagnostic confidence of motor abnormalities (diagconf), be-
cause it is not used in creating the TMS score, see appendix A. All the other TMS
components are near a SHAP value of 0.2 or below. Here the lowest SHAP values is
achieved by the retropulsion pull (retropls) variable. This suggest that some components
have a bigger impact on the progression of the TMS than other components.

Page 64 of 130

Chapter 6. Results

0.0 0.1 0.2 0.3
mean(|SHAP|)

average impact on model output magnitude

sacvelh
chortrnk
sacinith
ocularh

luria
caghigh
chorbol
tongue

fingtapr
dysttrnk
chorlue
dysarth

gait
drugab_0.0

ccmtr_0.0
fingtapl
prosupl

ccmtr_1.0
tandem

diagconf

Figure 6.21: The mean absolute SHAP value over all patients to predict the TMS.

Page 65 of 130

Chapter 6. Results

mots
cor

e

dia
gco

nf

dy
sar

th
ton

gu
e

lur
ia

bra
dy ga

it

tan
de

m
ret

rop
ls

0.0

0.2

0.4
m

ea
n(

|S
HA

P|
)

(a)

ocularh ocularv
Ocular Pursuit

0.0

0.2

0.4

m
ea

n(
|S

HA
P|

)

(b)

sacinith sacinitv
Saccade Initiation

0.0

0.2

0.4
m

ea
n(

|S
HA

P|
)

(c)

sacvelh sacvelv
Saccade Velocity

0.0

0.2

0.4

m
ea

n(
|S

HA
P|

)

(d)

fingtapr fingtapl
Finger Taps

0.0

0.2

0.4

m
ea

n(
|S

HA
P|

)

(e)

prosupr prosupl
Pronate Supinate-hands

0.0

0.2

0.4

m
ea

n(
|S

HA
P|

)

(f)

rigarmr rigarml
Rigidity-arms

0.0

0.2

0.4

m
ea

n(
|S

HA
P|

)

(g)

dysttrnk dystrue dystlue dystrle dystlle
Maximal Dystonia

0.0

0.2

0.4

m
ea

n(
|S

HA
P|

)

(h)

chorface chorbol chortrnk chorrue chorlue chorrle chorlle
Maximal Chorea

0.0

0.2

0.4

m
ea

n(
|S

HA
P|

)

(i)

Figure 6.22: The mean absolute SHAP values of all the TMS components.

Page 66 of 130

Chapter 6. Results

6.4 Total Functional Capacity (TFC) Progression

6.4.1 Model Performance

To show what affects the components of the cUHDRS score the TFC also needs to be
modelled similarly as the cUHDRS. Here the same train and test subsets are used, see
table 6.2. The distribution of the TFC labels in the train and test set are shown in figure
6.23. In total around 60% of the training and test data is labelled. The number of
unmasked labels, i.e. the labels that are actually trained on is around 49%.

0 1 2 3
Time Point (t)

0

2

4

6

8

10

12

tfc
sc

or
e

train test

Figure 6.23: Labels of the train and test set for the TFC.

All models were evaluated on four performance measures, namely the MAE, RMSE,
Maximum AE, and the R2 score. All the models and their evaluation metrics are shown
in appendix I. All the models are also evaluated to define which model works best for
the TFC. Below the average over all visits of all the metrics are shown in figure 6.24.
This figure shows that the GRU and CNN perform similarly, with CNN having the lowest
MAE, GRU the lowest RMSE and highest R2, however the difference is negligible.

Page 67 of 130

Chapter 6. Results

0.85

0.90

0.95

1.00
M

AE

1.3

1.4

1.5

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

7

8

9

10

M
ax

 A
E

0.84

0.86

0.88

0.90
R2

Figure 6.24: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for TFC. Here the bars correspond to the best score and the error bars represent the
scores of the other tuned models.

When looking at the performance for predicting each year ahead in time, see fig-
ure 6.25, it is shown that again CNN and GRU have similar performance and that the
differences between them are very small. It is also shown that the RF and SVM model
again perform worse when predicting further ahead in time. It is also shown that the
baseline/constant model has a similar and sometimes the best performance in terms of
MAE, however it has one of the worst performance in terms of the other metrics.

In figure 6.26 the performance per status group is shown. This figure shows that
the constant model is the best for the recovered and stable group in terms of MAE and
RMSE, however it is the worst model for the progressive group. In the progressive group
it is not clear which model is the best, since all neural network models model have a
similar performance.

It was decided to define the best model from figure 6.24. Considering it is not
completely clear from the temporal and status figures which model is the best. It was
shown that the CNN had the lowest MAE and the GRU had the lowest RMSE. Since
the differences between the metrics of the CNN and GRU were not big and GRU works
better for time series in this case. Therefore. it was decided to further analyze the GRU
model for TFC.

Page 68 of 130

Chapter 6. Results

0.8

1.0

M
AE

1.2

1.4

1.6

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

6

8

10

M
ax

 A
E

1 (n=1920) 2 (n=1316) 3 (n=945) 4 (n=583)

0.85

0.90

R2

Figure 6.25: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for TFC over all the time points. Here the bars correspond to the best score and the
error bars represent the scores of the other tuned models.

Page 69 of 130

Chapter 6. Results

0.5

1.0

1.5
M

AE

1.0

1.5

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

4

6

8

10

M
ax

 A
E

Recovered
(n=208)

Progressive
(n=1008)

Stable
(n=889)

status

0.7

0.8

0.9

R2

Figure 6.26: The MAE, RMSE, Max AE, and the R2 score of the tuned models for
TFC over all the status groups consisting of stable (no change in cUHDRS between
first and last visit), progressive (increase in TFC between first and last visit), and
recovered (decrease in TFC between first and last visit). Here the bars correspond to
the best score and the error bars represent the scores of the other tuned models.

Page 70 of 130

Chapter 6. Results

6.4.2 Model Interpretation

For the TFC the GRU was further analyzed by using the SHAP algorithm. In figure 6.27
the top 20 highest mean absolute SHAP value of all patients in the test set for each
variable is shown. In this figure it is shown that the finances variable has the highest
mean absolute SHAP value to predict the TFC in the next year. Here the finances variable
indicates if the patient is unable, needs major or slight assistance or can independently
manage their finances. Also, the tfcscore (TFC) and all the components of the TFC (adl,
occupatn, carelevl, chores) have a high SHAP value, which is to be expected. In addition
to the TFC components, some components of the Fascore and the Fascore itself also
have high SHAP values, e.g. bathe, carehome, pubtrans, drive.

The SHAP values of the TFC components are shown in figure 6.28. This figure
shows that some components of TFC have a lower impact than other components, e.g.
domestic chores (chores) has the lowest SHAP value of all components. This suggests
that some TFC components affect the progression of the TFC score more than other
components, e.g. the TFC score will change more if a patient needs more assistance in
managing their finances than when a patient needs help with domestic chores (chores).
This might also explain why the finances variable is slightly more important than the sum
of all the TFC components, i.e. the TFC score.

0.000 0.025 0.050 0.075 0.100 0.125
mean(|SHAP|)

average impact on model output magnitude

hxsid_0.0
ccvab_0.0

sxsubjm_1.0
sxraterm_5.0

drive
jobpaid_0.0

cccog_1.0
emplusl
fascore

pubtrans
carehome

gait
bathe

chores
indepscl
carelevl

occupatn
adl

tfcscore
finances

Figure 6.27: The mean absolute SHAP value over all patients to predict the TFC.

Page 71 of 130

Chapter 6. Results

tfcscore
TFC Score

occupatn
Occupation

finances
Finances

chores
Domestic
Chores

adl
ADL

carelevl
Care Level

Variable

0.00

0.05

0.10

0.15

m
ea

n(
|S

HA
P|

)

Figure 6.28: The mean absolute SHAP value of all the components of the TFC. Here
it is shown that some components have a higher SHAP value than other components
to predict the TFC in the next year.

6.5 Symbol Digit Modality Test (SDMT) Progres-

sion

6.5.1 Model Performance

To show what affects the components of the cUHDRS score the SDMT also needs to be
modelled similarly as the cUHDRS. Here the same train and test subsets are used, see
table 6.2. The distribution of the SDMT labels in the train and test set are shown in
figure 6.29. In total around 60% of the training and test data is labelled. The number
of unmasked labels, i.e. the labels that are actually trained on is around 44%.

0 1 2 3
Time Point (t)

0

20

40

60

80

100

sd
m

t1

train test

Figure 6.29: Labels of the train and test set for the SDMT.

Page 72 of 130

Chapter 6. Results

All models were evaluated on four performance measures, namely the MAE, RMSE,
Maximum AE, and the R2 score. All the models and their evaluation metrics are shown
in appendix J. All the models are also evaluated to define which model works best for the
SDMT. Below the average over all visits of all the metrics are shown in figure 6.30. This
figure shows that the GRU has the lowest MAE, GRU the lowest RMSE and highest R2.

4.1

4.2

4.3

4.4

4.5

4.6

M
AE

5.6

5.8

6.0

6.2

6.4

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

50

52

54

56

58

M
ax

 A
E

0.87

0.88

0.89

0.90

0.91

R2

Figure 6.30: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for SDMT. Here the bars correspond to the best score and the error bars represent
the scores of the other tuned models.

When looking at the performance for predicting each year ahead in time, see figure
6.31, it is shown that the GRU is overall performing the best at each time step and
metric, excluding the fourth year in terms of RMSE and Max AE.

In figure 6.32 the performance per status group is shown. This figure shows that
the constant model is the best for the stable group in terms of MAE and RMSE. The
recovered group is best predicted by the GRU in terms of MAE, RMSE, and R2. It is not
clear which model is best for the progressive group, except for the constant model.

It was decided to further analyze the GRU model, considering that the GRU is
generally the best model overall, see figure 6.30 and also considering that the GRU is
generally the best when looking at the temporal results, see figure 6.31.

Page 73 of 130

Chapter 6. Results

4.0

4.5

5.0
M

AE

5.5

6.0

6.5

7.0

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

20

30

40

50

M
ax

 A
E

1 (n=1758) 2 (n=1187) 3 (n=829) 4 (n=498)
0.850

0.875

0.900

0.925

R2

Figure 6.31: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for SDMT over all the time points. Here the bars correspond to the best score and
the error bars represent the scores of the other tuned models.

Page 74 of 130

Chapter 6. Results

3

4

5

M
AE

4

5

6

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

20

40

M
ax

 A
E

Recovered
(n=602)

Progressive
(n=1213)

Stable
(n=147)

status

0.85

0.90

0.95

R2

Figure 6.32: The MAE, RMSE, Max AE, and the R2 score of the tuned models for
SDMT over all the status groups consisting of stable (no change in cUHDRS between
first and last visit), progressive (increase in SDMT between first and last visit), and
recovered (decrease in SDMT between first and last visit). Here the bars correspond
to the best score and the error bars represent the scores of the other tuned models.

Page 75 of 130

Chapter 6. Results

6.5.2 Model Interpretation

For the SDMT the GRU was further analyzed by using the SHAP algorithm. In figure
6.33 the top 20 highest mean absolute SHAP value of all patients in the test set for each
variable is shown. In this figure it is shown that the sdmt1 (SDMT) is the highest mean
absolute SHAP value to predict the SDMT in the next year. Also, the cUHDRS, cognitive
score (cogscore2), and swrt1 (SWRT) have a high SHAP value. Here the cUHDRS might
be important because SDMT is a component of the cUHDRS.

0 1 2 3
mean(|SHAP|)

average impact on model output magnitude

manifest
ccpob_0.0
ccvab_1.0
ccmtr_1.0

mcs
hxalcab_0.0

dadhd_0.0
toilet

age
ccvab_0.0
ccpob_1.0
mmsetotal

fascore
ccpsy_0.0

tfcscore
ccapt_1.0

swrt1
cogscore2

cUHDRS
sdmt1

Figure 6.33: The mean absolute SHAP value over all patients to predict the SDMT.

6.6 Stroop Word Reading Test (SWRT) progres-

sion

6.6.1 Model Performance

To show what affects the components of the cUHDRS score the SWRT also needs to be
modelled similarly as the cUHDRS. Here the same train and test subsets are used, see
table 6.2. The distribution of the SWRT labels in the train and test set are shown in
figure 6.34. In total around 60% of the training and test data is labelled. The number
of unmasked labels, i.e. the labels that are actually trained on is around 46%.

Page 76 of 130

Chapter 6. Results

0 1 2 3
Time Point (t)

0

25

50

75

100

125

150

175

sw
rt1

train test

Figure 6.34: Labels of the train and test set for the SWRT.

After training all models were evaluated on four performance measures, namely the
MAE, RMSE, Maximum AE, and the R2 score. All the models and their evaluation
metrics are shown in appendix K. All the models are also evaluated to define which
model works best for the SWRT. Below the average over all visits of all the metrics are
shown in figure 6.35. This figure shows that the LSTM, GRU, and CNN perform overall
the best and that the GRU has the lowest MAE and that the CNN has the highest R2,
however the differences between the scores of the LSTM, GRU, and CNN are very small.

Page 77 of 130

Chapter 6. Results

7.75

8.00

8.25

8.50

8.75
M

AE

10.5

11.0

11.5

12.0

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

60

65

70

75

M
ax

 A
E

0.82

0.84

0.86

0.88

R2

Figure 6.35: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for SWRT. Here the bars correspond to the best score and the error bars represent
the scores of the other tuned models.

When looking at the performance for predicting each year ahead in time, see figure
6.36, it is shown again that the LSTM, GRU, and CNN perform similarly.

In figure 6.37 the performance per status group is shown. This figure shows that
the constant model is the best for the stable group in terms of MAE and RMSE. The
recovered group is best predicted by the GRU in terms of MAE, RMSE, and R2, but only
slightly. It is not clear which model is best for the progressive group, since all models
perform similarly.

Considering it is not completely clear whether the CNN or GRU performed the best
according to the previous figures, it was decided to further analyze the GRU, since it is
more suited for modelling the data in our case, i.e. it needs less samples to predict the
same output.

Page 78 of 130

Chapter 6. Results

8

9
M

AE

10

11

12

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

50

60

70

M
ax

 A
E

1 (n=1816) 2 (n=1238) 3 (n=864) 4 (n=527)

0.825

0.850

0.875

R2

Figure 6.36: The MAE, RMSE, Max AE, and the R2 score of all the tuned models
for SWRT over all the time points. Here the bars correspond to the best score and
the error bars represent the scores of the other tuned models.

Page 79 of 130

Chapter 6. Results

6

8
M

AE

8

10

12

RM
SE

CNN
LSTM
GRU
SimpleRNN
NN
RF
SVM
Constant

40

60

M
ax

 A
E

Recovered
(n=607)

Progressive
(n=1310)

Stable
(n=103)

status

0.80

0.85

0.90

0.95

R2

Figure 6.37: The MAE, RMSE, Max AE, and the R2 score of the tuned models for
SWRT over all the status groups consisting of stable (no change in cUHDRS between
first and last visit), progressive (increase in SWRT between first and last visit), and
recovered (decrease in SWRT between first and last visit). Here the bars correspond
to the best score and the error bars represent the scores of the other tuned models.

Page 80 of 130

Chapter 6. Results

6.6.2 Model Interpretation

For the SWRT the GRU was further analyzed by using the SHAP algorithm. In figure
6.38 the top 20 highest mean absolute SHAP value of all patients in the test set for each
variable is shown. In this figure it is shown that the swrt1 (SWRT) has the highest mean
absolute value to predict the SWRT in the next year, which is to be expected. Also the
cUHDRS, cogscore, and scnt1 have a high SHAP value. Here the cUHDRS and cogscore
might be important because the SWRT is a component of the cUHDRS.

0 1 2 3 4
mean(|SHAP|)

average impact on model output magnitude

cccog_0.0
ccapt_1.0

sxsubjm_1.0
fascore

bed
ocularv

ccpsy_0.0
sxsubjm_4.0

cafpd_1.0
toilet

drugab_0.0
ccpob_0.0

diagconf
ccpob_1.0
cafpd_0.0

sdmt1
scnt1

cogscore2
cUHDRS

swrt1

Figure 6.38: The mean absolute SHAP value over all patients to predict the SWRT.

6.7 Summary

To summarize, many models and hyperparameters were tuned which resulted in one best
model for each variable, namely Drive, cUHDRS, TMS, TFC, SDMT, and SWRT. For
each model the SHAP algorithm was applied to find the most important feature for
each predicted label. In table 6.3 these results are shown for each predicted label. Here
the expectation was that the most important variable would be equal to the predicted
variable, except for the drive variable. However this was only the case for the SDMT and
SWRT.

Page 81 of 130

Chapter 6. Results

Table 6.3: Summary of all the best models and most important variable for each
predicted variable.

Predicted
Variable

Best
Model

Most Important
Variable

Description Most
Important Variable

Drive GRU Indepscl Subject’s independence in %

cUHDRS GRU SWRT Stroop Word Reading Test

TMS CNN Diagconf
Diagnostic confidence of

motor abnormalities

TFC GRU Finances Finances

SDMT GRU SDMT Symbol Digit Modality Test

SWRT GRU SWRT Stroop Word Reading Test

Page 82 of 130

Chapter 7

Discussion & Conclusion

In this research multiple machine learning models were trained using the Enroll-HD
dataset. This is one of the first research approaches where machine and deep learn-
ing models are used to analyze HD patients. With this research we want to introduce the
HD research field to data-driven techniques in finding new or confirm known information.
Using these kinds of models an advisory system for driving capability is created for HD
patients. This system should show the feasibility of these kinds of models. In addition,
another model was established to model the progression of the disease. This was achieved
by modeling the longitudinal changes in cUHDRS, TMS, TFC, SWRT, and SDMT. Here
the main goal was to give an accurate prognosis on the disease progression, defined by
cUHDRS, to ensure that patients are treated in time. Here we also wanted find what
variables affect the progression of these variables the most. With this information we
want to confirm known or discover variables that affect the progression of the disease.

7.1 Research Questions

In total four research questions were tackled in this project. Here the research questions
are given an answer and the results related to the questions are discussed.

7.1.1 Can ML models provide an accurate advice on driving
capability to HD patients and clinicians?

To start with the advisory system of the driving capability is discussed to see if an accurate
advice can be provided to HD patients and clinicians. Based on figure 6.2, 6.3, and 6.4 it
was found that the GRU performed the best out of all models and was therefore further
analyzed.

On average the GRU had an AUC of 0.962, an accuracy of 0.893, and a F1-score
of 0.906, see figure 6.2 and appendix F. The results per positive, i.e. able to drive and
negative, i.e. not able to drive, samples are shown in 6.5. This figure shows that the

Page 83 of 130

Chapter 7. Discussion & Conclusion

driving capability can be accurately predicted in 91.41% of the positive examples and in
85.47% of the negative samples. This shows that the model is slightly more accurate for
positive samples than negative examples. This is likely caused by the higher counts of
positive training samples, see figure 6.1. The accuracy for the negative samples could be
improved by adding more negative training samples.

For the miss-classified samples a deeper look can be provided by looking at figure
6.6. Here it was shown that a patient might be miss-classified in the clinic at time point
1, since the model predicted a value around 0.6, i.e. the patient was still able to drive
according to the model. This value is close to the classification threshold (0.5) and is
associated with a low accuracy around 0.5 in the test set. This shows that the model
is very useful in identifying uncertain cases of driving capability. Here the model can
provide the clinician with the information that the patient might still be able to drive.
Their exact capability could for example be determined during a test, giving the patient
the assurance to keep their freedom of movement, while still acknowledging the safety
of themselves and others.

The model can also be used to make it very accurate for positive and negative
examples by shifting the classification threshold. In figure 6.7 this is shown. When
shifting the threshold to 0.11 the true positive rate (TPR) is 0.99. In that case almost
all patients are allowed to drive prioritizing the freedom of movement. This also shows
that if a patient’s driving capability is predicted below 0.11 that it is almost 100% certain
that the actual driving capability is indeed negative.

On the other hand the threshold can also be shifted to 0.94 to make the true
negative rate (TNR) 0.99 (TNR=1-FPR). In that case the safety of the patient and
others is prioritized. It also shows that if a patient’s driving capability is predicted above
0.94 that it is almost 100% certain that the actual driving capability is indeed positive.

However, we do not make that decision for the patient and clinician, since this would
raise many ethical questions. Therefore, the threshold is set to a default of 0.5 resulting
in a TPR of 0.91 and a TNR of 0.86.

This threshold can also be shifted to make the TPR equal to the TNR, which might
be more fair. However, it was already shown in the confusion matrix, see figure 6.5, that
the model is already very accurate for both positive and negative samples.

When looking at the most important variables affecting the driving model, see figure
6.8, it was shown that the independence scale had the highest impact. In addition,
many variables from the functional assessment score (fascore) were also important, which
driving capability is a part of. Now that it is known which variables mostly impact the
driving capability it is possible to use only a limited number of variables. This can be
achieved by using the SHAP values and measuring how much the error increases when only
using a limited number of variables. This is possible since the expected value (calculated
by the SHAP algorithm) and the SHAP values add up to the predicted values. With this
in mind we can control how many variables should be added to minimize the increased
error compared to the error when using all the variables. This allows us to reduce input
size which reduces computational intensity and increases model interpretability. This

Page 84 of 130

Chapter 7. Discussion & Conclusion

allows for more hyperparameter tuning to make the model more accurate. This makes it
also possible to create a more simpler model which can be used in the clinic.

In short, an accuracy of 91% was achieved for positive samples and an accuracy
of 85% for the negative samples. When the model predicts a value above 0.94 it will
almost be 100% accurate that the patient is able to drive. When the model predicts
a value below 0.11 it will almost be 100% accurate that the patient is unable to drive.
In uncertain cases, e.g. a lower/higher predicted outcome than the label or a predicted
outcome with a low associated accuracy, a deeper look can be provided to the HD patient
to determine their driving capability. This all illustrates that indeed an accurate advice
can be given on driving capability to both HD patients and clinicians. In the future a
more accurate model can be created by filtering out input variables with the help of the
SHAP values.

7.1.2 Can ML models provide a personalized prognosis on
HD progression, defined by the cUHDRS, to HD pa-
tients and clinicians?

A model that can give a prognosis of cUHDRS for each patient was successfully created.
This was achieved by creating a model that can predict the cUHDRS one year ahead in
time when given one or multiple visits. To our knowledge no models have been created
yet which could provide such a prognosis on cUHDRS. Based on figure 6.10, 6.11, and
6.12 it was found that the GRU was the best performing model and it was therefore
further analyzed. On average the GRU had a MAE of 12.460, a RMSE of 16.508, a Max
AE of 124.821, and a R2 score of 0.943, see figure 6.10 and appendix G.

This model allows the clinic to foresee changes in disease progression a year ahead
in time. Which can be used to ensure a patient is treated in time and to identify optimal
moments for intervention. It could also be used in selecting patients for a clinical trial,
since for such trials patients that have a change in their symptoms are needed.

However this does require the model to be accurate and reliable. To have a deeper
look into the error in the predictions of the model the distribution of the absolute error
over all predictions in the test set was shown in figure 6.13. This shows that the model
had a very low error margin (<5) for a lot of visits/time steps and for quite some other
visits/time steps the error margin is a lot higher (>35). However, it was shown by
Trundell et al.35 (2019) that a worsening of 1.2 in cUHDRS can already be considered
clinically meaningful.35 Therefore the model could be used for some samples with a low
error and the model should improve for the higher error samples.

What causes these high errors is still unknown. Possible solutions to these high
errors include: identifying and filtering noise or error in the data, increase the training
data for certain test samples, testing more hyperparameters, or adding essential variables
to the data, e.g. medicine and nutritional supplement intake and imaging or bio markers.

To identify if more training data is needed or whether the data is noisy a new model

Page 85 of 130

Chapter 7. Discussion & Conclusion

is proposed, namely the Bayesian neural network (BNN). Using a BNN the uncertainty
can be modelled. There are two main types of uncertainty, namely aleatoric uncertainty
and epistemic uncertainty. The aleatoric uncertainty measures the noise in the data and
the epistemic uncertainty measures the uncertainty in the model, which is caused by
insufficient amount of training data. Using a BNN would allow us to determine whether
inaccurate predictions are made, because of noise in the data or because there is simply
insufficient amount of training data for a specific test sample. In addition, it can also
aid in explaining the model predictions, e.g. if the uncertainty is low for a prediction it
would indicate to the clinician that the prediction is accurate and vice versa.36

Another solution to make the model more accurate is to let experts detect errors in
the data. Such experts can decide whether certain changes in the cUHDRS over time
are actually possible. By filtering out these outliers/errors the model might be able to
converge better during training.

Another way of increasing the accuracy of the model is to add medicine and nutri-
tional supplement intake or bio and imaging markers. Currently, the Enroll-HD dataset
does include information about medicine and nutritional supplement intake. However,
this data was not included in this study. Adding such information might increase the
accuracy of the model.

In addition, more visits can also be added to the data. There is still unused data from
the Registry and Ad Hoc study, which were mentioned in chapter 2. More data would
increase the number of training samples, which could possibly increase the accuracy of
the model.

Additional imaging and biological markers were not available in the dataset. However
it is possible to request additional bio-samples and imaging data. This could provide
relevant information with regards to our models. Many papers have already shown that
there are promising bio and imaging markers which could help with further understanding
HD.37,38,39,40,41,42

In conclusion, accurate predictions can be made with the GRU model. These predic-
tions could make early interventions possible before symptom changes and ensures that
patient can be treated at the right time. It could also be used in clinical trials. However,
high errors are still possible in predictions, which could be attributed to noise in the data
or insufficient training data. To identify which predictions are accurate a BNN could be
used. Another solution is to increase the accuracy of the GRU by filtering outliers in the
labels, filtering out noise in the data, adding more training data, train the model more
on hyperparameters, or adding more bio and imaging markers.

7.1.3 Do the variables making up the cUHDRS also affect
the progression of cUHDRS the most?

For this research question it was the goal to determine what variables affect disease pro-
gression. Here disease progression is defined by the cUHDRS, which is a combination of

Page 86 of 130

Chapter 7. Discussion & Conclusion

the main symptoms of HD. These symptoms include motor (TMS), functional (TFC),
and cognitive (SDMT and SWRT) symptoms. To show which variables affect the cUH-
DRS the most the mean absolute SHAP values were calculated. These SHAP values
show which variables were most important in predicting the cUHDRS. The top 20 of the
SHAP values are shown in figure 6.14. It was expected that the variables making up the
cUHDRS would also affect the progression of the cUHDRS the most. However, this was
not the case. It was shown in figure 6.14 that the SWRT, cUHDRS, and SDMT had the
largest impact. The TFC was the twelfth most important variable and the TMS was not
within the top 20. Only one component of the TMS was present in the top 20, namely
the tandem walking (tandem) variable, which was the seventh most impactful variable.
This suggests that the TMS and TFC do not affect the progression of the cUHDRS as
much as the SWRT and SDMT, i.e. the cognitive variables. This shows that with the
proposed data-driven approach new hypothesis can be generated by discovering unknown
patterns within the data.

The components of the TFC and TMS were also further analyzed, to see whether
they had an effect on the progression of the cUHDRS. In figure 6.15 the SHAP values
of the TFC components to predict the cUHDRS are shown. This figure showed that
the finances variables was the most important TFC component to predict the cUHDRS.
This variable was followed by the occupation variable, then domestic chores (chores) and
ADL, and ending on the Care Level (carelevl) variables which was least important. This
seems to indicate that some components of the TFC are more important in predicting the
disease progression than other components. This might be due to the different impacts
these variables can have on HD patients. Here the Care Level (carelevl) variable might
have a lesser impact than the ability to manage your own finances. Note that the care
level (carelvl) and domestic chores (chores) variables range form 0-2 and the other TFC
components range from 0-3. This already shows that they have a lower in impact in
the TFC score and therefore in the cUHDRS. However, it was still shown that variables
with similar value ranges had a different impact, e.g. finances had a greater impact than
occupation (occupatn).

Figure 6.16 also showed that some TMS components are more important in predict-
ing the progression of the cUHDRS. The most important variable was tandem walking
(tandem). This again indicates that some components of the TMS are more important
in predicting the disease progression than other components. This could be due to many
factors, according to clinicians. For instance a variable might be more consistent, e.g.
some variables might increase or decrease in value each visit, while other variables always
increase or stay the same with each visit. Another factor could be that some measure-
ments of variables are more affected by external factors, e.g. the stress of the patient
or how much pain the patient is experiencing during the measurement. Varying impact
values can also be caused by the handedness of the patient, e.g. for the rigidity-arms,
pronate supinate-hands, and finger taps.

These varying impact values found in the TMS, TFC, and in the top 20 most
important variables should give hints at underlying patterns in the data. This can help

Page 87 of 130

Chapter 7. Discussion & Conclusion

clinicians with deciding what to research or help them confirm their intuition about certain
variables or components of the TMS and TFC that they want to research.

In short, the progression of the cUHDRS is better predicted by the cUHDRS itself
and the SDMT and SWRT components. The progression of the cUHDRS is not so
much affected by the TFC and TMS, even though the cUHDRS is a measure of disease
progression. It was also found that the variables making up the TMS and TFC have
varying impacts on the progression of the cUHDRS. Which shows that some components
of the TMS and TFC are more important than others, with regards to predicting the
cUHDRS progression. This could suggest that the cUHDRS, can be made more reliable
when taking into account the impact of each variable on the disease/patient. This all
might indicate that the cUHDRS is mainly a measure of cognitive progression, even
though it is used as a measure of disease progression.

7.1.4 Which variables affect the components of the cUHDRS
the most?

For this research question each individual score of the cUHDRS (TMS, TFC, SWRT,
and SDMT) is also modelled. Here we want to deduct what impacts the progression
of motor (TMS), functional (TFC), and cognitive (SWRT, SDMT) symptoms using a
data-driven approach. With this approach the aim was to confirm known information and
to find variables that might impact disease progression, which were previously unknown.
Different models were tuned and the best performing model was deducted using the
MAE, RMSE, Max AE, and the R2 score. With the best model of each variable, the mean
absolute SHAP values were calculated to deduct which variables affect the outcome of
the model the most.

Firstly, the TMS was modelled. It was found that the CNN was the best performing
model for the TMS. On average the CNN had a MAE of 5.371, RMSE of 7.6, Max AE
of 53.756, and a R2 score of 0.918 on the test set, see figure 6.18 and appendix H.
Based on figure 6.19 it was found that the CNN only slightly improved over time, except
for the last time step. This might suggest that the model can also be used on cross-
sectional data. It was also shown that the model can predict the recovered (n=470) and
progressive (n=1354) group with a similar error, see figure 6.20. Here the progressive
group had a change in the label (TMS) between the first and last visit and vice versa for
the recovered group. It was also found that the error between the CNN and the baseline
model is different on average, temporal, and per status group. This might suggest that
the model is not biased towards a stable, recovered or progressive trajectory and that is
does not simply predict the value at the previous time step. Which shows that the model
actually learned useful patterns within the data.

Using this model the mean absolute SHAP values were calculated. The 20 variables
with the highest SHAP values are shown in figure 6.21. This figure showed that the TMS
itself is not the most important in predicting the TMS in the next year. The figure showed

Page 88 of 130

Chapter 7. Discussion & Conclusion

that the diagnostic confidence of motor abnormalities (diagconf) was the most important
variable. It also showed varying values for the different components of the TMS, which
are described in appendix A. The component with the highest SHAP value, see figure
6.22, was the tandem walking (tandem) variable and the least important variable was the
retropulsion pull (retropls). This suggests that these different components vary in impact
on the progression of the TMS. This could be attributed to many factors, which were
also mentioned for the TMS components when modelling the cUHDRS. These factors
include: the consistency of a variable, how much each variable is affected by external
factors, e.g. pain, stress or handedness.

Secondly, the TFC was modelled. It was found that the GRU was the best performing
model for the TFC. On average the GRU had a MAE of 0.873, RMSE of 1.292, Max AE
of 8.714, and a R2 score of 0.899 on the test set, see figure 6.24 and appendix I. It was
found that the model improves over time however the performance is very similar for the
first and last visit. This suggests that the model could be used on cross-sectional data.
It was also found that the model has a similar error for the progressive and recovered
patients. It was also found that the model performs differently than the baseline model.
This suggests that the model is learning useful patterns within the data.

Using this model the mean absolute SHAP values were calculated. The 20 variables
with the mean absolute highest SHAP values are shown in figure 6.27. This figure showed
that the finances variable, a component of the TFC score, was the most important variable
in predicting the TFC score in the next year. However, the TFC score itself (tfcscore) was
the second most important variable. This was followed by the subject’s independence
in % (indepscl) and the other components making up the TFC score, ADL, occupation
(occupatn), care level (carelvl), domestic chores (chores). It was to be expected that the
components of the TFC score and the TFC score itself would be important in predicting
the TFC score in the next year. However, it is interesting that the variables do not
equally contribute to the output of the model, which is shown in figure 6.28. Here it
is shown that domestic chores (chores) and the care level (carelevl) variables contribute
the least out of all TFC components. This might be due to the smaller distribution of
values in these variables, ranging from 0-2, compared to the other variables, which range
from 0 to 3. However, there is also a difference in SHAP value between the other TFC
components. The finances variable is more important than the occupation (occupatn)
and ADL variable, even though the range of the values is the same. This suggests
that some TFC components affect the progression of the TFC score more than other
components. Here the clinicians did argue that in their opinion the components of the
TFC do not have an equal impact on the life of the patient. Here we present that indeed
there is a different impact in terms of TFC progression.

Thirdly, the SDMT was modelled. It was found that the GRU was the best perform-
ing model for the SDMT. On average the GRU had a MAE of 4.149, a RMSE of 5.658, a
Max AE of 54.264, and a R2 score of 0.908, see figure 6.30 and appendix J. It was found
that the GRU performed worse at predicting the first year than predicting the subsequent
years. However the difference in MAE was only between 0.25 or 0.5, see figure 6.31.

Page 89 of 130

Chapter 7. Discussion & Conclusion

This shows that the model could also be used on cross-sectional data. It was also found
that the GRU performed reasonably similar for the progressive (n=1213) and recovered
(n=602) group, see figure 6.37. Again it was found that the GRU performed differently
than the baseline. This suggests that the model actually learned useful patterns within
the data.

The SHAP algorithm was used to calculate the mean absolute SHAP values for each
variable. The top 20 highest SHAP variables are shown in figure 6.33. The figure showed
that the SDMT (sdmt1) had the biggest impact in predicting the SDMT in the next
year, which was to be expected. Here the cUHDRS, cognitive score (cogscore2), and
SWRT (swrt1) also had a small impact on the output of the model. The cUHDRS and
cognitive score (cogscore2) might be important here because they include the SDMT.
This indicates that these cognitive measures (SDMT and SWRT) are generally useful
in predicting the progression of the SDMT. It also shows that the SDMT is a good
standalone variable.

Finally, the SWRT was modelled. It was found that the GRU was the best performing
model for the SWRT. On average the GRU had a MAE of 7.839, RMSE of 10.367, Max
AE of 75.963, and a R2 score of 0.876, see figure 6.35 and appendix K. In figure 6.36 it
was shown that the MAE of the GRU is reducing with each subsequent year predicted.
This might indicate that this model is better to use in longitudinal data than cross-
sectional data. It was also shown that the GRU performed similar for the progressive
(n=1310) and recovered (n=607) group, see figure 6.37. Again it was shown that the
GRU had a different performance than the baseline/constant model, in terms of the
average, temporal, and status group metrics. This suggest that the model did learn
useful patterns within the data to predict the progression of SWRT.

Again the SHAP algorithm was used to calculate the mean absolute SHAP values
for each variable. In figure 6.38 the top 20 highest SHAP values are shown. This figure
showed that, as expected, the SWRT had the biggest impact in predicting the SWRT in
the next year. This was followed by the cUHDRS, cognitive score (cogscore2), and the
stroop colour naming test (SCNT). Similar to the SDMT, the cUHDRS and cognitive
score (cogscore2) might be important, because they include the SWRT variable. This
indicates that generally the SWRT is useful in predicting the SWRT progression and that
it is a good standalone variable.

In short, the progression of TMS and TFC are mainly affected by the scores them-
selves and the components of those scores. Here it was found that the components do
vary in importance to predict the progression of the TMS and TFC. This indicates that
some components have a bigger impact on the progression of the disease, in terms of
motor (TMS) and function (TFC). For the SDMT it was mainly found that only the
variable itself had an effect in predicting the progression of the SMDT. The same was
true for the SWRT.

Page 90 of 130

Chapter 7. Discussion & Conclusion

7.1.5 Summary

With all the research questions answered it is now clear to what extend our approach
can answer these questions. It was shown that an accurate advisory system on driving
capability was created. However, the model might need to be down scaled in terms of
input variables before using it in the clinic. In addition, it would be beneficial for the
clinicians and patients to have a dashboard/application which explains the model and the
predictions. This would make the model more interpretable and easy to use.

It was also shown that an accurate prognosis can be given on disease progression
(cUHDRS). However, there are some predictions with a very high error. These errors
need to be reduced or it should be clarified on what kind of input data the prediction
error becomes to high. A good target is to reduce the MAE of the model below 1.2,
since it was shown by Trundell et al.35 (2019) that a worsening of 1.2 in cUHDRS can be
considered clinical meaningful. To detect high error predictions Bayesian neural networks
could be used. In addition, prediction error can be reduced by adding more training data,
reducing noise in the data, or removing variables that had a very low impact on model
output. With these further improvements it might be possible to use the model to treat
patients in time for symptom changes or to select patients for clinical trials.

Lastly, it was found that new hypothesis could be generated based on the data-driven
approach. The benefit of this approach was that no patients or variables are filtered out
based on some inclusion criteria. This reduces the bias that was introduced and allowed
us to reassess what variables are important for certain symptoms. This resulted in very
straightforward results confirming known information, but it also resulted in clues for
new hypotheses. An example is that the cUHDRS progression was mainly influenced by
cognitive measures and not so much by functional (TFC) or motoric (TMS) variables.
This shows that with this approach it is possible to generate new hypotheses by providing
new directions to further research.

7.2 Future work

Previously many improvements were already mentioned to improve the model perfor-
mance and interpretability. These included identifying and filtering noise or error in the
data, increase the training data for certain test samples, testing more hyperparameters,
or adding essential variables to the data, e.g. medicine and nutritional supplement in-
take and imaging or bio markers. Here even more improvements are proposed and some
elaboration is given on already suggested improvements.

7.2.1 Data

In chapter 2 it was stated that only the enroll data was used from the Enroll-HD study,
however two more datasets were available from this study, namely registry and adhoc.
Adding these studies to the dataset would add another 15,000 visits, however it would

Page 91 of 130

Chapter 7. Discussion & Conclusion

have also increased the number of missing values, due to new variables being added which
did not exist in the enroll data or vice versa. However, we have established the whole
process of pre-processing and training machine learning models. Therefore, this workflow
could be expanded to include the additional data to our main dataset and analysis. This
could lead to better performing models, since more data can be used to train the models.

7.2.2 Temporal Resolution

In the methods in section 5.3.4, it was described how the data was reshaped to make
longitudinal predictions possible. The data was transformed to a 3-dimensional matrix,
like so: (participants, time step, features). Here each time step would be around 1 years
apart to mimic the regular yearly visits of the enroll dataset, see figure 2.5. However,
it might be more beneficial to reduce the months between the time steps, also known
as temporal resolution, since it would increase the number of visits per patients used
and it might increase the accuracy of the exact time step of a specific visit. Then again
this would also increase the dimensionality of the data, increasing the training time of
the models and possibly result in even worse results. In the future a smaller temporal
resolution could be tested to show if the models perform better.

7.2.3 Feature Selection

In this research the goal was to model HD progression to deduct which variables might
influence the progression. Here a data-driven technique was used, i.e. the models them-
selves should learn what variables are important and which are not. Therefore, the feature
selection step was less intensive, which was described in 5.3.2. Here it was explained that
only some variables were discarded. This method was beneficial for our specific goal,
since we wanted to reduce the possibility of filtering out relevant data and introducing
bias. However, multiple sources have shown that selecting features increases performance
of models, especially for machine learning models.43,44,45 Also, filtering out irrelevant data
also reduces the input size, which reduces computational intensity. This allows for faster
hyperparameter tuning of models, which might results in better performing models. It
also makes it feasible to use more computational intensive models, e.g. Radial Basis
Function (RBF) kernel SVM.

In this study the most important variables were deducted using the SHAP algorithm.
This gives us information on what data is relevant in predicting the output of the model.
Therefore, these irrelevant variables can be filtered out and our proposed models can
be trained on the filtered dataset. This could increase the performance of the current
models and allow for faster and therefore more hyperparameter tuning.

Page 92 of 130

Chapter 7. Discussion & Conclusion

7.3 Conclusion

In conclusion, many machine learning models were successfully applied on the Enroll-HD
dataset. We showcased that machine learning is a feasible method to further analyze
the Enroll-HD dataset. It was shown that a GRU is generally the best model to give
an accurate advice on driving capability and modeling disease progression, in terms of
cUHDRS, TMS, TFC, SDMT, and SWRT, in pre-manifest and manifest HD patients.
Using a data-driven approach it was shown that the progression of cUHDRS is mainly
predicted by cognitive measures (SWRT and SDMT) and that the components of the
TMS and TFC vary in importance with regards to predicting the progression of cUHDRS.
It was also found that the TMS components have a varying impact on TMS progression,
which was also the case for the TFC components on the TFC progression. Finally, it
was found that the SDMT and SWRT progression is mainly influenced by the variables
themselves, which shows that these variables are good standalone measures. With this
approach a prognosis on the disease progression could also be given. However, there is a
risk that some predictions have a very high error. What causes these high errors is still
unknown. However, many solutions were proposed to tackle this problem, namely using
Bayesian neural networks, filtering out noise in the data, and adding more training data
in terms of visits and variables. With this study the HD research field is introduced to
using ML on the Enroll-HD dataset and to use a data-driven approach to predict and
derive variable importance. With this information the research field is also introduced to
new patterns in the data which can lead to new hypothesis, e.g. that TMS components
have a varying impact on cUHDRS and TMS progression. This might indicate that some
components are more impactful than others, which suggests that these components also
have to be treated differently in analysis. For now this is not the case, however here we
present that this might be helpful in improving HD research.

Page 93 of 130

Bibliography

[1] Praveen Dayalu and Roger L. Albin. “Huntington Disease: Pathogenesis and
Treatment”. In: Neurologic Clinics 33.1 (2015). Movement Disorders, pp. 101–
114. issn: 0733-8619. doi: https : / / doi . org / 10 . 1016 / j . ncl . 2014 .

09.003. url: http://www.sciencedirect.com/science/article/pii/
S0733861914000711.

[2] Samuel Frank. “Treatment of Huntington’s Disease”. In: Neurotherapeutics
11.1 (Dec. 2013), pp. 153–160. doi: 10.1007/s13311- 013- 0244- z. url:
https://doi.org/10.1007/s13311-013-0244-z.

[3] Caron NS;Wright GEB;Hayden MR; “Huntington Disease”. In: National Cen-
ter for Biotechnology Information (). url: https://pubmed.ncbi.nlm.nih.
gov/20301482/.

[4] Christian Landles and Gillian P Bates. “Huntingtin and the molecular patho-
genesis of Huntington’s disease”. In: EMBO reports 5.10 (Oct. 2004), pp. 958–
963. doi: 10.1038/sj.embor.7400250. url: https://doi.org/10.1038/sj.
embor.7400250.

[5] N. Ahmad Aziz et al. “Overlap between age-at-onset and disease-progression
determinants in Huntington disease”. In: Neurology 90.24 (2018), e2099–e2106.
issn: 0028-3878. doi: 10.1212/WNL.0000000000005690. eprint: https://

n.neurology.org/content/90/24/e2099.full.pdf. url: https://n.

neurology.org/content/90/24/e2099.
[6] Jae Whan Keum et al. “The HTT CAG-Expansion Mutation Determines Age

at Death but Not Disease Duration in Huntington Disease”. In: The American
Journal of Human Genetics 98.2 (Feb. 2016), pp. 287–298. doi: 10.1016/j.
ajhg.2015.12.018. url: https://doi.org/10.1016/j.ajhg.2015.12.018.

[7] Jane Paulsen et al. “Clinical and biomarker changes in premanifest Hunting-
ton disease show trial feasibility: a decade of the PREDICT-HD study”. In:
Frontiers in Aging Neuroscience 6 (2014), p. 78. issn: 1663-4365. doi: 10.

3389/fnagi.2014.00078. url: https://www.frontiersin.org/article/
10.3389/fnagi.2014.00078.

[8] Alvin Rajkomar, Jeffrey Dean, and Isaac Kohane. “Machine Learning in Medicine”.
In: New England Journal of Medicine 380.14 (Apr. 2019), pp. 1347–1358. doi:
10.1056/nejmra1814259. url: https://doi.org/10.1056/nejmra1814259.

Page 94 of 130

https://doi.org/https://doi.org/10.1016/j.ncl.2014.09.003
https://doi.org/https://doi.org/10.1016/j.ncl.2014.09.003
http://www.sciencedirect.com/science/article/pii/S0733861914000711
http://www.sciencedirect.com/science/article/pii/S0733861914000711
https://doi.org/10.1007/s13311-013-0244-z
https://doi.org/10.1007/s13311-013-0244-z
https://pubmed.ncbi.nlm.nih.gov/20301482/
https://pubmed.ncbi.nlm.nih.gov/20301482/
https://doi.org/10.1038/sj.embor.7400250
https://doi.org/10.1038/sj.embor.7400250
https://doi.org/10.1038/sj.embor.7400250
https://doi.org/10.1212/WNL.0000000000005690
https://n.neurology.org/content/90/24/e2099.full.pdf
https://n.neurology.org/content/90/24/e2099.full.pdf
https://n.neurology.org/content/90/24/e2099
https://n.neurology.org/content/90/24/e2099
https://doi.org/10.1016/j.ajhg.2015.12.018
https://doi.org/10.1016/j.ajhg.2015.12.018
https://doi.org/10.1016/j.ajhg.2015.12.018
https://doi.org/10.3389/fnagi.2014.00078
https://doi.org/10.3389/fnagi.2014.00078
https://www.frontiersin.org/article/10.3389/fnagi.2014.00078
https://www.frontiersin.org/article/10.3389/fnagi.2014.00078
https://doi.org/10.1056/nejmra1814259
https://doi.org/10.1056/nejmra1814259

Bibliography

[9] Eric Topol. Deep medicine. how artificial intelligence can make healthcare hu-
man again. Basic Books, 2019.

[10] Simon Ronicke et al. “Can a decision support system accelerate rare dis-
ease diagnosis? Evaluating the potential impact of Ada DX in a retrospec-
tive study”. In: Orphanet Journal of Rare Diseases 14.1 (Mar. 2019). doi:
10.1186/s13023-019-1040-6. url: https://doi.org/10.1186/s13023-
019-1040-6.

[11] Scott Mayer McKinney et al. “International evaluation of an AI system for
breast cancer screening”. In: Nature 577.7788 (Jan. 2020), pp. 89–94. doi:
10.1038/s41586-019-1799-6. url: https://doi.org/10.1038/s41586-
019-1799-6.

[12] Natalia P. Rocha et al. “The Clinical Picture of Psychosis in Manifest Hunt-
ington’s Disease: A Comprehensive Analysis of the Enroll-HD Database”. In:
Frontiers in Neurology 9 (2018), p. 930. issn: 1664-2295. doi: 10.3389/fneur.
2018.00930. url: https://www.frontiersin.org/article/10.3389/

fneur.2018.00930.
[13] Yury Seliverstov et al. “F49 Machine learning approach in analysis of enroll-hd

data for suicidality prediction in huntington disease”. In: Journal of Neurology,
Neurosurgery & Psychiatry 89.Suppl 1 (2018), A57–A57. issn: 0022-3050. doi:
10.1136/jnnp-2018-EHDN.152. eprint: https://jnnp.bmj.com/content/
89/Suppl_1/A57.2.full.pdf. url: https://jnnp.bmj.com/content/89/
Suppl_1/A57.2.

[14] Yury Seliverstov et al. “I9 The size of the CAG-expansion mutation can be
predicted in hd based on phenotypic data using a machine learning approach”.
In: Journal of Neurology, Neurosurgery & Psychiatry 87.Suppl 1 (2016), A62–
A62. issn: 0022-3050. doi: 10.1136/jnnp-2016-314597.174. eprint: https:
//jnnp.bmj.com/content/87/Suppl_1/A62.1.full.pdf. url: https:
//jnnp.bmj.com/content/87/Suppl_1/A62.1.

[15] Enroll-HD. Enroll-HD PDS5: PDS5 Overview. 2021. url: https://enroll-
hd.org/enrollhd_documents/2020-10-R1/Enroll-HD-PDS5-Overview-

2020-10-R1.pdf (visited on 06/07/2021).
[16] Scott A. Schobel et al. “Motor, cognitive, and functional declines contribute to

a single progressive factor in early HD”. In: Neurology 89.24 (2017), pp. 2495–
2502. issn: 0028-3878. doi: 10.1212/WNL.0000000000004743. eprint: https:
//n.neurology.org/content/89/24/2495.full.pdf. url: https://n.
neurology.org/content/89/24/2495.

[17] Carlos Estevez-Fraga et al. “Composite UHDRS Correlates With Progression
of Imaging Biomarkers in Huntington’s Disease”. In: Movement Disorders 36.5
(2021), pp. 1259–1264. doi: https://doi.org/10.1002/mds.28489. eprint:
https://movementdisorders.onlinelibrary.wiley.com/doi/pdf/10.

1002 / mds . 28489. url: https : / / movementdisorders . onlinelibrary .

wiley.com/doi/abs/10.1002/mds.28489.

Page 95 of 130

https://doi.org/10.1186/s13023-019-1040-6
https://doi.org/10.1186/s13023-019-1040-6
https://doi.org/10.1186/s13023-019-1040-6
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.3389/fneur.2018.00930
https://doi.org/10.3389/fneur.2018.00930
https://www.frontiersin.org/article/10.3389/fneur.2018.00930
https://www.frontiersin.org/article/10.3389/fneur.2018.00930
https://doi.org/10.1136/jnnp-2018-EHDN.152
https://jnnp.bmj.com/content/89/Suppl_1/A57.2.full.pdf
https://jnnp.bmj.com/content/89/Suppl_1/A57.2.full.pdf
https://jnnp.bmj.com/content/89/Suppl_1/A57.2
https://jnnp.bmj.com/content/89/Suppl_1/A57.2
https://doi.org/10.1136/jnnp-2016-314597.174
https://jnnp.bmj.com/content/87/Suppl_1/A62.1.full.pdf
https://jnnp.bmj.com/content/87/Suppl_1/A62.1.full.pdf
https://jnnp.bmj.com/content/87/Suppl_1/A62.1
https://jnnp.bmj.com/content/87/Suppl_1/A62.1
https://enroll-hd.org/enrollhd_documents/2020-10-R1/Enroll-HD-PDS5-Overview-2020-10-R1.pdf
https://enroll-hd.org/enrollhd_documents/2020-10-R1/Enroll-HD-PDS5-Overview-2020-10-R1.pdf
https://enroll-hd.org/enrollhd_documents/2020-10-R1/Enroll-HD-PDS5-Overview-2020-10-R1.pdf
https://doi.org/10.1212/WNL.0000000000004743
https://n.neurology.org/content/89/24/2495.full.pdf
https://n.neurology.org/content/89/24/2495.full.pdf
https://n.neurology.org/content/89/24/2495
https://n.neurology.org/content/89/24/2495
https://doi.org/https://doi.org/10.1002/mds.28489
https://movementdisorders.onlinelibrary.wiley.com/doi/pdf/10.1002/mds.28489
https://movementdisorders.onlinelibrary.wiley.com/doi/pdf/10.1002/mds.28489
https://movementdisorders.onlinelibrary.wiley.com/doi/abs/10.1002/mds.28489
https://movementdisorders.onlinelibrary.wiley.com/doi/abs/10.1002/mds.28489

Bibliography

[18] Enroll-HD. Enroll-HD protocol. 2021. url: https://enroll-hd.org/enrollhd_
documents/Enroll-HD-Protocol-1.0.pdf (visited on 06/07/2021).

[19] Aurélien Géron. Hands-on Machine Learning with Scikit-Learn, Keras & Ten-
sorflow. O’Reilly Media, Inc, 2019.

[20] S. Wang et al. “Training deep neural networks on imbalanced data sets”.
In: 2016 International Joint Conference on Neural Networks (IJCNN). 2016,
pp. 4368–4374.

[21] Gary King and Langche Zeng. “Logistic Regression in Rare Events Data”. In:
Political Analysis 9.2 (2001), pp. 137–163. doi: 10.1093/oxfordjournals.
pan.a004868.

[22] Sebastian Raschka. Confusion Matrix. url: http : / / rasbt . github . io /

mlxtend/user_guide/evaluate/confusion_matrix/.
[23] Roman M. Balabin, Ravilya Z. Safieva, and Ekaterina I. Lomakina. “Compar-

ison of linear and nonlinear calibration models based on near infrared (NIR)
spectroscopy data for gasoline properties prediction”. In: Chemometrics and
Intelligent Laboratory Systems 88.2 (2007), pp. 183–188. issn: 0169-7439. doi:
https://doi.org/10.1016/j.chemolab.2007.04.006. url: http://www.
sciencedirect.com/science/article/pii/S0169743907000925.

[24] Pejman Tahmasebi and Ardeshir Hezarkhani. “Application of a Modular Feed-
forward Neural Network for Grade Estimation”. In: Natural Resources Research
20.1 (Jan. 2011), pp. 25–32. doi: 10.1007/s11053-011-9135-3. url: https:
//doi.org/10.1007/s11053-011-9135-3.

[25] Vikas Gupta. Understanding Feedforward Neural Networks. 2017. url: https:
//www.learnopencv.com/understanding-feedforward-neural-networks/

(visited on 09/10/2020).
[26] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted

Boltzmann Machines”. In: Proceedings of the 27th International Conference on
International Conference on Machine Learning. ICML’10. Haifa, Israel: Omni-
press, 2010, pp. 807–814. isbn: 9781605589077.

[27] Yann A. LeCun et al. “Efficient BackProp”. In: Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, pp. 9–48. doi: 10.1007/978-3-
642-35289-8_3. url: https://doi.org/10.1007/978-3-642-35289-8_3.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[29] Daniel Lopez. RNN, LSTM & GRU. Apr. 2019. url: dprogrammer.org/rnn-
lstm-gru (visited on 01/27/2021).

[30] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. 2014. arXiv: 1406.1078 [cs.CL].

[31] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, 2014.

Page 96 of 130

https://enroll-hd.org/enrollhd_documents/Enroll-HD-Protocol-1.0.pdf
https://enroll-hd.org/enrollhd_documents/Enroll-HD-Protocol-1.0.pdf
https://doi.org/10.1093/oxfordjournals.pan.a004868
https://doi.org/10.1093/oxfordjournals.pan.a004868
http://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/
http://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/
https://doi.org/https://doi.org/10.1016/j.chemolab.2007.04.006
http://www.sciencedirect.com/science/article/pii/S0169743907000925
http://www.sciencedirect.com/science/article/pii/S0169743907000925
https://doi.org/10.1007/s11053-011-9135-3
https://doi.org/10.1007/s11053-011-9135-3
https://doi.org/10.1007/s11053-011-9135-3
https://www.learnopencv.com/understanding-feedforward-neural-networks/
https://www.learnopencv.com/understanding-feedforward-neural-networks/
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
http://www.deeplearningbook.org
http://www.deeplearningbook.org
dprogrammer.org/rnn-lstm-gru
dprogrammer.org/rnn-lstm-gru
https://arxiv.org/abs/1406.1078

Bibliography

[32] L. Jiang et al. “Prediction of SNP Sequences via Gini Impurity Based Gradient
Boosting Method”. In: IEEE Access 7 (2019), pp. 12647–12657. doi: 10.1109/
ACCESS.2019.2893269.

[33] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[34] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems 30. Ed.
by I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774. url: http:
//papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-

model-predictions.pdf.
[35] Dylan Trundell et al. “Defining Clinically Meaningful Change on the Com-

posite Unified Huntington’s Disease Rating Scale (cUHDRS) (P1.8-043)”. In:
Neurology 92.15 Supplement (2019). issn: 0028-3878. eprint: https : / / n .

neurology.org/content. url: https://n.neurology.org/content/92/15_
Supplement/P1.8-043.

[36] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” In: CoRR abs/1703.04977 (2017). arXiv:
1703.04977. url: http://arxiv.org/abs/1703.04977.

[37] Fanny Mochel et al. “Early Energy Deficit in Huntington Disease: Identification
of a Plasma Biomarker Traceable during Disease Progression”. In: PLOS ONE
2.7 (July 2007), pp. 1–8. doi: 10.1371/journal.pone.0000647. url: https:
//doi.org/10.1371/journal.pone.0000647.

[38] Eric R. Reed et al. “MicroRNAs in CSF as prodromal biomarkers for Hunt-
ington disease in the PREDICT-HD study”. In: Neurology 90.4 (2018). Ed. by
et al., e264–e272. issn: 0028-3878. doi: 10.1212/WNL.0000000000004844.
eprint: https://n.neurology.org/content/90/4/e264.full.pdf. url:
https://n.neurology.org/content/90/4/e264.

[39] Peter A. Wijeratne et al. “Robust Markers and Sample Sizes for Multicenter
Trials of Huntington Disease”. In: Annals of Neurology 87.5 (2020), pp. 751–
762. doi: https : / / doi . org / 10 . 1002 / ana . 25709. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1002/ana.25709. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/ana.25709.

[40] Jeffrey D. Long et al. “8OHdG as a marker for Huntington disease progres-
sion”. In: Neurobiology of Disease 46.3 (2012). Non-motor Aspects of PD,
pp. 625–634. issn: 0969-9961. doi: https://doi.org/10.1016/j.nbd.

2012.02.012. url: https://www.sciencedirect.com/science/article/
pii/S0969996112000678.

[41] Cristina Sánchez-Castañeda et al. “Seeking Huntington disease biomarkers by
multimodal, cross-sectional basal ganglia imaging”. In: Human brain mapping
34.7 (2013), pp. 1625–1635.

[42] Valerio Leoni et al. “Plasma 24S-hydroxycholesterol correlation with mark-
ers of Huntington disease progression”. In: Neurobiology of Disease 55 (2013),

Page 97 of 130

https://doi.org/10.1109/ACCESS.2019.2893269
https://doi.org/10.1109/ACCESS.2019.2893269
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://n.neurology.org/content
https://n.neurology.org/content
https://n.neurology.org/content/92/15_Supplement/P1.8-043
https://n.neurology.org/content/92/15_Supplement/P1.8-043
https://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
https://doi.org/10.1371/journal.pone.0000647
https://doi.org/10.1371/journal.pone.0000647
https://doi.org/10.1371/journal.pone.0000647
https://doi.org/10.1212/WNL.0000000000004844
https://n.neurology.org/content/90/4/e264.full.pdf
https://n.neurology.org/content/90/4/e264
https://doi.org/https://doi.org/10.1002/ana.25709
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ana.25709
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ana.25709
https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.25709
https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.25709
https://doi.org/https://doi.org/10.1016/j.nbd.2012.02.012
https://doi.org/https://doi.org/10.1016/j.nbd.2012.02.012
https://www.sciencedirect.com/science/article/pii/S0969996112000678
https://www.sciencedirect.com/science/article/pii/S0969996112000678

Bibliography

pp. 37–43. issn: 0969-9961. doi: https://doi.org/10.1016/j.nbd.2013.
03.013. url: https://www.sciencedirect.com/science/article/pii/
S0969996113001010.

[43] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature
selection”. In: Journal of machine learning research 3.Mar (2003), pp. 1157–
1182.

[44] Avrim L. Blum and Pat Langley. “Selection of relevant features and examples
in machine learning”. In: Artificial Intelligence 97.1 (1997). Relevance, pp. 245–
271. issn: 0004-3702. doi: https://doi.org/10.1016/S0004- 3702(97)

00063-5. url: https://www.sciencedirect.com/science/article/pii/
S0004370297000635.

[45] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and
data mining. Vol. 454. Springer Science & Business Media, 2012.

Page 98 of 130

https://doi.org/https://doi.org/10.1016/j.nbd.2013.03.013
https://doi.org/https://doi.org/10.1016/j.nbd.2013.03.013
https://www.sciencedirect.com/science/article/pii/S0969996113001010
https://www.sciencedirect.com/science/article/pii/S0969996113001010
https://doi.org/https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/https://doi.org/10.1016/S0004-3702(97)00063-5
https://www.sciencedirect.com/science/article/pii/S0004370297000635
https://www.sciencedirect.com/science/article/pii/S0004370297000635

Appendices

Page 99 of 130

Appendix A

TMS Components

Table A.1: All components of the TMS (the sum of all components).

Group Names Variables

Ocular Pursuit
Horizontal ocularh

Vertical ocularv

Saccade initiation
Horizontal sacinith

Vertical sacinitv

Saccade velocity
Horizontal sacvelh

Vertical sacvelv
Dysarthria Dysarthria dysarth

Tongue protrusion Tongue protrusion tongue

Finger taps
Right fingtapr
Left fingtapl

Pronate supinate-hands
Right prosupr
Left prosupl

Luria Luria luria

Rigidity-arms
Right rigarmr
Left rigarml

Bradykinesiabody Bradykinesiabody brady

Maximal dystonia

Trunk dysttrnk
RUE dystrue
LUE dystlue
RLE dystrle
LLE dystlle

Maximal chorea

Face chorface
BOL chorbol

Trunk chortrnk
RUE chorrue

Page 100 of 130

Appendix A. TMS Components

LUE chorlue
RLE chorrle
LLE chorlle

Gait Gait gait
Tandem walking Tandem walking tandem
Retropulsion pull Retropulsion pull retropls

Page 101 of 130

Appendix B

Variable Statistics

Table B.1: A list of all variables in the imputed dataset and their: mean, standard
deviation (std), minimum value (min), 25th percentile, 50th percentile (median), 75th

percentile, and maximum value (max).

variable mean std min 25% 50% 75% max
sex 0.542 0.498 0.000 0.000 1.000 1.000 1.000

caghigh 43.267 3.170 36.000 41.000 43.000 45.000 59.000

caglow 18.252 2.931 8.000 17.000 17.000 19.000 28.000

fhx 0.880 0.325 0.000 1.000 1.000 1.000 1.000

hxtobcpd 7.911 11.086 0.000 0.000 0.000 15.000 100.000

hxtobyos 9.732 13.549 0.000 0.000 0.000 19.000 74.000

hxpacky 8.942 15.775 0.000 0.000 0.000 12.500 195.000

age 50.369 13.614 18.000 40.000 51.000 60.000 94.000

hddiagn est 0.287 0.452 0.000 0.000 0.000 1.000 1.000

parentagesx 0.977 12.391 -44.000 -7.000 1.000 9.000 72.000

ccmtrage 6.349 6.028 -7.000 0.000 6.000 10.000 49.000

sxsubj 6.104 6.288 -7.000 0.000 5.000 10.000 58.000

sxfam 6.376 6.586 -7.000 0.000 5.000 10.000 53.000

ccdepage 7.609 9.645 -6.000 0.000 5.000 12.000 71.000

ccirbage 5.405 7.830 -7.000 0.000 3.000 8.000 70.000

ccvabage 2.656 6.284 -7.000 0.000 0.000 3.000 74.000

ccaptage 3.575 5.613 -7.000 0.000 1.000 6.000 71.000

ccpobage 3.054 6.143 -7.000 0.000 0.000 4.000 62.000

ccpsyage 0.707 3.257 -7.000 0.000 0.000 0.000 62.000

cccogage 3.161 4.819 -6.000 0.000 0.000 6.000 53.000

rtrddur 3.195 6.006 -6.000 0.000 0.000 5.000 67.000

bmi 25.439 5.317 8.900 21.800 24.600 28.100 66.000

alcunits 2.781 6.985 0.000 0.000 0.000 2.000 170.000

tobcpd 3.322 7.734 0.000 0.000 0.000 0.000 120.000

tobyos 5.140 11.647 0.000 0.000 0.000 0.000 70.000

Page 102 of 130

Appendix B. Variable Statistics

packy 4.323 11.744 0.000 0.000 0.000 0.000 270.000

manifest 0.702 0.457 0.000 0.000 1.000 1.000 1.000

capscore 103.106 24.439 21.212 87.081 107.177 120.255 245.614

motscore 31.323 25.914 0.000 6.000 29.000 49.000 126.000

diagconf 2.955 1.594 0.000 1.000 4.000 4.000 4.000

ocularh 0.903 1.016 0.000 0.000 1.000 2.000 4.000

ocularv 1.013 1.072 0.000 0.000 1.000 2.000 4.000

sacinith 1.164 1.150 0.000 0.000 1.000 2.000 4.000

sacinitv 1.191 1.163 0.000 0.000 1.000 2.000 4.000

sacvelh 1.079 1.135 0.000 0.000 1.000 2.000 4.000

sacvelv 1.148 1.194 0.000 0.000 1.000 2.000 4.000

dysarth 0.671 0.872 0.000 0.000 0.000 1.000 4.000

tongue 0.801 1.074 0.000 0.000 0.000 1.000 4.000

fingtapr 1.222 1.147 0.000 0.000 1.000 2.000 4.000

fingtapl 1.348 1.179 0.000 0.000 1.000 2.000 4.000

prosupr 1.068 1.132 0.000 0.000 1.000 2.000 4.000

prosupl 1.208 1.163 0.000 0.000 1.000 2.000 4.000

luria 1.327 1.374 0.000 0.000 1.000 2.000 4.000

rigarmr 0.621 0.797 0.000 0.000 0.000 1.000 4.000

rigarml 0.601 0.802 0.000 0.000 0.000 1.000 4.000

brady 1.069 1.180 0.000 0.000 1.000 2.000 4.000

dysttrnk 0.582 0.937 0.000 0.000 0.000 1.000 4.000

dystrue 0.530 0.875 0.000 0.000 0.000 1.000 4.000

dystlue 0.516 0.870 0.000 0.000 0.000 1.000 4.000

dystrle 0.409 0.781 0.000 0.000 0.000 1.000 4.000

dystlle 0.400 0.773 0.000 0.000 0.000 1.000 4.000

chorface 0.894 0.930 0.000 0.000 1.000 1.000 4.000

chorbol 0.873 0.958 0.000 0.000 1.000 1.000 4.000

chortrnk 0.924 0.990 0.000 0.000 1.000 2.000 4.000

chorrue 1.001 0.969 0.000 0.000 1.000 2.000 4.000

chorlue 0.998 0.968 0.000 0.000 1.000 2.000 4.000

chorrle 0.889 0.927 0.000 0.000 1.000 2.000 4.000

chorlle 0.888 0.928 0.000 0.000 1.000 2.000 4.000

gait 0.864 0.979 0.000 0.000 1.000 1.000 4.000

tandem 1.360 1.357 0.000 0.000 1.000 2.000 4.000

retropls 0.805 1.019 0.000 0.000 0.000 1.000 4.000

fascore 19.635 6.620 0.000 17.000 22.000 25.000 25.000

indepscl 82.254 19.098 5.000 70.000 85.000 100.000 100.000

drive 0.536 0.499 0.000 0.000 1.000 1.000 1.000

emplusl 0.387 0.487 0.000 0.000 0.000 1.000 1.000

emplany 0.478 0.500 0.000 0.000 0.000 1.000 1.000

volunt 0.624 0.484 0.000 0.000 1.000 1.000 1.000

Page 103 of 130

Appendix B. Variable Statistics

fafinan 0.571 0.495 0.000 0.000 1.000 1.000 1.000

grocery 0.753 0.431 0.000 1.000 1.000 1.000 1.000

cash 0.845 0.362 0.000 1.000 1.000 1.000 1.000

supchild 0.612 0.487 0.000 0.000 1.000 1.000 1.000

housewrk 0.676 0.468 0.000 0.000 1.000 1.000 1.000

laundry 0.769 0.422 0.000 1.000 1.000 1.000 1.000

prepmeal 0.800 0.400 0.000 1.000 1.000 1.000 1.000

telephon 0.891 0.312 0.000 1.000 1.000 1.000 1.000

ownmeds 0.838 0.369 0.000 1.000 1.000 1.000 1.000

feedself 0.923 0.266 0.000 1.000 1.000 1.000 1.000

dress 0.895 0.306 0.000 1.000 1.000 1.000 1.000

bathe 0.869 0.338 0.000 1.000 1.000 1.000 1.000

pubtrans 0.753 0.431 0.000 1.000 1.000 1.000 1.000

walknbr 0.851 0.356 0.000 1.000 1.000 1.000 1.000

walkfall 0.910 0.287 0.000 1.000 1.000 1.000 1.000

walkhelp 0.922 0.268 0.000 1.000 1.000 1.000 1.000

comb 0.928 0.259 0.000 1.000 1.000 1.000 1.000

trnchair 0.954 0.209 0.000 1.000 1.000 1.000 1.000

bed 0.956 0.206 0.000 1.000 1.000 1.000 1.000

toilet 0.946 0.226 0.000 1.000 1.000 1.000 1.000

carehome 0.952 0.215 0.000 1.000 1.000 1.000 1.000

tfcscore 9.278 3.826 0.000 6.000 10.000 13.000 13.000

occupatn 1.443 1.309 0.000 0.000 1.000 3.000 3.000

finances 2.062 1.150 0.000 1.000 3.000 3.000 3.000

chores 1.441 0.711 0.000 1.000 2.000 2.000 2.000

adl 2.483 0.840 0.000 2.000 3.000 3.000 3.000

carelevl 1.849 0.449 0.000 2.000 2.000 2.000 2.000

cogscore2 5.733 2.612 0.000 3.744 5.683 7.927 13.603

sdmt1 30.294 18.543 0.000 16.000 27.000 45.000 110.000

verfct5 14.645 7.349 0.000 9.000 14.000 20.000 75.000

scnt1 49.937 22.852 0.000 33.000 48.000 68.000 217.000

swrt1 64.503 28.826 0.000 43.000 63.000 88.000 220.000

sit1 28.333 15.408 0.000 17.000 27.000 40.000 180.000

trla1 67.885 55.285 0.000 29.000 48.000 84.000 240.000

trlb1 132.026 74.675 0.000 60.000 120.000 207.000 240.000

verflt05 26.683 15.700 0.000 14.000 24.000 38.000 104.000

tug1 11.957 9.339 -95.000 8.000 10.000 14.000 897.000

scst1 11.882 4.070 0.000 9.000 12.000 14.000 80.000

mmsetotal 25.506 4.726 0.000 24.000 27.000 29.000 30.000

depscore 4.531 5.758 0.000 0.000 2.000 7.000 48.000

irascore 2.881 4.441 0.000 0.000 1.000 4.000 32.000

psyscore 0.355 1.495 0.000 0.000 0.000 0.000 32.000

Page 104 of 130

Appendix B. Variable Statistics

aptscore 2.722 4.072 0.000 0.000 0.000 4.000 16.000

exfscore 2.753 4.741 0.000 0.000 0.000 4.000 32.000

dbscore 0.888 2.396 0.000 0.000 0.000 0.000 16.000

pf 46.393 10.435 25.663 40.194 49.354 57.251 57.251

rp 44.489 10.004 23.335 38.309 44.426 53.579 57.080

bp 50.860 8.527 10.908 47.451 54.777 56.948 80.291

gh 48.767 9.078 24.729 45.145 48.062 57.784 63.617

vt 51.407 8.846 22.175 46.907 50.215 58.689 79.879

sf 46.139 9.844 19.138 37.657 46.916 56.175 56.175

re 42.411 12.415 7.749 32.551 44.015 55.480 67.057

mh 48.735 8.399 18.888 42.916 49.421 54.175 68.283

pcs 48.371 8.817 9.908 42.736 49.299 56.259 74.144

mcs 46.946 9.752 2.315 40.925 48.210 53.889 76.342

anxscore 5.756 3.419 -2.000 3.000 5.000 8.000 21.000

hads depscore 5.539 3.606 0.000 3.000 5.000 8.000 21.000

irrscore 5.793 3.705 0.000 3.000 5.000 8.000 24.000

outscore 3.608 2.261 -2.000 2.000 3.000 5.000 14.000

inwscore 2.186 1.922 0.000 1.000 2.000 3.000 12.000

cUHDRS 80.047 72.548 -116.705 26.295 77.295 144.295 303.295

handed 1.119 0.380 1.000 1.000 1.000 1.000 3.000

hxsid 0.303 0.460 0.000 0.000 0.000 1.000 1.000

momhd 0.505 0.500 0.000 0.000 1.000 1.000 1.000

dadhd 0.448 0.497 0.000 0.000 0.000 1.000 1.000

sxraterm 2.452 1.881 1.000 1.000 1.000 3.000 6.000

ccmtr 0.757 0.429 0.000 1.000 1.000 1.000 1.000

sxsubjm 2.043 1.568 1.000 1.000 1.000 3.000 6.000

sxfamm 2.186 1.666 1.000 1.000 1.000 3.000 6.000

ccdep 0.692 0.462 0.000 0.000 1.000 1.000 1.000

ccirb 0.639 0.480 0.000 0.000 1.000 1.000 1.000

ccvab 0.365 0.481 0.000 0.000 0.000 1.000 1.000

ccapt 0.566 0.496 0.000 0.000 1.000 1.000 1.000

ccpob 0.499 0.500 0.000 0.000 0.000 1.000 1.000

ccpsy 0.110 0.313 0.000 0.000 0.000 0.000 1.000

cccog 0.455 0.498 0.000 0.000 0.000 1.000 1.000

hxalcab 0.087 0.282 0.000 0.000 0.000 0.000 1.000

hxtobab 0.477 0.499 0.000 0.000 0.000 1.000 1.000

hxdrugab 0.119 0.324 0.000 0.000 0.000 0.000 1.000

cafab 0.806 0.395 0.000 1.000 1.000 1.000 1.000

cafpd 0.365 0.481 0.000 0.000 0.000 1.000 1.000

drugab 0.035 0.184 0.000 0.000 0.000 0.000 1.000

jobpaid 0.018 0.134 0.000 0.000 0.000 0.000 1.000

emplnrd 0.304 0.460 0.000 0.000 0.000 1.000 1.000

Page 105 of 130

Appendix B. Variable Statistics

ssdb 0.669 0.471 0.000 0.000 1.000 1.000 1.000

rtrnwk 0.091 0.288 0.000 0.000 0.000 0.000 1.000

Page 106 of 130

Appendix C

Categorical Variable Distribution

0 1
0

10000

20000

sex

0 1
0

20000

40000
fhx

0 1
0

20000

hddiagn_est

0 1
0

20000

manifest

0 1 2 3 4
0

20000

diagconf

0 1 2 3 4
0

10000

20000
ocularh

0 1 2 3 4
0

10000

ocularv

0 1 2 3 4
0

10000

sacinith

0 1 2 3 4
0

10000

sacinitv

0 1 2 3 4
0

10000

sacvelh

0 1 2 3 4
0

10000

sacvelv

0 1 2 3 4
0

10000

20000

dysarth

Page 107 of 130

Appendix C. Categorical Variable Distribution

0 1 2 3 4
0

10000

20000

tongue

0 1 2 3 4
0

10000

fingtapr

0 1 2 3 4
0

5000

10000

fingtapl

0 1 2 3 4
0

10000

prosupr

0 1 2 3 4
0

10000

prosupl

0 1 2 3 4
0

10000

luria

0 1 2 3 4
0

10000

20000

rigarmr

0 1 2 3 4
0

10000

20000

rigarml

0 1 2 3 4
0

10000

20000
brady

0 1 2 3 4
0

20000

dysttrnk

0 1 2 3 4
0

20000

dystrue

0 1 2 3 4
0

20000

dystlue

0 1 2 3 4
0

20000

dystrle

0 1 2 3 4
0

20000

dystlle

0 1 2 3 4
0

10000

chorface

0 1 2 3 4
0

10000

20000
chorbol

0 1 2 3 4
0

10000

20000
chortrnk

0 1 2 3 4
0

10000

chorrue

0 1 2 3 4
0

10000

chorlue

0 1 2 3 4
0

10000

chorrle

Page 108 of 130

Appendix C. Categorical Variable Distribution

0 1 2 3 4
0

10000

20000
chorlle

0 1 2 3 4
0

10000

20000
gait

0 1 2 3 4
0

10000

tandem

0 1 2 3 4
0

10000

20000

retropls

0 1
0

10000

20000

drive

0 1
0

10000

20000

emplusl

0 1
0

10000

20000

emplany

0 1
0

10000

20000

volunt

0 1
0

10000

20000

fafinan

0 1
0

20000

grocery

0 1
0

20000

cash

0 1
0

10000

20000

supchild

0 1
0

20000

housewrk

0 1
0

20000

laundry

0 1
0

20000

prepmeal

0 1
0

20000

40000
telephon

0 1
0

20000

ownmeds

0 1
0

20000

40000
feedself

0 1
0

20000

40000
dress

0 1
0

20000

40000
bathe

Page 109 of 130

Appendix C. Categorical Variable Distribution

0 1
0

20000

pubtrans

0 1
0

20000

walknbr

0 1
0

20000

40000
walkfall

0 1
0

20000

40000
walkhelp

0 1
0

20000

40000
comb

0 1
0

20000

40000
trnchair

0 1
0

20000

40000
bed

0 1
0

20000

40000
toilet

0 1
0

20000

40000
carehome

0 1 2 3
0

10000

occupatn

0 1 2 3
0

10000

20000

finances

0 1 2
0

10000

20000

chores

0 1 2 3
0

20000

adl

0 1 2
0

20000

40000
carelevl

1 2 3
0

20000

40000
handed

0 1
0

20000

hxsid

0 1
0

10000

20000
momhd

0 1
0

10000

20000

dadhd

1 2 3 4 5 6
0

10000

sxraterm

0 1
0

20000

ccmtr

Page 110 of 130

Appendix C. Categorical Variable Distribution

1 2 3 4 5 6
0

10000

sxsubjm

1 2 3 4 5 6
0

10000

sxfamm

0 1
0

20000

ccdep

0 1
0

10000

20000

ccirb

0 1
0

10000

20000

ccvab

0 1
0

10000

20000

ccapt

0 1
0

10000

20000

ccpob

0 1
0

20000

40000
ccpsy

0 1
0

10000

20000

cccog

0 1
0

20000

40000
hxalcab

0 1
0

10000

20000

hxtobab

0 1
0

20000

40000
hxdrugab

0 1
0

20000

cafab

0 1
0

10000

20000

cafpd

0 1
0

20000

drugab

0 1
0

10000

jobpaid

0 1
0

5000

10000
emplnrd

0 1
0

5000

10000

ssdb

0 1
0

10000

rtrnwk

Figure C.1: Distribution of all categorical variables in the imputed dataset.

Page 111 of 130

Appendix D

Numerical Variable Distribution

35

40

45

50

55

60
caghigh

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

caglow

Page 112 of 130

Appendix D. Numerical Variable Distribution

0

20

40

60

80

100
hxtobcpd

0

20

40

60

hxtobyos

0

50

100

150

200
hxpacky

20

40

60

80

age

25

0

25

50

75
parentagesx

0

20

40

ccmtrage

0

20

40

60
sxsubj

0

20

40

sxfam

0

20

40

60

ccdepage

0

20

40

60

ccirbage

0

20

40

60

ccvabage

0

20

40

60

ccaptage

Page 113 of 130

Appendix D. Numerical Variable Distribution

0

20

40

60
ccpobage

0

20

40

60
ccpsyage

0

20

40

cccogage

0

20

40

60

rtrddur

20

40

60

bmi

0

50

100

150

alcunits

0

25

50

75

100

125
tobcpd

0

20

40

60

tobyos

0
50

100
150
200
250

packy

50

100

150

200

250
capscore

0

25

50

75

100

125
motscore

0

5

10

15

20

25
fascore

Page 114 of 130

Appendix D. Numerical Variable Distribution

20

40

60

80

100
indepscl

0.0

2.5

5.0

7.5

10.0

12.5
tfcscore

0.0
2.5
5.0
7.5

10.0
12.5

cogscore2

0

25

50

75

100

sdmt1

0

20

40

60

verfct5

0

50

100

150

200

scnt1

0

50

100

150

200

swrt1

0

50

100

150

sit1

0

50

100

150

200

250
trla1

0

50

100

150

200

250
trlb1

0

20

40

60

80

100
verflt05

0

200

400

600

800

tug1

Page 115 of 130

Appendix D. Numerical Variable Distribution

0

20

40

60

80
scst1

0

10

20

30
mmsetotal

0

10

20

30

40

50
depscore

0

10

20

30

irascore

0

10

20

30

psyscore

0

5

10

15

aptscore

0

10

20

30

exfscore

0

5

10

15

dbscore

30

40

50

pf

30

40

50

rp

20

40

60

80
bp

30

40

50

60

gh

Page 116 of 130

Appendix D. Numerical Variable Distribution

20

40

60

80
vt

20

30

40

50

sf

20

40

60

re

20

30

40

50

60

70
mh

20

40

60

pcs

0

20

40

60

80
mcs

0

5

10

15

20
anxscore

0

5

10

15

20
hads_depscore

0

5

10

15

20

25
irrscore

0

5

10

outscore

0.0

2.5

5.0

7.5

10.0

12.5
inwscore

100

0

100

200

300
cUHDRS

Figure D.1: Distribution of all numerical variables in the imputed dataset.

Page 117 of 130

Appendix E

Dummy Encoded Variables

Table E.1: List of all the variables which have been transformed using dummy
encoding and the newly created variables resulting from that process.

variable dummies
handed handed 1, handed 2, handed 3

hxsid hxsid 0, hxsid 1

momhd momhd 0, momhd 1

dadhd dadhd 0, dadhd 1

sxraterm sxraterm 1, sxraterm 2, sxraterm 3, sxraterm 4, sxraterm 5, sxraterm 6

ccmtr ccmtr 0, ccmtr 1

sxsubjm sxsubjm 1, sxsubjm 2, sxsubjm 3, sxsubjm 4, sxsubjm 5, sxsubjm 6

sxfamm sxfamm 1, sxfamm 2, sxfamm 3, sxfamm 4, sxfamm 5, sxfamm 6

ccdep ccdep 0, ccdep 1

ccirb ccirb 0, ccirb 1

ccvab ccvab 0, ccvab 1

ccapt ccapt 0, ccapt 1

ccpob ccpob 0, ccpob 1

ccpsy ccpsy 0, ccpsy 1

cccog cccog 0, cccog 1

hxalcab hxalcab 0, hxalcab 1

hxtobab hxtobab 0, hxtobab 1

hxdrugab hxdrugab 0, hxdrugab 1

cafab cafab 0, cafab 1

cafpd cafpd 0, cafpd 1

drugab drugab 0, drugab 1

jobpaid jobpaid 0, jobpaid 1

emplnrd emplnrd 0, emplnrd 1

ssdb ssdb 0, ssdb 1

rtrnwk rtrnwk 0, rtrnwk 1

Page 118 of 130

Appendix F

Metrics drive Models

Table F.1: All the hyperparameters and metrics of the models trained to predict the driving capability. The selected
models, the models with the lowest test MAE, are set to a bold font.

n estimators C L2
hidden size/

n filters
training

time
train
AUC

train
Accuracy

train
F1

test
AUC

test
Accuracy

test
F1

model

- - 1e-07 128 0h 3m 51s 0.966 0.899 0.909 0.961 0.891 0.903 SimpleRNN
- - 1e-05 128 0h 3m 46s 0.966 0.899 0.909 0.961 0.891 0.903 SimpleRNN
- - 1e-07 256 0h 4m 58s 0.968 0.902 0.912 0.961 0.890 0.901 SimpleRNN
- - 1e-05 256 0h 4m 57s 0.968 0.902 0.912 0.961 0.890 0.901 SimpleRNN
- - 1e-07 512 0h 9m 54s 0.967 0.899 0.908 0.961 0.889 0.900 SimpleRNN
- - 1e-05 512 0h 10m 35s 0.968 0.903 0.913 0.961 0.888 0.898 SimpleRNN
- - 1e-03 128 0h 17m 10s 0.975 0.917 0.925 0.956 0.887 0.898 SimpleRNN
- - 1e-03 256 0h 31m 5s 0.979 0.923 0.931 0.953 0.882 0.892 SimpleRNN
- 0.1 - - 0h 5m 42s 0.894 0.897 0.909 0.876 0.880 0.894 SVM
- 1.0 - - 0h 8m 29s 0.894 0.897 0.909 0.873 0.878 0.893 SVM
- 10.0 - - 0h 9m 25s 0.859 0.849 0.849 0.844 0.835 0.837 SVM

1600 - - - 0h 1m 22s 1.000 1.000 1.000 0.881 0.883 0.895 RF
200 - - - 0h 0m 10s 1.000 1.000 1.000 0.880 0.882 0.894 RF
400 - - - 0h 0m 21s 1.000 1.000 1.000 0.880 0.882 0.894 RF
800 - - - 0h 0m 41s 1.000 1.000 1.000 0.879 0.881 0.894 RF
100 - - - 0h 0m 5s 1.000 1.000 1.000 0.876 0.878 0.891 RF

P
age

119
of

130

A
p
p

en
d
ix

F
.

M
etrics

d
rive

M
o
d
els

- - 1e-07 256 0h 4m 54s 0.966 0.898 0.908 0.960 0.891 0.902 NN
- - 1e-07 128 0h 3m 41s 0.966 0.898 0.907 0.960 0.890 0.900 NN
- - 1e-05 256 0h 4m 37s 0.965 0.896 0.905 0.960 0.888 0.898 NN
- - 1e-05 128 0h 3m 22s 0.964 0.896 0.906 0.960 0.888 0.898 NN
- - 1e-03 128 0h 15m 54s 0.978 0.923 0.930 0.958 0.885 0.896 NN
- - 1e-03 256 0h 18m 15s 0.980 0.927 0.934 0.957 0.884 0.895 NN
- - 1e-05 128 0h 11m 49s 0.966 0.898 0.908 0.961 0.892 0.903 LSTM
- - 1e-07 128 0h 11m 51s 0.967 0.899 0.908 0.961 0.892 0.903 LSTM
- - 1e-05 256 0h 23m 1s 0.966 0.899 0.909 0.961 0.892 0.903 LSTM
- - 1e-07 256 0h 20m 57s 0.966 0.896 0.905 0.961 0.892 0.903 LSTM
- - 1e-03 128 0h 39m 31s 0.967 0.900 0.910 0.960 0.892 0.905 LSTM
- - 1e-03 256 1h 26m 20s 0.966 0.898 0.907 0.959 0.890 0.901 LSTM
- - 1e-07 256 0h 15m 54s 0.965 0.897 0.907 0.962 0.893 0.906 GRU
- - 1e-05 256 0h 16m 51s 0.966 0.896 0.904 0.962 0.891 0.902 GRU
- - 1e-05 128 0h 7m 51s 0.965 0.896 0.905 0.962 0.888 0.896 GRU
- - 1e-07 128 0h 8m 14s 0.965 0.896 0.905 0.962 0.888 0.896 GRU
- - 1e-03 256 1h 11m 28s 0.967 0.899 0.908 0.960 0.890 0.903 GRU
- - 1e-03 128 0h 41m 39s 0.967 0.901 0.910 0.960 0.883 0.891 GRU
- - 1e-07 256 0h 14m 16s 0.966 0.898 0.907 0.961 0.891 0.902 CNN
- - 1e-05 256 0h 14m 19s 0.966 0.898 0.907 0.961 0.890 0.899 CNN
- - 1e-05 128 0h 8m 46s 0.965 0.895 0.904 0.960 0.891 0.904 CNN
- - 1e-03 256 0h 35m 2s 0.981 0.929 0.935 0.960 0.890 0.903 CNN
- - 1e-07 128 0h 8m 47s 0.965 0.894 0.903 0.960 0.890 0.902 CNN
- - 1e-03 128 0h 28m 57s 0.979 0.925 0.932 0.960 0.891 0.901 CNN

P
age

120
of

130

Appendix G

Metrics cUHDRS Models

Table G.1: All the hyperparameters and metrics of the models trained to predict the cUHDRS. The selected models, the
models with the lowest test MAE, are set to a bold font.

n esti-
mators

C Epsilon L2
hidden size/

n filters
training

time
train
MAE

train
RMSE

train
Max AE

train
R2

test
MAE

test
RMSE

test
Max AE

test
R2 model

- - - 1e-03 256 1h 24m 49s 12.367 16.371 120.273 0.943 12.524 16.485 116.075 0.943 CNN
- - - 1e-03 128 1h 45m 50s 12.397 16.411 119.582 0.943 12.556 16.532 112.698 0.943 CNN
- - - 1e-07 128 0h 9m 53s 11.567 15.409 123.794 0.950 13.105 17.261 105.207 0.938 CNN
- - - 1e-07 256 0h 9m 47s 11.404 15.200 126.556 0.951 13.217 17.374 126.261 0.937 CNN
- - - 1e-05 128 0h 17m 12s 10.309 13.912 115.055 0.959 13.242 17.451 105.053 0.936 CNN
- - - 1e-05 256 0h 17m 45s 8.966 12.581 103.829 0.966 13.753 17.951 126.240 0.933 CNN
- - - - - 0h 0m 1s 14.711 19.896 146.426 0.916 14.439 19.263 123.670 0.922 Constant
- - - 1e-07 256 0h 15m 17s 11.945 15.999 123.006 0.946 12.460 16.508 124.821 0.943 GRU
- - - 1e-07 128 0h 13m 47s 11.967 16.005 119.976 0.946 12.485 16.513 123.741 0.943 GRU
- - - 1e-03 128 3h 2m 46s 12.566 16.708 122.206 0.941 12.704 16.786 123.731 0.941 GRU
- - - 1e-03 256 4h 26m 32s 12.546 16.671 122.399 0.941 12.760 16.831 122.518 0.941 GRU
- - - 1e-05 128 0h 48m 3s 11.024 14.691 106.926 0.954 12.911 17.003 114.913 0.940 GRU
- - - 1e-05 256 1h 1m 0s 10.660 14.268 103.822 0.957 13.093 17.243 109.848 0.938 GRU
- - - 1e-07 256 0h 18m 13s 12.023 16.135 121.637 0.945 12.455 16.512 121.348 0.943 LSTM
- - - 1e-07 128 0h 16m 13s 12.015 16.102 127.082 0.945 12.456 16.570 126.145 0.943 LSTM
- - - 1e-05 128 0h 50m 17s 11.286 15.129 117.465 0.951 12.844 16.988 117.960 0.940 LSTM

P
age

121
of

130

A
p
p

en
d
ix

G
.

M
etrics

cU
H

D
R

S
M

o
d
els

- - - 1e-03 128 4h 54m 39s 12.429 16.540 121.877 0.942 12.904 16.944 103.656 0.940 LSTM
- - - 1e-05 256 1h 12m 7s 11.129 14.944 111.684 0.953 12.965 17.083 112.433 0.939 LSTM
- - - 1e-03 256 6h 42m 3s 12.474 16.597 121.981 0.942 12.968 17.051 107.840 0.939 LSTM
- - - 1e-03 256 0h 52m 42s 12.799 16.828 123.259 0.940 12.927 17.041 112.566 0.939 NN
- - - 1e-03 128 0h 42m 38s 12.813 16.849 123.538 0.940 12.930 17.031 111.269 0.939 NN
- - - 1e-07 128 0h 3m 56s 11.618 15.439 113.736 0.949 13.606 17.985 117.506 0.932 NN
- - - 1e-07 256 0h 3m 22s 11.688 15.550 114.912 0.949 13.660 17.950 117.469 0.933 NN
- - - 1e-05 128 0h 10m 31s 9.008 12.432 104.721 0.967 14.085 18.562 123.995 0.928 NN
- - - 1e-05 256 0h 13m 32s 6.503 9.364 87.933 0.981 14.942 19.688 160.343 0.919 NN

1600 - - - - 0h 2m 44s 4.381 5.897 49.016 0.993 13.005 17.232 101.307 0.938 RF
800 - - - - 0h 1m 22s 4.386 5.902 49.229 0.993 13.026 17.254 100.904 0.938 RF
200 - - - - 0h 0m 22s 4.413 5.956 54.806 0.992 13.050 17.287 98.639 0.938 RF
400 - - - - 0h 0m 42s 4.391 5.918 50.878 0.993 13.050 17.289 100.811 0.938 RF
100 - - - - 0h 0m 12s 4.460 6.035 53.871 0.992 13.057 17.317 98.164 0.937 RF

- 0.1 1e-02 - - 0h 3m 11s 13.195 17.847 130.324 0.932 14.001 18.512 96.630 0.928 SVM
- 0.1 1e-01 - - 0h 2m 32s 13.829 17.932 124.306 0.932 14.484 18.831 96.334 0.926 SVM
- 10.0 1e-02 - - 0h 5m 14s 14.629 18.861 118.194 0.925 15.328 19.869 99.807 0.917 SVM
- 1.0 1e-01 - - 0h 4m 23s 15.227 19.616 135.995 0.918 15.637 20.336 104.745 0.914 SVM
- 1.0 1e-02 - - 0h 5m 10s 17.442 22.155 132.948 0.896 18.218 22.942 113.447 0.890 SVM
- 10.0 1e-01 - - 0h 4m 29s 17.693 22.110 110.675 0.896 18.440 23.329 107.611 0.886 SVM
- 0.1 1e+00 - - 0h 0m 0s 59.212 70.623 186.000 -0.058 60.031 71.251 180.064 -0.061 SVM
- 10.0 1e+00 - - 0h 0m 0s 59.212 70.623 186.000 -0.058 60.031 71.251 180.064 -0.061 SVM
- 1.0 1e+00 - - 0h 0m 0s 59.212 70.623 186.000 -0.058 60.031 71.251 180.064 -0.061 SVM
- - - 1e-03 128 0h 33m 24s 12.561 16.719 122.475 0.941 12.712 16.830 130.127 0.941 SimpleRNN
- - - 1e-03 256 0h 31m 25s 12.582 16.748 121.864 0.941 12.746 16.870 129.699 0.941 SimpleRNN
- - - 1e-03 512 0h 51m 32s 12.578 16.752 121.586 0.940 12.758 16.890 131.863 0.940 SimpleRNN
- - - 1e-07 128 0h 6m 15s 11.985 15.902 110.974 0.946 13.707 18.025 126.805 0.932 SimpleRNN
- - - 1e-05 128 0h 14m 35s 10.362 13.937 98.167 0.959 14.006 18.570 118.698 0.928 SimpleRNN
- - - 1e-07 256 0h 5m 55s 11.472 15.335 116.103 0.950 14.181 18.605 115.610 0.928 SimpleRNN
- - - 1e-07 512 0h 8m 27s 10.484 14.318 104.004 0.957 14.392 18.920 101.261 0.925 SimpleRNN
- - - 1e-05 256 1h 0m 7s 5.885 9.729 116.651 0.980 16.998 22.395 127.649 0.895 SimpleRNN
- - - 1e-05 512 2h 42m 47s 4.865 8.561 100.305 0.984 17.989 23.675 142.830 0.883 SimpleRNN

P
age

122
of

130

Appendix H

Metrics TMS Models

Table H.1: All the hyperparameters and metrics of the models trained to predict the TMS. The selected models, the models
with the lowest test MAE, are set to a bold font.

n esti-
mators

C Epsilon L2
hidden size/

n filters
training

time
train
MAE

train
RMSE

train
Max AE

train
R2

test
MAE

test
RMSE

test
Max AE

test
R2 model

- - - 1e-03 128 0h 38m 31s 5.191 7.336 67.492 0.921 5.371 7.600 53.756 0.918 CNN
- - - 1e-03 256 1h 13m 2s 5.191 7.325 67.374 0.921 5.378 7.596 53.482 0.918 CNN
- - - 1e-07 128 0h 4m 36s 5.116 7.181 64.118 0.924 5.623 7.845 57.701 0.913 CNN
- - - 1e-05 128 0h 5m 25s 4.979 6.975 60.839 0.929 5.638 7.866 56.274 0.912 CNN
- - - 1e-07 256 0h 7m 26s 5.021 7.034 63.530 0.928 5.670 7.937 57.502 0.911 CNN
- - - 1e-05 256 0h 8m 34s 4.785 6.739 60.520 0.933 5.686 7.954 58.835 0.910 CNN
- - - - - 0h 0m 1s 6.065 8.947 70.683 0.883 6.002 8.912 64.873 0.888 Constant
- - - 1e-07 256 0h 10m 49s 5.161 7.297 63.339 0.922 5.402 7.640 54.157 0.917 GRU
- - - 1e-03 256 2h 11m 19s 5.221 7.409 69.202 0.920 5.410 7.687 55.350 0.916 GRU
- - - 1e-03 128 1h 9m 8s 5.231 7.406 68.743 0.920 5.413 7.672 55.096 0.917 GRU
- - - 1e-07 128 0h 5m 25s 5.197 7.337 65.461 0.921 5.420 7.642 53.836 0.917 GRU
- - - 1e-05 128 0h 11m 44s 4.990 7.022 58.852 0.928 5.490 7.715 54.318 0.916 GRU
- - - 1e-05 256 0h 25m 17s 4.887 6.864 52.556 0.931 5.525 7.772 54.210 0.915 GRU
- - - 1e-07 256 0h 14m 49s 5.179 7.348 66.248 0.921 5.418 7.653 54.731 0.917 LSTM
- - - 1e-07 128 0h 7m 3s 5.193 7.373 65.628 0.920 5.457 7.698 54.463 0.916 LSTM
- - - 1e-03 128 1h 50m 45s 5.200 7.334 68.851 0.921 5.490 7.751 55.776 0.915 LSTM

P
age

123
of

130

A
p
p

en
d
ix

H
.

M
etrics

T
M

S
M

o
d
els

- - - 1e-03 256 4h 19m 54s 5.164 7.294 68.882 0.922 5.514 7.798 55.708 0.914 LSTM
- - - 1e-05 256 0h 33m 7s 4.959 7.009 61.326 0.928 5.540 7.776 55.864 0.914 LSTM
- - - 1e-05 128 0h 16m 56s 4.955 6.994 60.235 0.928 5.552 7.797 54.133 0.914 LSTM
- - - 1e-03 128 0h 26m 17s 5.224 7.372 69.501 0.920 5.466 7.701 53.270 0.916 NN
- - - 1e-03 256 0h 34m 22s 5.246 7.369 69.552 0.920 5.485 7.700 53.289 0.916 NN
- - - 1e-07 128 0h 1m 55s 5.042 7.029 60.499 0.928 5.800 8.091 56.739 0.907 NN
- - - 1e-05 128 0h 2m 44s 4.708 6.586 51.130 0.936 5.809 8.102 58.695 0.907 NN
- - - 1e-07 256 0h 2m 32s 5.049 7.034 62.678 0.928 5.852 8.149 54.925 0.906 NN
- - - 1e-05 256 0h 4m 5s 4.253 6.119 42.480 0.945 5.900 8.283 57.041 0.903 NN

1600 - - - - 0h 10m 9s 1.878 2.701 25.809 0.989 5.734 8.101 55.213 0.907 RF
800 - - - - 0h 5m 5s 1.879 2.703 25.792 0.989 5.747 8.112 55.417 0.907 RF
400 - - - - 0h 2m 33s 1.882 2.708 24.107 0.989 5.751 8.119 55.500 0.907 RF
200 - - - - 0h 1m 19s 1.893 2.732 24.540 0.989 5.771 8.141 56.115 0.906 RF
100 - - - - 0h 0m 40s 1.904 2.752 20.604 0.989 5.790 8.160 55.839 0.906 RF
- 0.1 1e+00 - - 0h 0m 1s 33.617 38.911 61.000 -1.218 33.758 39.073 61.000 -1.161 SVM
- 1.0 1e+00 - - 0h 0m 1s 33.617 38.911 61.000 -1.218 33.758 39.073 61.000 -1.161 SVM
- 10.0 1e+00 - - 0h 0m 1s 33.617 38.911 61.000 -1.218 33.758 39.073 61.000 -1.161 SVM
- 0.1 1e-02 - - 0h 3m 27s 5.657 8.032 72.931 0.905 6.108 8.478 54.572 0.898 SVM
- 1.0 1e-02 - - 0h 6m 3s 5.782 8.101 74.274 0.904 6.232 8.597 53.748 0.895 SVM
- 0.1 1e-01 - - 0h 3m 1s 5.806 7.982 74.625 0.907 6.268 8.541 52.844 0.897 SVM
- 1.0 1e-01 - - 0h 5m 38s 5.938 8.035 72.370 0.905 6.413 8.659 51.478 0.894 SVM
- 10.0 1e-02 - - 0h 6m 15s 6.522 8.539 65.889 0.893 7.053 9.216 49.456 0.880 SVM
- 10.0 1e-01 - - 0h 5m 50s 7.953 9.886 58.251 0.857 8.444 10.571 45.453 0.842 SVM
- - - 1e-03 128 0h 13m 41s 5.239 7.434 69.411 0.919 5.410 7.685 57.019 0.916 SimpleRNN
- - - 1e-03 256 0h 21m 35s 5.230 7.428 69.661 0.919 5.427 7.708 56.549 0.916 SimpleRNN
- - - 1e-05 128 0h 2m 47s 5.134 7.173 57.268 0.925 5.745 8.093 58.204 0.907 SimpleRNN
- - - 1e-07 128 0h 2m 29s 5.243 7.300 59.840 0.922 5.768 8.095 58.277 0.907 SimpleRNN
- - - 1e-05 256 0h 3m 58s 4.921 6.846 50.438 0.931 5.986 8.375 59.011 0.901 SimpleRNN
- - - 1e-07 256 0h 3m 48s 4.977 6.923 52.293 0.930 6.000 8.387 59.067 0.900 SimpleRNN

P
age

124
of

130

Appendix I

Metrics TFC Models

Table I.1: All the hyperparameters and metrics of the models trained to predict the TFC. The selected models, the models
with the lowest test MAE, are set to a bold font.

n esti-
mators

C Epsilon L2
hidden size/

n filters
training

time
train
MAE

train
RMSE

train
Max AE

train
R2

test
MAE

test
RMSE

test
Max AE

test
R2 model

- - - 1e-03 128 0h 36m 4s 0.768 1.148 10.152 0.917 0.866 1.295 8.549 0.898 CNN
- - - 1e-03 256 0h 32m 15s 0.738 1.103 10.110 0.924 0.871 1.302 8.910 0.897 CNN
- - - 1e-05 256 0h 7m 28s 0.832 1.227 10.736 0.906 0.897 1.319 8.734 0.895 CNN
- - - 1e-05 128 0h 7m 7s 0.851 1.242 10.338 0.903 0.904 1.324 8.767 0.894 CNN
- - - 1e-07 256 0h 7m 6s 0.856 1.243 10.709 0.903 0.909 1.321 8.903 0.894 CNN
- - - 1e-07 128 0h 7m 23s 0.850 1.235 10.259 0.905 0.910 1.325 8.944 0.894 CNN
- - - - - 0h 0m 1s 0.940 1.610 12.000 0.838 0.896 1.559 10.000 0.853 Constant
- - - 1e-07 256 0h 11m 53s 0.856 1.264 10.464 0.900 0.873 1.292 8.714 0.899 GRU
- - - 1e-07 128 0h 10m 32s 0.854 1.263 10.554 0.900 0.873 1.294 8.742 0.899 GRU
- - - 1e-03 128 1h 23m 3s 0.867 1.275 10.437 0.898 0.877 1.295 8.351 0.899 GRU
- - - 1e-05 128 0h 15m 36s 0.834 1.234 10.556 0.905 0.879 1.299 8.841 0.898 GRU
- - - 1e-05 256 0h 20m 39s 0.826 1.219 10.390 0.907 0.883 1.301 8.770 0.897 GRU
- - - 1e-03 256 1h 31m 23s 0.872 1.276 10.473 0.898 0.884 1.300 8.378 0.898 GRU
- - - 1e-07 128 0h 11m 34s 0.860 1.275 10.472 0.898 0.869 1.296 8.527 0.898 LSTM
- - - 1e-07 256 0h 13m 3s 0.862 1.277 10.490 0.898 0.873 1.296 8.882 0.898 LSTM
- - - 1e-05 128 0h 19m 25s 0.835 1.240 10.461 0.904 0.876 1.304 8.668 0.897 LSTM

P
age

125
of

130

A
p
p

en
d
ix

I.
M

etrics
T

F
C

M
o
d
els

- - - 1e-05 256 0h 25m 38s 0.828 1.227 10.446 0.906 0.884 1.307 8.790 0.897 LSTM
- - - 1e-03 128 2h 40m 55s 0.853 1.258 10.408 0.901 0.888 1.310 8.374 0.896 LSTM
- - - 1e-03 256 3h 2m 10s 0.853 1.257 10.455 0.901 0.894 1.316 8.334 0.895 LSTM
- - - 1e-03 256 0h 23m 33s 0.770 1.150 10.356 0.917 0.872 1.307 8.920 0.897 NN
- - - 1e-03 128 0h 26m 8s 0.789 1.166 10.359 0.915 0.882 1.309 8.742 0.896 NN
- - - 1e-05 256 0h 3m 59s 0.793 1.170 10.686 0.914 0.914 1.336 8.357 0.892 NN
- - - 1e-07 256 0h 3m 26s 0.832 1.212 10.596 0.908 0.920 1.335 8.499 0.892 NN
- - - 1e-07 128 0h 3m 55s 0.829 1.209 10.123 0.909 0.923 1.341 8.662 0.891 NN
- - - 1e-05 128 0h 3m 57s 0.829 1.206 10.178 0.909 0.924 1.338 8.665 0.892 NN

1600 - - - - 0h 3m 30s 0.308 0.468 3.815 0.986 0.940 1.379 8.474 0.885 RF
800 - - - - 0h 1m 46s 0.308 0.469 3.715 0.986 0.941 1.379 8.451 0.885 RF
400 - - - - 0h 0m 53s 0.308 0.470 3.750 0.986 0.941 1.380 8.570 0.885 RF
200 - - - - 0h 0m 27s 0.310 0.474 3.720 0.986 0.942 1.382 8.675 0.884 RF
100 - - - - 0h 0m 14s 0.312 0.478 3.420 0.986 0.945 1.386 8.720 0.884 RF

- 0.1 1e-02 - - 0h 2m 50s 0.977 1.464 10.536 0.866 0.998 1.470 10.535 0.869 SVM
- 1.0 1e-02 - - 0h 5m 34s 0.995 1.480 10.657 0.863 1.023 1.495 10.375 0.865 SVM
- 0.1 1e-01 - - 0h 2m 28s 1.006 1.436 10.371 0.871 1.034 1.465 9.957 0.870 SVM
- 1.0 1e-01 - - 0h 5m 30s 1.098 1.477 9.977 0.863 1.133 1.524 10.457 0.860 SVM
- 10.0 1e-01 - - 0h 5m 56s 1.368 1.785 11.247 0.800 1.405 1.826 9.398 0.798 SVM
- 10.0 1e-02 - - 0h 6m 5s 1.569 1.942 9.048 0.764 1.606 1.987 10.759 0.761 SVM
- 0.1 1e+00 - - 0h 0m 0s 4.118 4.669 6.500 -0.365 4.158 4.700 6.500 -0.337 SVM
- 1.0 1e+00 - - 0h 0m 0s 4.118 4.669 6.500 -0.365 4.158 4.700 6.500 -0.337 SVM
- 10.0 1e+00 - - 0h 0m 0s 4.118 4.669 6.500 -0.365 4.158 4.700 6.500 -0.337 SVM
- - - 1e-03 128 0h 35m 42s 0.862 1.268 10.426 0.899 0.880 1.301 8.414 0.898 SimpleRNN
- - - 1e-03 256 0h 41m 54s 0.865 1.270 10.371 0.899 0.884 1.304 8.364 0.897 SimpleRNN
- - - 1e-07 128 0h 5m 6s 0.857 1.249 10.584 0.902 0.928 1.353 9.002 0.889 SimpleRNN
- - - 1e-05 128 0h 5m 20s 0.851 1.239 10.500 0.904 0.928 1.352 9.020 0.889 SimpleRNN
- - - 1e-05 256 0h 5m 14s 0.825 1.206 10.394 0.909 0.953 1.374 8.688 0.886 SimpleRNN
- - - 1e-07 256 0h 4m 51s 0.844 1.225 10.455 0.906 0.957 1.375 8.724 0.886 SimpleRNN

P
age

126
of

130

Appendix J

Metrics SDMT Models

Table J.1: All the hyperparameters and metrics of the models trained to predict SDMT. The selected models, the models
with the lowest test MAE, are set to a bold font.

n esti-
mators

C Epsilon L2
hidden size/

n filters
training

time
train
MAE

train
RMSE

train
Max AE

train
R2

test
MAE

test
RMSE

test
Max AE

test
R2 model

- - - 1e-03 128 0h 59m 45s 4.097 5.551 50.948 0.913 4.253 5.773 55.688 0.905 CNN
- - - 1e-03 256 1h 21m 40s 4.089 5.540 50.823 0.914 4.256 5.772 55.933 0.905 CNN
- - - 1e-07 128 0h 10m 23s 3.742 5.088 41.514 0.927 4.505 6.051 52.893 0.895 CNN
- - - 1e-05 128 0h 14m 52s 3.497 4.818 38.908 0.935 4.506 6.063 53.174 0.895 CNN
- - - 1e-07 256 0h 10m 28s 3.658 4.996 39.632 0.930 4.530 6.073 55.142 0.894 CNN
- - - 1e-05 256 0h 11m 50s 3.470 4.805 37.302 0.935 4.540 6.095 54.549 0.894 CNN
- - - - - 0h 0m 1s 4.712 6.504 63.000 0.881 4.607 6.373 49.000 0.884 Constant
- - - 1e-07 256 0h 11m 47s 3.987 5.439 46.941 0.917 4.149 5.658 54.264 0.908 GRU
- - - 1e-07 128 0h 17m 32s 3.966 5.407 46.490 0.918 4.189 5.694 55.953 0.907 GRU
- - - 1e-05 128 0h 48m 5s 3.708 5.079 41.462 0.927 4.282 5.805 55.252 0.903 GRU
- - - 1e-05 256 0h 46m 15s 3.592 4.933 41.765 0.932 4.347 5.882 56.152 0.901 GRU
- - - 1e-03 128 2h 22m 59s 4.278 5.762 49.748 0.907 4.383 5.917 55.739 0.900 GRU
- - - 1e-03 256 2h 51m 42s 4.278 5.765 50.463 0.907 4.396 5.934 56.289 0.899 GRU
- - - 1e-07 128 0h 16m 12s 4.004 5.443 44.381 0.917 4.191 5.715 57.294 0.906 LSTM
- - - 1e-07 256 0h 26m 42s 3.949 5.385 45.082 0.918 4.192 5.703 55.120 0.907 LSTM
- - - 1e-05 128 1h 0m 54s 3.748 5.128 38.748 0.926 4.296 5.842 57.035 0.902 LSTM

P
age

127
of

130

A
p
p

en
d
ix

J
.

M
etrics

S
D

M
T

M
o
d
els

- - - 1e-05 256 1h 23m 55s 3.692 5.066 39.148 0.928 4.320 5.862 55.468 0.902 LSTM
- - - 1e-03 128 5h 58m 7s 4.234 5.721 47.630 0.908 4.431 5.967 54.518 0.898 LSTM
- - - 1e-03 256 6h 57m 15s 4.258 5.744 47.335 0.907 4.440 5.988 55.114 0.897 LSTM
- - - 1e-03 128 0h 38m 4s 4.270 5.753 49.966 0.907 4.438 5.953 55.176 0.898 NN
- - - 1e-03 256 0h 44m 22s 4.272 5.756 50.407 0.907 4.441 5.952 54.762 0.899 NN
- - - 1e-07 256 0h 4m 1s 3.748 5.127 43.324 0.926 4.655 6.195 55.470 0.890 NN
- - - 1e-07 128 0h 4m 46s 3.843 5.222 42.288 0.923 4.657 6.212 55.009 0.889 NN
- - - 1e-05 128 0h 8m 26s 3.377 4.700 35.831 0.938 4.667 6.224 54.876 0.889 NN
- - - 1e-05 256 0h 10m 25s 2.741 3.971 35.794 0.956 4.842 6.420 58.594 0.882 NN

1600 - - - - 0h 2m 45s 1.451 2.002 18.934 0.989 4.292 5.850 58.404 0.902 RF
800 - - - - 0h 1m 26s 1.453 2.004 18.785 0.989 4.293 5.853 58.324 0.902 RF
200 - - - - 0h 0m 24s 1.462 2.022 19.640 0.989 4.301 5.860 58.220 0.902 RF
400 - - - - 0h 0m 44s 1.455 2.010 18.310 0.989 4.301 5.858 58.122 0.902 RF
100 - - - - 0h 0m 13s 1.475 2.047 18.520 0.988 4.310 5.876 57.980 0.901 RF
- 1.0 1e+00 - - 0h 0m 1s 24.990 29.435 55.000 -1.435 24.750 29.135 55.000 -1.432 SVM
- 10.0 1e+00 - - 0h 0m 0s 24.990 29.435 55.000 -1.435 24.750 29.135 55.000 -1.432 SVM
- 0.1 1e+00 - - 0h 0m 0s 24.990 29.435 55.000 -1.435 24.750 29.135 55.000 -1.432 SVM
- 0.1 1e-02 - - 0h 4m 14s 4.346 5.952 51.573 0.900 4.561 6.067 53.957 0.895 SVM
- 0.1 1e-01 - - 0h 3m 40s 4.457 5.935 49.007 0.901 4.616 6.115 56.220 0.893 SVM
- 1.0 1e-02 - - 0h 7m 25s 4.526 6.114 51.358 0.895 4.754 6.295 54.696 0.886 SVM
- 1.0 1e-01 - - 0h 6m 30s 4.842 6.334 48.637 0.887 4.980 6.527 55.784 0.878 SVM
- 10.0 1e-02 - - 0h 7m 33s 4.892 6.400 53.648 0.885 5.153 6.708 57.611 0.871 SVM
- 10.0 1e-01 - - 0h 6m 40s 5.687 7.191 52.866 0.855 5.974 7.546 57.244 0.837 SVM
- - - 1e-03 128 0h 41m 5s 4.271 5.760 50.613 0.907 4.362 5.886 55.609 0.901 SimpleRNN
- - - 1e-03 256 0h 53m 16s 4.270 5.762 51.208 0.907 4.371 5.900 55.718 0.900 SimpleRNN
- - - 1e-05 128 0h 11m 29s 3.774 5.119 38.467 0.926 4.616 6.117 53.136 0.893 SimpleRNN
- - - 1e-07 128 0h 7m 57s 4.016 5.386 37.335 0.918 4.630 6.107 55.114 0.893 SimpleRNN
- - - 1e-07 256 0h 7m 5s 3.915 5.302 41.865 0.921 4.772 6.304 56.993 0.886 SimpleRNN
- - - 1e-05 256 0h 11m 21s 3.437 4.805 36.218 0.935 4.811 6.360 58.973 0.884 SimpleRNN

P
age

128
of

130

Appendix K

Metrics SWRT Models

Table K.1: All the hyperparameters and metrics of the models trained to predict SWRT. The selected models, the models
with the lowest test MAE, are set to a bold font.

n esti-
mators

C Epsilon L2
hidden size/

n filters
training

time
train
MAE

train
RMSE

train
Max AE

train
R2

test
MAE

test
RMSE

test
Max AE

test
R2 model

- - - 1e-03 256 1h 13m 34s 7.661 10.292 93.537 0.875 7.881 10.350 74.272 0.877 CNN
- - - 1e-03 128 0h 52m 24s 7.711 10.345 94.480 0.874 7.896 10.355 74.192 0.877 CNN
- - - 1e-07 128 0h 6m 7s 7.447 10.002 85.899 0.882 8.304 10.860 74.216 0.864 CNN
- - - 1e-05 128 0h 7m 50s 7.123 9.651 85.473 0.890 8.320 10.867 75.569 0.864 CNN
- - - 1e-07 256 0h 8m 33s 7.377 9.912 87.299 0.884 8.401 10.930 83.196 0.863 CNN
- - - 1e-05 256 0h 10m 55s 6.810 9.298 85.314 0.898 8.410 10.993 85.587 0.861 CNN
- - - - - 0h 0m 1s 8.975 12.481 106.000 0.816 8.796 11.961 78.000 0.835 Constant
- - - 1e-07 256 0h 10m 40s 7.638 10.369 91.931 0.873 7.839 10.367 75.963 0.876 GRU
- - - 1e-07 128 0h 6m 29s 7.625 10.346 87.628 0.874 7.861 10.406 75.884 0.875 GRU
- - - 1e-05 128 0h 16m 24s 7.287 9.900 84.964 0.884 7.963 10.550 77.586 0.872 GRU
- - - 1e-03 128 1h 14m 23s 7.921 10.622 83.435 0.867 7.999 10.532 77.795 0.872 GRU
- - - 1e-03 256 2h 48m 26s 7.903 10.597 83.262 0.868 8.048 10.561 76.143 0.872 GRU
- - - 1e-05 256 0h 35m 6s 7.106 9.648 84.298 0.890 8.079 10.642 75.065 0.870 GRU
- - - 1e-07 256 0h 15m 47s 7.649 10.362 87.075 0.873 7.865 10.400 76.156 0.876 LSTM
- - - 1e-07 128 0h 9m 5s 7.591 10.288 85.164 0.875 7.886 10.427 76.643 0.875 LSTM
- - - 1e-05 256 0h 58m 0s 7.181 9.775 84.730 0.887 8.044 10.619 77.740 0.870 LSTM

P
age

129
of

130

A
p
p

en
d
ix

K
.

M
etrics

S
W

R
T

M
o
d
els

- - - 1e-05 128 0h 26m 38s 7.241 9.825 83.914 0.886 8.055 10.637 78.743 0.870 LSTM
- - - 1e-03 128 2h 50m 1s 7.829 10.501 83.250 0.870 8.102 10.630 76.378 0.870 LSTM
- - - 1e-03 256 6h 14m 6s 7.818 10.484 83.341 0.870 8.134 10.654 72.785 0.869 LSTM
- - - 1e-03 256 0h 37m 38s 8.020 10.666 91.082 0.866 8.152 10.675 69.926 0.869 NN
- - - 1e-03 128 0h 25m 2s 8.009 10.659 90.509 0.866 8.158 10.668 69.804 0.869 NN
- - - 1e-05 128 0h 3m 19s 6.955 9.464 84.913 0.894 8.546 11.180 65.454 0.856 NN
- - - 1e-07 128 0h 2m 10s 7.664 10.224 84.329 0.877 8.579 11.210 65.719 0.855 NN
- - - 1e-07 256 0h 3m 20s 7.240 9.804 85.840 0.887 8.596 11.185 73.511 0.856 NN
- - - 1e-05 256 0h 6m 28s 5.899 8.346 85.291 0.918 8.826 11.484 70.461 0.848 NN

1600 - - - - 0h 8m 49s 2.757 3.771 38.378 0.983 8.069 10.706 68.617 0.868 RF
400 - - - - 0h 2m 13s 2.767 3.782 33.312 0.983 8.078 10.722 69.152 0.868 RF
800 - - - - 0h 4m 24s 2.761 3.773 35.754 0.983 8.080 10.715 68.865 0.868 RF
100 - - - - 0h 0m 35s 2.809 3.856 33.780 0.982 8.088 10.741 71.250 0.867 RF
200 - - - - 0h 1m 7s 2.780 3.807 34.915 0.983 8.090 10.733 69.265 0.867 RF
- 0.1 1e+00 - - 0h 0m 1s 30.911 37.450 89.000 -0.654 30.800 37.514 89.000 -0.620 SVM
- 10.0 1e+00 - - 0h 0m 1s 30.911 37.450 89.000 -0.654 30.800 37.514 89.000 -0.620 SVM
- 1.0 1e+00 - - 0h 0m 1s 30.911 37.450 89.000 -0.654 30.800 37.514 89.000 -0.620 SVM
- 0.1 1e-01 - - 0h 3m 8s 8.391 11.155 100.500 0.853 8.503 11.188 65.778 0.856 SVM
- 0.1 1e-02 - - 0h 3m 16s 8.209 11.221 97.292 0.852 8.568 11.289 61.903 0.853 SVM
- 1.0 1e-01 - - 0h 5m 26s 8.524 11.222 102.405 0.851 8.616 11.324 64.380 0.852 SVM
- 10.0 1e-02 - - 0h 6m 5s 9.191 12.039 98.635 0.829 9.379 12.213 73.165 0.828 SVM
- 1.0 1e-02 - - 0h 5m 52s 9.196 12.265 97.895 0.823 9.568 12.372 59.536 0.824 SVM
- 10.0 1e-01 - - 0h 5m 35s 9.887 12.668 99.242 0.811 9.906 12.741 76.366 0.813 SVM
- - - 1e-03 128 0h 20m 38s 7.901 10.614 83.825 0.867 8.021 10.545 77.152 0.872 SimpleRNN
- - - 1e-03 256 0h 36m 17s 7.910 10.621 84.210 0.867 8.026 10.561 77.473 0.872 SimpleRNN
- - - 1e-05 128 0h 5m 25s 7.296 9.811 84.923 0.886 8.597 11.210 71.769 0.855 SimpleRNN
- - - 1e-07 128 0h 4m 56s 7.536 10.081 84.828 0.880 8.608 11.202 77.769 0.856 SimpleRNN
- - - 1e-07 128 0h 4m 59s 7.536 10.081 84.828 0.880 8.608 11.202 77.769 0.856 SimpleRNN
- - - 1e-05 256 0h 4m 53s 7.158 9.731 82.413 0.888 8.803 11.501 62.812 0.848 SimpleRNN
- - - 1e-07 256 0h 4m 19s 7.393 9.983 83.168 0.882 8.829 11.523 64.051 0.847 SimpleRNN

P
age

130
of

130

	Introduction
	Huntington's Disease
	Goals and Problem Definitions
	Structure

	Data
	Enroll-HD
	Pre-Processing
	Dataset Statistics

	Background
	Machine Learning (ML) and Deep Learning (DL)
	Training
	Train and Test Sets
	Class Imbalance
	Holdout Validation & K-Fold Cross Validation

	Regularization and Overfitting
	Evaluation Methods
	Classification Metrics
	Regression Metrics

	Proposed Models
	Neural Networks
	Design
	Activation Functions
	Fitting

	Recurrent Neural Networks
	SimpleRNN Cell
	Long Short-Term Memory (LSTM) Cell
	Gated Recurrent Unit (GRU) Cell

	Convolutional Neural Networks (CNN)
	Machine Learning Models
	Random Forest
	Linear Support Vector Machine (SVM)

	Baseline/Constant Model

	Methods
	Software & Data Availability
	Predicting Disease Progression/Prognosis
	Pre-Processing
	Feature Engineering
	Feature Selection
	Feature Selection - Drive
	Reshaping the Data
	Train and Test Split
	Model Input
	Data Scaling
	Assigning Labels and Sample Weights
	Overview

	General Neural Network Design
	Hyperparameter Tuning
	Neural Networks
	Linear Support Vector Machine (SVM)
	Random Forest

	Analyses
	Overall Performance
	Interpreting the Model (SHAP)
	Overview

	Results
	Driving Capability
	Model Performance
	Model Interpretation

	Composite Unified Huntington Disease Rating Scale (cUHDRS) Progression
	Model Performance
	Model Interpretation

	Total Motor Score (TMS) Progression
	Model Performance
	Model Interpretation

	Total Functional Capacity (TFC) Progression
	Model Performance
	Model Interpretation

	Symbol Digit Modality Test (SDMT) Progression
	Model Performance
	Model Interpretation

	Stroop Word Reading Test (SWRT) progression
	Model Performance
	Model Interpretation

	Summary

	Discussion & Conclusion
	Research Questions
	Can ML models provide an accurate advice on driving capability to HD patients and clinicians?
	Can ML models provide a personalized prognosis on HD progression, defined by the cUHDRS, to HD patients and clinicians?
	Do the variables making up the cUHDRS also affect the progression of cUHDRS the most?
	Which variables affect the components of the cUHDRS the most?
	Summary

	Future work
	Data
	Temporal Resolution
	Feature Selection

	Conclusion

	Appendices
	TMS Components
	Variable Statistics
	Categorical Variable Distribution
	Numerical Variable Distribution
	Dummy Encoded Variables
	Metrics drive Models
	Metrics cUHDRS Models
	Metrics TMS Models
	Metrics TFC Models
	Metrics SDMT Models
	Metrics SWRT Models

