
Thomas de Mol

Synchronized Cherries

Bachelor thesis

July 13, 2021

Thesis supervisors: M.J.H. van den Bergh
W.A. Kosters

Leiden University
Mathematical Institute

Leiden Institute of Advanced Computer Science

Abstract

Cherries is a two-player game in which the players repeatedly remove
cherries of their own color from the front or back of a segment of black
and white cherries. Played as a combinatorial game (the players alternate
taking turns), there is a simple method for determining the winner of
any Cherries game. However, if we play Cherries as a synchronized game
(the players pick their cherries at the same time), this is not the case.
In this thesis, we propose a method for determining the winner of any
Synchronized Cherries game by reducing it to a simpler game we call
Synchronized Stack Cherries. We also present an algorithm based on this
approach and analyze its complexity.

Contents

1 Introduction 1

2 Combinatorial Games 2

3 Combinatorial Cherries 7

4 Synchronized Games 9

4.1 Equality of Synchronized Games 10

4.2 Synchronizing Combinatorial Games 12

5 Synchronized Cherries 17

5.1 Stack Cherries . 19

5.2 Cherries Decomposition . 31

6 Algorithms for Synchronized Cherries 36

6.1 Stack Cherries Decomposition . 36

6.2 Outcome of a Sum of Basis Elements 39

6.3 Cherries Decomposition . 41

7 Cherries Variants 43

7.1 Plus-Minus Stack Cherries . 43

7.2 Gray Cherries . 46

8 Conclusions and Further Research 49

References 51

1 Introduction

Synchronized games are games in which each player simultaneously picks an
action, without knowing what the other players will do. Synchronized games
are most often discussed in the context of probabilities. For example, in the
synchronized game Rock paper scissors, we consider each action to result in a
one in three chance of winning, a one in three chance of losing, and a one in
three chance of a draw. Using such an approach, we usually try to find a Nash
equilibrium of a game in order to assign it a value. For some synchronized games,
however, a probabilistic approach does not seem very useful. An example of such
a game is the game Cherries.

Cherries is a two-player game played on one or more segments of black and
white cherries. The players repeatedly remove cherries of their own color from
the front or back of a segment. If a player has no moves available when it is their
turn, they lose the game. Cherries can be played both as a synchronized game,
where the players pick which cherry they want to remove at the same time, or
as a combinatorial game, where the players alternate taking turns.

Example 1.1. Consider the Cherries game , consisting of

one segment. If we play this game combinatorially and the black player starts,
the game may play out as follows:

B−→ W−→ B−→

At this point it is white’s turn to move, but both outer cherries are black, so
white loses.

We will see that it is relatively simple to determine the winner of any combina-
torial Cherries game if both players play perfectly. For the synchronized case,
however, this is not as straightforward. The goal of this thesis is to find a method
for determining the winner of any Synchronized Cherries game.

We will start in Section 2 by providing a concise introduction to the theory
of combinatorial games, and use this to analyze the combinatorial version of
Cherries in Section 3. In Section 4, we will properly define what a synchronized
game is and discuss some of the difficulties that arise with this definition. We
will also examine a subset of combinatorial games that naturally give rise to
synchronized versions of these games. Section 5 contains our main results about
Synchronized Cherries; we will propose a method for decomposing any Cherries
game into a so-called Stack Cherries game and give an extensive overview of the
theory of Synchronized Stack Cherries. We will apply this knowledge in Section 6
to design an algorithm for determining the winner of any Cherries game. Lastly,
in Section 7 we will briefly examine some Cherries variants. Section 8 concludes.

This thesis was written for the bachelor programs Mathematics and Computer
Science at Leiden University, under the supervision of Mark van den Bergh (MI)
and Walter Kosters (LIACS).

1

2 Combinatorial Games

In this section, we introduce some concepts and theorems from the field of
combinatorial game theory based on [ANW19], to help us analyze the game of
Cherries. The first thing we need to do to start analyzing games is properly
defining what a game is. In combinatorial game theory, we look at two-player
games that do not involve randomness of any kind and in which the players
have perfect information about the state of the game. The players alternately
take turns moving, until the player whose turn it is has no legal moves left. In
this thesis, we will only consider normal play, where the last player to make a
move wins. We will refer to the two players as Left and Right. The left player
is associated with the color black and is referred to as female, while the right
player gets the color white and is referred to as male.

Definition 2.1. We define a combinatorial game G as a set of left options and
a set of right options. The set of left options is the, possibly empty, finite set of
combinatorial games to which Left can play by making a move on the game G,
and similarly for the right options. We use the notation G = {GL | GR}, where
GL is the set of left options and GR the set of right options.

Example 2.2. Consider the combinatorial Cherries game G = .

If it is the left (black) player’s turn to move, she can remove the first cherry,

resulting in the game . If it is the right (white) player’s turn to

move, he can remove the last cherry, resulting in the game . Thus,

GL =

{ }
and GR =

{ }
. In practice, we often omit

the braces around the left and right options of a game, leaving us with

=

{
|

}
Note that this definition is recursive, since we define a game as two sets of other
games. This recursion does not have to go on forever, since the sets of left and
right options may be empty. In fact, in this thesis, we will only be looking at
games where this recursion ends at some point, or in other words games that
always end after a finite amount of moves. Such games are called short games.
We give the game with no left and right options the name zero: 0 = {∅ | ∅}, or
more concise, 0 = { | }. We introduce the concept of the birthday of a game to
concretely define the finiteness of this recursion.

Definition 2.3. We define the birthday of the game zero to be 0. For any other
game G = {GL | GR}, we recursively define the birthday of G as the maximum
birthday of any game in GL or GR plus one.

In other words, we can think of the birthday of a game G as the length of the
longest sequence of left and right moves from G until we have reached the empty

2

game 0. It follows that the birthday of a Cherries segment is equal to the length
n of the segment, since we have only reached the game 0 after all n cherries have
been removed.

For games with a finite birthday, if both players play perfectly, the winner can
already be determined if we know which player moves first.

Theorem 2.4 (Fundamental Theorem of Combinatorial Games). Let G be a
combinatorial game with finite birthday and suppose that Left moves first. Then
either Left has a move that allows her to win no matter what Right does, or for
every move by Left there is a responding move by Right such that he can always
win, but not both.

Proof. For every left option GL of G, either Right has a winning move playing
first or Left has a winning response to every move by Right by induction on
the birthday of GL. If for every left option GL of G Right has a winning move
playing first on GL, then this means Right always has a winning move playing
second on G. Otherwise, there exists some left option GL of G such that Left
has a winning response to every move by Right on GL, which means that Left
has a winning move on G.

This theorem allows us to split all combinatorial games into four categories,
based on which player can win when Left moves first and which player can
win when Right moves first. We call this category the outcome class of a game,
denoted by o(G). We label these four classes L, N , P and R. The class L consists
of games where the Left player can always win, no matter who moves first. The
class N contains the games where the first player to move, or the N ext player,
can always win. The class P contains the games where the second player to
move, or the Previous player, can always win. Lastly, the class R consists of the
games where the Right player can always win. This information is summarized
in Table 1.

Outcome classes
When Right moves first
Left Wins Right Wins

When Left moves first
Left Wins L N

Right Wins P R

Table 1: The four possible outcome classes of a combinatorial game

In combinatorial game theory, we are often interested in talking about multiple
games played next to each other, which we will call a sum of games. For example,
if we have a Cherries game that consists of multiple segments, we can think of
this game as a sum of multiple independent components (the segments) and
when it is their turn, the players pick a component and perform a move on it.
This mindset of thinking about games as sums of independent components will
turn out to be a very powerful in the analysis of many combinatorial games.

3

Definition 2.5. Let G = {GL | GR} and H = {HL | HR} be combinatorial
games. Then we define the sum of G and H as

G + H = {GL + H,G +HL | GR + H,G +HR}.

This definition might look complicated at first, but it encapsulates exactly what
we described above. This definition also contains the new concept of the sum of
a set of games and a single game. For example, GL + H, which is just shorthand
notation for {GL + H : GL ∈ GL}, the set containing each game in GL summed
with H. So this definition tells us that the left options of G+H are all the games
of the form GL +H where GL is a left option of G and all the games of the form
G+HL where HL is a left option of H. In other words, the left player picks the
component G or H, makes a move on it and leaves the other component intact.

Next, we will introduce the concept of the negation of a game. Intuitively, we
can think of taking the negation of a game as swapping the roles of the two
players. This means that we swap the left and right options of the game and do
the same for its children. This gives us the following recursive definition.

Definition 2.6. Let G = {GL | GR} be a combinatorial game. We define the
negation of G as

−G = {−GR | −GL}

Example 2.7. If we swap the roles of the two players in a Cherries game, this
means that Left may now take white cherries and Right may now take black
cherries from the front or back of a segment. Equivalently, this is equal to the
game where the colors of the cherries have switched. Thus, taking the negation of
a Cherries segment corresponds to flipping the color of every cherry. For example,

− =

Currently we are only interested in determining which player has a winning
strategy on a given game and not by how much they can win. In our mindset
of thinking of games as sums of independent components, this means that we
would say two games are “equal” if they always behave the same as components
in some larger game. More precisely, if for any game containing the component
G, replacing G with H does not change the outcome of the game, we say G and
H are equal.

Definition 2.8. Let G,H be combinatorial games. We say G = H if o(G+X) =
o(H + X) for all combinatorial games X.

Lemma 2.9. The equality of combinatorial games in Definition 2.8 is an equiv-
alence relation. Furthermore, addition and negation are invariant under this
equivalence relation.

Theorem 2.10. The equivalence classes of combinatorial games under equality
form an abelian group with group operation + and inverse operation −.

4

This theorem basically tells us that the addition, negation and equality we
just defined satisfy all the basic properties we would expect them to have. For
example, G + H = H + G and G−G = 0 for all combinatorial games G,H.

Trying to apply our definition of equality directly seems like a very tedious task:
how do we check that the outcome class of G+X is the same as that of H+X for
all games X, knowing that there are infinitely many games? Fortunately, there
is another method for showing equality of games that is much more practical.

Theorem 2.11. Let G,H be combinatorial games. Then G = H if and only if
G−H ∈ P.

Example 2.12. Let G = and let H = . Playing the game

G−H = + , we can verify that the second player to move can

always win. Thus G−H ∈ P and therefore =

In the same vein as the equality, we also want to introduce an inequality on
games to indicate when one game is “better” than another for Left or Right. In
combinatorial game theory, we use the convention that “greater than” means
“better for the left player”. With this in mind, we introduce a partial order on the
four outcome classes satisfying R < N < L and R < P < L. Note that with this
order, only N and P are incomparable, since one outcome class is not always
better for Left than the other.

Definition 2.13. Let G,H be combinatorial games. We say G ≤ H if o(G+X) ≤
o(H + X) for all combinatorial games X.

Just like the equality, this inequality also behaves like we would expect it to:

Theorem 2.14. The inequality of combinatorial games from Definition 2.13 is
a partial order and respects addition.

One of the simplest types of games are the integer games, which are defined as
follows.

Definition 2.15. Let n > 0 be an integer. We define the integer games n and
−n as

n = {n− 1 |}
−n = {| −n + 1}

So, for positive integers n, we can think of the game n as a game where Left has
n free moves while Right has none and similarly we can think of the game −n
as a game where Left has no moves and Right has n free moves.

The following theorem about integer games will be very helpful for the analysis
of combinatorial Cherries:

5

Theorem 2.16 (Simplest number theorem). Let G = {a | b} where a and b are
integer games such that a + 2 ≤ b. Then G = c where c is the integer with the
smallest absolute value satisfying a < c < b.

Proof. The condition a + 2 ≤ b guarantees there is an integer c satisfying
a < c < b. So let c be the integer with the smallest absolute value satisfying
a < c < b. We will show that c−G ∈ P . Suppose Left moves first on c−G. If she
plays on the component −G the resulting game is c− b < 0 and thus Right wins.
If c > 0, she can also play on the component c, resulting in the game c− 1−G.
Right responds by playing to c− 1− a. Suppose that a < c− 1. This means that
c− 1 is also an integer satisfying a < c− 1 < b and c− 1 has a smaller absolute
value than c. This is a contradiction, so a ≥ c − 1 must hold. It follows that
c− 1− a ≤ 0 is a win for Right playing second. A similar argument show that if
Right moves first on c − G, then Left wins. We conclude that c − G ∈ P and
thus that G = c.

6

3 Combinatorial Cherries

In this section, we will see how we can determine the outcome class and an
optimal strategy for any Combinatorial Cherries game. We can look at a Cherries
segment as a sequence of blocks of consecutive black or white cherries. For

example, starts with a black block of length 2, followed

by a white block of length 1 and so on. We say a block is internal if it is not the
first or last block in the segment. We define the sign of a black cherry to be +1
and the sign of white cherry to be −1.

If G is a Cherries segment that solely consists of n black cherries, then G = n
since Left has n free moves and Right has none. Similarly, a game that only
consists of n white cherries is equal to −n. Any Cherries position that contains
both black and white cherries also turns out to be equal to an integer.

Theorem 3.1. Let G be a Cherries segment containing both black and white
cherries. Let m be the length of the first block of cherries and n the length
of the last block. Let `, r ∈ {−1,+1} be the signs of the first respectively last
blocks. If the segment contains an internal block of length greater than 1, let
x, y ∈ {−1,+1} be the signs of the leftmost respectively rightmost internal blocks
of length greater than 1. Otherwise, let x = y = 0. Then

G = `(m− 1) + r(n− 1) +
` + r

2
+

x + y

2

Proof. We will prove this theorem using induction on the length of the segment
of cherries. For the base case, we look at segments of cherries that consist of
exactly two blocks, as these games are the smallest games containing both
black and white cherries. Let G be a segment of Cherries that starts with a
block of m black cherries followed by a block of n white cherries. In this case,
` = 1, r = −1, x = y = 0, so we want to show that G = m − n. If Left
removes the first black cherry of G, by induction we are left with the game
(m− 1)− n = m− n− 1. Similarly, if Right removes the last white cherry we
are left with the game m− n + 1. Thus, using the simplest number theorem we
find that G = {m− n− 1 | m− n + 1} = m− n.

For the induction step, let G be a segment of Cherries that consists of at least
three blocks. Define v = `(m − 1) + r(n − 1) + `+r

2 + x+y
2 . Suppose that the

first block is black (` = 1). If the first block has length greater than 1 and left
removes the first cherry in the segment, the variable m gets decreased by 1 while
the other variables remain the same, so the resulting game has value v − 1 by
induction. If the first block has length 1, the second block also has length 1 and
left removes the first cherry in the segment, only the variable ` changes from
+1 to −1 and since m = 1, this means that the value of the resulting game is
again v − 1 by induction. Lastly, if the first block has length 1, the second block
has length greater than 1 and left removes the first cherry in the segment, the
variable ` again changes from +1 to −1 and the value of m gets increased from

7

1 to at least 2. If the second block was the only inner block with length greater
than 1, x and y go from −1 to 0. If not, y remains the same while x either stays
as −1 or changes to +1 depending on the color of the second leftmost inner
block of length greater than 1. In both cases, x+y

2 either stays the same or gets
increased by 1. All in all, the value of `(m− 1) decreases from 0 to at most −1,
the value of `+r

2 gets decreased by 1 and x+y
2 stays the same or gets increased

by 1. So the total value of the components gets decreased by at least 1 and the
resulting game is at most v − 1 by induction.

So we see that any move made by Left is to an integer with value at most v − 1
and we call a move by Left optimal if it is to the game v − 1. Similarly, moves
by Right are to integers with value at least v + 1 and we call a move by Right
optimal if it is to the game v + 1. If the first and last cherries are both black,
` = r = 1, so we see that v ≥ 0. If at least one of the two moves for left is
optimal, this means that G = {v − 1 |} = v. If both moves are not optimal, this
means that m = n = 1 and x = y = −1, so v = 0. So if Left starts, she has to
move to a negative game and Right wins, and if Right starts, he has no moves
available and Left wins. Thus, G = 0 = v. The same argument holds when the
first and last cherries are both white. Lastly, assume the first cherry is black and
the last cherry is white (` = 1 and r = −1). If the moves for both players are
optimal, G = {v − 1 | v + 1} = v. If only the move for left is optimal, then n = 1
and y = 1, so v ≥ 0. Now Left can move to v − 1 and right to at least v + 1, so
by the simplest number theorem G = v. The case when only the move for Right
is optimal is symmetrical. If neither moves are optimal, m = n = 1, x = −1 and
y = 1, so v = 0. Now Left can only move to a negative game while Right can
only move to a positive game, so G = 0 = v.

Using Theorem 3.1 and the arithmetic properties of integer games, we can
calculate the value and thus the outcome of any sum of Cherries games. The
proof of this theorem also outlines an optimal strategy for playing a game of
Cherries, since Left wants to make a move that maximizes the value of the
resulting game, while Right wants to minimize it. So for Left, taking a black
cherry that is not immediately followed by a white inner block of length greater
than 1 is always optimal, since it only decreases the value of the game by 1. If all
outer black cherries are immediately followed by a white inner block of length
greater than 1, Theorem 3.1 tells us that G ≤ 0, so for any move by Left, Right
will have a winning response.

Example 3.2. Consider the following sum of Cherries segments

G = + +

By Theorem 3.1, G = 2 + 0− 1 = 1, so left can win moving first or second. The
only winning starting move for left is taking the leftmost cherry from the first
component, since the resulting game is equal to 0, again by Theorem 3.1.

8

4 Synchronized Games

So far, we have been playing games sequentially; first one player makes a move,
then the other player makes a move and so on. Now we will look at synchronized
games, where both players pick a move at the same time.

Definition 4.1. A synchronized game is a tuple G = (GL, GR, GS). Here GL is
a sequence of m synchronized games, the solo left options of G, GR is a sequence
of n synchronized games, the solo right options of G and GS is a m× n matrix
of synchronized games representing the synchronized moves of G.

When playing a synchronized game G = (GL, GR, GS), Left and Right pick
integers i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} respectively, independently of each
other. This results in the new position GS

ij .

If GS is an empty matrix (there are no more solo left options or no more solo
right options), we call the game G decided. For a decided game, if |GL| > 0, we
say left wins, if |GR| > 0, we say right wins and if |GL| = |GR| = 0, we call the
game a draw. We define the birthday of a synchronized game similar to that of
a combinatorial game.

Definition 4.2. The birthday of a synchronized game G is defined recursively
as 1 plus the maximum birthday of any element in GL, GR or GS . The birthday
of the game where |GL| = |GR| = 0 is defined as 0.

In this thesis, we will only consider synchronized games with finite birthday,
allowing us to prove statements using induction on the birthday of the game
with the game without any options as the base case. We again call this empty
game zero: 0 = ((), (), ()).

The idea behind addition of synchronized games is the same as with combinatorial
games: The players pick a component to move on and leave the other component
intact. If both players move on the same component, a synchronized move is
performed on this component; if the players move on different components, solo
moves are performed.

Definition 4.3. Let G and H be synchronized games. We define the addition
of G and H by G + H = (XL, XR, XS), where XL is the concatenation of the
sequences GL+H and G+HL, XR is the concatenation of the sequences GR+H
and G + HR, and XS is the |XL| × |XR| matrix of synchronized games defined
by

XS
ij =

GS

ij + H if i ≤ |GL| and j ≤ |GR|
GL

i + HR
j−|GR| if i ≤ |GL| and j > |GR|

GR
j + HL

i−|GL| if i > |GL| and j ≤ |GR|
G + HS

i−|GL|,j−|GR| if i > |GL| and j > |GR|

Definition 4.4. Let G be a synchronized game. We define the negation of G as
−G = (−GR,−GL,−(GS)ᵀ).

9

For integers n > 0, we recursively define the synchronized game n = ((n−1), (), ())
and for integers n < 0 we define n = ((), (n + 1), ()). With the above definition
of addition we can verify that, for integers m,n ≥ 0, the sum of synchronized
games m + n refers to the same game as the synchronized game corresponding
to the integer m + n. However, when m < 0 and n > 0 this is not the case, as
we will see in the next subsection.

4.1 Equality of Synchronized Games

Just like with combinatorial games, we need to introduce the concept of outcome
classes of synchronized games to define equality and inequality. This is, however,
not as straightforward as in the combinatorial case. Since the players pick moves
at the same time, independently of each other, they cannot factor in the move
the other player will pick when making their decision. Take, for example, a

synchronized game G with GS =

(
1 −1
−1 1

)
. In this game, if both players pick

the same move index (a move on the diagonal), we see that Left wins; if the
players pick different moves, Right wins. So neither Left nor Right has a move
that guarantees them a win, but the game also never ends in a draw. This means
that this game has no clear winner. For now, we will group all these games
without a clear winner into one class, leaving us with the following three outcome
classes:

• The outcome class L, containing games G where Left has a move i such
that GS

ij ∈ L for all j (a winning move for Left).

• The outcome class R, containing games G where Right has a move j such
that GS

ij ∈ R for all i (a winning move for Right.

• The outcome class U , containing games where neither player has a winning
move.

Note that the symbols L and R are used both for the combinatorial games and
the synchronized games where left or right has a winning strategy, but it should
always follow from the context which of these we are referring to. We denote the
outcome class of a synchronized game G by o(G). This brings us to the definition
of equality of synchronized games.

Definition 4.5. Let G,H be synchronized games. We say G = H if o(G+X) =
o(H + X) for all synchronized games X.

With the order R < U < L on the outcome classes, we also get our definition of
inequality.

Definition 4.6. Let G,H be synchronized games. We say G ≥ H if o(G+X) ≥
o(H + X) for all synchronized games X.

10

We need to be a bit careful with these definitions, since many nice properties
that hold for combinatorial equality do not hold for the synchronized case, as
can be seen in the following example.

Example 4.7. If Gc is a combinatorial game, Gc − Gc = 0 always holds by
Theorem 2.10. For synchronized games, this is not the case. Take for example
the synchronized games G = 1 and X = ((−2), (−2), (2)). We have o(0 + X) =
o(X) = L, since the only synchronized move from X is to the game 2. But on the
game 1− 1 + X, if Left moves on the component 1 and Right on the component
X, the resulting game is −1− 2, so Right wins. If Left moves on the component
X and Right on the component −1, the resulting game is 1− 2, so Right wins
again. This means that Left has no move on 1− 1 + X that guarantees her to
win, so o(1− 1 + X) 6= L = o(0 + X) and thus 1− 1 6= 0.

Conversely, sometimes synchronized equality of games holds even if we would
not want it to.

Example 4.8. Let G,H be synchronized games with

GS =

(
1 −1
−1 1

)

HS =

 1 −1 −1
−1 1 −1
−1 −1 1

Since the players in a synchronized game pick their moves independently from
each other, we can think of G as a game where Left and Right both have equal
chances of winning, and H as a game where Left has a 1

3 chance to win and
Right a 2

3 chance. But using our definition of equality, we can show that G = H.

Indeed, let X be a synchronized game. Suppose o(G + X) = L. This means
that Left has a winning move on the component G or X. If Left has a winning
move i on G, this means that o(GS

ij + X) = L for all right moves j of G and

that o(GL
i + XR

j) = L for all right moves j of X. It follows that o(1 + X) =

o(−1 + X) = L and that o(0 + XR
j) = L for all right moves j of X. So, playing

on the game H + X, if Left picks any move i on H we have o(HS
ij + X) =

o(1 + X) = L or o(HS
ij + X) = o(−1 + X) = L for all right moves j of H

and o(HL
i + XR

j) = o(0 + XR
j) = L for all right moves j of X. Thus, this is

a winning move for Left and o(H + X) = L. In the other case, Left has a
winning move i on X, so o(GR

j + XL
i) = o(0 + XL

i) = L and o(G + XS
ij) = L

for all j. By induction on the birthday of X, o(H + XS
ij) = o(G + XS

ij) = L
and o(HR

j + XL
i) = o(0 + XL

i) = L for all j. So in both cases we see that
o(H + X) = L = o(G + X).

Using the same argument, we can show that o(G+X) = L ⇐⇒ o(H +X) = L
and o(G + X) = R ⇐⇒ o(H + X) = R. It now also follows that o(G + X) =
U ⇐⇒ o(H + X) = U . Thus, G = H.

11

We see that most of these problems have to do with the outcome class U . Since
this class contains games where the winner is based on chance, saying that
o(G) = o(H) does not necessarily mean that the outcome when playing out these
games will always be the same if both players play perfectly. Despite this, this
definition of equality and inequality will work well for our needs. One simple but
important property our synchronized equality does have is the following:

Lemma 4.9. Let G = (GL, GR, GS) be a synchronized game such that |GL| > 0
and |GR| = 0. Then G > 0.

Proof. Let X be a synchronized game. We will show that o(X +G) ≥ o(X) using
induction on the birthday of X. For the base case, let X be a decided game.
If X only has left options, we have o(X) = L, and since G also only has left
options, we conclude that o(X +G) = L. If X only has right options, o(X) = R,
so we always have o(X +G) ≥ o(X). Lastly, if X has no options we have X = 0,
so o(X + G) = o(G) = L > U = o(X).

For the induction step, let X be non-decided. If o(X) = L, there is a move i for
Left such that o(XS

ij) = L for all j. Since G has no right options, all synchronized

moves of X + G are of the form XS
ij + G if Left again picks move i on the

component X. By induction these games are all wins for Left, so o(X + G) = L.
Next, suppose that o(X) = U . If o(X +G) = R, there is a move j for Right such
that o(XS

ij +G) = R for all i. By induction, o(XS
ij) ≤ o(XS

ij +G) = R for all i, so
o(X) = R. This is a contradiction, so o(X +G) 6= R and thus o(X +G) ≥ o(X).
Lastly, if o(X) = R, there is nothing to show.

We have now shown that o(X + G) ≥ o(X) for all X, meaning that G ≥ 0.
Lastly, o(G + 0) = o(G) = L > U = o(0), and thus G > 0.

Intuitively, this lemma tells us that a synchronized game G that only has left
options can never hurt Left in the context of any synchronized game X, since
she can always decide to ignore the component G if the moves on it are bad, and
that it sometimes even provides a strict advantage for Left, for example when
X = 0.

We will see the proof technique used in this lemma return often for showing
inequalities between games; To prove that G ≥ H, we only have to show that
o(H +X) = L =⇒ o(G+X) = L and that o(G+X) = R =⇒ o(H +X) = R
for all synchronized games X.

4.2 Synchronizing Combinatorial Games

The definitions of combinatorial and synchronized games are very different, but
it can be interesting to try to construct a natural-seeming synchronized version
of some combinatorial game and analyze it.

For a combinatorial game G, we want each pair of left and right options (GL, GR)
to correspond to some synchronized move that represents executing both moves.

12

For many combinatorial games, defining a synchronized version seems fairly
straightforward. Take for example the game chess. If Left wants to move one
of her pieces somewhere and Right wants to move one of his pieces somewhere,
the corresponding synchronized move would be to move both pieces to their
desired destinations at the same time. But we quickly run into edge cases with
this definition; what if both players want to move a piece to the same location?
We could, for example, capture both pieces, or we could only allow Left’s piece
to move, but there does not seem to be one correct answer. Ideally, we want
the synchronized move corresponding to GL and GR to be some position that is
both reachable from GL and from GR. This gives rise to the following definition:

Definition 4.10. Let G be a combinatorial game. We call G strongly separable
if, for all positions H of G, for all left options HL = {HLL | HLR} and right
options HR = {HRL | HRR} of H, we have HLR ∩HRL 6= ∅.

Example 4.11. Let G be a combinatorial Cherries segment. Then every position
H of G is again a Cherries segment. If the first and last cherries of H share the
same color, this means that H either has no left options or no right options and
thus satisfies the condition of being strongly separable trivially. If the first and
last cherries of H have different colors, there is a left option HL and a right option
HR of H where the first or last cherry has been removed. The game HS , where
the first and last cherries of H have both been removed, is now a right option of

HL and a left option of HR. For example, if H = , the only left

option is HL = and the only right option is HR = .

The game HS = where the first and last cherries have been removed

is a right option of HL and a left option of HR. We conclude that Cherries
segments are strongly separable.

An example of a combinatorial game that is not strongly separable is Nim. The
game Nim is played with several piles of coins and a move for either player consists
of picking a pile and removing any amount of coins. If H is a combinatorial Nim
game that consists of one pile, then both Left and Right can choose to remove
every coin from this pile resulting in the games HL = 0 and HR = 0. Since the
game 0 has no left or right options, the intersection of the right options of HL

and the left options of HR is empty, meaning that H is not strongly separable.

Lemma 4.12. Let G and H be strongly separable combinatorial games. Then
G + H and −G are also strongly separable.

Proof. Any position of G + H is of the form G′ + H ′, where G′ is a position of
G and H ′ is a position of H. A left option of G′ + H ′ is of the form G′L + H ′ or
G′ + H ′L and a right option of G′ + H ′ is of the form G′R + H ′ or G′ + H ′R.
For a left option G′L + H ′ and a right option G′R + H ′, the intersection of the
right options of G′L and the left options of G′R contains a game G′S since G
is strongly separable. So the intersection of the right options of G′L + H ′ and

13

the left options of G′R + H ′ contains the game G′S + H ′ and thus is not empty.
For a left option G′L + H ′ and a right option G′ + H ′R, the intersection of the
right options of G′L + H ′ and the left options of G′ + H ′R contains the game
G′L + H ′R and thus is not empty. The other cases are analogous. Thus, G + H
is strongly separable.

Next, we will look at −G. Positions of this game are of the form −G′ where
G′ is a position of G. For all left options −G′L and right options −G′R of −G′,
the game G′L is a right option of G′ and G′R is a left option of G′ by the
definition of the negation of combinatorial games. Since G is strongly separable,
the intersection of the left options of G′L and the right options of G′R contains
some game G′S . Again by the definition of negation, the intersection of the right
options of −G′L and the left options of −G′R now contains the game −G′S and
thus is not empty. We conclude that −G is strongly separable.

For a strongly separable game G, it seems sensible to define the synchronized
move corresponding to some left option GL and right option GR to be some
sort of synchronized version of a game in the non-empty intersection of the
right options of GR and the left options of GL, which brings about the following
definition:

Definition 4.13. Let Gc be a strongly separable combinatorial game and G
a synchronized game. We say G is a synchronized version of Gc if there are
bijections gL : {1, . . . , |GL|} → GLc and gR : {1, . . . , |GR|} → GRc such that

1. GL
i is a synchronized version of gL(i) for 1 ≤ i ≤ |GL|

2. GR
j is a synchronized version of gR(j) for 1 ≤ j ≤ |GR|

3. GS
ij is a synchronized version of some game in the intersection of the

right options of gL(i) and the left options of gR(j) for 1 ≤ i ≤ |GL| and
1 ≤ j ≤ |GR|

Lemma 4.14. Let Gc, Hc be strongly separable combinatorial games and let
G,H be synchronized versions of Gc and Hc respectively. Then G + H is a
synchronized version of Gc + Hc and −G is a synchronized version of −Gc.

Proof. Let gL, gR be the left and right option bijections between G and Gc

and hL, hR the left and right option bijections between H and Hc. Define
fL : {1, . . . , |GL|+ |HL|} → (GLc + Hc) ∪ (Gc +HL

c) with

fL(i) =

{
gL(i) + H if i ≤ |GL|
G + hL(i− |GL|) if i > |GL|

Define fR : {1, . . . , |GR|+ |HR|} → (GRc + Hc) ∪ (Gc +HR) analogously. Using
induction and the definition of addition, we can verify that fL and fR are left

14

and right option bijections between G + H and Gc + Hc satisfying all three
conditions of Definition 4.13. Thus, G + H is a synchronized version of Gc + Hc.

Similarly for −G, define fL : {1, . . . , |GR|} → −GRc with fL(i) = −gR(i) and
fR : {1, . . . , |GL|} → −GLc with fR(i) = −gL(i). Then, for all 1 ≤ i ≤ |GR|,
(−G)Li = −(GR

i) is a synchronized version of −gR(i) = fL(i) by induction
and the definition of negation. The proof for condition 2 of Definition 4.13 is
analogous. And lastly, for all 1 ≤ i ≤ |GR| and 1 ≤ j ≤ |GL|, (−G)Sij = −(GS

ji)
is a synchronized version of some game in the intersection of the right options
of −gR(i) = fL(i) and the left options of −gL(i) = −fR(i), again by induction
and the definition of negation. We conclude that −G is a synchronized version
of −Gc.

Example 4.15. In Example 4.11 we saw that Cherries is a strongly separable
game. Furthermore, for segments with differently colored outer cherries we saw
that the the intersection of the right options of their single left option and the left
options of their single right option contains the game where both outer cherries
have been removed. This naturally leads to a recursive definition of a synchronized
version of a Cherries segment; solo options correspond to synchronized versions
of the segment where a single outer cherry has been removed, synchronized
options correspond to synchronized versions of the segment where the cherries
of both solo options have been removed. By Lemma 4.14 this also extends to
the definition of a synchronized version for any sum of Cherries segments.

The outcome of a strongly separable combinatorial game can sometimes tell us
a lot about the outcome of its synchronized version.

Theorem 4.16. Let Gc be a strongly separable combinatorial game and G be a
synchronized version of Gc. Then

1. If Gc ∈ L, then G ∈ L.

2. If Gc ∈ R, then G ∈ R.

3. If Gc ∈ P, then G can be an element of L, R or U .

4. Gc cannot be an element of N .

Proof.

1. If Gc ∈ L, there is a left option GL
c of Gc that is a win for Left moving

second. If Gc has no right options, G also has no right options. Since
G does have left options, this means that G ∈ L. Now suppose Gc does
have right options. Playing on G, if Left picks the option i corresponding
to the combinatorial option GL

c , then for any move j from Right GS
ij is

a synchronized version of GLR
c for some right option GLR

c of GL
c by the

definition of a synchronized version of a game. Since GL
c is a win for Left

moving second, GLR
c is a win for Left moving first. Using item 4, GLR

c

15

cannot be an element of N . So GLR
c must be an element of L, and using

induction it follows that Left has a winning strategy on GS
ij . Thus, G ∈ L.

2. Symmetric to 1.

3. We will show three examples of combinatorial games in P with synchronized
versions in L, R and U .

• If Gc is the combinatorial game {−1 | }, then Gc ∈ P since the
second player to move wins. The synchronized version of Gc is G =
((−1), (), ()). This game only has left options, so G ∈ L

• If Gc is the combinatorial game { | 1}, then again Gc ∈ P. The
synchronized version of Gc is G = ((), (1), ()). This game only has
right options, so G ∈ R

• If Gc is the combinatorial game 0 ∈ P, then G = ((), (), ()) ∈ U .

4. If Gc ∈ N , there is a left option GL
c of Gc that is a win for Left moving

second and a right option GR
c of Gc that is a win for Right moving second.

Since Gc is strongly separable, the intersection of the right options of GL
c

and the left options of GR
c contains at least one element, say GS

c . GS
c must

be a win for Left moving first, because GL
c is a win for Left moving second.

But GS
c must also be a win for Right moving first, because GR

c is a win for
Right moving second. This is a contradiction, so Gc cannot be an element
of N .

16

5 Synchronized Cherries

In this section we will analyze Cherries played as a synchronized game. The first
task in tackling this problem is properly defining the synchronized options of
this game. The obvious choice for the synchronized option corresponding to Left
removing some black cherry and Right removing some white cherry would be the
game where both of these cherries have been removed. In Example 4.15 we saw
that defining the synchronized options like this results in a synchronized version
of the combinatorial Cherries game satisfying Definition 4.13. This allows us to
use Theorem 4.16 to help us determine the outcome class of the corresponding
synchronized game.

Example 5.1. Consider the synchronized Cherries game

G = +

By Theorem 3.1, the corresponding combinatorial game is equal to 1 + 0 = 1 ∈ L.
So Theorem 4.16 tells us that G is also a win for Left and any winning move on
the corresponding combinatorial game is also a win on the synchronized game.

The only case where Theorem 4.16 does not help us in determining the win-
ner of a synchronized Cherries game is when the corresponding combinatorial
game is an element of P. We can show that in this case all three synchro-
nized outcome classes can actually occur. From Theorem 3.1 we know that

, , ∈ P, but

∈ U , ∈ L, ∈ R.

The position turns out to be quite interesting. Since this segment

starts and ends with a black cherry, Lemma 4.9 tells us that this segment can
only help Left in the context of any synchronized game, but the advantage it

provides seems to be infinitesimally small; has combinatorial

value 0, so no matter how many copies of we have, if we add

one to the game, the corresponding combinatorial game will have value

−1 and thus the synchronized game will be a win for Right. More generally,
any synchronized Cherries segment G seems to be infinitesimally close to its
combinatorial integer value a, in the sense that for any n ∈ N>0 the synchronized
game n ·G− n · a− 1 is a win for Right since the corresponding combinatorial
game has value −1 and similarly n ·G− n · a + 1 is a win for Left.

So how do we deal with this? A good first step would be to look at what
intuitively feels like a good strategy for playing synchronized Cherries. Just like

17

with the combinatorial version, it seems to make sense to pick cherries that
reveal the least amount of cherries for the other player, since we are trying to
make them run out of moves. More specifically, moves that do not reveal any
of the enemy’s cherries seem to be optimal in any situation. We refer to such
cherries as free.

Example 5.2. The most obvious example of a free cherry is an outer cherry
that is directly followed by another cherry of that same color. For example, the

first cherry in is free because removing it does not reveal any

white cherries.

Another example of a free cherry is the first cherry of . Although it is

followed by a cherry with a different color, this white cherry is already revealed
so removing the first cherry does not reveal any new white cherries.

More generally, we also consider a black cherry only followed by some amount
of white cherries to be free. For example, we consider the first cherry of

to be free. Although it is followed by a differently colored cherry

that is not an outer cherry, this cherry is still part of an outer block and therefore
we consider it revealed from the start.

The following lemma justifies the connotation of optimality that the word free
brings with it:

Lemma 5.3. Let G be a sum of synchronized Cherries segments. Number the
outer black cherries b1, b2, ..., b` and number the outer white cherries w1, w2, ..., wk.
Let G \A be the game where all cherries in the set A have been removed from
G. If b1 is free, then o(G \ {b1, wj}) ≥ o(G \ {bi, wj}) for all 1 < i ≤ ` and
1 ≤ j ≤ k.

Proof. Let 1 < i ≤ ` and 1 ≤ j ≤ k. Suppose that G \ {b1, wj} ∈ R. This means
there is some white cherry w such that G \ {b1, wj , b, w} ∈ R for all outer black
cherries b of G \ {b1, wj}. In particular, we have G \ {b1, wj , bi, w} ∈ R. Note
that w must either be revealed from the start or by removing wj since b1 is
free. In the game G \ {bi, wj}, the cherry b1 is still free, so by induction we may
assume Left will take this cherry next. The white cherry w is also revealed in
G \ {bi, wj} since we saw that it is revealed from the start or by removing wj .
Right decides to take this cherry, resulting in the game G \ {bi, wj , b1, w} ∈ R.
Thus, G \ {bi, wj} ∈ R.

Similarly, suppose that G \ {bi, wj} ∈ L. This game still contains the free cherry
b1, so by induction we have G \ {bi, wj , b1, w} ∈ L for all white outer cherries w
of G \ {bi, wj} ∈ L. In the game G \ {b1, wj}, Left decides to take the cherry bi
and white takes some cherry w. The outer white cherries of G \ {b1, wj} are a
subset of the outer white cherries of G \ {bi, wj} since b1 is free, so the resulting
game is G \ {b1, wj , bi, w} ∈ L. We conclude that G \ {b1, wj} ∈ L.

18

This lemma tells us that in a game of synchronized Cherries, both players

will always take a free cherry when available. It follows that = 0 in

the context of any synchronized Cherries game, since we may assume that

both players will instantly take their free cherry from the component .

Similarly, it also follows that = in the context of any Cherries

game. If we now apply this to the Cherries segment we discussed

earlier, we get

=

((
,

)
, (), ()

)
=

(()
, (), ()

)
=

(()
, (), ()

)
In other words, Left can start off by taking an outer cherry, after which we are
left with a game that is equal to a single white cherry in the context of any
synchronized Cherries game.

To better model this situation, we introduce a variant of Cherries called Stack
Cherries. The only difference with regular Cherries is that cherries may only be
taken from the front of a Stack Cherries segment and not the back. We denote
a Stack Cherries segment by a triangle pointing to the front of the segment,
indicating that cherries may only be taken from that side. For example,

B =

((
B

)
, (), ()

)
So in the context of any Cherries game, we get

=

(()
, (), ()

)
=

((
B

)
, (), ()

)
= B

So the Cherries segment can be reduced to the simpler Stack

Cherries segment B . Other more complex Cherries segments also seem

to be modelled well by a sum of simpler Stack Cherries segments. For this reason
we will first try to fully understand Stack Cherries before moving on to the more
complex regular Cherries.

5.1 Stack Cherries

In this section we will give an extensive overview of the theory of synchronized
Stack Cherries. We will see that this game, which might look trivial at first

19

glance, actually has some very interesting properties. We start off by introducing
some notation we will use throughout this section. If G is a Stack Cherries
segment, the game Gk represents the Stack Cherries segment where the front k
cherries have been removed. We will also occasionally use the notation G[a...b] to
refer to the Stack Cherries segment starting at the a-th cherry of G and ending

with the b-th cherry. For example, if G = B , we have

G3 = B

and

G[2...5] = B

Using Lemma 4.9, we know that G > 0 for any Stack Cherries segment G starting
with a black cherry and that H < 0 for any Stack Cherries segment H starting
with a white cherry. We extend this idea by introducing a lexicographic order on
Stack Cherries segments. To compare two different segments lexicographically,
we first pad the back of the shorter segment with empty squares until they have
the same length. A square with a black cherry is greater than an empty square,
which is greater than a square with a white cherry. We then look at the leftmost
square where the two segments differ and we say the segment that has a greater
square at this position is lexicographically greater than the other segment. If the
Stack Cherries segment G is lexicographically greater than the Stack Cherries
segment H, we notate this by G � H.

Example 5.4. Consider the following Stack Cherries segments:

G = B

H = B

J = B

Here, G is lexicographically greater than H, since the first position the two differ
is at index 3, where G has a black cherry and H a white cherry.

Similarly, G is lexicographically less than J , since the first position the two differ
is at index 4, where G has an “empty square” and H a black cherry.

Note that this lexicographic order is a total order, and thus by transitivity H is
also lexicographically less than J .

Theorem 5.5. Let G and H be Stack Cherries segments. If G is lexicographically
greater than H, then G > H.

Proof. If G starts with a black cherry and H starts with a white cherry, by
Lemma 4.9 we have G > 0 > H. Similarly, if G or H is the empty segment this

20

lemma also tells us that G > H. So the only case left to check is when G and H
both start with a cherry of the same color.

Assume without loss of generality that G and H both start with a black cherry.
Let X be a synchronized game. We will show that o(X + G) ≥ o(X + H) using
induction on the birthday of X. For the base case, let X be a game without
right options. Since G and H also do not have right options, this means that
o(X + G) = o(X + H) = L.

For the induction step, let X be a synchronized game with at least one right
option. If X + H ∈ L, Left has a winning move on X + H. If this move is on
the component X, there is an i such that XS

ij + H ∈ L for all j. By induction

it follows that XS
ij + G ∈ L for all j, and since right has no options on G, this

means that X + G ∈ L. If Left’s winning move is on the Stack Cherries segment
H, then XR

j + H1 ∈ L for all j. Since G is lexicographically greater than H and
they both start with a cherry of the same color, G1 is lexicographically greater
than H1. Thus, by induction XR

j + G1 ∈ L for all j and therefore X + G ∈ L.

If X + G ∈ R, Right has a winning move on X + G. Since Right has no moves
on G, this means there is a j such that XS

ij + G ∈ R for all i and XR
j + G1 ∈ R.

By induction, XS
ij + H ∈ R for all i, and since G1 is lexicographically greater

than H1 we also have XR
j + H1 ∈ R. So X + H ∈ R.

So o(X + G) ≥ o(X + H) for all X, meaning that G ≥ H. Lastly, since G is
lexicographically greater than H we have o(G−H) = L and o(H −H) = U , so
strict equality does not hold. We conclude that G > H.

Lemma 5.6. Let G be any Stack Cherries segment and let H be a Stack Cherries
segment that starts with a black cherry. Let GH be the concatenation of the
segments G and H. Then G + H ≥ L.

Proof. Let X be a synchronized game. We will show that o(X+G+H) ≥ o(X+L)
using induction on the birthday of G and X. If G is the empty segment, this
means that G = 0 and L = H, so G + H = L.

Now let G contain at least one cherry. If X + L ∈ L, Left has a winning move
on the component X or L. If Left has a winning move on L, this means that
XR

j + L1 ∈ L for all j. By induction, XR
j + G1 + H ∈ L. Since H starts with

a black cherry, this means that X + G + H ∈ L. If Left has a winning move i
on X, then Xij + L ∈ L for all j. By induction, Xij + G + H ∈ L for all j. If L
starts with a white cherry, we also have XL

i + L1 ∈ L, so again using induction
we also have XL

i + G1 + H ∈ L. Thus, X + G + H ∈ L.

If X + G + H ∈ R, Right has a winning move on the component X or G, since
H starts with a black cherry. If Right has a winning move on G, by induction
XL

i + L1 ≤ XL
i + G1 + H ∈ R for all i. Since G starts with a white cherry, L

also starts with a white cherry, so X + L ∈ R. If Right has a winning move j on
X, by induction XS

ij + L ≤ XS
ij + G + H ∈ R. If L starts with a black cherry, G

also starts with a black cherry and by induction XR
j + L1 ≤ XR

j + G1 + H ∈ R.
Thus, X + L ∈ R.

21

We conclude that o(X + G + H) ≥ o(X + L) for all synchronized games X, so
G + H ≥ L.

In other words, this lemma tells us that blocking a segment that starts with
a black cherry behind another segment can only hurt Left. In particular, if G
is a Stack Cherries segment where the (k + 1)-st cherry is black, we find that
G[1...k] + Gk ≥ G

Theorem 5.7. Let G and H be Stack Cherries segments of length at least k
where the first k cherries of both segments match. If G > H, then Gi+H ≥ G+Hi

for all 1 ≤ i ≤ k.

Proof. We will first look at the case i = k. G and H cannot both have exactly
length k, since that would mean that G = H. We may assume without loss of
generality that G has length greater than k, since otherwise we could take the
negation of G and H. Since G > H and G and H only match for the first k
cherries, the cherry at position k+ 1 in G must be black. Lemma 5.6 now tells us
that Gk + G[1...k] ≥ G. If H has length exactly k, this means that H = G[1...k]
and Hk = 0, so Gk + H = Gk + G[1...k] ≥ G = G + Hk. If H has length greater
than k, the cherry at position k + 1 in H must be white, since G and H do
not match at position k + 1. So Lemma 5.6 tells us that H ≥ H[1...k] + Hk. It
follows that

Gk + H ≥ Gk + H[1...k] + Hk = Gk + G[1...k] + Hk ≥ G + Hk

Now we will look at the case 1 ≤ i < k. Let X be a synchronized game. We will
show that o(X + Gi + H) ≥ o(X + G + Hi) using induction on the birthday of
X, on k and on k − i. In the previous paragraph we handled the case k − i = 0,
and the case k = 0 is trivial. First, suppose X + G + Hi ∈ L, meaning Left has
a winning move on the component X, G or Hi.

• If Left has a winning move i on X, then by induction XS
ij + Gi + H ≥

XS
ij + G + Hi for all j. If the first cherry of H is white, this also means

the first cherry of G is white, so XL
i + G1 + Hi ∈ L since i is a winning

move for Left. By induction on k, XL
i +Gi +H1 ∈ L. Similarly, if the first

cherry of Gi is white, this also means the first cherry of Hi is white, so
XL

i + G + Hi+1 ∈ L. By induction on k − i, XL
i + Gi+1 + H ∈ L. Thus,

X + Gi + H ∈ L.

• If Left has a winning move on G, then by induction XR
j + Gi + H1 ≥

XR
j + G1 + Hi ∈ L for all j. If the first cherry of Gi is white, by induction

on k also X + Gi+1 + H1 ≥ X + G1 + Hi+1 ∈ L. Thus, X + Gi + H ∈ L.

• Lastly, if Left has a winning move on Hi, then by induction XR
j +Gi+1+H ≥

XR
j +G+Hi+1 ∈ L for all j. If the first cherry of H is white, by induction

on k also X + Gi+1 + H1 ≥ X + G1 + Hi+1 ∈ L. Thus, X + Gi + H ∈ L.

22

In all cases, we see that X + Gi + H ∈ L. If X + Gi + H ∈ R, we can use
a symmetric argument to show that X + G + Hi ∈ R. We conclude that
o(X +Gi +H) ≥ o(X +G+Hi) for all synchronized games X. Thus, Gi +H ≥
G + Hi for 1 ≤ i ≤ k.

This theorem tells us that, playing on a sum of Stack Cherries segments, we may
assume that Left will move first on a segment starting with a black cherry that
is lexicographically greatest and that Right will move first on a segment starting
with a white cherry that is lexicographically smallest.

With this, we can determine the outcome of any sum of Stack Cherries games
by repeatedly playing on the lexicographically greatest component for Left and
the lexicographically smallest component for Right until one of the players has
no moves left. This is already much better than the brute force method of
determining the outcome, which entailed going through an exponential amount
of games. But this method is still not very insightful for determining the total
value of a sum of Stack Cherries segments, so we will keep going.

To prove more specialized results about Stack Cherries, our current definition
of equality is not sufficient. We for example want to show that for any Stack
Cherries segment G, adding G−G to a sum of Stack Cherries segments does
not change the outcome, but in Section 4 we saw that G − G = 0 does not
hold in general. To deal with this we introduce a restricted version of equality
specifically for Stack Cherries games.

Definition 5.8. Let G,H be synchronized games. We say G =SC H if o(G +
X) = o(H + X) for any sum of Stack Cherries segments X.

The condition for this equality is less strict than that of general equality. So if
we have G = H, then G =SC H also holds. We analogously define the inequality
operator ≥SC .

Lemma 5.9. Let G be a Stack Cherries segment. Then G−G =SC 0.

Proof. Let X be a sum of Stack Cherries segments. We will show that o(G −
G + X) = o(X) using induction on the birthday of G and X. Suppose that
G−G + X ∈ L. If Left has a winning move by removing the first cherry from
G, this means that G1 − G1 + X ∈ L. By induction on the birthday of G,
o(X) = o(G1 −G1 + X) = L. Similarly, if Left has a winning move on −G we
can again show that o(X) = L. Lastly, if Left has a winning move i on the
component X, then G−G+XS

ij ∈ L for all j, so by induction on the birthday of

X we have o(XS
ij) = o(G−G+XS

ij) = L for all j. Thus, we also have o(X) = L.

Conversely, suppose that X ∈ L with winning move i. If in the game G−G+X
the lexicographically smallest segment starting with a white cherry is in X,
we may assume that Right will play on this segment with move number j. By
induction on the birthday of X, o(G−G+XS

ij) = o(XS
ij) = L since i is a winning

move for Left on X. Thus, G − G + X ∈ L. If in the game G − G + X the

23

lexicographically smallest segment starting with a white cherry is G, we may
assume that Right will play on this segment. By induction on the birthday of G,
o(G1−G1+X) = o(X) = L, so playing on the segment −G is a winning move for
Left and G−G + X ∈ L. The same argument holds when the lexicographically
smallest segment is −G.

We have now shown that G−G + X ∈ L ⇐⇒ X ∈ L. A symmetric argument
shows that G−G + X ∈ R ⇐⇒ X ∈ R. We conclude that G−G =SC 0.

Using Lemma 4.9, we know that for all non-empty Stack Cherries segments G,
either G > 0 or G < 0 holds (and the empty segment is equal to 0). This allows
us to naturally define the absolute value of a Stack Cherries segment:

|G| =

{
G if G ≥ 0

−G if G < 0

So taking the absolute value of a Stack Cherries segment corresponds to flipping
the color of every cherry if the first one is white. For Stack Cherries segments
G,H we now say G is (lexicographically) stronger than H if |G| is lexicograph-
ically greater than |H|, or equivalently if |G| > |H|. Similarly, we say G is
(lexicographically) weaker than H if |G| < |H|. We will take a closer look at a
subset of Stack Cherries segments that satisfy some interesting properties.

Definition 5.10. Let G be a Stack Cherries segment of length n. We say G is
a basis element if |G| < |Gk| for all 0 < k < n.

So to show that a Stack Cherries segment G is a basis element, we need to
check that G is lexicographically weaker than all of its strict, non-empty suffixes.
Since the players want to move on the strongest component starting with their
color, this means that on a basis element G, every move after the initial move
is “better” than this initial move. What this means in practice, is that once the
first cherry of a basis element has been taken, the rest will generally follow soon
after.

Example 5.11. The games B , B and B are all

basis elements. The game G = B is not a basis element, since

|G1| =
∣∣∣∣B ∣∣∣∣ = B < |G|

The following supporting lemmas will help us prove an important theorem about
basis elements.

Lemma 5.12. Let G be a basis element such that the (` + 1)-st cherry of |G| is
white for some ` > 0. Then |G| and |G`| cannot match for more than ` cherries.

24

Proof. We will prove this statement using contradiction. Assume |G| and |G`|
match for at least ` + 1 cherries. If the second cherry of |G| is white, this means
the second cherry of |G`| is also white. Since the (`+ 1)-st cherry of |G| is white,
G and G` start with different color cherries. So the (` + 2)-nd cherry of |G|,
corresponding to the second cherry of |G`|, is black. G is a basis element, so
|G| < |G`| must hold. This means that the (` + 2)-nd cherry of |G`| must also
be black.

Now suppose the second cherry of |G| is black. Since |G| and |G`| match for the
first `+ 1 cherries and the (`+ 1)-st cherry of |G| is white, the (`+ 1)-st cherry of
|G`| must also be white. Since G and G` start with different colors, this means
that the (2` + 1)-st cherry of |G| must be black. Now the second cherry of |G2`|
must also be black, since otherwise |G| < |G2`| would not hold. Equivalently,
this means that the (` + 2)-nd cherry of |G`| is white, just like the (` + 2)-nd
cherry of |G|.
Thus, in both cases the |G| and |G`| match for the (` + 2)-nd cherry. Using the
same argument, they now also have to match for the (` + 3)-rd cherry, for the
(` + 4)-th cherry and so on. We conclude that |G| and |G`| match for infinitely
many cherries, meaning that G is infinitely long. This is a contradiction, since
we only consider Stack Cherries segments with finite length.

Example 5.13. There are no basis elements starting with

G = B . . .

since the third cherry of |G| is white and |G| and |G2| match for at least 3
cherries.

Lemma 5.14. Let G be a basis element of length n. Then |G`| ≥ |G[1...`]| for
all 0 < ` < n.

Proof. Suppose the (` + 1)-st cherry of |G| is black. This means that |G| >
|G[1...`]|. Since G is a basis element, it follows that |G`| > |G| > |G[1...`]|.
Now suppose the (` + 1)-st cherry of |G| is white. If |G| and |G`| do not match
for the first ` cherries, then |G`| > |G[1...`]| since the mismatch happens before
the end of G[1...`]. If |G| and |G`| do match for the first ` cherries, they cannot
match at the (` + 1)-st cherry be Lemma 5.12. Since the (` + 1)-st cherry of |G|
is white, this means that the (` + 1)-st cherry of |G`| is either black or the end
of the segment. In both cases, it follows that |G`| ≥ |G[1...`]|.

Theorem 5.15. Let G,H be basis elements with G > H > 0. Then G >SC k ·H
for all k ∈ N≥1

Proof. By Lemma 5.9, it suffices to show that G− k ·H >SC 0. The base case
k = 1 is true by assumption. Now let k > 1 and X be a sum of Stack Cherries
games. Consider playing on the game G − k ·H + X. If the lexicographically

25

strongest component starting with a white cherry is a H, Right will play on this
component. Left decides to move on the component G, resulting in the game
G1 −H1 − (k − 1) ·H + X. Since G and H are both basis elements and G > H,
all strict, non-empty suffixes of G and H are lexicographically stronger than H.
And since H was the lexicographically strongest component starting with a white
cherry in the original game, this means that Right will immediately take a cherry
from a suffix of G or H if it starts with a white cherry. Since G > H > 0, at
least one of G1 and −H1 has to start with a black cherry. So while Gi and −Hi

start with different colors, we just saw that Right will play on the component
starting with a white cherry and Left decides to play on the other component.

Repeating this process, eventually we will reach the game G`−H`−(k−1)·H+X
where either both G` and −H` start with a black cherry or one of them is the
empty segment and the other starts with a black cherry. If G` starts with a
black cherry, it follows that G` −H` ≥ G` > G since G is a basis element. If
G` does not start with a black cherry, it means that G` is the empty segment
and −H` starts with a black cherry. Since both players have been playing on G
and −H each turn, it follows that G is the game consisting of the first ` cherries
of H. By Lemma 5.14, |H`| ≥ |G| = G and therefore G` −H` = 0 + |H`| ≥ G.
In both cases we see that G` − H` ≥ G, so by induction on k we find that
G`−H`− (k−1) ·H +X ≥ G− (k−1) ·H +X >SC X. Thus, o(G−k ·H +X) ≥
o(G` −H` − (k − 1) ·H + X) ≥ o(X).

Next, we look at the case where the lexicographically strongest component
starting with a white cherry is in X with move number j. We need to show
that o(G − k · H + X) ≥ o(X). First, suppose X ∈ L with winning move i.
By induction on the birthday of X, o(G − k · H + XS

ij) ≥ o(XS
ij) = L. Since

j is the best move for Right, we conclude that G − k · H + X ∈ L. Next, if
G− k ·H + X ∈ R, a winning move for Right is move j on the component X,
since this is the lexicographically strongest component starting with a white
cherry. By induction, it follows that R = o(G− k ·H + XS

ij) ≥ o(XS
ij) for all i.

Thus, X ∈ R.

We conclude that G−k ·H ≥SC 0. Lastly, again by induction on k and using the
same strategy as before we find that o(G− k ·H) ≥ o(G` −H` − (k − 1) ·H) ≥
o(G − (k − 1) · H) = L while o(0) = U . Thus, strict equality does not hold,
leaving us with G− k ·H >SC 0.

This theorem tells us that all basis elements are infinitely far away from each
other. This means that working with sums of basis elements is very simple; using
Lemma 5.9, we first cancel out every pair (G,−G) of positive and negative basis
elements with the same absolute value, so that we are left with a game in which
every basis element does not occur both as a positive version and as a negative
version. If we are now left with the game 0, this means the game is a draw.
Otherwise, Theorem 5.15 tells us that the winner of the game is the player whose
color the strongest remaining basis element starts with.

26

Example 5.16. Consider the sum of basis elements

G = B +B +B +B +B

By Lemma 5.9, G = B +B +B . The lexico-

graphically strongest component in this game is B , so using Theorem 5.15

we conclude that G ∈ R.

Since these basis elements are so nice to work, the next thing we will try to do
is somehow decompose any Stack Cherries segment into a sum of basis elements.

Lemma 5.17. Let G be a Stack Cherries segment of length n that is not a basis
element. Let 0 < i < n such that |Gi| ≤ |Gk| for all 0 ≤ k < n and let 0 ≤ j < i
such that |G[1...i]j | ≤ |G[1...i]k| for all 0 ≤ k < i. Then |Gi| ≤ |G[1...i]j |.
Furthermore, if the (i + 1)-st and (j + 1)-st cherries of G have different colors,
this inequality is strict.

Proof. First suppose |Gi| and |G[1...i]j | are not prefixes of each other. This
means that the two mismatch before reaching the end of either segment, and
since |Gi| < |Gj | it follows that |Gi| < |G[1...i]j |.
Next, suppose that |Gi| is a strict prefix of |G[1...i]j |. So |Gi| and |Gj | match for
n− i cherries. Since Gi has length n− i it follows that G[1...i]j has length at least
n− i+ 1. Since |Gi| < |Gj | and |Gi| and |Gj | match for the first n− i cherries, it
follows that the (n− i + 1)-st cherry of |Gj | and therefore also the (n− i + 1)-st
cherry of |G[1...i]j | must be black. We conclude that |Gi| < |G[1...i]j |.
Lastly, suppose that |G[1...i]j | is a strict prefix of |Gi|. So |Gi| and |Gj | match for
at least i− j cherries. Since G[1...i]j has length i− j it follows that Gi has length
at least i− j + 1. If the (i− j + 1)-st cherry of |Gi| would be black, this would
mean that the (i− j + 1)-st cherry of |Gj | also has to be black since |Gi| < |Gj |.
So |Gi| and |Gj | match for at least i− j + 1 cherries, their (i− j + 1)-st cherries
are the same color as their first cherries (black) and |Gi| < |Gj |. Thus, we also
have |(Gi)i−j | < |(Gj)i−j | = |Gi|. This is a contradiction, since |Gi| ≤ |Gk| for
all 0 ≤ k < n. We conclude that the (i− j + 1)-st cherry of |Gi| must be white
and thus that |Gi| < |G[1...i]j |.
We have now shown that if |Gi| 6= |G[1...i]j |, then |Gi| < |G[1...i]j |. In other
words, we have |Gi| ≤ |G[1...i]j |. All that is left to show now is that |Gi| =
|G[1...i]j | cannot hold when the (i + 1)-st and (j + 1)-st cherries of G have
different colors. Suppose that |Gi| = |G[1...i]j |. Since |Gi| ≤ |Gj | and |Gi| and
|Gj | match for the first n− i cherries at which point we have reached the end of
|Gi|, the (n− i+ 1)-st cherry of |Gj | must be black. In other words, the first and
(n− i + 1)-st cherries of Gj have the same color. Since |Gi| is equal to |G[1...i]j |,
they must also have the same length, and thus n− i = i− j. We conclude that
the (j + 1)-st cherry of G has the same color as the (n− i + 1 + j) = (i + 1)-st
cherry.

27

Theorem 5.18 (Stack Cherries Backwards Decomposition). Let G be a Stack
Cherries segment of length n and let 0 ≤ i < n such that |Gi| ≤ |Gj | for all
0 ≤ j < n. Then G =SC G[1...i] + Gi.

Proof. Assume without loss of generality that the first cherry of G is black. If
i = 0, there is nothing to show, so assume that 0 < i < n. First suppose that
Gi also starts with a black cherry. If G and Gi do not match for the first i
cherries, then G[1...i] > Gi since G > Gi. If G and Gi match for the first i + 1
cherries, it follows from G > Gi that Gi > (Gi)i = G2i. But the first cherry of
G2i has the same color as the first cherry of Gi which is black, and therefore
|Gi| = Gi > G2i = |G2i|. This is a contradiction, since Gi is the weakest suffix
of G. So G and Gi cannot match for the first i + 1 cherries. Thus, if G and Gi

match for the first i cherries, they must mismatch at position i+ 1. The (i+ 1)-st
cherry of G is the first cherry of Gi and therefore black, so the (i + 1)-st cherry
of Gi must be the end of the segment or white. In both cases, this means that
G[1...i] ≥ Gi. Thus, in any synchronized game G[1...i] + Gi + X we may assume
that Left will play on G[1...i] before Gi. By induction on the birthday of G, we
conclude that G[1...i] + Gi = ((G[2...i] + Gi), (), ()) = ((G1), (), ()) = G.

Next, we will consider the case where Gi starts with a white cherry. By induction
on the birthday of G, we can repeatedly apply this theorem and Lemma 5.17
on G[1...i] to obtain a sequence of basis elements B1 ≥ B2 ≥ . . . ≥ B` satisfying
G[1...i] =SC B1 +B2 + . . .+B`. Since G starts with a black cherry, Lemma 5.17
tells us that B1 starts with a black cherry and is strictly stronger than Gi and
any Bj that starts with a white cherry. Now let X be any sum of Stack Cherries
segments. Playing on B1 + B2 + . . . + B` + Gi + X, if the strongest segment
starting with a white cherry W is Gi or a Bj , then B1 is a basis element starting
with a black cherry that is strictly stronger than the basis element W , which
is again stronger than the other segments in the game starting with a white
cherry. Thus, Theorem 5.15 tells us that B1 +B2 + . . .+B` +Gi +X >SC 0. In
other words, if the best move for Right is to play on Gi or any Bj , Left can win
anyway, so we may ignore these moves. By induction we conclude that

G[1...i] + Gi =SC B1 + B2 + . . . + B` + Gi

=SC (((B1)1 + B2 + . . . + B` + Gi), (), ())

=SC ((G1), (), ()) = G

As we mentioned in the proof, repeatedly applying this theorem allows us to
decompose any Stack Cherries segment into a unique sum of basis elements.
With this, we can view any Stack Cherries segment as a concatenation of basis
elements:

G = B B1 B2 . . . B` =SC B B1 +B B2 + . . . +B B`

28

Furthermore, by Lemma 5.17 we have |B1| ≥ |B2| ≥ . . . ≥ |B`| and equality can
only hold if Bi and Bi+1 start with the same color.

Example 5.19. We will decompose the Stack Cherries segment

G = B

into basis elements. We see that the suffix G4 = B is the lexico-

graphically weakest out of all non-empty suffixes, so Theorem 5.18 tells us that

G =SC B +B , noting that G4 is a basis element. In the

next iteration, we decompose B into B +B and in

the final iteration we decompose B into B + B . We conclude

that

G =SC B +B +B +B

where each component is a basis element.

One thing to note is that, if we have a Stack Cherries segment G where the weakest
suffix is Gi for some i > 0, then the weakest suffix of G1 is still Gi. This means

that if we have a Stack Cherries segment G = B B1 B2 . . . B` with basis

element decomposition B B1 +B B2 + . . .+B B` , that after `−1 iterations

of Theorem 5.18 we find that G1 = B (B1)1 B2 . . . B` =SC B (B1)1 +

B B2 +. . .+B B` . This shows us that the impact of a move on a Stack Cherries

segment only depends on the leftmost basis element in its decomposition. In other

words, if we have another Stack Cherries segment H = B A1 A2 . . . Ak with

basis element decomposition B A1 +B A2 + . . .+B Ak such that A1 = B1,

then G1 + H = G + H1. We therefore give this leftmost basis element a special
name.

Definition 5.20. Let G be a Stack Cherries segment. We define the main basis
element of G as the lexicographically strongest basis element in its basis element
decomposition.

If the decomposition of a Stack Cherries segment consists of many basis elements,
determining the main basis element of that segment using Theorem 5.18 can be
tedious, since this method works from back to front while the main basis element
is the leftmost basis element in its decomposition. To more easily determine
the main basis element of a segment we will introduce an equivalent Stack
Cherries decomposition method that works from front to back. Before this, we
first introduce a lemma that will help us with the proof of its correctness.

29

Lemma 5.21. Let G be a Stack Cherries segment of length n and let 0 ≤ i < n
such that |Gi| ≤ |Gj | for all 0 ≤ j < n. Then, for 0 ≤ j, k < i, we have

Gj > Gk ⇐⇒ G[1...i]j > G[1...i]k

Proof. Define H = G[1...i]. Assume without loss of generality that the (i + 1)-st
cherry of G is black. Assume that Gj > Gk. First suppose that j < k. If Gj and
Gk do not match for the first i− k cherries, then Hj > Hk since the mismatch
happens before the end of either segment. If Gj and Gk do match for the first
i− k cherries, then the (i− k + 1)-st cherry of Gj must be black since Gj > Gk

and the (i− k + 1)-st cherry of Gk is Gk[i− k + 1] = G[i+ 1] = black. Thus, Hj

and Hk match for the first i− k cherries, after which Hj is followed by a black
cherry while we have reached the end of Hk. It follows that Hj > Hk.

Now suppose that j > k. If Gj and Gk do not match for the first i− j cherries
we can again conclude that Hj > Hk since the mismatch happens before the end
of either segment. Now suppose Gj and Gk do match for the first i− j cherries.
Since Gj > Gk, it follows that Gi = Gj+(i−j) > Gk+(i−j). If the first cherry of
Gk+i−j , or equivalently the (i−j+1)-st cherry of Gk, would be black, this would
mean that |Gi| > |Gk+i−j |. This is a contradiction, since we assume that Gi is
the lexicographically weakest suffix of G. Thus, the (i− j + 1)-st cherry of Gk

must be white. So Hj and Hk match for the first i− j cherries, after which we
have reached the end of Hj and Hk is followed by a white cherry, so we conclude
that Hj > Hk.

We have now shown that Gj > Gk =⇒ Hj > Hk. By flipping j and k, the same
argument shows that Gj < Gk =⇒ Hj < Hk. We also note that Gj = Gk ⇐⇒
j = k ⇐⇒ Hj = Hk. We conclude that Gj > Gk ⇐⇒ G[1...i]j > G[1...i]k.

In other words, removing the lexicographically weakest suffix from a Stack
Cherries segments preserves the order of the longer suffixes.

Theorem 5.22 (Stack Cherries Forwards Decomposition). Let G be a non-basis
Stack Cherries segments of length n and let 0 < i < n be the smallest index such
that |Gi| ≤ |G|. Then G = G[1...i] + Gi

Proof. Let 0 < k < n such that |Gk| < |Gj | for all 0 < j < n. If G[1...k] is a
basis element, Lemma 5.21 tells us that |Gj | > |G| for all 0 ≤ j < k and thus
that i ≥ k. Since |Gk| < |G|, we conclude that i = k. Thus, by Theorem 5.18,
G = G[1...i] + Gi.

Next, suppose G[1...k] is not a basis element. By Lemma 5.21, i < k is also the
smallest index such that |G[1...k]i ≤ |G[1...k]|. By induction on the birthday of
G, it follows that G[1...k] = G[1...i] + G[1...k]i = G[1...i] + G[1 + i...k]. Since Gk

is the weakest suffix of G, it is also the weakest suffix of Gi. Theorem 5.18 now
tells us that Gi = G[1 + i...k] + Gk. Thus,

G = G[1...k] + Gk = G[1...i] + G[1 + i...k] + Gk = G[1...i] + Gi.

30

5.2 Cherries Decomposition

Now that we have a solid method for determining the winner of any Stack
Cherries game, we would like to find a method for reducing any game of Cherries
to a game of Stack Cherries. In this subsection we will propose such a method
and lay the foundation for a possible proof of its correctness.

For a Cherries segment G, we use the notation G(i,j) to refer to the Cherries
segment where the front i cherries and the back j cherries have been removed,
and we again use the notation G[a...b] to refer to the Cherries segment starting
at the a-th cherry of G and ending with the b-th cherry. A new piece of notation
is G, which we use to refer to the reverse of G. Note that this notation will
mostly be used in the context of lexicographical comparisons, since reversing a
Cherries segment does not change anything about its value.

We will see that some of the theorems and proof techniques we used to analyze
Stack Cherries can also be applied to regular Cherries in some modified way.
One of these theorems is the following, which very much resembles Theorem 5.7:

Theorem 5.23. Let G be a Cherries segment of length greater than k such that
G � G. Suppose that G and G match for the first k cherries. Then G(i,0) ≥ G(0,i)

for all 1 ≤ i ≤ k.

Proof. The proof of this theorem is also very similar to that of Theorem 5.7.
We will again first look at the case i = k. Since G and G match for the first
k cherries and G � G, it follows that the (k + 1)-st cherry from the start of
G is black and the (k + 1)-st cherry from the end of G is white. By quickly
checking all the cases, we conclude that G(0,k) + X ∈ L =⇒ G(k,0) + X ∈ L
and G(k,0) + X ∈ R =⇒ G(0,k) + X ∈ R for all synchronized games X. Thus,
G(k,0) ≥ G(0,k)

Next, we consider the case 1 ≤ i < k. Again, using the same induction argument
from Theorem 5.7, we conclude that G(0,i) + X ∈ L =⇒ G(i,0) + X ∈ L and
G(i,0) + X ∈ R =⇒ G(0,i) + X ∈ R for all synchronized games X. Thus,
G(i,0) ≥ G(0,i).

So, just like the players will always pick the segment with the highest absolute
value in a game of Stack Cherries, on a segment of regular Cherries where both
ends have the same color, the player of that color will always pick the side from
which the segment reads the lexicographically strongest. Obtaining a similar result
for segments with differently colored endings is not as straightforward. In fact,
results as general as this that we would expect to be true are not actually always

true. Take for example the Cherries segment G = .

Since the segment read from front to back is lexicographically stronger than
the segment read from the back to front, we would expect that removing the
first and last cherry will benefit Left. But with X = ((1), (1), (−1)), we see that
o(G + X) = U , while o(G(1,1) + X) = R, which means that G(1,1) ≥ G does not
hold.

31

However, we still expect this result to be true if we restrict X to be a sum of
Cherries segments. With this in mind, we propose a method for decomposing
a Cherries segment into Stack Cherries segments, based on repeatedly taking
cherries from the lexicographically strongest side.

Definition 5.24. Let G be a Cherries segment. Rotate G such that |G| � |G|.
Let 0 ≤ i ≤ n be the smallest index such that |G(i,0)| ≺ |G(i,0)| or such that

|G(i,0)| = |G(i,0)| and G(i,0) and G(i,0) do not start with the same colors. Then
we define dec1(G) = BG[1...i]. We define dec2(G) by repeating this process on
G(i,0), and so on. Finally, we define dec(G) =

∑
i deci(G).

This definition looks quite complicated but can be described in words as follows:
Given a Cherries segment G, pick the side from which the segment is lexico-
graphically strongest and start taking cherries from this side until this side is no
longer the lexicographically strongest. The cherries that have been removed so
far make up dec1(G). We then repeat this process to determine dec2(G), dec3(G)
and so on. We are finished when there are no cherries left or when the remaining
segment H is anti-symmetric, which means that |H| = |H| and H and H start
with different colors. At this point, all future iterations will yield deci(G) = 0.

Example 5.25. Consider the Cherries segment G = .

We see that G is lexicographically stronger front to back than back to front so
we take the front cherry from G. Next, we see that G(1,0) is still stronger front to
back than back to front so we again take the front cherry. At this point we are
left with G(2,0), which is stronger from back to front, so we stop this iteration

and conclude that dec1(G) = BG[1...2] = B .

In the next iteration we see that |G(2,0)| ≺ |G(2,0) and |G(2,1)| ≺ |G(2,1) so we

take two cherries from the back. At this point we have |G(2,2)| = |G(2,2), but
G(2,2) starts and ends with the same color so we keep going from this side and

take the next cherry. Next, we see that |G(2,3)| ≺ |G(2,3) and |G(2,4)| ≺ |G(2,4)

so we again take two cherries from the back, Finally, we are left with the anti-

symmetric segment G(2,5) = so we stop this iteration and conclude that

dec2(G) = B

Since we are now left with an anti-symmetric segment, we see that all future
iterations stop immediately, and thus dec3(G) = dec4(G) = . . . = 0. Thus,

dec(G) =
∑
i

deci(G) = dec1(G) + dec2(G) = B +B

If we have a Cherries segment that only consists of one color, all cherries will be

taken in the first iteration. For example, dec

()
= B . In

all other cases, we can show that we will end up with an anti-symmetric segment

32

instead of the empty segment after some amount of iterations. Indeed, if G is a
Cherries segment starting with one black cherry followed by a positive amount
of white cherries, then |G| � |G| and thus the front cherry of G will not be
taken when determining dec(G). So if G is a Cherries segment containing black
and white cherries, we will never be able to take all cherries when determining
dec(G), so we must end up with an anti-symmetric segment after some amount
of iterations.

We will now prove some basic properties of this decomposition function, to help
us get closer to a proof of its correctness.

Lemma 5.26. Let G be a Cherries segment with BG 6= BG. Then |dec1(G)| ≥
|dec2(G)|.

Proof. We may assume without loss of generality that |G| � |G|, since we could
reverse G if this was not the case. If dec2(G) = 0 the result follows immediately.
So assume dec2(G) 6= 0, which also means that dec1(G) 6= 0. In this case, G can

be written in the form A X B such that A,X,B are sequences of cherries

with BA = dec1(G) and BB = dec2(G).

If |BA| and |BB| are not prefixes of each other, this means that they mismatch
before reaching the end of either segment. Since |G| ≥ |G| it follows that
|BA| > |BB| and thus that |dec1(G)| ≥ |dec2(G)|.
Next, consider the case where |BA| is a prefix of |BB|. Let |BA| have length n.
Assume that |BA| < |BB|. This means that the (n+ 1)-st cherry of |BB| is black.
Since |G| � |G| it also follows that the (n + 1)-st cherry of |BG| is black. So |G|
and |G| match for at least n + 1 cherries and their (n + 1)-st cherry is black,
which means that if we remove the first n cherries and the last n cherries from
G, the segment should still be lexicographically stronger from front to back than
from back to front, or in other words |G(n,n)| � |G(n,n)|. But G(n,n) is of the

form X B(0,n) and so by the definition of dec we have |G(n,n)| � |G(n,n)|.

We conclude that |G(n,n)| is lexicographically equal to |G(n,n)| and thus that |G|
is lexicographically equal to |G|. But by assumption we know that BG 6= BG and
we also have BG 6= −BG since equality would mean that G is anti-symmetric
and dec1(G) would be 0. This is a contradiction, so |BA| ≥ |BB| must hold. We
conclude that |dec1(G)| ≥ |dec2(G)|. Lastly, the proof for when |BB| is a prefix
of |BA| is analogous.

Note that by repeatedly applying Lemma 5.26 while removing cherries from
the lexicographically strongest side, we can conclude that (|deci(G)|)i≥1 is a
non-increasing sequence of Stack Cherries segments. If dec1(G) has length n
and we remove 1 ≤ k < n cherries from lexicographically strongest side of G
resulting in the game H, then dec1(H) = dec1(G)k and deci(H) = deci(G) for
i ≥ 2 by definition of our decomposition. Combining this with Lemma 5.26, it
follows that all the suffixes of deci(G) must be lexicographically stronger than

33

deci+1(G), for all i and all Cherries segments G. With this, we can prove an
even stronger result about the non-increasing nature of (|deci(G)|)i≥1

Lemma 5.27. Let G be a Cherries segment such that dec1(G) > 0 and dec3(G) <
0. Then the main basis element of |dec1(G)| is strictly greater than that of
|dec3(G)|.

Proof. Assume without loss of generality that |G| � |G|. We will prove this
statement using contradiction. By Lemma 5.26, the main basis element of
|dec1(G)| is greater than or equal to the main basis element of |dec3(G)|. So
assume that the two main basis elements are both equal to some basis element
B. Since all the suffixes of dec1(G) must be lexicographically stronger than
dec3(G), it follows that the basis element decomposition of |dec1(G)| may only
contain the basis element B. In other words, |dec1(G)| is the concatenation of
some positive amount of B’s. Since |dec1(G)| ≥ |dec2(G)| ≥ |dec3(G)|, it also
follows that the main basis element of |dec2(G)| is B. The same argument now
tells us that |dec2(G)| is also the concatenation of some positive amount of
B’s. This amount is less than or equal to the amount of B’s in |dec1(G)|, since
|dec1(G)| ≥ |dec2(G)| must hold.

So, we now know that G is of the form nB −B X ±mB , where nB rep-

resents the concatenation of n B’s, ±mB represents either mB or −mB, X is
some sequence of cherries and m ≤ n. Here, dec1(G) = nB and dec2(G) = ±mB.
If we remove the first n − m copies of B from the front, we are left with

mB −B X ±mB . Since this segment is still lexicographically stronger

from front to back than from back to front and −B starts with a white cherry,

we conclude that −B X is lexicographically stronger from back to front than

from front to back. This is a contradiction by the definition of our decomposition,

since we have removed dec1(G) and dec2(G) and thus −B X should be

lexicographically stronger from front to back than from back to front.

It follows from Lemma 5.26 and Lemma 5.27 that, from the component dec(G)
in a sum of Stack Cherries games, we may assume that the players will only take
cherries from dec1(G) or dec2(G). Indeed, if decn(G) is the strongest segment
starting with one player’s color for some n > 2, then by Lemma 5.26 and
Lemma 5.27 dec1(G) will have a strictly stronger main basis element. So, using
basis element decomposition we find that this game is a win for the other player.
Thus, if playing on decn(G) for some n > 2 seems like the best option, this game
is a win for the other player anyways, so if we ignore such options the outcome
class of the game will not change.

Definition 5.28. Let G,H be synchronized games. We say G =C H if o(G +
X) = o(H + X) for any sum of Cherries and Stack Cherries segments X.

Conjecture 5.29. Let G be a Cherries segment. Then G =C dec(G).

34

There are two things we would still need to show for a possible proof of this
conjecture: First, if we remove a cherry from a Cherries segment G on the
lexicographically weakest side, this should change the value of its decomposition
by at least as much as taking a cherry from the lexicographically strongest side.
Second, if we have a Cherries segment G where dec1(G) and dec2(G) have the
same main basis element, then removing a Cherry from the side of dec2(G)
should change the value of its decomposition by the same amount as removing a
cherry from the side of dec1(G) does.

If we were to prove these two statements, a proof for Conjecture 5.29 would
follow from Lemma 5.26 and Lemma 5.27 and the theory of Stack Cherries.

In an attempt to further convince the reader of the correctness of this conjecture,
we can programmatically show that it is correct up to a specific point. We
managed to check that the decomposition works for all Cherries games containing
at most 20 cherries. More precisely, for all sums of Synchronized Cherries segments
containing in total at most 20 cherries, the outcome class of this game is equal
to the outcome class of the sum of the Stack Cherries decompositions of all the
segments. Here, we determined the outcome classes of the Cherries games directly
using the definition of the outcome classes and a dynamic programming approach,
and we determined the outcome classes of the Stack Cherries decompositions by
simulating the optimal Stack Cherries strategy from Theorem 5.7.

This decomposition also gives us a good explanation of the infinitesimal behaviour
we observed all the way back at the start of this section: the basis element
decomposition of a Cherries segment G with combinatorial value n contains

the basis element n times plus possibly some other weaker basis elements.

By Theorem 5.15, these weaker basis elements are infinitely weaker. Thus, G is
“infinitesimally close” to n.

35

6 Algorithms for Synchronized Cherries

In the previous section, we have shown how to assign a value to any Cherries or
Stack Cherries position in the form of Stack Cherries basis elements. Together
with Theorem 5.15, which tells us that basis elements are infinitely larger than
any smaller basis element, this gives us a very clear measure of how valuable a
Cherries or Stack Cherries position is for either player. More specifically, this
can help us answer the important question of which player, if any, has a winning
strategy on a sum of Cherries and Stack Cherries games.

It is not hard to find a theoretically correct method for determining the winner
of any synchronized game; by simply trying out all possible options you will find
out if some move always results in a win for one player. The difficulty lies in
finding an algorithm that does this efficiently. In this section, we will propose an
algorithm for determining the winner of any sum of Cherries and Stack Cherries
games using our knowledge from the previous section, and we will analyze its
complexity.

The algorithm consists of three phases. In the first phase, we decompose the
Cherries segments into Stack Cherries segments based on Definition 5.24. Next, we
decompose the Stack Cherries positions into basis elements using Theorem 5.18.
Finally, we determine the winner of the resulting sum of basis elements using
Theorem 5.15.

6.1 Stack Cherries Decomposition

We will start by discussing the second phase of the algorithm: decomposing a
Stack Cherries segment into basis elements. Using Theorem 5.18, we see that
one way to achieve this is by repeatedly finding the lexicographically weakest
suffix and splitting the segment at that point. This means that lexicographically
comparing suffixes is an important part of this algorithm. A data structure that
can help us with this is the suffix array. A suffix array is an array containing
all suffixes of a string in lexicographic order. More specifically, a suffix array
contains the starting indices of the suffixes in lexicographic order. In this thesis,
we are using one-based indexing for arrays, just like we have been treating (Stack)
Cherries segments as one-based.

Example 6.1. Consider the word cherries with alphabetical order. The suffixes
of this word are cherries, herries, erries, rries, ries, ies, es and s. We say
the suffix cherries has starting index 1, herries has starting index 2 and so on.
If we sort these from lexicographically smallest to greatest like in a dictionary,
we get cherries, erries, es, ies, herries, ries, rries and s. So the suffix
array of cherries is [1, 3, 7, 6, 2, 5, 4, 8].

We can also create a suffix array for a Stack Cherries segment using the lexico-
graphic order we introduced in the previous section. Consider the Stack Cherries

36

segment

B

If we order its suffixes from smallest to greatest we get B , B ,

B , B and B . So the suffix array of this Stack Cher-

ries segment is [2, 3, 1, 5, 4]

Suffix arrays were developed as a space efficient alternative to suffix trees [MM93],
storing information about the suffixes of a string in an array instead of in a tree.
Suffix trees provide an efficient solution to many string related problems, such
as searching for a pattern within a string [Gus97]. Suffix trees have also found
success in the field of computational biology, where the strings represent long
sequences of DNA, for example [KS99]. All of these suffix tree applications can
also be implemented using suffix arrays, using the same time complexity and
generally using less space [AKO04].

If we were to naively create a suffix array by filling an array with the suffixes of a
string of length n and applying a general sorting algorithm, this would have time
complexity O(n2 log n): general sorting algorithms require O(n log n) comparisons
and lexicographically comparing two suffixes has worst-case complexity O(n).
Using intrinsic properties of suffixes, algorithms have been devised that reduce
this complexity all the way down to O(n) [LLH18].

From Lemma 5.21, we know that removing the lexicographically weakest suffix
from a Stack Cherries segment preserves the order of the suffixes with a lower
starting index. More specifically, suppose we have a suffix array of a Stack
Cherries segment G and the lexicographically weakest suffix of G has starting
index i. If we remove the entries from the array representing suffixes with starting
index greater than or equal to i, the resulting array will still be a suffix array for
the segment G[1...i]. We use this in Algorithm 1 to efficiently decompose Stack
Cherries segments into basis elements.

Theorem 6.2. Algorithm 1 is correct and has time complexity O(n).

Proof. Since S is a suffix array of G, in lines 2–5 we set r and ` such that
G[S[r]...n] is the lexicographically smallest suffix starting with a black cherry,
if any, and G[S[`]...n] is the lexicographically greatest suffix starting with a
white cherry, if any. This means that either G[S[r]...n] or G[S[`]...n] is the
lexicographically weakest suffix of G. In lines 9–19, we determine which of these
is the lexicographically weakest, add this suffix to D and decrease m by the
length of this suffix to indicate the new end of the segment. By Theorem 5.18,
G is now equal to G[1...m] + Gm.

By Lemma 5.21, S is also a suffix array of G[1...m] if we ignore the values greater
than or equal to m. Thus, after lines 20–23, G[S[`]...m] and G[S[r]...m] will again
be the lexicographically greatest suffix starting with a white cherry and the lexi-
cographically smallest suffix starting with a black cherry of G[1...m], respectively.

37

Algorithm 1: Decompose a Stack Cherries segment into basis elements

Input: A Stack Cherries segment G of length n
Output: An array of basis elements D such that G =SC

∑
i D[i]

1 Let S be a suffix array of G
2 r ← 1
3 while r ≤ n and G[S[r]] = White do
4 r ← r + 1 // r is the index of the weakest positive suffix

5 `← r − 1 // ` is the index of the weakest negative suffix

6 m← n
7 i← 1

// Iteration counter

8 while m > 0 do
/* Determine s, the weakest suffix index in G[0...m− 1] */

9 if ` < 1 then
10 s← S[r]

11 else if r > n then
12 s← S[l]

13 else
14 if |G[S[r]...m]| < |G[S[l]...m]| then
15 s← S[r]

16 else
17 s← S[l]

18 D[i]← G[s...m]
19 m← s− 1

/* Update `, r to the new weakest suffixes in G[1...m] */

20 while ` ≥ 1 and S[`] ≥ m do
21 `← `− 1

22 while r ≤ n and S[r] ≥ m do
23 r ← r + 1

24 i← i + 1

38

So, in the next iteration of the while loop, we will find the lexicographically
weakest suffix of G[1...m], remove it and add it to the list. We continue until we
have gone through the entire segment, or equivalently until m = 0. At this point,
we conclude that D is a decomposition of G into basis elements.

Line 1 of this algorithm has complexity O(n) since we can create a suffix array
in linear time. Lines 2–5 also have complexity O(n) since the loop body will be
executed at most n times. Lastly, the while loop on lines 8–24. In line 14, we
compare two suffixes lexicographically, which costs time linear in the length of
the shorter suffix. We then decrease m by the length of one of these suffixes,
so the complexity of line 14 is at most linear in the amount m gets decreased.
Since we decrease m from n to 0, this means that over the entire execution, line
14 will have complexity O(n). The while-conditions of lines 20 and 22 can be
true at most n times since we do not decrease ` beyond 0 and do not increase
r beyond n + 1, so lines 20–23 also have time complexity O(n) over the entire
execution. Lastly, all other operations on lines 8–24 take constant time and will
be executed at most n times since we decrease m by at least 1 each iteration.
We conclude that this algorithm has time complexity O(n).

6.2 Outcome of a Sum of Basis Elements

After performing the algorithm from the previous section on all of our Stack
Cherries segments, we are left with a sum of basis elements. The only thing
that is left to do now is apply Lemma 5.9 and Theorem 5.15 to determine the
outcome of this game. From these two theorems it follows that the winner of any
sum of basis elements is the player that has the most copies of the basis element
with the largest absolute value. In case of a tie, we move on to the basis element
with the next largest absolute value.

We would like our algorithm for this step to have time complexity O(n), since
the time complexity of the entire algorithm is equal to the time complexity of
its slowest step and the previous step had complexity O(n) (here, n is the sum
of lengths of all the basis elements). A useful data type that will help us achieve
this is the dictionary. Dictionaries allow the user to store data as key-value pairs.
A common implementation of the dictionary makes use of a hash table, since
they allow for lookup and insertion with average time complexity O(1) [CLRS09].
However, since we will be using strings as keys, calculating the hash of a key
or comparing two keys in the case of a collision will have time complexity O(s),
where s is the length of the string. Thus, the total time complexity for lookup or
insertion will be O(s).

In Algorithm 2, we use a dictionary as a counter for how many positive copies
compared to negative copies there are for each basis element.

39

Algorithm 2: Determine the outcome of a sum of basis elements

Input: An array of basis elements D
Output: The outcome c of the sum of games in D

1 T ← {} // Initialize T as an empty dictionary

2 for G ∈ D do
3 if |G| /∈ T then
4 T [|G|]← 0 // Add key |G| if it does not exist yet

5 if G > 0 then
6 T [|G|]← T [|G|] + 1

7 else
8 T [|G|]← T [|G|]− 1

9 m← 0
10 c← U
11 for G ∈ D do
12 if |G| > m and T [|G|] 6= 0 then
13 m← |G|
14 if T [|G|] > 0 then
15 c← L
16 else
17 c← R

Theorem 6.3. Algorithm 2 is correct and has time complexity O(n).

Proof. In the first for loop, we count the amount of positive and negative copies
for each basis element. If we encounter a positive element G > 0, we increase the
counter T [|G|] by one and if we encounter a negative element G < 0 we decrease
the counter T [|G|] by one. It follows that after this for loop T [|G|] contains the
amount of occurrences of |G| minus the amount of occurrences of −|G| for each
basis element G in D.

Next, we will use the variable m to store the basis element with the highest
absolute value and a non-zero counter. If the counter for this element is positive,
Lemma 5.9 and Theorem 5.15 tells us that o (

∑
i D[i]) = L, and if the counter

is negative that o (
∑

i D[i]) = R. Lastly, if there are no basis elements with
a non-zero counter, o (

∑
i D[i]) = U by Lemma 5.9. Thus, at the end of the

algorithm, the variable c contains the outcome class of
∑

i D[i].

In the first for loop, for a basis element G ∈ D with length s, the loop body will
have time complexity O(s) if we implement the dictionary T using a hash table.
So the entire loop will have time complexity O(n), where n is the sum of lengths
of all elements in D. Similarly, the second for loop body also has complexity
O(s) for a basis element G ∈ D with length s, since lexicographically comparing
|G| and m has worst-case complexity O(s). So the second for loop also has total
complexity O(n). We conclude that the entire algorithm has time complexity

40

O(n).

Combining Algorithm 1 and Algorithm 2, we see that we can determine the
winner of any sum of Stack Cherries segments in only O(n) time, where n is the
total amount of cherries in all the segments.

6.3 Cherries Decomposition

Lastly, we propose Algorithm 3 for decomposing any Cherries segment into a sum
of Stack Cherries segments based on Definition 5.24. Note that the correctness
of this algorithm relies on the correctness of Conjecture 5.29.

Theorem 6.4. Algorithm 3 is correct and has time complexity O(n2).

Proof. Algorithm 3 precisely describes the construction of dec(G) from Defini-
tion 5.24: While G is not empty and not anti-symmetric, repeatedly pick cherries
from the side that is lexicographically strongest and add them to Stack Cherries
segments. So, at the end of the algorithm, D[i] = deci(G) for all indices i of
D, and decj(G) = 0 for all indices j greater than the size of D. In other words,∑

i D[i] = dec(G). By Conjecture 5.29, we conclude that
∑

i D[i] =C G.

Lines 1–9 have time complexity O(n), since we are doing a constant amount
of constant-time operations and one linear-time operation (lexicographically
comparing |G| and |G|). The loop body of lines 11-24 will be executed at most
n times, since we either increase ` by 1 or decrease r by 1 each iteration, and
we will stop at the latest when ` = r. The while-condition check and loop body
both have time complexity O(n), since they consist of a constant amount of
constant-time operations and linear-time operations. Thus, the entire while loop
has time complexity O(n2). Lastly, the part consisting of lines 25-28 has time
complexity O(n), since it involves of copying and possibly reversing an array of
length at most n. We conclude that Algorithm 3 has time complexity O(n2).

If Conjecture 5.29 is correct, combining Algorithm 1, Algorithm 2 and Algorithm 3
gives us an O(n2) method for determining the winner of any Synchronized
Cherries game.

41

Algorithm 3: Decompose a Cherries segment into Stack Cherries segments

Input: A Cherries segment G of length n
Output: An array of Stack Cherries segments D such that G =C

∑
i D[i]

1 `← 1
2 r ← n

3 if |G| � |G| then
4 s← left // The side from which we are taking cherries

5 t← 1 // The position we started from this iteration

6 else
7 s← right

8 t← n

9 i← 1 // Iteration counter

10 while ` < r and G[`...r] 6= −G[`...r] do

11 if s = left and |G[`...r]| ≺ |G[`...r]| then
12 D[i]←BG[t...l − 1]
13 s← right

14 t← r
15 i← i + 1

16 else if s = right and |G[`...r]| � |G[`...r]| then

17 D[i]←BG[r + 1...t]
18 s← left

19 t← l
20 i← i + 1

21 if s = left then
22 `← ` + 1

23 else
24 r ← r − 1

/* Add the cherries from the final iteration to the result */

25 if s = left then
26 D[i]←BG[t...l − 1]

27 else

28 D[i]←BG[r + 1...t]

42

7 Cherries Variants

In this section, we will briefly go over the main results for some variants of
Cherries. We will only write out a complete proof for the more difficult theorems.

7.1 Plus-Minus Stack Cherries

In Section 5, we conjectured that every Cherries segment can be decomposed
into Stack Cherries segments, but not that all moves on a Cherries segment are
equally as good as some move on a Stack Cherries segment. Take for example the

Cherries segment G = . By Conjecture 5.29, G = 0

and G(1,0) = B . In other words, taking the first cherry from

G is equivalent to increasing the value of the game by B . But

we cannot seem to find any Stack Cherries segment that has this same property.
In an attempt to better understand how such a move compares to other moves
on (Stack) Cherries segments, we introduce a Stack Cherries variant called
Plus-Minus Stack Cherries.

Definition 7.1. Let G > 0 be a Stack Cherries segment. We define the Plus-
Minus Stack Cherries segment ±G by

±G = ((G1), (−G1), (0))

We can use these Plus-Minus Stack Cherries segments to model anti-symmetric
Cherries segments as follows. Say we have an anti-symmetric Cherries segment
G starting with a black cherry. If we remove the first cherry from this segment,
the resulting game is equal to a sum of Stack Cherries segments by Conjec-
ture 5.29. Using basis element decomposition and recomposition, we know that
any sum of Stack Cherries segments is equal to a single segment. So G(1,0) =C H
for some Stack Cherries segment H. By symmetry, G(0,1) =C −H. Lastly, if
we remove both outer cherries, the resulting segment is again anti-symmetric
and thus G(1,1) =C 0. In other words, we have G =C ((H), (−H), (0)) =
((K1), (−K1), (0)) = ±BK, where we obtain K by prepending H with a single
black cherry. If we apply this to the example from before, we find that making a

move on the Cherries segment is equivalent to mak-

ing a move on the plus-minus Stack Cherries segment ±B .

Lemma 7.2. Let ±G be a Plus-Minus Stack Cherries segment. Then ±G = 0 in
the context of any sum of Stack Cherries games and Plus-Minus Stack Cherries
games.

Corollary 7.3. Let G,H be Stack Cherries or Plus-Minus Stack Cherries
segments. Then G =SC H if and only if o(G + X) = o(H + X) for any sum of
Stack Cherries segments and Plus-Minus Stack Cherries segments X.

43

So, just like anti-symmetric Cherries segments, adding a Plus-Minus Stack
Cherries segment to a sum of regular Stack Cherries segments does not change
the value of the game. More interesting is again the matter of finding an optimal
strategy in a mixed game of Stack Cherries segments and Plus-Minus Stack
Cherries segments; Given a Stack Cherries segment and a Plus-Minus Stack
Cherries segment, which would you rather make a move on? In answering this
question, we first come across an interesting lemma that tells us a lot about the
structure of the set of basis elements.

Lemma 7.4. Let B > 0 be a basis element. Then the greatest basis element that
is smaller than B is the concatenation of B and −B.

Proof. Define C as the concatenation of B and −B and let n be the length of
B. We will first show that C is actually a basis element. Since C and B match
for the first n cherries, after which C is followed by a white cherry and B has
reached the end of the segment, we have C < B. B and C both start with black
cherries so it follows that |C| < |B|.
Let Ci be the weakest suffix of C for some 0 ≤ i < 2n. If n ≤ i < 2n, we have

|C| < |B| ≤ |Bi−n| = |−Bi−n| = |Ci|

This is a contradiction since Ci is the weakest suffix of C. If 0 < i < n and Bi

starts with a white cherry, it follows from Ci < Bi that |Ci| > |Bi| ≥ |B| > |C|.
This is again a contradiction. Lastly, consider the case where 0 < i < n and
Bi starts with a black cherry. If B and Bi do not match for the first n − i
cherries, then the mismatch happens before reaching the end of either segment
and thus it follows from |B| ≤ |Bi| that |C| < |B| ≤ |Ci| also holds. If B and
Bi do match for the first n− i cherries, then B[n− i + 1] must be white since
|B| ≤ |Bi| and the (n− i + 1)-st cherry of Bi is the end of the segment. Since
Ci[n − i + 1] = C[n + 1] is also white, we conclude that |Ci| and |Cn| = |B|
match for at least n − i + 1 cherries. But Ci is a basis element since it is the
weakest suffix of C, so this is a contradiction by Lemma 5.12. We conclude that
i = 0 must hold, or in other words, that C is a basis element.

Next, we will show that C is the greatest basis element smaller than B by
contradiction. In the previous paragraph we saw that B > C. Now assume there
is a basis element D such that B > D > C. If C and D match for at most n− 1
cherries, this means that B and D also mismatch within the first n cherries
and B comes out on top. Since the first n cherries of C are equal to the first n
cherries of B it follows that C > D, which is a contradiction. If C and D match
for n ≤ ` < 2n cherries, this means that Cn and Dn mismatch within the first n
cherries and Dn comes out on top. Cn and Dn both start with a white cherry
because C and D are less than B. So |Cn| > |Dn| and the mismatch happens
within the first n cherries. Since B = |Cn| and the first n cherries of D match the
first n cherries of B it follows that |D| > |Dn|. This is a contradiction, since D is
a basis element. Lastly, suppose that C and D match for 2n cherries. D[2n + 1]
must be black since D > C and C[2n + 1] is the end of the segment. Now

44

|D|[1...n + 1] = D[1...n + 1] = C[1...n + 1] and |Dn|[1...n] = −D[n + 1...2n] =
−C[n + 1...2n] = C[1...n] and |Dn|[n + 1] = −D[2n + 1] = C[n + 1]. Thus, |D|
and |Dn| match for at least n + 1 cherries, which is not possible by Lemma 5.12.
Note that C and D cannot match for more than 2n cherries since C only has
length 2n. We conclude that there is no basis element D such that B > D > C
and therefore that C is the greatest basis element smaller than B.

Example 7.5. The greatest basis element is B (we can see this by, for

example, applying Theorem 5.15: any basis element greater than B would

have to be infinitely greater, but with a finite segment this is not possible). By

Lemma 7.4, the second greatest basis element is B , then B ,

then B , and so on.

If we now, for example, look at the basis element B , this lemma also

tells us that there are infinitely many basis elements between it and B .

Lemma 7.6. Let G > 0 be a Stack Cherries segment with main basis element
B. Let C be the concatenation of B and −B. Then G1 =SC G + C1.

Proof. Let n be the length of B. In the proof of Lemma 7.4, we saw that |Cn| =
|B| ≤ |Ci| for all 0 < i < 2n. So the weakest suffix of C1 is Cn and the backwards
Stack Cherries decomposition tells us that C1 =SC C[2...n] + Cn = B1 − B.
Since B is the main basis element of G, we have G1 −G =SC B1 −B =SC C1.
Adding G to both sides, we conclude that G1 =SC G + C1.

Corollary 7.7. Let G > 0 be a Stack Cherries segment with main basis element
B. Let C be the concatenation of B and −B. Then, for Left, playing on the
component G is equivalent to playing on the component ±C in the context of any
sum of (Plus-Minus) Stack Cherries games, independently of what move Right
picks.

Proof. Let X be a sum of Stack Cherries games and Plus-Minus Stack Cherries
games. Suppose we are playing the game G + ±C + X. First, assume Right
plays the component X to XR

j . If Left plays on the component G, the resulting

game is G1 +±C + XR
j =SC G1 + XR

j . If Left plays on the component ±C, the

resulting game is again G + C1 + XR
j =SC G1 + XR

j by Lemma 7.6.

Next, assume Right plays on the component ±C. If Left plays on the component
G, the resulting game is G1 − C1 + X =SC G + X by Lemma 7.6. If Left plays
on the component ±C, the resulting game is again G + X.

Lastly, note that Right has no moves on the component G. We conclude that,
for Left, playing on G is equal to playing on ±C in the context of any sum of
(Plus-Minus) Stack Cherries games.

45

This corollary tells us what the optimal strategy is on any sum of Stack Cherries
and Plus-Minus Stack Cherries games:

1. Look at the lexicographically strongest Stack Cherries segment G start-
ing with your color and the lexicographically greatest Plus-Minus Stack
Cherries segment ±H.

2. Let B be the main basis element of G and let C be the concatenation of
B and −B.

3. If C is lexicographically stronger than H, play on the component G.
Otherwise, play on the component ±H.

7.2 Gray Cherries

In this subsection, we will take a look at a Cherries variant where, in addition
to black and white, cherries may now also be colored gray. Outer gray cherries
may be taken by both players. We will first look at the combinatorial version of
Gray Cherries.

Example 7.8.

=

{
, |

}
One immediate difference between regular Cherries and Gray Cherries is that
Gray Cherries games are not always equal to an integer. Take, for example, the

Gray Cherries game . We have ∈ N , but all integers are elements of L,

R or P . In combinatorial game theory, the game = {0 | 0} is often referred

to as ∗. Note that ∗+ ∗ = 0, since it is a win for the second player.

In the previous sections, we saw that removing a cherry of your own color in a
game of regular Cherries makes the game more favorable for the other player.
So, intuitively, we expect the players to always prefer taking a gray cherry over
taking a cherry of their own color. This means that, if we have two gray cherries
right next to each other, both will get taken as soon as possible when revealed,
basically canceling out to 0. We now split a Gray Cherries segment up into
sections, where a section consists of consecutive black or white cherries with
gray cherries in between. If we remove all pairs of consecutive gray cherries in a
section, we say the value of that section is equal to the amount of black/white
cherries minus the amount of gray cherries left. If there is an odd amount of gray
cherries between two sections, we say that these gray cherries are an internal
separator of the two sections.

Example 7.9. Consider the following Gray Cherries segment:

G =

46

If we remove all pairs of gray cherries, we are left with ,

so G consists of a single black section with value 3. Next, consider the following
Gray Cherries segment:

H =

This segment has 1 outer gray cherry, it starts with a black section of value 2,
followed by a white section of value 2, followed by a black section of value 1,
followed by an internal separator, followed by a last white section of value 1.

Theorem 7.10. Let G be a Gray Cherries segment consisting of at least 2
sections. Let g be the amount of gray cherries in the outer two blocks. Let m be
the value of the first section of cherries and n the value of the last section. Let
`, r ∈ {−1,+1} be the signs of the first respectively last sections. If the segment
contains an internal section of value greater than 1 or an internal separator, let
x ∈ {−1,+1} be the sign of the leftmost section that is internal with value greater
than 1 or directly follows an internal separator. Similarly, let y ∈ {−1,+1} be
the sign of the rightmost section that is internal with value greater than 1 or
directly precedes an internal separator. Otherwise, let x = y = 0. Then

G = g · ∗+ `(m− 1) + r(n− 1) +
` + r

2
+

x + y

2
.

Proof. Similar to the proof of Theorem 3.1, except that we now say that a move
by Left is optimal if it is to the game v− 1 or v + ∗ and that a move by Right is
optimal if it is to the game v + 1 or v + ∗. The desired result then follows from
the fact that a move by Left to v − 1 results in the same outcome as a move to
v+∗ and similarly for Right. More precisely, for integers a, b with a ≤ b, we have

{a + ∗ | b + ∗} = {a− 1 | b + ∗} = {a + ∗ | b + 1} = {a− 1 | b + 1}.

Example 7.11. Consider again the Gray Cherries segment H from Example 7.9.
Plugging in all the values we found in that example, Theorem 7.10 tells us that
H = 1 + ∗.

Lastly, we will very briefly look at the synchronized version of Gray Cherries. The
first thing to note is that not all Gray Cherries segments are strongly separable.

Take for example the game ∈ N . By Theorem 4.16, this game cannot be

strongly separable. This stems from the fact that it is not clear what synchronized
move should correspond to both players taking the same gray cherry. For now,
we will say that the synchronized move corresponding to both players taking the
same gray cherry is simply the game where that single cherry has been removed,
but other approaches are possible.

47

Just like in the combinatorial case, we expect the players to prefer taking gray
cherries over cherries of their own color. What this means with our definition of
the synchronized moves, is that these gray cherries have no impact on the value
of the game: as soon as outer gray cherries become available, both players will
pick them, resulting in the same game as when those gray cherries were never
there. After introducing yet another restricted version of equality, we will write
out this theorem.

Definition 7.12. Let G,H be synchronized games. We say G =GC H if o(G +
X) = o(H + X) for any sum of Gray Cherries segments X.

Note that “any sum of Gray Cherries segments X” also includes all sums of
regular Cherries segments.

Theorem 7.13. Let G be a Synchronized Gray Cherries segment. Let H be the
Synchronized Cherries segment we get by removing all the gray cherries from G.
Then G =GC H.

48

8 Conclusions and Further Research

In this thesis, we considered two main ways of playing the game Cherries.
We started off with the combinatorial version of the game, and, using some
well-established theorems from combinatorial game theory, we proved that any
Combinatorial Cherries game is equal to some integer game.

Next, we introduced our definition of a synchronized game and defined some
basic operations on these games. We saw that our definition of equality was more
difficult to work with than the equality on combinatorial games, mostly due to the
uncertainty of not knowing what move the opponent will pick. We then saw that
some combinatorial games, including Cherries, naturally give rise to synchronized
versions of these games, and that the outcome class of a combinatorial game
often fully determines the outcome class of such a synchronized version.

Section 5 contains our game-theoretical analysis of Synchronized Cherries. We
saw that Cherries segments often naturally reduce to Stack Cherries segments,
where the players may only take cherries from the front of a segment. As a
main result, we showed that Stack Cherries segments can be decomposed into
so-called basis elements, which gives us a very good measure of the value of any
Stack Cherries game and allows us to easily determine its outcome class. Lastly,
we proposed a method for actually reducing any Cherries segment into Stack
Cherries segments, but were not yet able to completely prove its correctness.

The theory of Section 5 outlines an efficient three-step method for determining
the outcome class of any Cherries game: decompose the Cherries segments into
Stack Cherries segments, decompose these Stack Cherries segments into basis
elements, and determine the outcome class of the resulting sum of basis elements.
Using suffix arrays, we designed an algorithm for the second step that runs
in linear time in the length of the segments. We also presented a linear time
algorithm for the third step, using hash tables. Combining these two steps
gives us a linear time algorithm for determining the outcome class of any Stack
Cherries game. Lastly, we presented a quadratic time algorithm for the first
step based on our Cherries decomposition conjecture, meaning that the total
algorithm has quadratic time complexity.

There are multiple possible directions for future research on the topic of Syn-
chronized Cherries. Most important would be to either finish the proof that
our method of decomposing Cherries segments into Stack Cherries segments
is correct, or find a counter-example that shows that it is not. We motivated
why such a decomposition makes sense, proved some theorems that hint at its
correctness and showed that it works for at least all Cherries games containing
at most 20 Cherries, but a complete proof is still missing.

Another direction for future research would be to try to find a simpler, explicit
winning strategy for playing Synchronized Cherries. Currently, the simplest
winning strategy we have implicitly follows from the value we can assign to
segments using decomposition: a winning strategy for either player is to always
pick a move such that the decomposition of the resulting game is a win for that

49

player for all possible moves of the opponent, if possible. But this strategy is
quite tedious, since one would have to find the basis element decomposition for
every possible move to determine if there are any winning moves. Also note
that we are using the words “winning strategy” instead of “optimal strategy”,
since Left having an optimal strategy on a synchronized game G might seem to
imply that she has some move such that, for all moves by Right, the resulting
game is greater than when she would have picked another move, which is
not always the case with Synchronized Cherries (take for example the game

G = +).

Finally, one could try to find a more efficient algorithm for determining the
outcome of a Synchronized Cherries game, specifically for the first step: decom-
posing a Cherries segment into Stack Cherries segments. With a quadratic time
complexity, this step is currently the slowest, so improving the time complexity
of this step would improve the complexity of the entire algorithm.

50

References

[AKO04] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch.
Replacing suffix trees with enhanced suffix arrays. Journal of Discrete
Algorithms, 2(1):53–86, 2004.

[ANW19] Michael H. Albert, Richard J. Nowakowski, and David Wolfe. Lessons
in Play: An Introduction to Combinatorial Game Theory. CRC Press,
second edition, 2019.

[BCG01] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways for Your Mathematical Plays, volume 1. Taylor & Francis,
second edition, 2001.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. The MIT Press, third
edition, 2009.

[Con00] John H. Conway. On Numbers and Games. CRC Press, second edition,
2000.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press,
1997.

[KS99] Stefan Kurtz and Chris Schleiermacher. REPuter: Fast computation of
maximal repeats in complete genomes. Bioinformatics, 15(5):426–427,
1999.

[LLH18] Zhize Li, Jian Li, and Hongwei Huo. Optimal in-place suffix sorting.
In International Symposium on String Processing and Information
Retrieval, pages 268–284. Springer, 2018.

[MM93] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[Sie13] Aaron N. Siegel. Combinatorial Game Theory. American Mathemati-
cal Society, 2013.

51

	Introduction
	Combinatorial Games
	Combinatorial Cherries
	Synchronized Games
	Equality of Synchronized Games
	Synchronizing Combinatorial Games

	Synchronized Cherries
	Stack Cherries
	Cherries Decomposition

	Algorithms for Synchronized Cherries
	Stack Cherries Decomposition
	Outcome of a Sum of Basis Elements
	Cherries Decomposition

	Cherries Variants
	Plus-Minus Stack Cherries
	Gray Cherries

	Conclusions and Further Research
	References

