
Master Computer Science

MultiETSC: Automated Machine Learning for
Early Time Series Classification

Gilles Ottervanger
s1309773

Supervisors:
Can Wang
Dr. Mitra Baratchi
Prof. dr. Holger H. Hoos

MASTER THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 2021/01/29

www.liacs.leidenuniv.nl

Abstract

Early time series classification (EarlyTSC) involves the prediction of a class label based on partial
observation of a given time series. In time-critical applications where data are observed over time,
valuable time can often be saved at the cost of minor decreases in classification accuracy. Since accuracy
and earliness are competing objectives, EarlyTSC algorithms must address this trade-off by deciding
when enough data has been observed to produce a sufficiently reliable early classification, or simply:
when to trigger the classification mechanism. Many algorithms have been proposed for this problem,
using varying strategies for the classification and triggering mechanisms. Finding an optimal model or
algorithm along with hyper-parameter settings for a given machine learning task has been the focus of a
fast-moving research area known as automated machine learning (AutoML). In this thesis, we propose
MultiETSC, an AutoML approach to EarlyTSC. This poses the challenge of optimising two conflicting
objectives. We introduce an approach we dub multi-objective combined algorithm selection and hyper-
parameter optimisation (MO-CASH). We compared our approach to hyper-parameter optimisation
(HPO) on individual EarlyTSC algorithms based on their dominated hypervolume on 115 real-world
and synthetic data sets from the UCR Time Series Classification Archive. We show MultiETSC achieves
higher hypervolume than what achieved by HPO on each of the algorithms individually in 43% of all
cases, with the best single algorithm only achieving highest hypervolume 29% of the time. Additionally,
we demonstrate that MultiETSC outperforms a conceptually simpler single-objective optimisation
approach, MO achieving higher hypervolume than SO 85% of the time. Finally, we find that only
the most recently proposed algorithms are able to outperform a näıve fixed-time nearest neighbour
approach.

Contents

1 Introduction 1

2 Problem Statement 3
2.1 Preliminaries . 3
2.2 Problem Definition . 4

3 Related Work 6
3.1 TSC Methods . 6
3.2 EarlyTSC Methods . 7
3.3 Automated Machine Learning . 9

4 MultiETSC 11
4.1 Configuration Space . 11
4.2 Algorithm Performance . 14
4.3 Algorithm Configurator . 15

5 Experimental Evaluation 17
5.1 Baselines . 17
5.2 Data . 17
5.3 Evaluation Protocol . 18
5.4 Evaluation Metrics . 19
5.5 Results . 20

6 Conclusions and Future Work 25
6.1 Possible Improvements to MultiETSC . 25
6.2 Further Future Work . 26

A Additional, detailed results 33

Acknowledgement

I would like to thank Dr Mitra Baratchi and Can Wang for their time investment, dedication and input
throughout this project and providing me with the regular feedback and inspiration that allowed me
to not only bring this project to a successful conclusion but also to develop myself as a researcher. I
would like to extend my gratitude to Prof. dr. Holger H. Hoos for sharing his bright insights in the
field of automated machine learning and for being closely involved in every part of this project; To
him, and all members of the ADA research group, for providing an excellent environment for sharing
ideas, having meaningful discussions and having some fun along the way.

Finally, I would like to express my gratitude to all friends and family that have supported me during
the time of this project and that have helped me to stay motivated and joined me during the rare
occasions not spent working.

Chapter 1

Introduction

Classification is a long-standing, prominent problem in time series analysis. The goal of time series
classification (TSC) is to assign a class label to a given time series: a sequence of observations that have
been sampled over time. Practical applications include the diagnosis of heart conditions from ECGs,
identification of patterns in financial markets, and detection of anomalies in seismic activity. Many
time-critical applications can benefit from classification results being available as early as possible,
preferably even before the full time series has been observed. This is clearly the case for detecting
high-risk phenomena, such as earthquakes and market crashes, far in advance; further applications can
be found in many other areas, including medicine, finance, traffic, engineering, and even sports. As an
example, cardiac surgical patients in postoperative care are monitored for postoperative complications
during an extended period of time. For some of these complications, indications of increased risk can
be found far in advance of actual onset (Abdelghani et al., 2016). Being able to automatically detect
these signals as soon as they occur, through a timely classification of the monitored time-series, can
mean the difference between life and death.

Early time series classification (EarlyTSC) addresses the problem of classifying time series based
on partial observations while maintaining a reasonable level of accuracy. The problem has been first
described by Rodŕıguez Diez and Alonso González (2002) and has received an increasing amount of
attention since. EarlyTSC introduces a second criterion to the classification problem: classifications do
not only need to be accurate but also early. This results in a natural trade-off between accuracy and
earliness (Mori et al., 2019). Most algorithms, proposed so far for EarlyTSC, provide some control over
the earliness to accuracy trade-off by one or more hyper-parameters. Each hyper-parameter setting
will occupy a different point in the earliness-accuracy space, even for a single algorithm, making it
difficult to say how well any EarlyTSC algorithm performs. To make any progress in EarlyTSC, we
must have a way of measuring an algorithm’s performance and be able to objectively compare two
algorithms without assuming relative preference for either earliness or accuracy. Thus far, there has
been no such method of comparison, and no single algorithm can be designated as the best.

Recognising the diversity in both time series data (Dau et al., 2018) and early time series classification
approaches (e.g., Parrish et al., 2013; Schäfer and Leser, 2020), a more reasonable goal would be to
find what works best for any specific data set at hand, by automatically evaluating different algorithm
configurations (i.e., algorithm choice and its hyper-parameters settings) aiming to optimise a clear
objective function. Such an automated approach would be a form of automated machine learning
(AutoML). Recent developments in the AutoML field of research has made collections of advanced
machine learning tools easily accessible for non-experts (e.g., Thornton et al., 2013; Feurer et al., 2015;
Koch et al., 2018), such that the user does not have to deal with difficult choices (e.g., the choice of
algorithm, or hyper-parameter settings). However, so far, no such automated approach to EarlyTSC
has been proposed. This is mainly due to the complex objective of this specific machine learning task.

1

Hutter et al. (2011) proposed the Sequential Model-based Algorithm Configuration (SMAC) method
and showed its viability for the configuration of SAT and MIP solvers optimising for running time.
Thornton et al. (2013) introduced Auto-WEKA, one of the first fully-fledged AutoML systems. Auto-
WEKA leverages SMAC to address the problem of combined algorithm selection and hyper-parameter
optimisation (CASH) for the configuration of machine learning algorithms optimising for accuracy. To
extend this conceptual approach to the problem of EarlyTSC, the challenge is to take both earliness
and accuracy into account as two competing objectives. However, generalising the CASH problem to a
multi-objective setting is non-trivial. A way around this challenge would be to combine both objectives
into a single-objective. Within the context of EarlyTSC, using the harmonic mean of earliness and
accuracy as an objective function has been proposed (Schäfer and Leser, 2020). However, this approach
fails to capture the complex trade-off between earliness and accuracy. In this thesis, we address this
issue by considering a multi-objective optimisation approach. More specifically, our contributions in
this thesis are as follows:

• We define multi-objective CASH, or MO-CASH, problem and propose MultiETSC, an approach
addressing this problem within the context of EarlyTSC. This approach produces a set of
algorithm configurations that are expected to produce classifiers that are non-dominated in
earliness-accuracy space (i.e., no classifiers are both earlier and more accurate).

• We compiled a set of 9 EarlyTSC algorithms that in combination with their possible hyper-
parameter settings form the search space of our approach and demonstrated the concept of
AutoML for EarlyTSC on this search space using 115 data sets from the UCR archive (Dau et al.,
2018). We evaluated our approach using the Hypervolume and ∆-spread which are well-known
indicators for estimating the performance of multi-objective optimisation approaches.

• We compared our approach addressing MO-CASH for EarlyTSC with the hyper-parameter
optimisation (HPO) of every individual EarlyTSC algorithm. This resulted in the MO-CASH-based
approach achieving the best performance in 43% of all cases, whereas the best single algorithm
approach only achieved the best performance in 29% of the cases in terms of hypervolume.

• We also compared our approach with a simplified single-objective approach based on the harmonic
mean of earliness and accuracy as a baseline. MultiETSC achieves higher hypervolume in 84% of
all cases. Note that all compared approaches constitute different forms of automated machine
learning for EarlyTSC with differing levels of complexity.

An added benefit of our automated approach is that, instead of producing a single classifier, MultiETSC
can map out the full trade-off between earliness and accuracy. This means the user can make an
informed decision on what point along the trade-off to pick based on the relative cost between earliness
and accuracy. This is a luxury most EarlyTSC algorithms cannot offer.

The remainder of this thesis is structured as follows: Chapter 2 covers several fundamental definitions
and formalises the MO-CASH problem for early time series classification. Chapter 3 covers related work
on TSC, EarlyTSC and AutoML. In Chapter 4, we describe MultiETSC and cover its implementation
details. The experimental evaluation of our approach, including results, is described in Chapter 5.
Finally, in Chapter 6, we draw some general conclusions and discuss directions for future work.

2

Chapter 2

Problem Statement

Chapter 2 introduces terminology and definitions to finally provide a formal definition of the problem
that we address in this work. First we formalise EarlyTSC and introduce the notation used for the
problem of algorithm configuration for a single optimization objective. Then, we extend the latter to
multiple objectives and formulate this problem for the specific case of EarlyTSC.

2.1 Preliminaries

A time series is a series of discrete observations over time. Time series can have varying sampling rates,
but for the sake of simplicity, we consider only real-valued time series with a constant sampling rate.
Note that for practical applications, the data could be transformed to fit this assumption. We denote a
time series of l observations as x = [x1, . . . , xl] ∈ Rl.

Time Series Classification (TSC) is the problem of determining a function f : Rl → C that maps a
given time series x ∈ Rl to a class label f(x) = y ∈ C, where C is a finite set of labels. Function f
is obtained from a learning algorithm A based on a set of training examples {d1, ..., dn}, where each
example is a pair of a time series and a class label di = (xi, yi) ∈ Rl × C. Note that we assume time
series of uniform lengths. Additionally, most learning algorithms expose a set of hyper-parameters λ
that control some aspects of their inner workings; settings for these need to be chosen from a space Λ
and often have a substantial impact on classification accuracy.

Early Time Series Classification (EarlyTSC) has been first mentioned in the literature by Rodŕıguez Diez
and Alonso González (2002). The main difference to ordinary TSC occurs when performing the actual
classification task on a given time series. While ordinary TSC assumes receiving the time series x as a
single object, EarlyTSC considers multiple prefixes xp = [x1, . . . , xp] ∈ Rp of x of increasing lengths
(p ≤ l). At each prefix length considered, the classifier either classifies or postpones classification to
await more data. When the full time series has been observed, the classifier must produce a class
output.

Hyper-parameter optimisation (HPO) is the problem of finding the set of hyper-parameter settings
λ∗ ∈ Λ with optimal generalisation performance for a given algorithm Aλ with hyper-parameters λ
and a set of training data D. Generalisation performance can be estimated by repeatedly splitting
D into non-overlapping training and validation subsets of D, Dtrain and Dvalid respectively, training
on Dtrain and evaluating performance of the resulting classifier on Dvalid. Formally, hyper-parameter
optimisation involves determining

λ∗ ∈ argmin
λ∈Λ

L(Aλ,Dtrain,Dvalid), (2.1)

where L(Aλ,Dtrain,Dvalid) is the loss of algorithm A with hyper-parameters λ when trained on Dtrain
and evaluated on Dvalid. For a classification problem such as TSC, this loss usually is a measure of

3

prediction accuracy, such as misclassification rate, but any performance metric could be chosen as an
optimisation target. It is important to note that the combined hyper-parameter space is a subset of
the product of the permissible set of values for each individual parameter Λ ⊂ Λ1 × · · · × Λm. In most
cases, this subset is strict, since some hyper-parameters depend on the value of others, resulting in a
tree-structured space (Bengio, 2000).

When there are multiple learning algorithms to choose from, we might want to not only optimise hyper-
parameter settings, but simultaneously select the best learning algorithm for a given data set. This
problem is called combined algorithm selection and hyper-parameter optimisation or CASH (Thornton
et al., 2013). Given a set of algorithms A, for each algorithm A(j) ∈ A, and a hyper-parameter space
Λ(j), the goal is to optimise generalisation performance, i.e., to determine

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

L(A
(j)
λ ,Dtrain,Dvalid) (2.2)

In their description of the CASH problem, Thornton et al. (2013) note that the choice of algorithm
can be considered a top level hyper-parameter λr that selects an algorithm from A(1), ..., A(k). Thereby,
the CASH problem can be reformulated as an HPO problem over the combined hyper-parameter space
Λ = Λ(1) ∪ · · · ∪Λ(k) ∪ {λr}, where each algorithm A(i) has its own subspace Λ(i) that is conditional
on λr being set to A(i). This places λr at the root of the tree-structured search space.

2.2 Problem Definition

So far, we have presented the single-objective CASH problem. To formulate the CASH problem for
EarlyTSC, both accuracy and earliness objectives need to be considered. To accommodate that, we
will introduce MO-CASH, the multi-objective extension to the CASH problem, and formulate this
problem for the specific case of EarlyTSC. In Equations 2.1 and 2.2, we assumed a one-dimensional
loss function defining a total order on the configuration space. When generalising to multi-objective
optimisation, we can no longer speak of a total order. Let y(1) and y(2) be vectors in objective space
Rm with m objectives. We say y(1) is dominated by y(2) if the following two conditions are met: 1)

y
(2)
i ≤ y

(1)
i for all i ∈ 1, . . . ,m and 2) y

(2)
i < y

(1)
i for at least one i ∈ 1, . . . ,m. We denote this relation

with y(2) ≺ y(1). The domination relation is a partial order, meaning that it leaves some vectors
incomparable. In MO-CASH, we are interested in the efficient set of configurations, i.e., a set that
consists solely of non-dominated, or Pareto-optimal, configurations. Since CASH can be formalised
as a special case of HPO (as discussed in Section 2.1), we will be using the simpler notation of HPO.
Let L be a vector-valued loss function on Rm; then the efficient set Λ∗ and the Pareto front P can be
formalised as follows:

Λ∗ = {λ∗ ∈ Λ | @λ ∈ Λ : L(Aλ,Dtrain,Dvalid) ≺ L(Aλ∗ ,Dtrain,Dvalid)} (2.3)

P = {L(Aλ∗ ,Dtrain,Dvalid) ∈ Rm | λ∗ ∈ Λ∗} (2.4)

Note that the single-objective formulation from Equation 2.1 can be considered as a special case of a
more general multi-objective problem. In the single-objective case, the efficient set is guaranteed to
contain only a single configuration, since the ordering in a 1-dimensional solution space is guaranteed
to be a total order. In the multi-objective case, on the other hand, there can be an arbitrarily large
number of non-dominated configurations, and an optimiser needs to find improvement over a range of
trade-off points in the objective space.

The problem we address in this work is the MO-CASH problem for the specific case of EarlyTSC,
which can be defined as follows. Given the set D = {d1, ..., dn} of pairs of time series and class label

4

di = (xi, yi) ∈ Rl×C, and given the combined space of EarlyTSC algorithms and their hyper-parameter
settings, in the form of a configuration space Λ, find the best set of non-dominated configurations Λ∗

in terms of earliness and accuracy.

5

Chapter 3

Related Work

In this chapter, we discuss work from the literature that has been fundamental to the algorithms we
used as the basis of MultiETSC. Since all EarlyTSC methods build on concepts developed for non-early
time series classification, we start with an overview of TSC methods. This is followed by a section
dedicated to EarlyTSC methods. Finally, we cover the foundations of AutoML.

3.1 TSC Methods

In the past two decades, many TSC algorithms have been proposed. Bagnall et al. (2016) have
provided an overview of influential methods for the ordinary TSC problem. There are several possible
approaches to TSC. These can roughly be split up into four categories: Nearest Neighbour, Shapelets,
Dictionary-based, and Feature-Based. We will discuss these in more detail.

Nearest Neighbour One of the most common methods is the 1-nearest neighbour (1NN) approach,
where a time series is classified based on the class of the nearest neighbour in the training set. The
distance between time series can simply be the Euclidean Distance (ED) in the Rn. Alternative distance
measures have been proposed to exploit the temporal relation of the observations. A common method is
the Dynamic Time Warping distance (DTW), which allows for local shifts in the time domain (Bagnall
et al., 2016). This way the DTW puts time series with shifts of phase or with temporal scaling closer
together than they would be using ED. Chen et al. (2005) proposed Edit Distance on Real sequences,
or EDR, a distance metric based on the number of editing operations (i.e., insert, delete, replace) that
need to be executed to transform one time series into the other. Finally, there are methods that are
completely agnostic about the exact time dimension and completely focus on the frequency domain.
For example, the Fourier distance metric, proposed by Agrawal et al. (1993), computes the Euclidean
distance between the first n Fourier coefficients.

Shapelets are subsequences of time series. They commonly represent some “shape” or temporal
feature of a time series. Shapelets can be used in different ways. By setting a threshold value for the
minimal distance, a shapelet can be used as a binary feature which can be present or absent (Ye and
Keogh, 2011). Presence of a certain shapelet can be an indication of class membership. This can be
used to construct a decision tree as done for example by Rakthanmanon and Keogh (2013). In shapelet
transform (Lines et al., 2012; Hills et al., 2013), a set of k shapelets is extracted and the minimum
distance between a time series and a shapelet is used as a feature. This results in a k dimensional
feature vector for each time series which can be used as input for a more conventional classification
algorithm. A challenge in shapelet based methods is to quickly identify interesting shapelets since
the space of all possible shapelets is large and difficult to search efficiently. Therefore, most recent
developments on shapelet methods have been on shapelet discovery (Grabocka et al., 2014; Renard
et al., 2015; Grabocka et al., 2016; Zhao et al., 2019).

6

Dictionary-Based Methods build a dictionary from a time series using a sliding window extracting
a word at every window position. A word is build up by discretising the time series at the window.
Once the dictionary is built, the histogram of all words is used as a feature vector input for any
classifier of choice. The main difference between different dictionary-based methods is the method of
discretization (Bagnall et al., 2016). The Bag of Patterns (BOP) classifier (Lin et al., 2012) was one of
the first dictionary-based methods proposed, using Symbolic Aggregate Approximation, or SAX (Lin
et al., 2007), to turn time series windows into words. The Bag of SFA Symbols, or BOSS (Schäfer,
2015), is similar to BOP, but using a different discretization method based on the truncated Discrete
Fourier Transform. A more recent development in dictionary-based methods came in the form of the
WEASEL algorithm developed by Schäfer and Leser (2017) which can do accurate classification while
at the same time being very fast in terms of training time.

Feature-Based Methods extract a limited set of features from each time series as a form of
dimensionality reduction (Wang et al., 2006). These features can for example be the mean, standard
deviation, maximum and minimum. The feature vectors are then used as the input of conventional
classifiers. The time series forest (TSF) algorithm (Deng et al., 2013) for example builds a random
forest, based on a set of predefined features. Initial forms of feature-based methods used a limited set
of theorised features. With the number of features increasing or even automatically generated features,
an additional feature selection step was introduced to select only relevant and informative features
and keep the dimensionality low (Fulcher and Jones, 2014). Most feature-based methods compute
features based on intervals of the full time series, resulting in a more efficient feature extraction but
increasing the space of possible features. For example, the Time Series Bag of Features algorithm is
based on relatively simple features like slope, mean and variance on a large set of random intervals
from which only the most informative are used (Baydogan et al., 2013). Recently, software packages
have been developed specifically for the extraction and selection of features from time series data, e.g.,
FRESH (Christ et al., 2017) and tsfresh (Christ et al., 2018)

It shows from the number and variety in TSC methods that time series classification is not a trivial
problem to solve. Different aspects of the training data like the number of training examples, number
of classes, length of the time series and even the nature of the data itself can make one method more
appropriate than the other. Even for the non-early TSC problem, it would seem reasonable to try
different methods, preferably in a systematic way, to see what works best in any specific instance. We
will show that when considering early classification, the space of methods is similarly large, indicating
the need for automatic algorithm selection.

3.2 EarlyTSC Methods

Many methods for solving the EarlyTSC problem have been proposed over the past two decades.
Generally, these are adaptions of classification methods for full time series. Most methods split the
problem into two parts: one that addresses the classification of the partial data, aiming to maximise the
classification accuracy; and a separate part that manages the trade-off between earliness and accuracy,
by deciding whether enough data has been evaluated to base a reliable classification on. We will call
this decision triggering and the function that controls it the trigger function. Next, we briefly discuss
the existing literature on EarlyTSC algorithms.

Rodŕıguez Diez and Alonso González (2002) were the first to address the classification of time series
based on partially observed data. They used a set of simple base classifiers based on interval-based
binary features which they call literals. The following is an example for such a literal: “the difference
between point ti and tj is more than v”. The given set of base classifiers is then combined by boosting
using ADABoost (Freund and Schapire, 1999). Each literal gets a weight value for each class. To
classify, the weights of the literals that evaluate to ‘true’ are summed, and the class with the highest
weight sum is the predicted class. To do early classification, the literals based on data that has not been
observed are simply ignored. Although this is the first study to mention early time series classification,

7

this contribution was only a serendipitous side effect, since the method by Rodŕıguez Diez and
Alonso González (2002) does not actually make an explicit decision when to classify, and consequently
does not solve the EarlyTSC problem as we have defined it.

Xing et al. (2011b) were the first to explicitly address the problem of EarlyTSC by looking for a
favourable trade-off between earliness and accuracy. The authors proposed ECTS, a method based on
1NN ED classification using the observed prefix of the time series. In a training phase, the minimum
prediction length (MPL) of each time series is learned – the length at which the prediction based on
the time series prefix is likely to be equal to the prediction on the full time series. When a partial time
series is classified, and the MPL of the nearest neighbour is less than or equal to the observed prefix
length, the classification is triggered.

EDSC (Xing et al., 2011a) is a shapelet-based method where the shapelets learned in a first training
phase. In the second phase of training, shapelets are selected based on the earliness of appearance in
most time series, ensuring early classification. In this selection phase, the trade-off between accuracy
and earliness is explicitly controlled by a single parameter. A benefit of classification with shapelets is
the interpretability and more efficient, possibly even more accurate, classification compared to distance
metrics over full time series. However, this comes at the cost of a computationally expensive shapelet
extraction phase.

RelClass (Parrish et al., 2013) explicitly estimates classification reliability (i.e., the probability of the
early class prediction being equal to the classification of the complete time series). It computes the
posterior distribution conditional on the observed and training data and applies linear or quadratic
discriminant analysis (LDA or QDA, respectively). This approach leads to constant classification and
reliability output, which gives this method its name. The trigger mechanism is simply a minimum
reliability threshold that needs to be met. This enables the trade-off between earliness and accuracy to
be made at classification time rather than during training.

Hatami and Chira (2013) proposed a method that based the triggering on the “agreement” among
different classifiers in an ensemble. When the individual classifiers do not agree, the classification is
rejected, and the method waits for more data. Antonucci et al. (2015) proposed a method based on
“imprecise hidden Markov models”, where a Markov model is fitted to the incoming data with some
uncertainty. The classification is done if only a single model of a time series in the training set remains
within the uncertainty bounds. Dachraoui et al. (2015) suggest a meta-algorithm that considers both
the cost of classification quality and the cost of delaying the classification decision. Additionally, this
method predicts in advance how much data will be needed to make a decision, and only triggers when
the observed amount reaches or exceeds the required amount.

ECDIRE, proposed by Mori et al. (2016), is based on a set of prefix classifiers, each prefix classifier
being a fully-fledged time series classifier trained on a specific prefix length. Figure 3.1 illustrates this
idea. In ECDIRE, each prefix classifier is a probabilistic time series classifier providing a probability
distribution over the class labels. A learned threshold value of class probability is used as a triggering
mechanism.

SR-CF (Mori et al., 2018) extends the ideas of ECDIRE by making the trade-off between earliness
and accuracy more explicit. It uses a stopping rule (SR) based on posterior class probabilities; this
rule is trained to minimise a cost function (CF) based on accuracy and earliness. Recently, Mori
et al. (2019) suggested a multi-objective variant of SR-CF, by directly optimising the stopping rule
using multi-objective optimisation. However, this method is difficult to compare to earlier EarlyTSC
algorithms, because rather than constructing a single classifier, it produces a set of classifiers in a
single run.

ECEC (Lv et al., 2019) combines the ideas of RelClass and ECDIRE. A set of prefix classifiers is
trained where the reliability score (earlier defined in RelClass) of these classifiers is learned from
the training data. The reliability of the subsequently evaluated classifiers can be combined to get

8

C1

C2

C3

C4

Time series

Figure 3.1: Four prefix classifiers and the prefix they are trained on visualised for a time series of length
20.

an increasingly improving reliability estimate. As in RelClass, triggering is done using a reliability
threshold, but Lv et al. (2019) provide a mechanism to learn a threshold that favourably trades off
accuracy for earliness, based on a single parameter.

TEASER (Schäfer and Leser, 2020) is a two-tier method that explicitly separates the task of classifying
and triggering. A set of ‘slave’ prefix classifiers is trained, and their output is sent to a set of ‘master’
classifiers (one for each prefix classifier) that decide whether to trigger or not. TEASER can be used
with any TS classifier that provides class probabilities, while the master classifier is a one-class SVM.

EARLIEST (Hartvigsen et al., 2019) is based on a recurrent neural network (RNN) with LSTM cells.
The base RNN produces a vector representation at each time step. This vector representation is used
by two classifiers, one for classification and one binary classifier for triggering. The system is trained as
a whole, minimising a loss function combining earliness and accuracy.

As is apparent from this overview, a diverse set of EarlyTSC algorithms can be found in the literature,
each with its strengths and weaknesses. To the best of our knowledge, we are the first to attempt
to combine the strengths of all these algorithms into a single, integrated system for early time series
classification. Additionally, while all EarlyTSC algorithms manage the trade-off between earliness
and accuracy in some way, they do not provide insight into this trade-off. Our automated approach,
described in the following, can produce this insight, without the need to understand the details of the
underlying EarlyTSC algorithms, making EarlyTSC more accessible for non-experts.

3.3 Automated Machine Learning

The application of machine learning to a specific problem often encompasses decisions about data pre-
processing, choice of algorithm and hyper-parameter settings. Automated machine learning attempts
to automate these decisions. Hutter et al. (2009) addressed the hyper-parameter optimisation problem
using sequential model-based optimisation (SMBO). Hutter et al. (2011) used SMBO as the basis for a
general-purpose algorithm configuration procedure, SMAC (Hutter et al., 2011), which enables the
efficient search of large and complex configuration spaces with categorical and numerical parameters.

Bergstra et al. (2011) applied two forms of SMBO, Gaussian process (GP) regression and the so-called
Tree-structured Parzen Estimator (TPE), to HPO in deep belief networks. For this 32-dimensional
configuration space, they achieved better results within 24 hours of computing time than had been
achieved by manual configuration in earlier work. Snoek et al. (2012) built further on SMBO for
AutoML by proposing Spearmint, an algorithm that takes the variable cost, in terms of training
time, into account. Thornton et al. (2013) introduced Auto-WEKA, a software package based on
SMAC that makes AutoML available for end-users familiar with the WEKA interface, being the first
AutoML system addressing the full CASH problem. Feurer et al. (2015) introduced AUTO-SKLEARN,
a SMAC-based AutoML system for Python. Additionally, AUTO-SKLEARN supports a meta-learning

9

step before the SMBO phase and an ensemble building phase after optimisation, improving the efficiency
of the configuration process and the quality of the results thus obtained.

Olson et al. (2016) introduced a Tree-based Pipeline Optimisation Tool, or TPOT, which optimises
classification pipelines using decision trees and random forests. TPOT uses a tree representation for
classification pipelines including feature selection, transformation and construction operators, as well
as model selection and parameter optimisation elements. These pipelines are optimised using a Genetic
Algorithm (GA). Olson et al. (2016) introduced an extension of TPOT, called TPOT-Pareto, which not
only considers classification accuracy but also pipeline complexity (i.e., number of pipeline operators).
During optimisation, not just the best k performing pipelines are kept as the population for the GA,
but a Pareto front of non-dominated pipelines (in terms of accuracy and complexity) is used. However,
the selection of the final pipeline is still based solely on accuracy. Therefore, TPOT does not address
the more general MO-CASH problem.

Koch et al. (2018) developed the Autotune framework for the proprietary statistical software package
SAS. Autotune uses a hybrid search strategy consisting of random search, Latin Hypercube Sampling
(LHS), global and local search, GA and Bayesian optimisation using a GP surrogate. Autotune is
implemented to maximally exploit parallel computation. The authors show competitive performance
compared to only Bayesian optimisation and the Spearmint package. Gardner et al. (2019) extended the
work on Autotune to address multi-objective optimisation. They reduced their hybrid search to only
employ LHS, GA and Generating Set Search, a local search strategy. In their study, the authors address
common conflicting objectives for binary classification, e.g., false-negative rate vs misclassification rate.

Jin et al. (2019) addressed the problem of Neural Architecture Search (NAS) by developing the
open-source Keras-based system: Auto-Keras. NAS is an interesting special case of AutoML since the
search space of possible architectures is complex and highly hierarchical. Auto-Keras employs a custom
GP kernel for SMBO, based on the edit-distance of the neural network architecture. The downside
of Auto-Keras is that it only takes into account a single loss metric, without penalising architecture
complexity.

All these AutoML systems are built upon existing machine learning packages and aim to provide easier
access to advanced machine learning pipelines and algorithms to end-users. For EarlyTSC, there does
not yet exist a software package that allows for such a direct extension. This introduced the additional
challenge of integrating all algorithms into a common framework with all required hyper-parameters
exposed. As with existing AutoML implementations, MultiETSC aims to benefit end-users by making
machine learning more accessible. Additionally, MultiETSC could also help in the development of new
EarlyTSC algorithms since it provides a framework for a fair comparison of performance.

10

Chapter 4

MultiETSC

In this chapter, we describe the approach developed for automatically configuring EarlyTSC algorithms
and the system that implements our approach. At the core of our approach, we make use of a general-
purpose automated algorithm configurator. It is the task of the configurator to efficiently search
for the best performing configurations by searching a vast space of EarlyTSC algorithms and their
hyper-parameters. The inner loop of the search process consists of three steps: 1) selecting a candidate
configuration (i.e., a combination of algorithm and its hyper-parameters); 2) training the configuration
on training data; 3) evaluating the configuration on validation data. The evaluation is fed back into
the configurator enabling informed decisions for selecting new configurations. Thus the final output
obtained is a set of configurations that are mutually non-dominated, based on evaluation on the
given validation data. The overall framework of our proposed approach is illustrated in Figure 4.1. In
the remainder of this section, we will first describe in detail the space of EarlyTSC algorithms and
hyper-parameter settings that we search over. Second, we describe how configurations are evaluated.
Third, we describe the algorithm configurator.

4.1 Configuration Space

As discussed in Section 2.1, the configuration space is a tree-structured space defined by the choices of
algorithm and hyper-parameter settings. MultiETSC includes 9 EarlyTSC algorithms: ECTS, EDSC,
RelClass, ECDIRE, SR-CF, TEASER, ECEC, EARLIEST (all described in Section 3.2) and a näıve
fixed-time Euclidean 1NN algorithm, which we will refer to as ‘Fixed’ and is described in more detail
below. Table 4.1 shows a concise overview of the included algorithms and their hyper-parameters.

These algorithms were chosen based on the fact that their implementations were made available by the

Configurator

Configuration

2

Non-Dominated Set

EvaluateSelect

Search Space 1

Train Data

Validation Data

Construct

3

Test Data

Performance

4

Figure 4.1: Design of our Automated Machine Learning system. Numbers indicate the order of steps
with step 2 being the inner loop of the system.

11

original authors (except for Fixed, which we implemented), which helped us to ensure correctness and
efficiency. Algorithm performance was not used as an inclusion criterion, meaning that we included
all available algorithms, regardless of expected performance. The näıve Fixed method was added to
counterbalance the quite complex EarlyTSC algorithms. However, in some cases, this decision limited
the flexibility of the individual algorithms. Therefore, all algorithms were modified and wrapped to
provide a common command-line interface, where test data, training data, hyper-parameters and, in
case of a stochastic algorithm, a random seed can be passed to the algorithm for reproducibility. To
achieve this, the original implementations required a varying degree of modifications. Next, we describe
each included EaryTSC algorithm in more detail. In particular, we cover their hyper-parameters and
implementation details.

• ECTS (Xing et al., 2011b) (C++): one of the first implementations of an EarlyTSC algorithm
and still often used as a baseline in experimental evaluations of new algorithms. ECTS is a 1NN
ED based algorithm that uses the observed partial time series, or prefix, for classification. In a
training phase, the minimum prediction length (MPL) for clusters of time series is learned. The
MPL is the length at which the prediction based on the time series prefix is likely to be equal to
the 1NN prediction on the full time series. When a partial time series is classified, and the MPL
of the nearest neighbour is less than or equal to the observed prefix length, the prediction is
accepted. The minimal support hyper-parameter sets a lower bound to the number of time series
required for a cluster to be considered and an MPL to be computed. This is done using a minimal
fraction of time series per cluster which is real valued between zero and one, with zero (no lower
bound) as default. This hyper-parameter is called minimal support. Time series that cannot be
accurately classified using a 1NN ED classifier can have a considerable impact on the MPL as
computed using this method. Therefore, the authors suggest a ‘Relaxed’ version that ignores the
time series that cannot be accurately classified using the full length. Switching between these
versions is achieved using the hyper-parameter “version” with the strict version as default.

• EDSC (Xing et al., 2011a) (C++): EDSC stands for Early Distinctive Shapelet Classification. As
the name suggests, it is a shapelet based EarlyTSC algorithm introducing the idea of a local
shapelet: A triplet of a time sub-series, a distance threshold and a target class. A local shapelet
matches when the shortest Euclidean distance between the sub-series is below the threshold.
Training starts with a shapelet extraction phase where for each shapelet a robust threshold is
learned. In the second phase of training, shapelets are selected based on earliness, distinctiveness
and frequency of matches. New time series can be classified by assigning the target class of the
first matching shapelet. To limit the search for shapelets, a maximum and minimum shapelet
length (maxL and minL) are passed as hyper-parameters. A minimum recall threshold is set
as hyper-parameter in order to filter out shapelets that are less distinctive, i.e., they show low
specificity of matching series. A hyper-parameter α is used to trade off earliness versus accuracy.
An additional threshold is learned to filter out shapelets that show poor earliness versus accuracy
performance. The author’s implementation allows for two methods for shapelet threshold learning
which will be switched between using the binary hyper-parameter “method”.

• RelClass (Parrish et al., 2013) (MATLAB modified for GNU Octave): this algorithm is based on an
explicit estimation of the classification reliability, i.e., the probability of the early class prediction
being equal to the full data classification. RelClass computes a neighbourhood set of a partially
observed time series based on a minimum reliability τ and the posterior distribution conditioned
on the observed and training data. When this set is completely on a single side of a decision
boundary, a classification is made. Otherwise, classification is postponed until more data becomes
available which will reduce the uncertainty in the posterior of the time series to be classified.
This approach is able to give statistical guarantees on the reliability of classification, which gives
this method its name: RelClass. The trade-off between earliness and accuracy can be made by
changing the τ hyper-parameter. For the construction of the neighbourhood sets, the authors
propose three different variants: 1) based on Chebyshev’s inequality, 2) Naive Bayes 3) Naive

12

Bayes box. The selection of these variants is implemented as a categorical hyper-parameter. The
authors additionally suggest using local discriminative Gaussian (LDG) dimensionality reduction,
to reduce training complexity without losing much performance. This is implemented as a binary
hyper-parameter. RelClass is the only included EarlyTSC algorithm that is not based on any
time series specific method. However, it still is a very competitive EarlyTSC algorithm.

• ECDIRE (Mori et al., 2016) (R): ECDIRE is based on a set of probabilistic prefix classifiers.
During the training phase, timestamps are learned where the accuracy reaches a predefined (as
hyper-parameter) proportion of full-length accuracy. Using these timestamps, a threshold value
is learned for the minimal difference between the highest and second-highest class probability.
This threshold is then used for the actual classification of time series. ECDIRE uses a set of
Gaussian Process (GP) classifiers. This makes it theoretically better suited for situations where
little training data is available.

Since we chose to stick to the original implementation published by the authors, this algorithm
uses 20 equally spaced GP classifiers. While, in theory, any number of classifiers with any temporal
distribution could be used, in this particular case, it is fixed. Since these GP classifiers are based
on kernels applied to distances, it is possible to replace the conventionally used Euclidean distance
by time series specific distance functions such as DTW, EDR and Fourier distance. This is exactly
what the original authors did and we can switch between those distance functions using the
categorical hyper-parameter “distance”. Additionally, we can switch between different kernel
functions to use in the GP classifiers. To control the trade-off between earliness and accuracy, we
can control the desired proportion of full-length accuracy with the accperc hyper-parameter.

For the training of the GP classifiers, there is the binary hyper-parameter “doHPO” controlling
whether to do optimization of the kernel parameters. Note that, although this optimization
step could only improve performance of the overall method, our experimental setup included
an algorithm running time limit, making it important to be able to tune the computational
complexity of the algorithms.

• SR-CF (Mori et al., 2018) (R): SR-CF stands for Stopping Rule - Cost Function. SR-CF is
a continuation of the work on ECDIRE, where the threshold rule is replaced with a more
sophisticated, parameterised stopping rule, which is trained by optimising a cost function. The
stopping rule is a function taking the output of a probabilistic classifier (i.e., the probability
distribution over the classes) and returns a binary output: 1 to accept the classification, 0 to reject
the classification and wait for more data. The stopping rule is optimised based on the weighted
average of the earliness and the error rate, the relative weight being the α hyper-parameter,
controlling the trade-off between earliness and accuracy. Additionally, the authors propose two
ways of regularization: the L0-“norm” and the L1-norm. These options are controlled using
the “reg” hyper-parameter. The author’s implementation enables the choice of four different
optimization methods (using the “optimiser” hyper-parameter), all permitted a budget of 100
evaluations of the cost function. Due to the implementation, the prefix classifiers are fixed to 20
equally spaced GP classifiers, similar to ECDIRE.

• TEASER (Schäfer and Leser, 2020) (Java): TEASER is a recent incarnation of the set-of-
prefix-classifiers approach, introducing a new approach to the triggering mechanism. The authors
proposed the use of a separate classifier deciding whether to accept the classified label at the
current time or wait for more data. For each prefix classifier, a one-class support vector machine
(oc-SVM) is trained separately to detect when the prefix classifier correctly classifies the time
series. We can control the oc-SVM kernel type and its ν hyper-parameter. In their paper, the
authors show the best results are found using the WEASEL time series classifier (Schäfer and
Leser, 2017) as a basis. The number and placing of the prefix classifiers are more flexible in
the implementation of TEASER compared to SR-CF and ECDIRE. A freely chosen number
of classifiers (“nClassifiers”) is distributed evenly between a start index and an end index.

13

This allows focusing more computational resources on more interesting parts of the time series.
During the classification phase, the actual classification is done only when a specified number
of subsequent oc-SVMs predict a reliable classification. This number can be controlled with
the v hyper-parameter, which directly controls the earliness accuracy trade-off. In the original
implementation, this parameter was optimised using a grid-search maximising harmonic mean of
earliness and accuracy. However, since we want to use our system to find both very early as well
as very accurate configurations, we removed this internal optimization step.

• ECEC (Lv et al., 2019) (Java): takes yet another approach to the trigger mechanism, using
empirical reliability of each prefix classifier, computed using cross-validation. ECEC uses a
method for smoothly merging the classifier outputs of multiple prefixes to get a single confidence
estimate. A single confidence threshold is learned by minimising a cost function based on the
weighted average of the earliness and the error rate (similar to SR-CF). If during classification,
the confidence surpasses this threshold, the classification is accepted. Since the implementation is
largely based on the implementation of TEASER, the same base TS classifier is used and the same
hyper-parameters are available to choose the number and placement of prefix classifiers. To get
more control over the computational cost of the algorithm, the number of cross-validation folds
is exposed as the “nFolds” hyper-parameter. Similar to SR-CF, the relative weight α of earliness
and accuracy in the cost function enables control of the earliness versus accuracy trade-off.

• EARLIEST (Hartvigsen et al., 2019) (Python): EARLIEST is a recurrent neural network (RNN)
based approach to early time series classification. EARLIEST consists of three parts: 1) a base
RNN, producing a low dimensional vector representation of the time series at each time step; 2)
a Discriminator, mapping the vector representations to class predictions; and 3) a Controller,
also taking the representation as input and outputting whether to stop and let the Discriminator
classify, or whether to continue processing more data. The discriminator is trained with respect to
the classification task and the controller is trained using reinforcement learning, receiving reward
for successful classification by the discriminator and punished for each time step processed. The
trade-off between earliness and accuracy can be controlled by the relative amount of reward and
punishment using the tunable hyper-parameter λ. Additionally, hyper-parameters controlling
the neural architecture can be tuned, including the number of layers (nLayers), the number of
hidden nodes per layer (hiddenDim), and the RNN type (cellType) (e.g., LSTM, GRU, Elman).
Furthermore, the learning rate (lr), learning rate decay factor (lrf) and the number of epochs can
be tuned. The latter is the primary factor in the computational cost of the algorithm.

• Fixed (us) (Python): We complemented the set of relatively advanced EarlyTSC algorithms with
a more naive method. This method extends the naive Euclidean 1-Nearest Neighbour classifier
to the problem of EarlyTSC, by training the classifier on a fixed-length prefix of all time series
instead of the full length. This results in a classifier that is equally early for any time series to
be classified and only requires a single evaluation once the prefix has been fully observed. A
single hyper-parameter “percLen” controls the prefix length at which classification is done as
a proportion of the full time series length. A prefix length of zero is treated as a special case
where the most frequent class in the training set is used as the prediction. We expect that any
EarlyTSC algorithm with more control over “when to classify” should perform at least as well as
this näıve algorithm, either by being more accurate with the same average earliness or by being
earlier with the same level of accuracy or both. We implemented this algorithm specifically for
the purpose of this thesis.

4.2 Algorithm Performance

As described earlier, the EarlyTSC algorithms are evaluated on both earliness and accuracy. For our
setup, we need to define two metrics representing the loss in both of these objectives. For the loss

14

relating to accuracy, we used the error rate Ca defined as follows:

Ca =
|{x ∈ Dtest|f(xl∗x) 6= Class(x)}|

|Dtest|
(4.1)

Where l∗x is the length at which the classification is triggered for time series x, f(xl∗x) is the early class
prediction and Class(x) is the true class of x.

The earliness Ce is quantified by the proportion of the time series needed to produce a classification
averaged over the number of samples classified. It can be written as follows:

Ce =
1

|Dtest|
∑

x∈Dtest

l∗x
lx

(4.2)

Where lx is the length of time series x.

4.3 Algorithm Configurator

Sequential Model-Based Optimisation (SMBO) has shown to be a promising approach to the single-
objective CASH problem (Thornton et al., 2013). However, the problem of optimising for multiple
objectives is substantially more complex than the single-objective case. While there have been methods
proposed for model-based optimisation for multi-objective problems (e.g., Emmerich et al., 2015), these
methods are not able to handle the tree-structured search space that is typical for CASH problems.

We chose to use MO-ParamILS developed by Blot et al. (2016) for its availability and its ability to do
multi-objective optimisation in a tree-structured search space, in particular algorithm configuration
space. MO-ParamILS uses iterated local search (ILS), a stochastic local search method, to find promising
configurations. MO-ParamILS maintains a set of non-dominated configurations referred to as the
archive. The one-exchange neighbourhood of a configuration λ is the set of configurations that is
obtainable by changing a single parameter. This one-exchange neighbourhood of the configurations in
the archive is used for local search steps. This strategy is complemented with random search steps to
increase exploration of the search space, enabling to escape local optima.

One caveat of using MO-ParamILS is the requirement of a discrete search space requiring discretisation
of continuous variables. This means that the optimal hyper-parameter values can only roughly be
approximated at best. On the other hand, it reduces the search space facilitating the optimisation.

In the context of reproducible research and to share our efforts with the community, we have made the
source code for MultiETSC available at https://github.com/Ottervanger/MultiETSC.

15

https://github.com/Ottervanger/MultiETSC

Algorithm hyper-parameter Description

ECTS (Xing et al., 2011b) min. support int Controls over-fitting
version cat Strict or Loose version

EDSC (Xing et al., 2011a) minL int Min. shapelet length
maxL int Max. shapelet length
k real Precision-recall trade off of shapelets
α real Accuracy-earliness trade off
method cat Threshold learning method
recall thres. real Min. threshold for shapelet distinctive-

ness
RelClass (Parrish et al., 2013) τ real Min. reliability threshold

variant cat Chebyshev, Quadratic, Box
LDG bin Use LDG dimensionality reduction or

not
ECDIRE (Mori et al., 2016) acc perc int Desired level of accuracy as percentage

of full data classification
doHPO bin Contolling optimisation of kernel pa-

rameters of GPCs

Shared with SR-CF

kernel cat Gaussian process regression kernel
distance cat Distance metric to use
sigma real Theshold value for the EDR metric
N int No. components for the Fourier distance

metric
SR-CF (Mori et al., 2018) α real Accuracy-earliness trade off

optimiser cat Method used for CF optimisation
reg cat Method used for CF regularisation
lambda real Regularisation factor

TEASER (Schäfer and Leser, 2020) v int No. required consistent classifications
kernel cat Kernel type to use for oc-SVM
ν real Training parameter for oc-SVM

Shared with ECEC

nClassifiers int
start index int Position of the first prefix classifier
stop index int Position of the last prefix classifier

ECEC (Lv et al., 2019) α real Accuracy-earliness trade off
nFolds int Number of cross-validation folds

EARLIEST (Hartvigsen et al., 2019) λ real Accuracy-earliness trade off
lr real Learning rate
lrf real Learning rate decay factor
epochs int
nLayers int No. hidden layers
hiddenDim int No. nodes per hidden layer
cellType cat RNN cell type

1NN-Fixed percLen real Prefix length as prop. of total TS length

Table 4.1: EarlyTSC algorithms and their hyper-parameters. ‘int’, ‘cat’, ‘real’ and ‘bin’ stand for
integer, categorical, real and binary valued parameters, respectively.

16

Chapter 5

Experimental Evaluation

We have designed our experiments to answer the following two questions:

• What improvement can be achieved by solving the MO-CASH problem for EarlyTSC compared
to multi-objective HPO of any single competitive EarlyTSC algorithm?

• What improvement can be achieved by solving the MO-CASH problem compared to solving the
single-objective CASH problem optimising for the harmonic mean of accuracy and earliness?

In the rest of this section, we will introduce our baselines, data sources, and evaluation protocol. Next,
we will present the experimental results that will answer these questions.

5.1 Baselines

To answer the first question we compared algorithm selection, using MO-ParamILS on the previously
defined search space, with hyper-parameter optimisation of each individual algorithm in the search
space by fixing the algorithm choice. This results in 9 baseline methods, one for each included algorithm:
ECTS, EDSC, RelClass, ECDIRE, SR-CF, TEASER, ECEC, EARLIEST and Fixed.

To address the second question, we compared our multi-objective approach with a method that optimises
a single-objective (we refer to this baseline as SO-all). For this objective, we chose the harmonic mean
of earliness and accuracy as suggested by Schäfer and Leser (2020):

HM = 1− 2 · (1− Ce) · (1− Ca)
(1− Ce) + (1− Ca)

(5.1)

Resulting in a value on the closed interval [0, 1] which is to be minimised. This metric has the property
that it will be low when both Ce and Ca are low and high when either is high. We will refer to this as
the HM metric.

Although MO-ParamILS is capable of single-objective algorithm configuration, more advanced systems
are available for this task. To make a fair comparison, we chose the state-of-the-art SMAC (Lindauer
et al., 2017) algorithm configurator for its ability to efficiently search tree-structured search spaces. We
will refer to the baseline method searching the full algorithm space using SMAC optimising the HM
metric as SO-All.

5.2 Data

As the main source of data, we will use the University of California, Riverside (UCR) Time Series
Archive (Chen et al., 2015; Dau et al., 2018), last updated in 2018. As of 2018, the archive consists of

17

UCR training set

UCR split

UCR test set

5 stratified folds

train-validation splits

Figure 5.1: Train, validate and test sets.

128 time series data sets for time series classification. Since its introduction in 2015, it has become
the de facto standard for the evaluation of time series classification methods. The composers of the
UCR archive recommend evaluating on all 128 data sets, and to motivate excluding any. In our
experiments we used 115 of these data sets due to the reason explained in Section 5.3. The data sets in
the UCR archive contain real-world data and simulated data originating from various sources with
varying degrees of complexity. Sources include ECG, EEG, spectrographs, image outlines, three-axis
accelerometers and gyroscopes, and audio samples. In addition to real-world data, the archive contains
nine synthetic data sets specifically designed to evaluate time series classification methods. For data set
details and descriptions, we refer to the Time Series Classification Website (Bagnall and Lines, 2020).

Although some data sources are intrinsically multi-variate, the data is split up into uni-variate time
series. Time series lengths vary between a few dozen samples to several thousand samples. For most
data sets, all time series within one set are of equal length. 15 of the 128 data sets contain time series
of varying lengths or with missing values. For these data sets the archive also includes same-length
versions that are imputed using linear interpolation and padded up to the length of the longest time
series with low amplitude noise. For this thesis, we only used the same-length versions of these data
sets.

5.3 Evaluation Protocol

Train and Validation splits: the UCR data sets have pre-defined train-test splits. The UCR defined
train set is split again into five stratified train-validation splits. An algorithm is trained on 4

5 of the data
and evaluated on 1

5 of the data. This is illustrated in Figure 5.1. For each repeated configurator run, a
different set of cross-validation folds is generated. However, each experimental condition is run with the
same set of cross-validation folds to keep the comparison fair. Due to the fivefold split requirement, we
had to exclude eight data sets that did not contain sufficient training examples per class for this split
to be made. These were FiftyWords, Fungi, Phoneme, PigAirwayPressure, PigArtPressure, PigCVP,
and Symbols. We used the remaining 120 data sets for evaluation.

Configurator runs: because a single configurator run is dependent on the random train/validation
splits, and random initialisation, we performed multiple runs to get stable results. For each data set,
25 configurator runs were performed. For practical reasons, we set limits to run times of different
stages of the experiment (presented in Table 5.1). The test evaluation is provided with a budget that
is significantly bigger than that of the validation. The reason is that the test set can contain much
more examples than the validation set. Additionally, we had to set a maximum amount of memory
used by an algorithm implementation, which we set to 10GB. This made it impossible to process five
more data sets: Crop, ElectricDevices, FordB, FordA, InsectWingbeatSound.

Bootstrapping: each configurator run will result in a Pareto set of configurations based on the
validation performance. Note that in the case of the SO configurator, this set will, by definition, contain
only a single configuration. To create a distribution of the results, we took a bootstrapping approach by

18

Configurator time budget Config. Validation time limit Config. Test time limit

120 min 3 min 15 min

Configurator runs Bootstrap sample size Bootstrap samples

25 10 1000

Table 5.1: Key numbers of the evaluation protocol.

y1

y2 yref

S

(a) A set of non-dominated solutions P (black points)
in the objective space R2. S indicates the hypervolume
dominated by P with respect to reference point yref .

y1

y2
f

df

d1

d2
d3

d4
dl

l

yref

(b) The distances used for the computation of the ∆-
spread of a set of non-dominated solutions P (black
points). f and l are theoretical extreme solutions.

Figure 5.2: Calculation of the Pareto front metric.

randomly sampling 10 runs from the 25 runs performed. For each subsample, the set of Pareto sets (one
for each run) is then combined into a single set of non-dominated configurations (based on validation
performance). All configurations ending up in one or more subsample Pareto sets are evaluated using
test data resulting in a final Pareto set for each subsample. Evaluation is based on these final Pareto
sets. By repeating this approach 1000 times we created a bootstrap distribution.

5.4 Evaluation Metrics

We want to evaluate Pareto sets of configurations in the earliness-accuracy space. Solutions that are
both accurate and early are desirable, but we also prefer a “cheap” trade-off, getting much earlier
predictions for only a small reduction of accuracy. To quantify the performance of a particular Pareto
set, we will turn to the theory of multi-objective optimisation. There is a multitude of Pareto set
performance metrics defined each capturing one or more desirable aspects (Audet, 2018). For our
purpose, we will be using the dominated hypervolume, the ∆-spread and the HM -metric which we
describe here in detail.

• Hypervolume (HV): also called the S-metric, proposed by Zitzler, Deb and Thiele (Zitzler
et al., 2000), is the hypervolume in the objective space that is dominated by the Pareto efficient
solutions bounded by a reference point yref ∈ Rm that is dominated by all feasible solutions.
Figure 5.2a shows a Pareto front and its dominated hypervolume S in R2. A commonly mentioned
downside of the hypervolume is the need for a reference point that is larger than any point in the
Pareto set on all objectives but not too large since that would reduce the precision. In our case,
however, it is clear that both error rate and earliness will never be larger than 100%, so we can
safely use (1, 1) as the reference point.

The hypervolume metric has several properties that make it well suited for our purpose. First
of all, it is intuitive. Dominating a large part of the objective space is desirable. As denoted
in (Audet, 2018), the hypervolume metric is the only known unary Pareto front performance

19

indicator to be strictly monotonic. This means that if set A dominates set B (i.e., all points
in B are dominated by at least one point in A) then the hypervolume metric of A is strictly
larger than that of B. This is desirable since set domination is a strong indication that one set is
preferable over the other and we want the metric to represent this property as well. Furthermore,
the hypervolume metric is widely used in the performance evaluation of various multi-objective
optimisation algorithms.

• ∆-spread: a desirable property that is not very well represented in the hypervolume is the
distribution of configurations along the Pareto front. To control the earliness-accuracy trade-off,
these configurations should be evenly distributed over a wide range of values. There can be two
cases where the hypervolume metric is equal but in one case all hypervolume is dominated by
a single configuration and in the other case there are 1000 unique configurations. In that case,
it would be preferable to have a choice out of multiple options. We will be using the ∆-spread
metric (Zitzler et al., 2000) to quantify the distribution of solutions in the objective space. This
metric is based on the Euclidean distances between neighbouring solutions di and is formalised
as follows:

∆ =
df + dl +

∑N−1
i=1 |di − d̄|

df + dl + (N − 1) · d̄
(5.2)

Where df and dl are distances between the extreme solutions and the boundary solutions in

the Pareto front, and d̄ =
∑N−1

i=1 di
N−1 . See Figure 5.2b for an illustration of the distances. An ideal

distribution would make df = dl = 0 and all distances di equal to d̄, resulting in ∆ = 0. More
clustering will result in higher values of ∆.

• HM metric: in addition to the hypervolume metric and ∆-spread, we will also look at the
HM scalarisation as defined in Equation 5.1, to see how this metric compares to our proposed
evaluation methods. Since each point in the Pareto set will have its own HM value, we will look
at the minimum value in each set.

5.5 Results

To provide some intuition on the produced Pareto sets and their metrics we will discuss an illustrative
example. A single subsample is constructed by combining ten different validation splits. Each method is
run on each split and the resulting Pareto sets are combined into one Pareto set per method. Figure 5.3
shows these Pareto sets for an arbitrary subsample of the BME data set. The BME data set is a
synthetic data set created specifically for TSC research and is part of the UCR archive. It is a three-class
problem with 10 training examples per class. The test set is balanced containing 150 items.

Looking at Figure 5.3, it is seen that generally, in Pareto fronts, 70% seems to be the upper bound of
the error rate at zero earliness (maximally early), which is close to the expected performance of 66%of
a random or constant output classifier. With increasing earliness (later classification) most methods
can produce classifiers that are increasingly accurate with clearly diminishing returns. Seven out of the
eleven methods level out at one-third of the time series observed. EARLIEST and Fixed do improve
further around 90% of data observed, but they do not beat most methods in terms of performance at
that point. MultiETSC and ECDIRE are able to reduce error rate up to 70% of the data observed
achieving the best accuracy of less than 5% error rate.

The visual representation of the trade-off between earliness and accuracy that MultiETSC can provideis
a major advantage. Using any EarlyTSC algorithm requires the user to select a hyper-parameter that
only indirectly influences the trade-off. Using our approach, a user trying to solve a specific EarlyTSC
problem can make an informed choice, making EarlyTSC more accessible for non-experts.

20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Earliness

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Er
ro

r r
at

e
Earliness-Accuracy tradeoff

BME

MultiETSC
SO-All
EARLIEST
ECEC
TEASER
RelClass
SR-CF
ECDIRE
EDSC
ECTS
Fixed

Figure 5.3: Pareto sets for one subsample on BME data set.

method Fixed ECTS EDSC ECDIRE SR-CF RelClass TEASER ECEC EARLIEST SO-All MultiETSC

HV 0.653 0.181 0.607 0.757 0.706 0.675 0.694 0.695 0.400 0.545 0.782
∆-spread 1.015 inf 0.925 0.675 0.936 0.723 0.800 0.819 1.132 inf 0.603
HM 0.246 0.627 0.231 0.267 0.233 0.291 0.246 0.235 0.444 0.276 0.236

Table 5.2: Pareto set metrics for one subsample on the BME data set.

The metrics evaluating these Pareto sets are shown in Table 5.2. In this particular example, the
configurations found by MultiETSC dominate the largest hypervolume (0.782). Although the competing
methods are close, it is clear that MultiETSC corresponds closely to the best of each baseline. If we
compare MultiETSC with ECDIRE, we see they have a very similar hypervolume. However, ECDIRE
has a higher ∆-spread which indicates more clustered solutions in the earliness-accuracy space which
is less favourable. Looking at the HM -metric, we see MultiETSC not achieving the best score. Both
SR-CF and EDSC achieved better HM -metrics. These are achieved by the solutions around 0.2 error
rate and 0.26 earliness. EDSC in particular is an example of the weakness of the HM -metric. With
only two solutions found, it represents only a tiny fraction of the possible trade-off points leaving both
earlier and more accurate solutions unexplored.

To compare relative performance between all methods, based on their performance across 115 data
sets, we computed the average ranks based on the three selected metrics. Average ranks provide a
robust method of comparison without making additional assumptions about normality and symmetry
– assumptions we cannot safely make in general. This approach is similar to the empirical analysis
done by Bagnall et al. (2016). The ranks are averaged over all subsamples and all datasets. With 1000
subsamples for each of the 115 data sets, these are the averages over 115 000 ranks. We first checked
for significant differences between rank means using the Friedman test and subsequently applied the
Nemenyi post-hoc test (Nemenyi, 1963) which checks for significant pairwise differences in average
ranks. We visualised the outcome of this test using critical difference diagrams (Demšar, 2006), that
are commonly used for the comparison of TSC methods to show the result of a statistical comparison
of ranking results. These are shown in Figures 5.4, 5.5 and 5.6. Due to our subsampling method,
we achieved high statistical power resulting in small CD intervals, which means that most observed
differences are statistically significant.

21

1234567891011

ECTS
9.043

EDSC
8.958

ECDIRE
8.382

SR-CF
7.712

EARLIEST
7.408

RelClass
6.615

SO-All
4.354

ECEC
4.327

Fixed
4.177

TEASER
2.955

MultiETSC
2.069

CD

Figure 5.4: CD diagram of the Nemenyi test on the Hypervolume. Numbers represent mean ranks
(lower means better). Rank means with non-significant difference are connected with a horizontal line.

1234567891011

EARLIEST
7.911

ECDIRE
7.821

SR-CF
7.660

EDSC
7.322

ECTS
7.206

RelClass
6.365

ECEC
5.223

SO-All
5.013

Fixed
4.077

TEASER
4.064

MultiETSC
3.337

CD

Figure 5.5: CD diagram of the Nemenyi test on the ∆-spread. Numbers represent mean ranks (lower
means better). Rank means with non-significant difference are connected with a horizontal line.

According to the comparison of methods based on all metrics (shown in Figures 5.4,5.5,5.6), MultiETSC
performs significantly better than any of the algorithms we compared against, finding configurations
that together dominate a larger portion of the objective space and distributed more evenly across
the trade-off according to the ∆-spread. This answers our first question mentioned earlier in Section
5. Similarly, MultiETSC performs significantly better than the single-objective CASH method SO-All,
which answers our second question. We also observed that SO-All performs relatively well compared to
our baseline algorithms. However, interestingly, SO-All performs worse than MultiETSC on the HM
metric, even though this is the exact metric that the SO configurator optimises, while MultiETSC does
not explicitly consider this metric during configuration. Overall, methods consistently rank according
to different metrics.

Table 5.3 shows the performance of the compared methods split out per problem (dataset) type. This
table would show any method that is particularly suited or unsuited for a specific problem type. From
these results, we observe that MultiETSC is consistently performing well across a broad range of
problem types. The results for individual data sets are provided in Appendix A (Tables 5-7).

22

1234567891011

ECTS
8.943

EDSC
8.730

ECDIRE
7.952

SR-CF
7.157

RelClass
7.113

EARLIEST
7.070

Fixed
4.833

ECEC
4.371

SO-All
3.452

TEASER
3.290

MultiETSC
3.091

CD

Figure 5.6: CD diagram of the Nemenyi test on the HM metric. Numbers represent mean ranks (lower
means better). Rank means with non-significant difference are connected with a horizontal line.

method EARLIEST ECDIRE ECEC ECTS EDSC Fixed MultiETSC RelClass SO-All SR-CF TEASER Counts

DEVICE 0.00 0.00 20.59 0.00 0.00 2.11 32.26 0.00 13.37 0.00 31.69 9000
ECG 0.00 0.00 2.93 0.00 0.00 30.90 54.46 0.00 0.41 0.00 11.30 7000
EOG 0.00 0.00 0.00 0.00 0.00 72.35 30.70 0.00 0.00 0.00 0.00 2000
EPG 4.65 0.00 0.00 0.00 0.00 0.00 89.00 22.50 21.80 0.00 0.00 2000
IMAGE 0.33 0.00 3.26 0.00 0.73 5.51 40.89 14.90 2.20 0.16 32.01 28000
MOTION 0.00 0.00 7.49 0.00 0.00 6.86 44.26 0.12 5.61 0.00 35.72 25000
SENSOR 0.02 0.00 12.36 0.00 0.03 7.87 46.37 4.53 5.18 0.06 28.22 19000
SIMULATED 0.00 4.73 1.08 0.00 0.00 15.63 46.52 0.36 0.02 0.50 31.16 9000
SPECTRO 0.00 0.15 14.90 0.00 0.05 15.43 31.19 9.09 3.17 0.67 25.36 12000
TRAFFIC 0.00 0.00 0.00 0.00 0.00 50.00 60.60 0.00 0.00 0.00 38.55 2000
Overall 0.16 0.39 7.89 0.00 0.19 11.14 43.11 5.77 4.40 0.16 29.14
Counts 187 445 9077 0 217 12812 49575 6635 5055 183 33514 115000

Table 5.3: Best performing algorithms by problem type. Entries represent percentages of subsamples
that each method achieved the highest hypervolume on. Best performance is presented in bold face.
Ties are counted as wins for both methods.

We found a significant number of cases with ties for the best method, most often between Fixed and
MultiETSC. In these cases, the set of possible configurations using the Fixed algorithm dominates
all other configurations. This set is found by both the Fixed method and MultiETSC, which results
in equal hypervolume scores. This causes some rows in Table 5.3 to add up to more than 100% (e.g.,
TRAFFIC).

As expected, the performance rank of each single algorithm method seems to correspond closely to
the order in which these algorithms were originally introduced. However, there are some exceptions
to this pattern. EARLIEST, the only neural-network-based algorithm, performs not as well as other
methods proposed around the same time. In the original study, EARLIEST (Hartvigsen et al., 2019),
is evaluated on data sets containing considerably more training examples than are available in typical
UCR data sets and many real-world applications. Additionally, the running time limits (3 minutes for
configuration and 15 minutes for testing) might pose a challenge for the configurator to find viable
parameter settings. This, however, is a challenge for all methods, not only EARLIEST.

Finally, we would like to address the fact that the näıve fixed-time method we introduced is highly
competitive, consistently outperforming six out of the eight EarlyTSC algorithms proposed in the

23

Fix
ed

TE
ASE

R

EA
RLIE

ST

RelC
las

s
EC

EC
EC

TS
SR

-CF

EC
DIRE

ED
SC

Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n

Selected algorithms
as proportion of non-dominated solutions

Validation
Test

Figure 5.7: Algorithms as selected by MultiETSC as proportion of non-dominated solutions as found
based on validation and test evaluations.

literature, according to all three metrics. One explanation for this could be the fact that early research
on EarlyTSC has been mainly focused on getting early classification with accuracy similar to that
achieved on the full data. This means that these algorithms are very much focused on accuracy.
Although there might be hyper-parameters controlling the earliness-accuracy trade-off, once pushed to
the early edge of the spectrum, these algorithms can lose accuracy very quickly.

A second explanation for the relatively good performance of the näıve Fixed method is based on a
combination of its simplicity and the small size of the search space. Since Fixed is a 1NN method, there
is no training phase, and since it is prefix-based, only a fixed portion of each time series needs to be
considered, which makes the method very fast. Additionally, there is only one hyper-parameter to tune:
the prefix proportion. Due to this, the configurator can exhaustively search the full hyper-parameter
space (taking 100 steps of 0.01). This is the only algorithm we considered for which this is possible, and
it implies that there are many points along the trade-off between earliness and accuracy considered.
For all other algorithms, the configurator needs to spend time on tuning hyper-parameters that are
orthogonal to this trade-off.

To get an idea of the relative importance of each included algorithm, we looked at the selection
frequency of each algorithm. Since MultiETSC produces sets of non-dominated solutions, we were
interested in the selected algorithms as proportions of these solutions. These proportions, which are
shown in Figure 5.7, can provide a proxy for the relative performance of each algorithm for the system
as a whole. We find the most configurations are using the näıve Fixed algorithm. As stated earlier,
this can be explained by the simplicity of its hyper-parameter space. Furthermore, a large portion
of algorithms is selected only very few times. This indicates that MultiETSC might benefit from
leaving some algorithms out. This would allow for more time to optimise the hyper-parameters of
better-performing algorithms.

However, we need to be careful drawing conclusions. Having many solutions does not mean they are
good solutions. A single configuration can dominate many sub-optimal configurations. It might be the
case that the configurations using Fixed only slightly improve configurations using other algorithms, but
that other algorithms give higher improvement the few times that they do end up in the non-dominated
set. This means the data in Figure 5.7 is not sufficient to say which algorithms should remain and
which should be removed. To get a proper assessment of the relative contribution of each algorithm to
the performance of MultiETSC, the Shapley values can be computed for each algorithm as proposed
in (Fréchette et al., 2016). We will discuss this further in Section 6.1.

24

Chapter 6

Conclusions and Future Work

In this work, we have introduced MultiETSC, a systematic approach to automated early time series
classification (EarlyTSC). MultiETSC performs automatic algorithm selection and hyper-parameter
optimisation to explore the full range of optimised trade-off points between accuracy and earliness. Our
approach builds upon recently developed techniques in the area of automated algorithm configuration
and uses them in combination with a broad range of well-known EarlyTSC algorithms. Integrating
a wide range of recently developed EarlyTSC algorithms, MultiETSC is capable of exploring the
combined space of possible algorithms and hyper-parameter configurations efficiently for any given
EarlyTSC problem. This enables users to explore and exploit trade-offs between earliness and accuracy,
allowing them to make an informed decision on the preferred trade-off point.

We performed an extensive empirical evaluation of our proposed method using 115 data sets from
the UCR Time Series Archive. We have shown that by leveraging the performance potential of many
existing EarlyTSC algorithms, our approach can outperform any single algorithm, even when those are
using optimised hyper-parameter settings. Our results also demonstrate that considering both earliness
and accuracy separately produces better results than combining the two into a single objective.

6.1 Possible Improvements to MultiETSC

During the development and evaluation of MultiETSC, we were forced to make several practical
decisions to keep the size of this project manageable. However, there is a multitude of ways in which
MultiETSC could be improved in the future.

In its current form, MultiETSC includes all currently available EarlyTSC algorithms. Since each
algorithm included in MultiETSC adds to the size of the search space, each additional algorithm is
a burden to the algorithm configurator. It might therefore be the case that removing an algorithm
from the system might increase its overall performance since it allows the configurator to spend more
time searching and tuning the other algorithms. In our results, we already found evidence for a small
set of algorithms being responsible for a large proportion of the optimised configurations. In future
research, the marginal contribution to the performance of each algorithm could be computed. However,
marginal contribution penalizes sets of correlated algorithms. Fréchette et al. (2016) propose using the
Shapley value to asses relative algorithm importance. Removing all algorithms with a negative Shapley
value will likely lead to performance improvement of MultiETSC as a whole.

The current version of MultiETSC is based on pre-existing implementations of algorithms. Some
of these algorithms perform similar or even identical computations as part of their learning phase,
for example, the computationally expensive distance metrics between all training pairs. We expect
that much performance can be gained by exploiting these similarities. This can be done by caching
intermediate results. For example, both ECDIRE and SR-CF compute the reliability values of a set

25

of prefix classifiers using cross validation as part of the training process. These reliability values are
expensive to compute and only depend on a small subset of hyper-parameters. These values can be
stored for reuse when either of these methods are applied to the same data with a different hyper-
parameter setting. A similar cache can be used for the prefix classifiers of TEASER and ECEC. This
would save computational resources and would allow for a larger number of evaluated configurations
in the same time. Using such a caching method would require re-implementation of the EarlyTSC
algorithms. Re-implementation of EarlyTSC algorithms, if done right, can have many more benefits
over the current version of MultiETSC. Algorithms can be implemented in a single, high-performance
language. Source code for certain subroutines, e.g., distance computation, can be shared between
algorithms and their solutions can therefore be easily cached. Hyper-parameters for these subroutines
can be optimised independently of the algorithm calling them. This all would result in increased
efficiency of the algorithm configuration, which in turn leads to better expected results given the
same configuration time. Re-implementation would give the opportunity to build a consistent API for
EarlyTSC algorithms. Such an API, conforming to best practices of API design and possibly modelled
after other, widely used machine learning APIs (e.g., scikit-learn Pedregosa et al., 2011), would make
EarlyTSC more accessible to a broader public. Furthermore, re-implementation of EarlyTSC algorithms
would allow for adhering to the Programming by Optimization (PbO) paradigm (Hoos, 2012). This
would leave design choices (e.g., the type of prefix classifier in SR-CF) to be optimised by the algorithm
configurator as hyper-parameters, as opposed to having them hardwired in code.

6.2 Further Future Work

Although the work presented here represents merely a first step into automated machine learning for
early time series classification, we have clearly demonstrated the potential of this direction. We see
numerous opportunities for future research.

In this work, we have found indications that our Fixed algorithm, a näıve EarlyTSC algorithm that
classifies at a fixed proportion of the full time series, can often outperform more sophisticated methods
that attempt to use the observed data to find the best time at which to trigger the classification. While
this can be ascribed to our method of comparing algorithms, thus far, no standard for comparing
EarlyTSC algorithms has been established. In the future, MultiETSC could be extended to a platform
for the fair comparison of EarlyTSC algorithms, taking into account earliness and accuracy at the
same time. Such a platform would provide a common interface for both problem instances (data sets)
and EarlyTSC algorithms. This idea is an extension of the Sparkle platform proposed by Van der
Blom et al. (2019). The marginal contribution to performance or Shapley values (as mentioned in
the previous section) would provide a metric for the fair comparison of competing algorithms. This
platform would greatly facilitate future development of EarlyTSC algorithms.

For automated machine learning, our work clearly shows the potential of using multi-objective algorithm
configurators within an integrated system leveraging many state-of-the-art techniques – an idea that
can be extended to many other domains in which multiple conflicting performance objectives arise.

One such domain is the relatively simple case of binary classification. Binary classification problems
often have asymmetric costs associated with false-positives and false-negatives. Therefore, it can
be useful to consider precision and recall as two separate objectives. Tari et al. (2020) used such a
multi-objective approach to hyper-parameter optimization of a single binary classification algorithm.
The current work suggests the viability of extending their approach to larger configuration spaces that
include multiple algorithms.

An objective that could be worth considering for a wide range of machine learning models is computa-
tional cost. There are situations where models are applied in an environment with limited computing
resources, for example, on lightweight SoC’s. In other situations, ML models might be competing with
other software for computing resources, like the recently developed Deep Learning Super Sampling

26

(DLSS) within the graphics pipeline. For models deployed on a large scale, even environmental consid-
erations might become a reason to prefer simpler models to reduce overall energy consumption. For all
mentioned cases, it would be valuable to know the loss in performance of an ML model as a result of
limiting its complexity. This can be accomplished by considering performance and model simplicity as
two competing objectives.

Furthermore, our approach can be extended to a larger number of objectives, which would enable the
exploration of additional trade-offs. However, interpretation of the resulting Pareto fronts will become
less intuitive since they will be hard to visualize, especially with more than three objectives.

Finally, we hope that this work will inspire further exploration in this direction and ultimately lead to
significant improvements in the state of the art in solving a broad set of machine learning problems
that involve multiple competing performance objectives, as is the case in early time series classification.

27

Bibliography

Abdelghani SA, Rosenthal TM, Morin DP (2016) Surface electrocardiogram predictors of sudden cardiac
arrest. The Ochsner Journal 16(3):280–289, URL https://pubmed.ncbi.nlm.nih.gov/27660578

Agrawal R, Faloutsos C, Swami A (1993) Efficient similarity search in sequence databases. In: Lomet
DB (ed) Foundations of Data Organization and Algorithms, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 69–84, DOI 10.1007/3-540-57301-1 5

Antonucci A, Scanagatta M, Mauá DD, de Campos CP (2015) Early classification of time series
by hidden markov models with set-valued parameters. In: Proceedings of the NIPS Time Series
Workshop, pp 1–5, URL https://sites.google.com/site/nipsts2015/home

Audet C (2018) Performance Indicators in Multiobjective Optimization. Les Cahiers du GERAD,
GERAD HEC Montréal, URL https://books.google.nl/books?id=uKepzQEACAAJ

Bagnall A, Lines J (2020) The UEA TSC website. URL http://www.timeseriesclassification.

com/

Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2016) The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge
Discovery 31, DOI 10.1007/s10618-016-0483-9

Baydogan MG, Runger G, Tuv E (2013) A bag-of-features framework to classify time series. IEEE
Transactions on Pattern Analysis and Machine Intelligence 35(11):2796–2802, DOI 10.1109/TPAMI.
2013.72

Bengio Y (2000) Gradient-based optimization of hyperparameters. Neural Computation 12(8):1889–
1900, DOI 10.1162/089976600300015187

Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization.
In: Proceedings of the 24th International Conference on Neural Information Processing Systems,
Curran Associates Inc., USA, NIPS’11, pp 2546–2554, URL http://dl.acm.org/citation.cfm?

id=2986459.2986743

Van der Blom K, Luo C, Hoos HH (2019) Sparkle: Towards automated algorithm configuration for
everyone. Configuration and Selection of Algorithms (COSEAL), URL https://www.researchgate.

net/publication/335421409

Blot A, Hoos HH, Jourdan L, Kessaci-Marmion M, Trautmann H (2016) MO-ParamILS: A multi-
objective automatic algorithm configuration framework. In: Proceedings of the 10th International
Conference on Learning and Intelligent Optimization (LION 10), Springer, Lecture Notes in Computer
Science, vol 10079, pp 32–47, DOI 10.1007/978-3-319-50349-3\ 3, URL https://doi.org/10.1007/

978-3-319-50349-3_3

Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories.
In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data,

28

https://pubmed.ncbi.nlm.nih.gov/27660578
https://sites.google.com/site/nipsts2015/home
https://books.google.nl/books?id=uKepzQEACAAJ
http://www.timeseriesclassification.com/
http://www.timeseriesclassification.com/
http://dl.acm.org/citation.cfm?id=2986459.2986743
http://dl.acm.org/citation.cfm?id=2986459.2986743
https://www.researchgate.net/publication/335421409
https://www.researchgate.net/publication/335421409
https://doi.org/10.1007/978-3-319-50349-3_3
https://doi.org/10.1007/978-3-319-50349-3_3

Association for Computing Machinery, New York, NY, USA, SIGMOD ’05, p 491–502, DOI
10.1145/1066157.1066213

Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series
classification archive. URL www.cs.ucr.edu/~eamonn/time_series_data/

Christ M, Kempa-Liehr AW, Feindt M (2017) Distributed and parallel time series feature extraction
for industrial big data applications. 1610.07717

Christ M, Braun N, Neuffer J, Kempa-Liehr A (2018) Time series feature extraction on basis of scalable
hypothesis tests (tsfresh – a python package). Neurocomputing 307, DOI 10.1016/j.neucom.2018.03.
067

Dachraoui A, Bondu A, Cornuéjols A (2015) Early classification of time series as a non myopic sequential
decision making problem. In: Appice A, Rodrigues PP, Santos Costa V, Soares C, Gama J, Jorge A
(eds) Machine Learning and Knowledge Discovery in Databases, Springer International Publishing,
Cham, pp 433–447, DOI 10.1007/978-3-319-23528-8 27

Dau HA, Keogh E, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Yanping, Hu B,
Begum N, Bagnall A, Mueen A, Batista G, Hexagon-ML (2018) The UCR time series classification
archive. URL https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7(1):1–30, URL http://jmlr.org/papers/v7/demsar06a.html

Deng H, Runger G, Tuv E, Vladimir M (2013) A time series forest for classification and feature
extraction. Information Sciences 239:142 – 153, DOI https://doi.org/10.1016/j.ins.2013.02.030, URL
http://www.sciencedirect.com/science/article/pii/S0020025513001473

Emmerich M, Yang K, Deutz A, Wang H, Fonseca C (2015) A Multicriteria Generalization of
Bayesian Global Optimization, vol 107, Springer International Publishing, pp 229–242. DOI
10.1007/978-3-319-29975-4 12

Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F (2015) Efficient and robust auto-
mated machine learning. In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in
Neural Information Processing Systems, Curran Associates, Inc., vol 28, pp 2962–2970, URL https://

proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

Fréchette A, Kotthoff L, Michalak TP, Rahwan T, Hoos HH, Leyton-Brown K (2016) Using the shapley
value to analyze algorithm portfolios. In: Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI-16), AAAI Press, pp 3397–3403, URL http://www.aaai.org/ocs/index.php/

AAAI/AAAI16/paper/view/12495

Freund Y, Schapire RE (1999) A short introduction to boosting. In: In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, Morgan Kaufmann, pp 1401–1406, DOI
10.1051/matecconf/201713900222

Fulcher B, Jones N (2014) Highly comparative feature-based time-series classification. IEEE Transactions
on Knowledge and Data Engineering 26, DOI 10.1109/TKDE.2014.2316504

Gardner S, Golovidov O, Griffin J, Koch P, Thompson W, Wujek B, Xu Y (2019) Constrained multi-
objective optimization for automated machine learning. In: 2019 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), pp 364–373, DOI 10.1109/DSAA.2019.00051

Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In:
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp 392–401, DOI 10.1145/2623330.2623613

29

www.cs.ucr.edu/~eamonn/time_series_data/
1610.07717
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://jmlr.org/papers/v7/demsar06a.html
http://www.sciencedirect.com/science/article/pii/S0020025513001473
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12495
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12495

Grabocka J, Wistuba M, Schmidt-Thieme L (2016) Fast classification of univariate and multivariate
time series through shapelet discovery. Knowledge and Information Systems 49(2):429–454, DOI
10.1007/s10115-015-0905-9

Hartvigsen T, Sen C, Kong X, Rundensteiner E (2019) Adaptive-halting policy network for early
classification. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp 101–110, DOI 10.1145/3292500.3330974

Hatami N, Chira C (2013) Classifiers with a reject option for early time-series classification. 2013
IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL) pp 9–16, DOI
10.1109/CIEL.2013.6613134

Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2013) Classification of time series by shapelet
transformation. Data Mining and Knowledge Discovery 28, DOI 10.1007/s10618-013-0322-1

Hoos HH (2012) Programming by optimization. Commun ACM 55(2):70–80, DOI 10.1145/2076450.
2076469, URL http://doi.acm.org/10.1145/2076450.2076469

Hutter F, Hoos HH, Leyton-Brown K, Murphy K (2009) An experimental investigation of model-based
parameter optimisation: SPO and beyond. In: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation (GECCO 2009), pp 271–278, DOI 10.1145/1569901.1569940

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm
configuration. In: Proceedings of the 5th International Conference on Learning and Intelligent
Optimization (LION 5), pp 507–523, DOI 10.1007/978-3-642-25566-3 40

Jin H, Song Q, Hu X (2019) Auto-keras: An efficient neural architecture search system. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM,
pp 1946–1956, DOI 10.1145/3292500.3330648

Koch P, Golovidov O, Gardner S, Wujek B, Griffin J, Xu Y (2018) Autotune: A derivative-free
optimization framework for hyperparameter tuning. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Association for Computing
Machinery, New York, NY, USA, KDD ’18, p 443–452, DOI 10.1145/3219819.3219837

Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing SAX: A novel symbolic representation of time
series. Data Mining and Knowledge Discovery 15:107–144, DOI 10.1007/s10618-007-0064-z

Lin J, Khade R, Li Y (2012) K rotation-invariant similarity in time series using bag-of-patterns
representation. Journal of Intelligent Information Systems 39, DOI 10.1007/s10844-012-0196-5

Lindauer M, Eggensperger K, Feurer M, Falkner S, Biedenkapp A, Hutter F (2017) SMAC v3: Algorithm
configuration in python. URL https://github.com/automl/SMAC3

Lines J, Davis L, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp 289–297, DOI 10.1145/2339530.2339579

Lv J, Hu X, Li L, Li P (2019) An effective confidence-based early classification of time series. IEEE
Access 7:96113–96124, DOI 10.1109/ACCESS.2019.2929644

Mori U, Mendiburu A, Keogh E, Lozano J (2016) Reliable early classification of time series based
on discriminating the classes over time. Data Mining and Knowledge Discovery 31, DOI 10.1007/
s10618-016-0462-1

Mori U, Mendiburu A, Dasgupta S, Lozano JA (2018) Early classification of time series by simultaneously
optimizing the accuracy and earliness. IEEE Transactions on Neural Networks and Learning Systems
29(10):4569–4578, DOI 10.1109/TNNLS.2017.2764939

30

http://doi.acm.org/10.1145/2076450.2076469
https://github.com/automl/SMAC3

Mori U, Mendiburu A, Miranda I, Lozano J (2019) Early classification of time series using multi-
objective optimization techniques. Information Sciences 492:204 – 218, DOI 10.1016/j.ins.2019.04.024,
URL http://www.sciencedirect.com/science/article/pii/S0020025519303317

Nemenyi P (1963) Distribution-free Multiple Comparisons. Princeton University, URL https://books.

google.nl/books?id=nhDMtgAACAAJ

Olson RS, Bartley N, Urbanowicz RJ, Moore JH (2016) Evaluation of a tree-based pipeline optimization
tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation
Conference 2016, ACM, New York, NY, USA, GECCO ’16, pp 485–492, DOI 10.1145/2908812.2908918

Parrish N, Anderson HS, Gupta MR, Hsiao DY (2013) Classifying with confidence from incomplete
information. Journal of Machine Learning Research 14:3561–3589, URL http://jmlr.org/papers/

v14/parrish13a.html

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830

Rakthanmanon T, Keogh E (2013) Fast shapelets: A scalable algorithm for discovering time series
shapelets. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp 668–676,
DOI 10.1137/1.9781611972832.74

Renard X, Rifqi M, Erray W, Detyniecki M (2015) Random-shapelet: An algorithm for fast shapelet
discovery. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
pp 1–10, DOI 10.1109/DSAA.2015.7344782

Rodŕıguez Diez JJ, Alonso González CJ (2002) Boosting Interval-Based Literals: Variable Length and
Early Classification, World Scientific, pp 149–171. DOI 10.1142/9789812565402 0007

Schäfer P, Leser U (2017) Fast and accurate time series classification with WEASEL. In: Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management, Association for
Computing Machinery, New York, NY, USA, CIKM ’17, p 637–646, DOI 10.1145/3132847.3132980

Schäfer P (2015) The BOSS is concerned with time series classification in the presence of noise. Data
Mining and Knowledge Discovery 29, DOI 10.1007/s10618-014-0377-7

Schäfer P, Leser U (2020) TEASER: Early and accurate time series classification. Data Mining and
Knowledge Discovery 34:1336–1362, DOI 10.1007/s10618-020-00690-z

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of machine learning algorithms.
In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in Neural Information
Processing Systems 25, Curran Associates, Inc., pp 2951–2959, URL http://papers.nips.cc/

paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf

Tari S, Szczepanski N, Mousin L, Jacques J, Kessaci ME, Jourdan L (2020) Multi-objective automatic
algorithm configuration for the classification problem of imbalanced data. In: 2020 IEEE Congress
on Evolutionary Computation (CEC), pp 1–8, DOI 10.1109/CEC48606.2020.9185785

Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-weka: combined selection and
hyperparameter optimization of classification algorithms. In: Dhillon IS, Koren Y, Ghani R,
Senator TE, Bradley P, Parekh R, He J, Grossman RL, Uthurusamy R (eds) The 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago,
IL, USA, August 11-14, 2013, ACM, pp 847–855, DOI 10.1145/2487575.2487629, URL http:

//doi.acm.org/10.1145/2487575.2487629

31

http://www.sciencedirect.com/science/article/pii/S0020025519303317
https://books.google.nl/books?id=nhDMtgAACAAJ
https://books.google.nl/books?id=nhDMtgAACAAJ
http://jmlr.org/papers/v14/parrish13a.html
http://jmlr.org/papers/v14/parrish13a.html
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://doi.acm.org/10.1145/2487575.2487629
http://doi.acm.org/10.1145/2487575.2487629

Wang X, Smith-Miles K, Hyndman R (2006) Characteristic-based clustering for time series data. Data
Mining and Knowledge Discovery 13:335–364, DOI 10.1007/s10618-005-0039-x

Xing Z, Pei J, Yu PS, Wang K (2011a) Extracting interpretable features for early classification on
time series. In: Proceedings of the Eleventh SIAM International Conference on Data Mining, SIAM /
Omnipress, pp 247–258, DOI 10.1137/1.9781611972818.22

Xing Zz, Pei J, Yu P (2011b) Early classification on time series. Knowledge and Information Systems
31, DOI 10.1007/s10115-011-0400-x

Ye L, Keogh E (2011) Time series shapelets: A novel technique that allows accurate, interpretable and
fast classification. Data Mining and Knowledge Discovery 22:149–182, DOI 10.1007/s10618-010-0179-5

Zhao C, Liu S, Pan L, Ji C, Yang C (2019) Selecting superior candidates from a suitable set: A
selective extraction algorithm for accelerating shapelet discovery in time series data. In: 2019 IEEE
23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp
404–409, DOI 10.1109/CSCWD.2019.8791861

Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation 8(2):173–195, DOI 10.1162/106365600568202

32

Appendix A

Additional, detailed results

This appendix provides tables of per-dataset median values of the three Pareto set performance metrics
that were computed. These metrics being hypervolume (see Section 5.4), ∆-spread (Eq. 5.2) and HM
metric (Eq. 5.1). The reported values are the medians of the 1000 bootstrap subsamples of size 10,
resampled from 25 runs (see Section 5.3). In some cases, not a single viable configuration was found in
any of the subsamples. In these cases the table entry is left blank.

33

method Fixed ECTS EDSC ECDIRE SR-CF RelClass TEASER ECEC EARLIEST SO-All MultiETSC
dataset

ACSF1 0.674 0.085 0.712 0.747 0.728 0.360 0.748 0.717
Adiac 0.562 0.162 0.591 0.076 0.526 0.563
AllGestureWiimoteX 0.100 0.000 0.399 0.332 0.160 0.306 0.363
AllGestureWiimoteY 0.100 0.011 0.472 0.409 0.185 0.350 0.415
AllGestureWiimoteZ 0.100 0.007 0.379 0.306 0.150 0.317 0.340
ArrowHead 0.661 0.129 0.523 0.639 0.551 0.655 0.731 0.733 0.381 0.601 0.682
BME 0.616 0.185 0.604 0.732 0.706 0.683 0.724 0.701 0.351 0.642 0.726
Beef 0.503 0.125 0.430 0.487 0.603 0.614 0.744 0.684 0.399 0.680 0.742
BeetleFly 0.747 0.203 0.463 0.617 0.617 0.549 0.827 0.645 0.748 0.633 0.625
BirdChicken 0.710 0.223 0.530 0.630 0.586 0.731 0.792 0.692 0.549 0.665 0.775
CBF 0.748 0.192 0.683 0.763 0.808 0.763 0.820 0.810 0.442 0.780 0.823
Car 0.678 0.179 0.557 0.658 0.602 0.507 0.863 0.819 0.283 0.763 0.836
Chinatown 0.945 0.169 0.763 0.927 0.925 0.854 0.827 0.821 0.931 0.933 0.945
ChlorineConcentration 0.593 0.191 0.627 0.667 0.654 0.533 0.648 0.667
CinCECGTorso 0.701 0.394 0.556 0.596 0.177 0.835 0.779 0.327 0.788 0.847
Coffee 0.893 0.280 0.826 0.818 0.844 0.898 0.862 0.874 0.534 0.816 0.895
Computers 0.575 0.049 0.593 0.593 0.511 0.744 0.738 0.531 0.741 0.745
CricketX 0.484 0.143 0.102 0.503 0.373 0.153 0.443 0.534
CricketY 0.490 0.124 0.315 0.515 0.419 0.166 0.446 0.504
CricketZ 0.493 0.134 0.102 0.557 0.343 0.148 0.464 0.497
DistalPhalanxOutlineAgeGroup 0.632 0.105 0.616 0.671 0.685 0.667 0.667 0.652 0.707
DistalPhalanxOutlineCorrect 0.693 0.107 0.650 0.661 0.661 0.665 0.744 0.713 0.648 0.675 0.757
DistalPhalanxTW 0.564 0.129 0.549 0.631 0.596 0.596 0.298 0.601 0.626
DodgerLoopDay 0.150 0.420 0.406 0.399 0.412
DodgerLoopGame 0.522 0.527 0.516 0.522
DodgerLoopWeekend 0.739 0.901 0.927 0.875 0.739
ECG200 0.854 0.362 0.737 0.812 0.817 0.795 0.849 0.832 0.633 0.846 0.860
ECG5000 0.904 0.070 0.718 0.851 0.900 0.893 0.610 0.902 0.915
ECGFiveDays 0.612 0.215 0.529 0.583 0.604 0.613 0.759 0.668 0.570 0.600 0.764
EOGHorizontalSignal 0.306 0.102 0.128 0.101 0.102 0.160 0.299
EOGVerticalSignal 0.295 0.068 0.086 0.082 0.086 0.213 0.296
Earthquakes 0.748 0.008 0.711 0.711 0.747 0.736 0.744 0.747 0.747 0.747
EthanolLevel 0.272 0.028 0.264 0.382 0.380 0.252 0.376 0.379
FaceAll 0.698 0.229 0.093 0.785 0.723 0.258 0.738 0.786
FaceFour 0.763 0.189 0.618 0.539 0.759 0.808 0.765 0.758 0.306 0.749 0.811
FacesUCR 0.647 0.077 0.521 0.351 0.781 0.723 0.192 0.705 0.751
Fish 0.696 0.218 0.353 0.581 0.844 0.777 0.308 0.798 0.758
FreezerRegularTrain 0.937 0.146 0.822 0.911 0.912 0.762 0.940 0.933 0.521 0.942 0.947
FreezerSmallTrain 0.724 0.209 0.828 0.642 0.636 0.763 0.900 0.926 0.750 0.750 0.933
GestureMidAirD1 0.226 0.018 0.281 0.177 0.153 0.262 0.240
GestureMidAirD2 0.161 0.001 0.233 0.138 0.069 0.229 0.222
GestureMidAirD3 0.139 0.003 0.138 0.085 0.084 0.134 0.141
GesturePebbleZ1 0.243 0.046 0.446 0.413 0.180 0.369 0.419
GesturePebbleZ2 0.249 0.040 0.375 0.292 0.164 0.308 0.357
GunPoint 0.881 0.491 0.742 0.825 0.816 0.776 0.856 0.873 0.662 0.803 0.899
GunPointAgeSpan 0.936 0.461 0.819 0.894 0.886 0.808 0.937 0.927 0.503 0.905 0.968
GunPointMaleVersusFemale 0.934 0.615 0.898 0.895 0.867 0.906 0.944 0.939 0.522 0.908 0.958
GunPointOldVersusYoung 0.976 0.675 0.956 0.917 0.936 0.974 0.965 0.967 0.520 0.952 0.984
Ham 0.635 0.071 0.424 0.664 0.656 0.713 0.719 0.715 0.513 0.653 0.723
HandOutlines 0.843 0.109 0.664 0.811 0.657 0.659 0.640 0.826 0.844
Haptics 0.378 0.016 0.355 0.211 0.381 0.385 0.260 0.358 0.377
Herring 0.594 0.058 0.521 0.564 0.623 0.643 0.611 0.621 0.593 0.593 0.624
HouseTwenty 0.703 0.055 0.735 0.716 0.487 0.914 0.917 0.580 0.880 0.912
InlineSkate 0.265 0.037 0.083 0.259 0.120 0.357 0.364 0.218 0.319 0.314
InsectEPGRegularTrain 0.995 0.555 0.991 0.926 0.950 0.998 0.946 0.931 0.998 0.998 0.999
InsectEPGSmallTrain 0.995 0.280 0.995 0.933 0.950 0.998 0.837 0.839 0.998 0.998 0.999
ItalyPowerDemand 0.791 0.200 0.666 0.787 0.793 0.794 0.712 0.709 0.658 0.682 0.822
LargeKitchenAppliances 0.464 0.070 0.341 0.537 0.528 0.333 0.439 0.527
Lightning2 0.685 0.079 0.663 0.573 0.639 0.591 0.694 0.665 0.671 0.671 0.693
Lightning7 0.452 0.060 0.443 0.194 0.449 0.490 0.577 0.509 0.355 0.495 0.532
Mallat 0.684 0.230 0.380 0.554 0.230 0.585 0.550 0.125 0.587 0.686
Meat 0.861 0.482 0.708 0.870 0.836 0.897 0.914 0.926 0.333 0.851 0.918
MedicalImages 0.693 0.291 0.546 0.587 0.691 0.664 0.509 0.678 0.698
MelbournePedestrian 0.100 0.719 0.684 0.654 0.706
MiddlePhalanxOutlineAgeGroup 0.514 0.107 0.561 0.553 0.574 0.526 0.564 0.557 0.567
MiddlePhalanxOutlineCorrect 0.689 0.130 0.613 0.642 0.711 0.768 0.729 0.674 0.563 0.647 0.752
MiddlePhalanxTW 0.467 0.081 0.453 0.553 0.508 0.497 0.526 0.494 0.511
MixedShapesRegularTrain 0.801 0.221 0.136 0.850 0.820 0.276 0.833 0.840
MixedShapesSmallTrain 0.715 0.240 0.567 0.708 0.182 0.833 0.731 0.262 0.725 0.822
MoteStrain 0.810 0.109 0.544 0.728 0.754 0.801 0.842 0.794 0.674 0.670 0.858
NonInvasiveFetalECGThorax1 0.787 0.142 0.063 0.741 0.765
NonInvasiveFetalECGThorax2 0.849 0.172 0.104 0.821 0.838
OSULeaf 0.498 0.077 0.324 0.373 0.684 0.617 0.313 0.596 0.653
OliveOil 0.800 0.384 0.673 0.672 0.789 0.874 0.923 0.866 0.399 0.852 0.919
PLAID 0.544 0.002 0.715 0.647 0.272 0.676 0.690
PhalangesOutlinesCorrect 0.706 0.120 0.617 0.745 0.718 0.703 0.633 0.707 0.743
PickupGestureWiimoteZ 0.505 0.001 0.670 0.632 0.180 0.637 0.668
Plane 0.933 0.560 0.808 0.923 0.867 0.930 0.942 0.586 0.899 0.948
PowerCons 0.807 0.199 0.606 0.801 0.805 0.745 0.830 0.764 0.563 0.713 0.852
ProximalPhalanxOutlineAgeGroup 0.766 0.140 0.790 0.778 0.818 0.800 0.780 0.820 0.839
ProximalPhalanxOutlineCorrect 0.768 0.131 0.678 0.714 0.771 0.746 0.817 0.793 0.702 0.725 0.836
ProximalPhalanxTW 0.693 0.115 0.726 0.654 0.770 0.756 0.347 0.761 0.773
RefrigerationDevices 0.434 0.032 0.466 0.272 0.552 0.550 0.333 0.549 0.547
Rock 0.456 0.145 0.487 0.380 0.629 0.459 0.420 0.555 0.449
ScreenType 0.409 0.022 0.309 0.402 0.412 0.338 0.400 0.394
SemgHandGenderCh2 0.793 0.129 0.810 0.820 0.673 0.694 0.695 0.551 0.800 0.838
SemgHandMovementCh2 0.501 0.059 0.321 0.327 0.233 0.452 0.500
SemgHandSubjectCh2 0.617 0.082 0.222 0.350 0.335 0.266 0.536 0.617
ShakeGestureWiimoteZ 0.595 0.000 0.671 0.629 0.239 0.623 0.704
ShapeletSim 0.505 0.018 0.446 0.475 0.491 0.504 0.705 0.651 0.499 0.503 0.630
ShapesAll 0.647 0.230 0.037 0.070 0.541 0.647
SmallKitchenAppliances 0.560 0.026 0.450 0.719 0.718 0.333 0.721 0.721
SmoothSubspace 0.702 0.069 0.518 0.730 0.758 0.671 0.659 0.311 0.614 0.796
SonyAIBORobotSurface1 0.761 0.152 0.586 0.750 0.676 0.833 0.800 0.810 0.618 0.745 0.801
SonyAIBORobotSurface2 0.754 0.366 0.502 0.700 0.657 0.730 0.748 0.717 0.660 0.657 0.792
StarLightCurves 0.887 0.104 0.883 0.884 0.826 0.882 0.893
Strawberry 0.928 0.449 0.824 0.881 0.859 0.931 0.922 0.641 0.908 0.941
SwedishLeaf 0.714 0.139 0.290 0.785 0.260 0.719 0.778
SyntheticControl 0.788 0.068 0.593 0.819 0.889 0.860 0.643 0.858 0.900
ToeSegmentation1 0.624 0.057 0.702 0.521 0.525 0.567 0.827 0.803 0.507 0.513 0.762
ToeSegmentation2 0.829 0.205 0.559 0.774 0.623 0.664 0.789 0.834 0.483 0.658 0.840
Trace 0.745 0.334 0.668 0.622 0.712 0.622 0.865 0.729 0.667 0.736 0.857
TwoLeadECG 0.776 0.214 0.727 0.802 0.827 0.720 0.819 0.843 0.611 0.829 0.873
TwoPatterns 0.516 0.121 0.456 0.456 0.362 0.259 0.425 0.486
UMD 0.576 0.158 0.532 0.589 0.682 0.594 0.742 0.637 0.338 0.593 0.722
UWaveGestureLibraryAll 0.784 0.156 0.386 0.285 0.674 0.779
UWaveGestureLibraryX 0.574 0.069 0.111 0.478 0.262 0.291 0.523 0.583
UWaveGestureLibraryY 0.519 0.056 0.147 0.443 0.279 0.462 0.523
UWaveGestureLibraryZ 0.545 0.064 0.152 0.436 0.284 0.489 0.547
Wafer 0.989 0.558 0.920 0.920 0.975 0.979 0.975 0.886 0.986 0.997
Wine 0.640 0.471 0.670 0.623 0.581 0.717 0.694 0.694 0.498 0.554 0.678
WordSynonyms 0.468 0.068 0.048 0.460 0.374 0.219 0.425 0.474
Worms 0.499 0.070 0.494 0.311 0.637 0.593 0.428 0.644 0.649
WormsTwoClass 0.711 0.078 0.538 0.565 0.571 0.689 0.568 0.571 0.596 0.721
Yoga 0.769 0.201 0.748 0.745 0.575 0.815 0.802 0.545 0.775 0.817

Table A.1: Median hypervolume metric for compared methods on different datasets in the UCR Archive.
Best values are marked. Cases where no configurations are found are left blank.

34

method Fixed ECTS EDSC ECDIRE SR-CF RelClass TEASER ECEC EARLIEST SO-All MultiETSC
dataset

ACSF1 0.663 0.530 0.965 0.942 0.901 0.832 0.924 0.872
Adiac 1.019 0.938 0.656 0.975 0.894 0.968
AllGestureWiimoteX 0.762 0.838 0.949 0.735 0.842
AllGestureWiimoteY 0.983 0.750 0.848 0.921 0.974 0.725
AllGestureWiimoteZ 0.805 0.863 0.964 0.771 0.810
ArrowHead 0.918 0.996 0.822 0.872 0.813 0.887 0.838 0.825 0.982 0.892 0.800
BME 0.896 0.919 0.925 0.799 0.863 0.737 0.764 0.786 0.976 0.898 0.833
Beef 0.784 0.915 0.764 0.758 0.792 0.818 0.922 0.956 0.769 0.773
BeetleFly 0.942 0.892 0.936 0.941 0.440 0.718 0.939 0.859 0.941 0.882
BirdChicken 0.913 0.908 0.859 0.877 0.704 0.723 0.711 0.921 0.970 0.882 0.843
CBF 0.895 0.875 0.917 0.975 0.918 0.905 0.823 0.909 0.995 0.876 0.883
Car 0.750 0.981 0.933 0.895 0.936 0.924 0.797 0.851 0.946 0.898 0.756
Chinatown 0.638 0.956 0.958 0.989 0.978 0.977 0.870 0.951 0.638
ChlorineConcentration 0.975 0.998 0.683 0.956 0.906 0.998 0.944 0.848
CinCECGTorso 0.869 0.971 0.874 0.957 1.000 0.867 0.934 0.996 0.950 0.847
Coffee 0.853 0.845 0.852 0.827 0.838 0.853 0.858 0.957 0.959 0.872
Computers 0.960 0.974 0.988 0.975 0.998 1.125 0.970 0.971 0.965 0.971
CricketX 0.728 0.953 0.419 0.867 0.888 0.996 0.937 0.794
CricketY 0.754 0.752 0.876 0.858 0.983 0.921 0.828
CricketZ 0.793 0.977 0.363 0.788 0.897 0.993 0.900 0.811
DistalPhalanxOutlineAgeGroup 0.907 0.943 0.913 0.947 0.758 0.682 0.878 0.884 0.790
DistalPhalanxOutlineCorrect 0.941 0.958 0.844 0.876 0.629 1.018 0.841 0.796 0.981 0.954 0.836
DistalPhalanxTW 0.872 0.989 0.875 0.930 0.851 0.655 0.938 0.842
DodgerLoopDay 0.748 0.893 0.853 0.843
DodgerLoopGame 0.865 0.791 0.861 0.508
DodgerLoopWeekend 0.852 0.953 0.994 0.885
ECG200 0.933 0.962 0.934 0.948 0.917 0.847 0.930 1.024 0.994 0.938 0.898
ECG5000 0.900 0.988 0.856 0.868 1.098 0.968 0.993 0.934 0.995
ECGFiveDays 0.977 0.856 0.918 0.940 0.785 0.890 1.037 0.991 0.943 0.938
EOGHorizontalSignal 0.828 0.966 0.998 0.940 0.982 0.987 0.960 0.829
EOGVerticalSignal 0.912 0.990 0.953 0.983 0.996 0.964 0.892
Earthquakes 0.995 0.772 0.579
EthanolLevel 0.978 0.995 1.021 0.958 0.996 0.979 0.984
FaceAll 0.766 0.955 0.364 0.774 0.991 0.966 0.987 0.803
FaceFour 0.879 0.864 0.817 0.661 0.887 0.826 0.919 0.978 0.905 0.858
FacesUCR 0.729 0.968 0.773 0.906 0.775 0.933 0.997 0.778 0.803
Fish 0.773 0.949 0.835 0.771 0.939 0.891 0.863 0.766
FreezerRegularTrain 0.878 0.943 0.889 1.035 0.800 0.962 1.037 0.986 0.922 0.939
FreezerSmallTrain 0.802 0.898 0.975 0.950 0.998 1.027 0.963 0.996 0.815 0.814
GestureMidAirD1 0.896 0.968 0.817 0.873 0.965 0.835 0.945
GestureMidAirD2 0.896 0.790 0.901 0.979 0.834 0.906
GestureMidAirD3 0.956 0.996 0.807 0.875 0.984 0.871 0.978
GesturePebbleZ1 0.958 0.917 0.673 0.808 0.980 0.718 0.807
GesturePebbleZ2 0.945 0.929 0.680 0.877 0.991 0.737 0.895
GunPoint 0.841 0.944 0.873 0.913 0.926 0.872 0.889 0.872 0.971 0.907 0.851
GunPointAgeSpan 1.040 0.700 0.897 0.977 0.956 0.912 1.070 0.910 0.992 0.961 0.953
GunPointMaleVersusFemale 0.930 0.987 0.881 0.845 0.952 1.001 1.031 0.983 0.969 0.934 0.898
GunPointOldVersusYoung 1.051 0.950 0.988 0.969 0.975 1.079 0.985 0.971 0.990 1.023
Ham 0.936 0.834 0.910 0.954 0.902 0.957 0.876 0.982 0.946 0.890
HandOutlines 0.928 0.948 0.975 0.836 0.997 0.990 0.987 0.835 0.934 0.912
Haptics 0.896 0.958 0.880 0.965 0.954 0.972 0.931 0.937
Herring 0.727 0.991 0.890 0.757 0.959 0.953
HouseTwenty 0.946 0.947 0.953 0.878 0.972 0.847 0.917 0.904 0.924 0.920
InlineSkate 0.910 0.978 0.828 0.999 0.945 0.988 0.963 0.904 0.971
InsectEPGRegularTrain 0.736 0.915 1.026 0.979 0.737
InsectEPGSmallTrain 0.736 0.868 0.987 0.797 0.737
ItalyPowerDemand 0.742 0.966 0.782 0.899 0.953 0.897 0.809 0.834 0.995 0.979 0.817
LargeKitchenAppliances 0.860 0.953 0.979 0.994 0.991 0.941 0.886
Lightning2 0.805 0.943 0.834 0.958 0.982 0.673 0.899 0.963 0.981 0.952 0.924
Lightning7 0.823 0.991 0.756 0.905 0.962 0.787 0.739 0.965 0.991 0.805 0.789
Mallat 0.889 0.961 0.942 0.912 0.929 0.904 0.930 0.999 0.926 0.750
Meat 0.706 0.892 0.883 0.942 0.928 0.931 1.061 0.895 0.806 0.983 0.921
MedicalImages 0.911 0.889 0.835 0.868 0.850 0.938 0.911 1.059
MelbournePedestrian 0.686 0.938 0.913 0.891
MiddlePhalanxOutlineAgeGroup 0.897 0.962 0.978 0.886 0.959 0.761 0.767 0.793 0.802
MiddlePhalanxOutlineCorrect 0.828 0.968 0.828 0.961 0.885 0.945 0.772 0.867 0.941 0.712
MiddlePhalanxTW 0.985 0.961 1.028 0.879 0.953 0.920 0.852 0.786
MixedShapesRegularTrain 0.940 0.950 0.997 1.034 0.963 0.967 0.965 0.931
MixedShapesSmallTrain 0.831 0.918 0.920 0.988 0.994 0.937 0.962 0.991 0.977 0.858
MoteStrain 0.951 0.937 0.953 0.871 0.997 0.943 0.944 0.995 0.834 0.918
NonInvasiveFetalECGThorax1 1.099 0.971 0.994 1.163 1.077
NonInvasiveFetalECGThorax2 1.221 0.925 0.965 0.981 0.819
OSULeaf 0.884 0.926 0.953 0.881 0.906 0.890 0.929 0.874 0.837
OliveOil 0.830 0.949 0.811 0.828 0.856 0.889 0.740 0.859 0.920 0.806
PLAID 0.988 0.999 0.795 0.949 0.926 0.824 0.934
PhalangesOutlinesCorrect 0.912 0.972 0.960 0.874 0.808 0.842 0.999 0.944 0.860
PickupGestureWiimoteZ 0.739 0.699 0.832 0.974 0.667 0.571
Plane 0.944 0.981 0.911 0.995 0.965 1.008 0.831 0.966 0.903 0.938
PowerCons 1.006 0.882 0.811 0.862 0.867 0.965 0.767 0.892 0.960 0.872 0.780
ProximalPhalanxOutlineAgeGroup 0.928 0.982 0.833 0.958 0.914 0.832 0.942 0.770
ProximalPhalanxOutlineCorrect 0.922 0.959 0.845 0.987 0.905 0.878 0.843 0.854 0.992 0.971 0.820
ProximalPhalanxTW 0.878 0.982 0.938 0.950 0.943 0.918 0.778 0.895 0.797
RefrigerationDevices 0.935 0.995 0.983 0.911 1.025 0.966 0.957 0.875 0.929
Rock 0.915 0.843 0.923 0.939 0.936 0.980 0.975 0.863 0.878
ScreenType 0.984 0.683 0.938 0.972 0.996 0.953 0.977
SemgHandGenderCh2 0.909 0.956 0.871 0.935 0.999 0.993 0.977 0.887 0.825 0.876
SemgHandMovementCh2 0.802 0.956 0.976 0.980 0.988 0.842 0.793
SemgHandSubjectCh2 0.793 0.960 1.010 0.978 0.962 0.739 0.784
ShakeGestureWiimoteZ 0.780 0.677 0.831 0.932 0.769 0.561
ShapeletSim 0.969 0.979 0.946 0.969 0.871 0.642 0.738 0.997 0.706 0.741
ShapesAll 0.782 0.895 0.967 0.945 0.768
SmallKitchenAppliances 0.968 1.082 0.989 0.998 0.835 0.895
SmoothSubspace 0.506 0.888 0.926 0.725 0.794 0.871 0.871 0.898 0.817
SonyAIBORobotSurface1 0.830 0.955 0.957 0.940 0.454 0.972 0.874 0.793 0.986 0.922 0.806
SonyAIBORobotSurface2 0.950 0.977 0.973 0.987 0.912 0.987 0.993 0.974 0.993 0.993 0.901
StarLightCurves 0.950 0.997 1.168 0.983 0.999 0.975 0.950
Strawberry 0.868 0.870 0.944 0.959 0.911 1.124 0.911 0.905 0.866
SwedishLeaf 0.872 0.994 1.129 0.899 0.908 0.970 0.885
SyntheticControl 0.716 0.980 0.905 0.838 0.792 0.897 0.955 0.855 0.656
ToeSegmentation1 0.912 0.854 0.803 0.957 0.764 0.797 0.935 0.997 0.937 0.899
ToeSegmentation2 0.920 0.954 0.861 0.887 0.625 0.849 0.694 0.848 0.844 0.931 0.769
Trace 0.646 0.891 0.845 0.748 0.942 0.753 0.619 0.966 0.942 0.948 0.673
TwoLeadECG 0.846 0.835 0.850 0.724 0.766 0.940 0.920 0.774 0.993 0.833 0.871
TwoPatterns 0.588 0.998 0.850 0.833 0.917 0.997 0.840 0.948
UMD 0.937 0.941 0.901 0.854 0.858 0.699 0.703 0.808 0.977 0.837 0.675
UWaveGestureLibraryAll 0.616 0.970 0.867 0.993 0.997 0.997 0.649
UWaveGestureLibraryX 0.682 0.984 0.996 0.913 0.951 0.995 0.901 0.769
UWaveGestureLibraryY 0.739 0.996 0.998 0.855 0.879 0.999 0.919 0.821
UWaveGestureLibraryZ 0.766 0.984 1.000 0.915 0.992 0.948 0.819
Wafer 0.951 0.989 0.998 0.991 0.939 1.198 0.992 0.954 0.944
Wine 0.936 0.577 0.887 0.882 0.876 0.950 0.856 0.883 0.966 0.950 0.892
WordSynonyms 0.770 0.965 0.304 0.854 0.964 0.817 0.831
Worms 0.951 0.951 0.935 0.960 0.933 0.897 0.919
WormsTwoClass 0.908 0.907 0.754 0.978 0.936 0.914 0.914 0.884
Yoga 1.040 0.970 0.937 0.981 0.915 0.955 0.919 0.994 0.926 0.923

Table A.2: Median ∆-spread for compared methods on different datasets in the UCR Archive. Best
values are marked. Cases where no configurations are found are left blank.

35

method Fixed ECTS EDSC ECDIRE SR-CF RelClass TEASER ECEC EARLIEST SO-All MultiETSC
dataset

ACSF1 0.194 0.759 0.162 0.153 0.158 0.471 0.144 0.165
Adiac 0.330 0.630 0.262 0.858 0.325 0.330
AllGestureWiimoteX 0.818 0.992 0.501 0.533 0.724 0.539 0.534
AllGestureWiimoteY 0.818 0.937 0.454 0.471 0.687 0.471 0.475
AllGestureWiimoteZ 0.818 0.949 0.526 0.556 0.739 0.535 0.556
ArrowHead 0.300 0.733 0.354 0.303 0.314 0.280 0.243 0.250 0.447 0.292 0.292
BME 0.264 0.627 0.231 0.267 0.231 0.291 0.253 0.238 0.479 0.265 0.236
Beef 0.465 0.707 0.379 0.349 0.317 0.355 0.192 0.198 0.429 0.196 0.166
BeetleFly 0.150 0.603 0.332 0.228 0.228 0.291 0.148 0.219 0.144 0.221 0.251
BirdChicken 0.303 0.551 0.312 0.277 0.324 0.213 0.177 0.188 0.291 0.205 0.169
CBF 0.210 0.643 0.216 0.193 0.179 0.243 0.218 0.189 0.385 0.185 0.180
Car 0.303 0.642 0.287 0.330 0.269 0.369 0.172 0.200 0.559 0.168 0.189
Chinatown 0.034 0.701 0.144 0.037 0.038 0.076 0.091 0.094 0.035 0.034 0.034
ChlorineConcentration 0.305 0.590 0.306 0.277 0.286 0.303 0.300 0.276
CinCECGTorso 0.337 0.411 0.382 0.328 0.700 0.126 0.136 0.507 0.124 0.123
Coffee 0.104 0.562 0.157 0.175 0.149 0.112 0.119 0.118 0.303 0.109 0.103
Computers 0.280 0.852 0.247 0.247 0.323 0.154 0.155 0.306 0.153 0.152
CricketX 0.415 0.653 0.814 0.343 0.439 0.733 0.408 0.324
CricketY 0.418 0.687 0.541 0.341 0.385 0.714 0.409 0.378
CricketZ 0.385 0.672 0.814 0.309 0.470 0.741 0.361 0.385
DistalPhalanxOutlineAgeGroup 0.245 0.731 0.238 0.279 0.217 0.216 0.198 0.216 0.216
DistalPhalanxOutlineCorrect 0.217 0.752 0.229 0.197 0.197 0.281 0.205 0.205 0.212 0.197 0.187
DistalPhalanxTW 0.300 0.684 0.335 0.251 0.267 0.258 0.537 0.265 0.258
DodgerLoopDay 0.739 0.443 0.451 0.459 0.451
DodgerLoopGame 0.314 0.330 0.317 0.314
DodgerLoopWeekend 0.150 0.056 0.055 0.065 0.150
ECG200 0.138 0.446 0.165 0.134 0.125 0.197 0.129 0.131 0.223 0.124 0.133
ECG5000 0.092 0.862 0.156 0.102 0.069 0.070 0.243 0.092 0.090
ECGFiveDays 0.246 0.599 0.344 0.255 0.239 0.335 0.186 0.311 0.272 0.248 0.246
EOGHorizontalSignal 0.571 0.700 0.771 0.815 0.815 0.653 0.571
EOGVerticalSignal 0.552 0.756 0.842 0.847 0.842 0.568 0.558
Earthquakes 0.144 0.978 0.163 0.163 0.145 0.153 0.146 0.145 0.145 0.145
EthanolLevel 0.581 0.855 0.582 0.449 0.450 0.597 0.456 0.452
FaceAll 0.236 0.573 0.774 0.174 0.157 0.588 0.236 0.236
FaceFour 0.198 0.640 0.268 0.314 0.155 0.165 0.178 0.170 0.531 0.173 0.173
FacesUCR 0.319 0.819 0.409 0.542 0.217 0.229 0.676 0.232 0.236
Fish 0.266 0.591 0.466 0.301 0.190 0.196 0.529 0.185 0.194
FreezerRegularTrain 0.114 0.717 0.112 0.116 0.115 0.284 0.129 0.127 0.315 0.115 0.114
FreezerSmallTrain 0.201 0.587 0.149 0.211 0.215 0.158 0.145 0.137 0.143 0.142 0.142
GestureMidAirD1 0.622 0.894 0.573 0.680 0.733 0.599 0.615
GestureMidAirD2 0.710 0.980 0.624 0.742 0.871 0.630 0.626
GestureMidAirD3 0.741 0.959 0.724 0.832 0.844 0.752 0.741
GesturePebbleZ1 0.615 0.806 0.502 0.503 0.695 0.503 0.507
GesturePebbleZ2 0.611 0.827 0.553 0.559 0.717 0.593 0.559
GunPoint 0.171 0.331 0.184 0.168 0.169 0.254 0.177 0.180 0.202 0.187 0.172
GunPointAgeSpan 0.063 0.360 0.231 0.073 0.085 0.180 0.096 0.099 0.329 0.065 0.063
GunPointMaleVersusFemale 0.132 0.235 0.164 0.122 0.149 0.145 0.094 0.119 0.313 0.105 0.105
GunPointOldVersusYoung 0.037 0.193 0.046 0.052 0.052 0.034 0.025 0.026 0.314 0.027 0.027
Ham 0.257 0.806 0.365 0.256 0.256 0.254 0.221 0.216 0.321 0.218 0.226
HandOutlines 0.172 0.780 0.201 0.176 0.207 0.206 0.219 0.191 0.172
Haptics 0.477 0.924 0.464 0.652 0.447 0.443 0.588 0.480 0.487
Herring 0.255 0.825 0.292 0.269 0.224 0.271 0.251 0.237 0.255 0.255 0.244
HouseTwenty 0.207 0.854 0.213 0.173 0.334 0.084 0.084 0.266 0.092 0.099
InlineSkate 0.626 0.832 0.825 0.593 0.786 0.476 0.466 0.642 0.516 0.522
InsectEPGRegularTrain 0.005 0.286 0.004 0.038 0.026 0.001 0.039 0.037 0.001 0.001 0.001
InsectEPGSmallTrain 0.005 0.563 0.003 0.034 0.026 0.001 0.090 0.087 0.001 0.001 0.001
ItalyPowerDemand 0.226 0.653 0.272 0.186 0.192 0.213 0.251 0.251 0.201 0.186 0.192
LargeKitchenAppliances 0.371 0.778 0.491 0.303 0.309 0.500 0.389 0.310
Lightning2 0.298 0.806 0.226 0.261 0.213 0.271 0.215 0.211 0.197 0.197 0.197
Lightning7 0.411 0.828 0.408 0.619 0.378 0.389 0.389 0.391 0.475 0.401 0.389
Mallat 0.284 0.600 0.432 0.294 0.624 0.312 0.328 0.778 0.288 0.290
Meat 0.119 0.354 0.218 0.122 0.112 0.108 0.084 0.077 0.500 0.090 0.077
MedicalImages 0.216 0.478 0.317 0.335 0.229 0.237 0.323 0.225 0.216
MelbournePedestrian 0.817 0.264 0.267 0.262 0.270
MiddlePhalanxOutlineAgeGroup 0.351 0.710 0.265 0.318 0.289 0.309 0.277 0.309 0.309
MiddlePhalanxOutlineCorrect 0.259 0.722 0.251 0.231 0.224 0.241 0.238 0.270 0.277 0.238 0.238
MiddlePhalanxTW 0.382 0.762 0.401 0.287 0.351 0.336 0.308 0.336 0.349
MixedShapesRegularTrain 0.230 0.611 0.760 0.094 0.105 0.568 0.100 0.106
MixedShapesSmallTrain 0.279 0.566 0.319 0.241 0.691 0.156 0.160 0.585 0.163 0.163
MoteStrain 0.147 0.782 0.297 0.170 0.162 0.163 0.133 0.130 0.193 0.196 0.143
NonInvasiveFetalECGThorax1 0.152 0.715 0.881 0.153 0.152
NonInvasiveFetalECGThorax2 0.126 0.680 0.811 0.125 0.128
OSULeaf 0.388 0.762 0.501 0.454 0.273 0.269 0.522 0.277 0.265
OliveOil 0.205 0.426 0.258 0.240 0.164 0.094 0.104 0.101 0.429 0.097 0.110
PLAID 0.308 0.975 0.219 0.224 0.573 0.224 0.227
PhalangesOutlinesCorrect 0.240 0.738 0.229 0.227 0.230 0.232 0.223 0.230 0.238
PickupGestureWiimoteZ 0.331 0.970 0.300 0.314 0.695 0.310 0.316
Plane 0.087 0.279 0.126 0.076 0.112 0.086 0.101 0.259 0.098 0.095
PowerCons 0.171 0.657 0.281 0.172 0.176 0.311 0.186 0.192 0.279 0.176 0.176
ProximalPhalanxOutlineAgeGroup 0.144 0.712 0.116 0.208 0.116 0.120 0.123 0.119 0.109
ProximalPhalanxOutlineCorrect 0.188 0.729 0.229 0.167 0.171 0.243 0.175 0.177 0.173 0.175 0.168
ProximalPhalanxTW 0.217 0.733 0.166 0.284 0.167 0.169 0.482 0.169 0.175
RefrigerationDevices 0.396 0.868 0.353 0.542 0.294 0.304 0.500 0.293 0.294
Rock 0.391 0.636 0.345 0.437 0.254 0.370 0.409 0.292 0.408
ScreenType 0.437 0.898 0.520 0.432 0.427 0.494 0.436 0.437
SemgHandGenderCh2 0.212 0.751 0.182 0.184 0.195 0.201 0.195 0.289 0.194 0.182
SemgHandMovementCh2 0.384 0.830 0.515 0.504 0.622 0.390 0.384
SemgHandSubjectCh2 0.311 0.814 0.636 0.486 0.499 0.579 0.318 0.311
ShakeGestureWiimoteZ 0.265 0.995 0.251 0.275 0.613 0.253 0.263
ShapeletSim 0.333 0.934 0.349 0.345 0.331 0.329 0.330 0.316 0.334 0.334 0.331
ShapesAll 0.310 0.566 0.929 0.869 0.310 0.310
SmallKitchenAppliances 0.285 0.876 0.379 0.164 0.167 0.500 0.163 0.167
SmoothSubspace 0.277 0.865 0.306 0.282 0.286 0.291 0.301 0.509 0.277 0.277
SonyAIBORobotSurface1 0.142 0.672 0.235 0.141 0.183 0.108 0.124 0.124 0.234 0.155 0.142
SonyAIBORobotSurface2 0.201 0.427 0.301 0.176 0.200 0.178 0.181 0.181 0.204 0.205 0.181
StarLightCurves 0.109 0.787 0.075 0.076 0.095 0.078 0.085
Strawberry 0.111 0.368 0.131 0.116 0.142 0.097 0.109 0.218 0.106 0.095
SwedishLeaf 0.259 0.710 0.665 0.173 0.585 0.223 0.259
SyntheticControl 0.201 0.859 0.308 0.192 0.146 0.164 0.235 0.169 0.146
ToeSegmentation1 0.299 0.852 0.257 0.323 0.301 0.317 0.243 0.242 0.326 0.319 0.269
ToeSegmentation2 0.102 0.629 0.316 0.187 0.300 0.316 0.208 0.114 0.348 0.218 0.102
Trace 0.154 0.442 0.274 0.225 0.208 0.384 0.144 0.156 0.199 0.156 0.178
TwoLeadECG 0.207 0.584 0.232 0.198 0.206 0.229 0.186 0.209 0.239 0.198 0.198
TwoPatterns 0.508 0.764 0.455 0.446 0.511 0.586 0.463 0.453
UMD 0.302 0.672 0.286 0.275 0.253 0.372 0.257 0.300 0.493 0.290 0.310
UWaveGestureLibraryAll 0.249 0.718 0.435 0.556 0.250 0.251
UWaveGestureLibraryX 0.384 0.833 0.799 0.367 0.568 0.549 0.384 0.384
UWaveGestureLibraryY 0.422 0.848 0.743 0.391 0.563 0.423 0.422
UWaveGestureLibraryZ 0.393 0.829 0.735 0.401 0.556 0.393 0.393
Wafer 0.013 0.282 0.041 0.041 0.060 0.021 0.022 0.060 0.013 0.013
Wine 0.263 0.365 0.209 0.234 0.272 0.207 0.208 0.257 0.334 0.269 0.263
WordSynonyms 0.471 0.811 0.867 0.402 0.451 0.640 0.433 0.433
Worms 0.365 0.774 0.328 0.526 0.243 0.259 0.400 0.241 0.241
WormsTwoClass 0.216 0.797 0.297 0.318 0.273 0.231 0.277 0.273 0.261 0.216
Yoga 0.184 0.621 0.182 0.179 0.293 0.164 0.174 0.294 0.169 0.166

Table A.3: Median HM metric for compared methods on different datasets in the UCR Archive. Best
values are marked. Cases where no configurations are found are left blank.

36

	Introduction
	Problem Statement
	Preliminaries
	Problem Definition

	Related Work
	TSC Methods
	EarlyTSC Methods
	Automated Machine Learning

	MultiETSC
	Configuration Space
	Algorithm Performance
	Algorithm Configurator

	Experimental Evaluation
	Baselines
	Data
	Evaluation Protocol
	Evaluation Metrics
	Results

	Conclusions and Future Work
	Possible Improvements to MultiETSC
	Further Future Work

	Additional, detailed results

