
Computer Science
& Economics

Parallel algorithm portfolios in Sparkle

Richard Middelkoop

Supervisors:
Koen van der Blom & Holger Hoos

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 03/08/2021

www.liacs.leidenuniv.nl

Abstract
A solver is an implementation of an algorithm for solving a given problem. This specific characteristic
of a solver is what makes it useful in practical applications. Therefore, reducing the time a solver
needs to solve a problem can be of substantial value to a wide array of real-world applications. Solver
designers try to accomplish this, by improving upon the current state of the art of solvers. Currently,
when solver designers want to create a new solver, they need to create a new environment to be able
to test the new solver. Solver designers can also combine different software platforms to test the new
solver; nevertheless, this can require pre- and post-processing between the different software. Since
both cases are time-consuming it is of value to have a platform that supports solver designers in
their development process. A platform that helps solver designers is Sparkle. The platform Sparkle
is designed for the evaluation of empirical algorithms/solvers and can support solver developers
in the evaluation and testing process of developing a solver. This thesis will introduce parallel
portfolios to Sparkle. Parallel portfolios are a set of independent, non-communicating solvers which
solve problem instances in parallel. By introducing parallel portfolios to Sparkle, this thesis will
show how parallel portfolios, support solver developers in their development process and show the
potency of parallel algorithm portfolios. How this thesis will do this is by providing insight into the
design and implementation of parallel algorithm portfolios into Sparkle. Furthermore, it will use
experiments to show the practical capabilities of parallel portfolios. The results of the experiments
show that parallel portfolios can be easily utilised in Sparkle, achieving a significant saving in
wall-clock time. However, the conducted experiments quantified the overhead which occurred during
the experiments these include; a delay when placing the jobs on the cluster, and an increase in
solver overhead when scaling the portfolio above 64 solvers which are 1/8th of the cluster size.
Concluding, the paper will discuss further applications of parallel algorithm portfolios and possible
improvements, or enhancement of the design.

Contents
1 Introduction 1

2 Theoretical Framework 2
2.1 Related work . 2
2.2 Main concepts . 3

2.2.1 Parallel algorithm portfolio . 3
2.2.2 Two types of algorithm: Optimisation and decision 3
2.2.3 Randomised solvers . 4
2.2.4 How to evaluate a result . 4
2.2.5 Status codes . 4

3 Design 5
3.1 Design choices . 5
3.2 User guide . 5
3.3 System overview . 7

4 Implementation 9
4.1 Command-line interface . 9
4.2 Data flow . 11
4.3 User configuration . 11

5 Experiments 12
5.1 Portfolio vs. single solver . 13
5.2 Scaling experiment . 15

6 Discussion 20

7 References 23

Appendices 24

A Listings of the User guide 24

B Results of experiment 5.1 27

C Results of experiment 5.2 29

D Grace specification 30
D.1 Hardware . 30
D.2 Software . 30

E Example sparkle report 31

1 Introduction

1 Introduction
Nowadays, the involvement of algorithms can be seen almost everywhere. Therefore, the speed at
which algorithms perform their task is crucial since it can influence everyday tasks. For instance,
think about your route planner which uses algorithms to calculate a new route after you have
taken the wrong exit or the finding of an alternative route due to traffic. Solver developers develop
algorithms to improve the performance of the current state of the art of solvers. Currently, when
solver designers want to design a new solver, they have little support for managing administrative
and trivial tasks within the designing process. This can take up a lot of valuable time. To try and
combat this, solver designers combine different software platforms that support them in different
”uninteresting” tasks. However, this can cause a lot of pre- and post-processing between the software
platforms. Since both of these cases are time-consuming, it would be of value if there was a
platform that would support them through the complete process. There is a platform, currently
under development, which tries to achieve this, called Sparkle. In 2015, a technical report about
Sparkle [1] was published by Hoos and in 2019 an additional functionality, algorithm configuration,
was implemented by van der Blom et al. [2]. This report outlines the functionalities, as well as
possible extensions of the Sparkle platform.
Within this thesis one such extension, parallel algorithm portfolios [3], will be introduced which
can serve as an important tool for solver developers, it will support the users of the extension with
construction, execution and empirical evaluation of the portfolio. Considering that the state of the
art does not consist of a single best algorithm, instead, it is a set of complementary algorithms.
By combining the algorithms they create the state of the art. The reason for this is that solvers
perform differently on different problems; therefore, one solver might outperform one solver on one
instance but gets outperformed on the next. For solver developers a parallel algorithm portfolio
would enable them to test a set of algorithms in parallel, this could, in turn, be used to see if
their portfolio performs, as well as they would hope. Furthermore, for solver users, the extension
would enable them to use their parallel computing resources to improve the performance of their
experiments. Additionally, the simple design of Sparkle allows for easy comprehension for novice
solver users, this enables more people to solve problems with solvers. In conclusion, the Sparkle
platform intends to support solver developers, and incentivise them to focus their energy on their
work of improving the state of the art [1]. Sparkle tries to achieve this with multiple readily available
tools supporting solver developers, and if Sparkle gains a tool that allows for the constructing,
testing, and evaluation of a set of solvers on instances, it would support solver developers.
In short, this thesis will do exactly this, it will showcase the design and implementation of parallel
algorithm portfolios into Sparkle. Furthermore, it will perform several experiments showing the
potency of parallel algorithms portfolios and the performance of the implementation. Parallel
algorithm portfolios use parallel computing resources to improve the wallclock execution time.
This is done by running multiple jobs in parallel. Additionally, this thesis will discuss further
improvements of the implementation and additional options which can further support solver
designers. The structure of the thesis is as follows, Chapter 2 explains the most relevant works, as
well as the relevant technical terms used in the design of the system. Chapter 3 shows the overall
design of the system and a user guide showcasing the main use cases. This will be done by listing
the steps a user needs to take to complete the use case in Sparkle commands. In Chapter 4 a
further insight into the design of Sparkle is given by listing all Sparkle commands and their settings.
Furthermore, parallel algorithm portfolios introduce several global variables which are also shown

1

2 Theoretical Framework

in the chapter. Chapter 5 demonstrates the practical capabilities of parallel algorithm portfolios
by performing several insightful experiments on Leiden’s Grace cluster. In Chapter 6 the work is
summarised, and future work is discussed on the implementation and parallel portfolios as a whole.

2 Theoretical Framework
In this chapter the theoretical background required to understand this thesis will be discussed. This
consists of the most relevant papers in Section 2.1 as well as the relevant technical terms in Section
2.2.

2.1 Related work
In 1997 as the first ones, Huberman et al. provided a common method to combine existing algorithms.
These algorithms were in no form superior over one another, instead, they rivalled each other. By
combining them they performed better than any of the components separately [4]. This method
revolves around heuristic algorithms which were developed to combat extremely hard computational
problems. These algorithms had their flaws, and performed significantly different from one problem
instance to another, even rerunning an algorithm on a problem instance could result in different
outcomes. Ultimately, the method revolved around constructing portfolios that combine different
algorithms. “The portfolio is constructed simply by letting both algorithms run concurrently but
independently on a serial computer” [4].
This method can now be described, as ‘algorithm portfolio’ when looking at the paper written by
Gomes and Selman [3]. This paper was written four years later and concerns the study in which
a portfolio approach compared to a single algorithm approach, provides a strong improvement
regarding overall performance. Furthermore, Gomes and Selman state that “a good strategy for
designing a portfolio is to combine many short runs of the same algorithm” [3]. The same algorithm
is only varied by changing the initial seed of the algorithm, which is used by the random number
generator. The authors mention that this method, along with several other methods, use an
algorithm portfolio to improve the overall performance.
Gomes and Selman discuss the difference between the theory and practice in their paper Algorithm
portfolio design: Theory vs. practice [5]. In the paper, the authors create a portfolio to demonstrate
the conditions needed for a portfolio approach to have a substantial performance advantage over
more established methods. Within a portfolio design, they consider a setup consisting of separate,
non-communicating runs. From the concrete empirical results, the conclusion has been drawn that
the portfolio approach outperforms the best-established methods in “hard combinatorial search and
reasoning problems” [5].
Although there are no publicly accessible frameworks, like Sparkle, to relate to there have been
multiple usages of algorithm portfolios in experiments [6, 7, 8, 9]. For example, in the paper from
Lindauer et al. [7] several frameworks and methods are combined to perform their experiments.
Within this thesis, we will implement this in a publicly accessible framework, which is called
Sparkle [1]. Sparkle is publicly available as of 02-07-2021 on bitbucket and is being continuously
developed. To use the framework, one must simply follow the installation instructions. Thereafter,
the platform can be used by adding the desired instances and solvers and by selecting the desired
procedure. This procedure sends jobs to any computing environment, which uses the Slurm workload

2

https://bitbucket.org/sparkle-ai/sparkle/src/main/

2 Theoretical Framework

manager. Lastly, the workload manager distributes these jobs for execution. One of the goals of
Sparkle is that the jobs can also be managed through other environments, which do not use Slurm.
Summarising, in this work we will extend Sparkle with a new functionality, parallel algorithm
portfolios.

2.2 Main concepts
The remainder of the chapter will explain the core concepts used in the design and implementation
of the parallel portfolio.

2.2.1 Parallel algorithm portfolio

Gomes and Selman state that “A portfolio of algorithms is a collection of different algorithms
and/or different copies of the same algorithm running on different processors” [3]
Gomes and Selman introduce three different types of Algorithms Portfolios;“(1) running on a
parallel machine, (2) running interleaved on a single processor, and (3) running an algorithm

“restart” strategy” [3]. The focus of this project is the type that uses a parallel machine. This means
that multiple algorithms are carried out simultaneously.
In the context of this project, this can further be specified, as the use of several CPU cores. Each core
containing different algorithms or sometimes the same algorithm but with different pseudo-random
seeds. These algorithms try to solve a problem instance simultaneously in the same time span.

2.2.2 Two types of algorithm: Optimisation and decision

Sparkle differentiates between two types of algorithm: Optimisation and decision. The performance
of these two types are measured in different ways and require a different setup in Sparkle.
Optimisation algorithms are algorithms that solve optimisation problems. The solution to the
problem is the best answer to the input. Considering this, each solver within a portfolio is required
to return their solution after a given time span. Afterwards, the best solution is chosen. An example
of an optimisation algorithm is the shortest path algorithm, the algorithm tries to find the shortest
route between point A and point B of a given problem.
Decision algorithms are algorithms that solve decision problems. The solution of the problem can
only be one of two outcomes; yes, or no. This holds true for all decision algorithms; however, the
literal answer of an algorithm can vary.
A specific type of decision algorithm is an SAT solver, these solvers can solve satisfiability problems.
A satisfiability problem is a problem that contains a list of requirements that need to be met in
order for that item in the list to be satisfied. If there is a way in which all items on the list can
be satisfied then the complete problem is satisfiable. For example, look at a list of sports people
want to have covered on the network channel of the Olympic games. If there is a selection of sports
which a network channel can air which satisfies everyone, the satisfiability problem would be found
satisfiable by an SAT solver. The decision algorithms in Chapter 5 is an SAT solver and considers
SAT or UNSAT. These answers are status codes; see Section 2.2.5 for a list of status codes used in
Sparkle.
The two types of algorithms have different setups because the solvers are stopped at different
moments in time. For decision algorithms, this moment is when one solver within a portfolio finds

3

2 Theoretical Framework

an answer to the problem instance it is running on. At that point, the answer is found and there is
no reason to allow the other solvers to find the same answer on their own, thus, they are cancelled at
that point. For optimisation algorithms, the moment a solver should be stopped is when it reaches
the cutoff-time which is specified for the experiment. This can also occur for decision algorithms
and that is if no solvers within the portfolio find an answer to the problem within the cut-off time.

2.2.3 Randomised solvers

Solvers can have randomised behaviour; this is created by using a seed. Solvers in Sparkle have
a wrapper that is used internally in Sparkle to instruct and communicate with the solver of the
user. One of these instructions is a seed number, the seed takes input in the form of an integer
and is used as input for a pseudo-random number generator. By varying the seed number, different
variations of the solver can be created. Consequently, when running a solver with a randomised
seed number, random behaviour can be mimicked. Using multiple copies of the solver can result in
better performance, this is because the chance of getting “lucky” is increased when there are more
copies of a solver making decisions based on their seed number. In the case of decision algorithms,
this means that the running time will be reduced when running multiple copies in parallel, in the
case of optimisation algorithms this will result in a more optimised solution.

2.2.4 How to evaluate a result

For decision algorithms when a solver is finished a status code is returned, as well as a PARx
score. The status code gives insight into the outcome of the process. For example, the status code
TIMEOUT is returned when a solver fails to solve an instance within the allotted time, this is
called the cutoff-time. The PARx score gives insight into the duration of the process, when a
solver finishes before the cutoff-time, which can either be in wallclock- or CPU time, the finishing
time is the score. If, however, the solver is not able to finish before the cutoff-time the score is the
cutoff-time multiplied by the x in PARx. In this way, the PAR10 score of a solver, which does not
finish before the cutoff-time, will be scored the cutoff-time times ten.
The PARx score is then used to find the single best solver. The single best solver is the solver which
has the lowest PARx score over a set of problem instances. This can be derived from the table of
solvers which show their PARx score on each instance and the solver with the lowest score is the
single best solver (SBS).
For optimisation algorithms when a solver is finished it also returns a status code and a performance
value. On the contrary, to the decision algorithm, this value is an answer for the problem instance.
When processing the results of an experiment the best (lowest) value returned by the solvers on an
instance is chosen.

2.2.5 Status codes

Within the context of this thesis, status codes are variables returned by the run solver program
and they give insight into the status of the job executed by the run solver. These codes are single
words or abbreviations of a word/words, the three most frequent status codes are explained below.
SAT: This is a code used for a decision algorithm, more specifically an SAT solver, and is short for
satisfiable. The meaning of the code is that problems instance on which the algorithms is executed
has found a solution which is positive.

4

3 Design

UNSAT: Similar to SAT, UNSAT is a code used for SAT solvers, and is short for unsatisfiable. The
meaning of the code is that the problem instance on which the algorithm is executed has finished
and a solution does not exist (according to this solver).
TIMEOUT: This is a code also used for decision algorithms and means that the solver was unable
to find an answer before the cutoff-time is reached.

3 Design
As mentioned in Section 2.2.1 in its foundation the design of the parallel portfolio extension, in
Sparkle, allows for several solvers to be run on a parallel machine on a singular instance. However,
Sparkle does not limit itself to only run a script for such a machine, it also handles the pre-processing
and post-processing of a portfolio. Therefore, in the design for Sparkle, the code is separated into
three segments: the construction of the portfolio, the running of the portfolio, and the generating
of the report.

3.1 Design choices
For the first segment of the design, the construction of a portfolio, a choice has been made to
only include the solvers within the construction, and leave the specification of which instances
that are going to be used to the second segment of the process. So, for the construction of the
portfolio a user only has to submit the solver(s) with the add solver command and the portfolio
name with construct sparkle parallel portfolio --portfolio-name my portfolio to com-
plete the first step.
For the running of the portfolio, the type of solvers within the given portfolio have to be speci-
fied with the run sparkle parallel portfolio --performance-measure my performance type
command in order for the portfolio to be handled in the desired manner. Furthermore, the cutoff-
time can be specified to override the default cutoff-time value. This can be done by adding the
option --cutoff-time my cutoff time to the previous command. The default value is stored in a
settings file and can also be changed within that file.
The third section needs to be called with the generate report command when the running of the
solvers has been completed and will require no additional input to generate a pdf file containing
the results of the conducted experiment.

3.2 User guide
The two main use cases within Sparkle for parallel portfolios are portfolios containing decision
algorithms and portfolios containing optimisation algorithms. In Appendix A the complete examples
are shown of a step-by-step guide to be able to execute all necessary commands from start to finish.
In this section, we will show a selection of these commands and explain their function in more detail.
The first command add instances is used, but has not been modified, the commands add solver
and generate report are existing commands but have received modifications. The other two
commands construct sparkle parallel portfolio and run sparkle parallel portfolio are
newly implemented.
1. Commands / add_instances .py

5

3 Design

The first command is used to add instances to the folder from where the
run sparkle parallel portfolio can locate them, this is the Instances/ folder. Note that the
command must be followed by the main folder containing single instances and/or sub folders contain-
ing a single instance. For example, Commands/add instances.py path/to/instance folder/.
2. Commands / add_solver .py

The second command is used to add a solver to the Sparkle platform and can be combined with the op-
tion --solver-variations to add multiple variations to the platform. This will be done by denoting
the number of variations in the solver list (located in Reference Lists/Sparkle solver list.txt).
3. Commands / construct_sparkle_parallel_portfolio .py

The third command is used to construct the portfolio by combining solvers into a portfolio. There
are several ways in which these solvers can be selected. The first method is without using the
--solver option, then ALL the solvers in the solver list will be used. The other methods involve
the use of the --solver option. The option has to be followed by a space-separated list of solver
paths. It is possible to add multiple variations of a solver to a portfolio, if the solver uses a seed
number within their solving process, this number can be used to alter the behaviour of the solver.
If, no solver variations are specified, then the number of variations will be selected from the solver
file. To override this, a solver path has to be followed by a comma and the desired number of solver
variations. All constructed portfolios in Sparkle must have a unique name and can be named with
--nickname option.
4. Commands / run_sparkle_parallel_portfolio .py

The fourth command is used to run the portfolio, the command requires three different options:
--instances, --portfolio-name and --performance-measure. The option --instances can be
used to specify the instances on which the portfolio will run. If, however, the option is not used then
all instances used in the Instance/ folder will be used. The second option can be used to specify
the portfolio which will be used. If the option is not used than the latest constructed portfolio
will be chosen. The third option is used to specify which type of solvers are contained within the
portfolio, this can either be RUNTIME for decision algorithms or QUALITY ABSOLUTE for optimisation
algorithms.
5. Commands / generate_report .py

The fifth and final command is used to generate a report. This will generate a report of the latest
experiment which was executed. No further options have to be specified. However, do note that
generating a new report overrides the previously generated report, so be sure to save the previously
generated report into another location before generating a new report. Within the report one can
find two chapters, the first chapter contains a short introduction. The second chapter lists the used
solvers and instances, as well as the experimental setup. Lastly, it contains an empirical evaluation
of the results of the experiment including a graph of the single best solver versus the portfolio itself,
in Appendix E an example report is shown.
These commands can be used for decision algorithms, as well as optimisation algorithms. The
only option which will have to be differentiated is the --performance-measure option for the run
sparkle command (command 4). Besides this, the selected instances and solvers will have to be
varied as well.
An example experiment that uses all five commands explained in this section is shown below.

6

3 Design

1. Commands / add_instances .py --run -solver -later --run -extractor -later
Examples / Resources / Instances /PTN/
2. Commands / add_solver .py --run -solver -later --deterministic 0
Examples / Resources / Solvers / CSCCSat /
2. Commands / add_solver .py --run -solver -later --deterministic 0
Examples / Resources / Solvers / MiniSAT /
2. Commands / add_solver .py --run -solver -later --deterministic 0
Examples / Resources / Solvers /PbO -CCSAT - Generic /
3. Commands / construct_sparkle_parallel_portfolio .py --nickname
user_guide_example --solver Solvers /PbO -CCSAT - Generic Solvers / MiniSAT /
4. Commands / run_sparkle_parallel_portfolio .py --instance -paths Instances /PTN/
--portfolio -name user_guide_example
5. Commands / generate_report .py

3.3 System overview
In this section, the system is shown in a visual summary. In the figure below, Figure 1, the three
main segments are shown accompanied by the general purpose of the section and the necessary
steps to execute that section.

Figure 1: A visual overview of the three main segments of parallel algorithm portfolios within
Sparkle

7

3 Design

Figure 2: The overview of the processes within run sparkle parallel portfolio

run_sparkle_parallel_portfolio

Options

Settings

Run Script

An SBATCH Script

If decision algorithm

Monitor Jobs

If jobs remaining

Wait for
finished solvers

If optimisation algorithm Print results

Cancel portfolios
of finished solvers

Clean temp
files

If no jobs remaining

List of finished solvers

Remaining jobs

No finished
solvers

Legend

SLURM command

Input or output

If statement

Command

Function

In Figure 2 the process behind the execution section of the system overview is portrayed. The
process starts at the top left with the user sending the Sparkle command, possibly with options.
First, the run sparkle parallel portfolio command gathers the settings and options, using the
default values if some are not specified. This information is sent to the helper file of the command,
and within this file, the rest of the process is managed.
The helper file firstly constructs an SBATCH script using the given information from the primary
file. An SBATCH script is a small script used for sending commands through SLURM to the Grace
cluster and contains all the information SLURM needs, to send all the jobs to the cluster. Secondly,
the helper file runs the generated script by sending a SLURM command to the terminal. In the case
of optimisation algorithms this is the last step of the process and after the process finishes running
the results are printed. However, for decision algorithms monitoring is required. The reason for this
is once a solver has made a decision on an instance the other solvers have to be cancelled. This
is done by three functions that operate in a loop. The monitor jobs function checks if the loop
has to continue with another cycle or if all jobs are finished, and the process can end. Within the
loop, the first function continuously checks if a solver is finished, and when this occurs the list of
finished solvers is passed to the second function of the loop. The second function checks if all the
other solvers, which are run on the same instance of the finished solver, have had at least the same
amount of running time. If this is true, the solver is cancelled. Otherwise, the function calculates
the time the solver still has and sends a delayed cancel command which executes after this time
has passed.
When the monitor jobs function finds that no jobs are remaining, the final function of the process
clears all temporary files, ends the process, and the results are printed.
Note that the decision algorithm section of Figure 2 is explained with the --process-monitoring

8

4 Implementation

set to EXTENDED. The reason for this is that this option was added only after the experiments
were conducted. The current default setting of the run sparkle parallel portfolio option
--process-monitoring is REALISTIC and will cancel solver within a portfolio containing a finished
solver regardless of whether that solver has gotten to run at least the same amount of time as
the finished solver. Additionally, the EXTENDED option has the most monitoring processes, which
would also result in the largest increase in possessing overhead. Therefore, the results from the
experiments show a larger increase in overhead than when a user would only be interested in the
outcome of the experiment, this is because for this scenario the REALISTIC option would suffice.
Terminal: Sparkle uses a command-line interface, meaning that to use Sparkle you will have to
use a terminal. Depending on the software you use to run Sparkle, the terminals look and lay-out
can vary but its functionality will remain the same.

The terminal will always have a single input line on which you can enter a command. These
commands will dictate Sparkle what actions to perform. However, be precise, because if you mistype
the command, it will not execute. If there is a command which is unclear add the --help option
behind the command and it will show additional insight into the command, see Section 4.1 for
more details.

4 Implementation
The implementation of the design is divided over six different python files, including three command
files, which can be called by the users, and three accompanying helper files to process the input
given by the command files. The aim of the implementation was to be as integrated into Sparkle as
possible and to use readily available code within Sparkle with only slight changes when needed.
Therefore, the generate report command uses the general generate report python file used by
multiple processes and only an additional helper file was made to facilitate the parallel portfolio
report.

4.1 Command-line interface
All three sections of the design process have their command and are accompanied by several options,
which can be used to further specify the command. Most options only have to be used when the
user wants to use non-default values. The default values are stored in a settings file and can be
changed to alter the default values. Additionally, the standard is that the latest process will be
selected in case of the report generation. For the construction or running of the portfolio, all added
instances and solvers within Sparkle will be selected.

9

4 Implementation

All commands for Sparkle can be executed within a command-line interface, this means that Sparkle
functions can be called by using text input. These text inputs and their options are highlighted
below.
Construct sparkle parallel portfolio is the command for the construction of a portfolio. The
construction process will use either the default values or the given options to determine what solvers
need to be added to the portfolio. These solvers will be listed in a text file within a folder holding
the portfolio name.
Commands / construct_sparkle_parallel_portfolio .py

--help: shows a help message explaining the command and its options .
the option also exits the command .
--nickname : Give a nickname to the portfolio , the default name of
a portfolio is sparkle_parallel_portfolio .
--solver : Specify the list of solvers , add ",solver_variations "
to the end of a path to add multiple instances of a single solver .
For example --solver Solver /PbO -CCSAT -Generic ,25 to construct a
portfolio containing 25 variations of PbO -CCSAT - Generic .
--overwrite : Allows overwriting of the directory , default true if
the --nickname option is NOT specified otherwise constructing a
portfolio with a name of an already existing portfolio will throw
an error if --overwrite True is not used.
--settings -file: specify the settings file to use in case you want to use
one other than the settings file

Run sparkle parallel portfolio is the command for the executing and monitoring of the port-
folio. The running process will use either the default values or the given options to determine what
problem instances need to be run on which portfolio, and how the performance is measured. During
the process, several files will be created which generate report will use to show the results and
performance of the portfolio.
Commands / run_sparkle_parallel_portfolio .py

--help: shows a help message explaining the command and its option .
the option also exits the command .
--instance -paths: Specify the instance_path (s) on which the portfolio
will run. This can be a space separated list of instances contain instance
sets and/or singular instances . For example --instance -paths
Instances /PTN/Ptn -7824 - b01.cnf Instances /PTN2/
--portfolio -name: Specify the name of the portfolio , if the portfolio is
not in the standard location use its full path , the standard location is
Sparkle_Parallel_Portfolio /. If the option is not used the latest
constructed portfolio will be used.
--process - monitoring : Specify whether the monitoring of the
portfolio should cancel all solvers within a portfolio once a
solver finishes (realistic), or allow all solvers within a
portfolio to get an equal chance to have the lowest amount of
running time on an instance (extended). The default option is
realistic .
--performance - measure : The performance measure , e.g. runtime (for
decision algorithms) or quality_absolute (for optimisation
algorithms)
--cutoff -time: The duration the portfolio will run before the
solvers within the portfolio will be stopped .

10

4 Implementation

Generate report is the command for the generation of a pdf report containing the results of the
latest parallel portfolio experiment.
Commands / generate_report .py

--help: shows a help message explaining the command and its option . the
option also exits the command .
--settings -file: specify the settings file to use in case you want to use
one other than the settings file

4.2 Data flow
This section will explain how and when data is generated and stored during the process. During the
construction of the portfolio, a sub-directory within the Sparkle Parallel Portfolio directory is
created. The sub-directory contains a text file containing a list of paths to the solvers within the
portfolio. If there are multiple solver variations of a solver within the portfolio, a number is added
following the solver path separated by a space. As mentioned in Section 3.2 and Section 2.2.3 this
number will be used to select several seed numbers, for five solver variations the first solver will
have the seed number 1, the second seed number 2 etc. In this way, the variations are controlled
random, every time the portfolio is run the solvers will behave the same.
During the running of the portfolio an SBATCH script is generated containing all jobs that need
to be executed. In the case of an optimisation algorithm, the script can be submitted, and no
monitoring is required. However, in the case of decision algorithms, the jobs need to be monitored.
For the reason that once a solver finds a solution to an instance all other solvers on that instance
have to be cancelled. This is accomplished by monitoring the number of jobs that are running, if
this number reduces this indicates that there is a job that has finished. When this occurs, a result
file is created and added to the Performance Data/Tmp PaP directory. The finishing time within
this file is then used to cancel the jobs, which are running on the same problem instance. After
all processes have finished running the jobs that have been cancelled, temporary processing files
that have not been removed are now removed. After the running of the portfolio, the only files that
remain are the results files that generate report will use.
To generate the report, multiple files are created. Most importantly, one file containing the
bibliography, and a pdf file in which several generated files are combined, including the generated
graphs and generated text for the report. These files are located within the
Components/Sparkle-latex-generator-for-parallel-portfolio directory. After completing
all steps, as shown in Section 3.2, the files that remain are the constructed portfolio, the results
files, and the report.
Furthermore, there are several log files in which log statements are kept with regards to the process,
these will be placed within the Output/ folder where the output of all experiments are located.
Only the logs of the results are kept during the execution phase and can be found in the temp
folder. It is important to be aware that these log statements are generated by the solvers provided
and that these can be difficult to understand.

4.3 User configuration
The settings folder in Sparkle contains a file, which can be used to configure several default
values and is called sparkle settings.ini and the headers [general], [parallelportfolio]

11

5 Experiments

and [slurm] are of interest for parallel portfolios. The relevant variables will be listed below
accompanied by an explanation of their meaning and options.

1. performance measure, the default is RUNTIME, but other options are QUALITY or
QUALITY ABSOLUTE. RUNTIME will indicate decision algorithm behaviour and QUALITY or
QUALITY ABSOLUTE will indicate optimisation algorithm behaviour.

2. target cutoff time, the default is 300, this is the cutoff-time in seconds and can be any
positive integer.

3. penalty multiplier, the default is 10, and this is the multiplier for the PARx score. The
variable can hold any positive integer.

4. overwriting, the default is True, the variable indicates that when a portfolio is constructed
with the same name, as a portfolio that already exists, it will be automatically overwritten or
that an error message should be raised. The variable must either hold True or False.

5. process monitoring, the default is REALISTIC, this defines the way in which decision algo-
rithm will be monitored when run. REALISTIC will mean that once a solver within a portfolio
finishes, all the other solvers within the portfolio will be cancelled regardless of the running
time of the other portfolio. The other option is EXTENDED in contrast with REALISTIC, the
option will check if the other solvers have gotten at least the same amount of running time as
the solver that finished.

6. number of runs in parallel, the default is 250, and the variable is the total maximum
number of runs that an SBATCH script will run in parallel.

7. clis per node, the default is 32, and this number is the maximum number of concurrent
runs a node can handle.

A user can configure these values either by changing these within the files or manually creating a
different settings file containing the variables which need to be adapted. This file would then need
to be referenced when executing a Sparkle command using the --settings-file option.

5 Experiments
In this chapter, different uses of the parallel portfolio will be demonstrated. Additionally, the
performance of these uses will be measured by comparing the performance of a parallel portfolio
and its comparison target. In experiment 5.1 a comparison of overhead is made; this will be done
by comparing the overhead of a singular solver and a portfolio containing a singular solver. In
experiment 5.2 the performance of the portfolios when scaled in size will be measured. This is done
by comparing the running time of the portfolio to the solving duration. Additionally, the difference
between the running time of the portfolio and the solver duration will be outlined by dividing it
into two types of overhead: job overhead, and solver overhead. All experiments will use problems
selected from the crafted16 benchmark set of the 2016 SAT Competition [10]. The choice of the
instances is based on test results using five solver variations of PbO-CCSAT-Generic and selecting
instances that performed between one second and fifty minutes. The reasoning for this is that

12

5 Experiments

PbO-CCSAT-Generic [11] is part of the base installation of Sparkle. The solver can be found in the
Examples/ folder, making it easier to reproduce the experiments. The chosen instances can also be
found in the examples folder, specifically, Examples/Resources/Instances/ and are a selection
from instances in PTN/ and PTN2/. The selection criteria was used for the instance being solved
in a time between one second and fifty minutes. The criteria was based on time constraints and
interpretability. Since the Grace server only creates log statements of completed jobs rounded up
to seconds, the results of an instance, which is solved in less than one second, would not show
any improvement in solving time during the experiments. The cap of fifty minutes was chosen
since the scaling experiment uses the entire grace cluster. This hinders other users of the platform,
therefore, the cap is used to limit this. All selected instances are from Heule [12] and are named
Ptn-7824-b**.cnf, with the two asterisks being {01,03,04,05,06,07,09,11,13,15,18,20}. The base data
of the grace clusters’ hard-/software specification can be found in Appendix D and are duplicated
from the latest available version of the Grace user guide [13].

5.1 Portfolio vs. single solver
To illustrate that the running of the portfolio is not significantly slower than running a solver
on an instance without a portfolio, a comparison will be made between a portfolio containing a
single solver and a singular solver executed by the run solver.py --parallel command. Both
variations will use the instances mentioned in the paragraph above and will use the PbO-CCSAT
solver. Additionally, the variations will be running on a single node in parallel with a cutoff-time
of 3000 seconds. The performance of the variations will be measured by the solver duration and
total duration. The solver duration is the pure duration containing only the running time of the
solver. The total duration is the time measured from the moment a job is placed on the grace
cluster until the job vacates its place. The difference between the two types of running time is the
overhead of a job. The overhead contains several different delays; the processing time of grace, and
the processing time of run solver. In the overhead of the portfolio, a third delay is present, the
delay of the processing time of the portfolio. To maintain some form of statistical consistency both
variations are run three times. Using the results the average overhead time will be computed, and a
comparison will be made between the experiment with and without a portfolio.

13

5 Experiments

Table 1: Single solver experiment without portfolio

The shown time is in wallclock time

Instance Total duration Solving duration Overhead
Ptn-7824-b20 3 seconds 1.32225 seconds 1.67775 seconds
Ptn-7824-b18 4 seconds 2.59785 seconds 1.40215 seconds
Ptn-7824-b13 23 seconds 22.1711 seconds 0.8289 seconds
Ptn-7824-b09 41 seconds 39.6904 seconds 1.3096 seconds
Ptn-7824-b11 67 seconds 65.5938 seconds 1.4062 seconds
Ptn-7824-b15 197 seconds 195.302 seconds 1.698 seconds
Ptn-7824-b06 1465 seconds 1463.6 seconds 1.4 seconds
Ptn-7824-b01 2482 seconds 2480.44 seconds 1.56 seconds
Ptn-7824-b07 3001 seconds 3000.07 seconds 0.93 seconds
Ptn-7824-b05 3003 seconds 3000.1 seconds 2.9 seconds
Ptn-7824-b04 3003 seconds 3000.09 seconds 2.91 seconds
Ptn-7824-b03 3007 seconds 3000.08 seconds 6.92 seconds

Table 2: Single solver experiment with portfolio

The shown time is in wallclock time

Instance Total duration Solving duration Overhead
Ptn-7824-b20 3 seconds 2.41766 seconds 0.58234 seconds
Ptn-7824-b18 4 seconds 2.60105 seconds 1.39895 seconds
Ptn-7824-b13 23 seconds 22.3893 seconds 0.6107 seconds
Ptn-7824-b09 41 seconds 39.927 seconds 1.073 seconds
Ptn-7824-b11 67 seconds 65.9 seconds 1.1 seconds
Ptn-7824-b15 196 seconds 193.153 seconds 2.847 seconds
Ptn-7824-b06 1466 seconds 1465.71 seconds 0.29 seconds
Ptn-7824-b01 2477 seconds 2476.68 seconds 0.32 seconds
Ptn-7824-b07 3001 seconds 3000 seconds 1 seconds
Ptn-7824-b05 3002 seconds 3000 seconds 2 seconds
Ptn-7824-b04 3003 seconds 3000 seconds 3 seconds
Ptn-7824-b03 3005 seconds 3000 seconds 5 seconds

In Table 1 and Table 2 the results of the experiment are shown. For statistical consistency both
experiments have been run two additional times, the results of these experiments can be found in
Appendix B. The average overhead, which is computed by dividing the cumulative overhead by the
number of instances, of the three non-portfolio experiments are 2.07855, 1.437201667 and 1.57429.
In comparison, the outcome of the portfolio experiments, which are 1.6018325, 6.872275833 and
1.843208333, have a slightly higher overhead with an average increase of 0.2 seconds per instance
between the two lower outcomes of both experiments. The exception is the highest outcome of the
experiment, a possible explanation for this can be that at the time of running the experiment on

14

5 Experiments

the grace cluster, the cluster was exceptionally busy which could affect the overhead. Note that
both run solver and run sparkle parallel portfolio use the same seed number, which is seed
one.
The second portfolio experiment, as shown in Table 8, has the highest average overhead. Note that
the overhead remains about the same between different lengths of solving duration. To quantify
the “business” during the experiment with high overhead about sixteen nodes were in use, which is
almost 50% of the available nodes of the cluster and only our experiment was running on its node.
Command used for the experiment:
Run solver:
./ Commands / run_solver .py --recompute --parallel

Parallel portfolio:
./ Commands / construct_sparkle_parallel_portfolio .py

--portfolio -name exp -5.1 --solver Solvers /PbO -CCSAT - Generic /
./ Commands / run_sparkle_parallel_portfolio .py

--instances Instances / pap_experiments_instances --portfolio -name exp -5.1

5.2 Scaling experiment
The scaling experiment will demonstrate the performance of the portfolio when scaling the number
of independent copies of the solver, running with different random seeds. This will be done by using
the twelve same problem instances as in Section 5.1 and the solver will be PbO-CCSAT-Generic
[11]. The scaling will start at two solver variations and will be doubled until 512 solver variations
will be reached. The variations are created by the seed of the solver, changing the seed number will
change the behaviour of the solver. This is because solvers make decisions using a pseudo-random
number generator and the seed is the input of the generator. In Sparkle, the default seed number
is one, which will also be the starting seed for this experiment. The first scale, scaling 2, will
use a portfolio containing PbO-CCSAT-Generic with seed 1 and seed 2, the second scale, scaling
4, will use seed 1,2,3,4 and this will extend linearly for all scales. The size of the portfolio for
each experiment is the same size of jobs that ran in parallel, this was achieved by setting the
number of runs in parallel to the size of the portfolio. Unlike experiment 5.1, this experiment
is only ran twice due to time constraints. In the Tables 3,4,5,6 each repeat will be noted by the
suffix ” - 1 ” or ” - 2 ”.
The performance of the portfolios will be measured by the solving duration, the total duration,
the duration of job allocation (job overhead), and the solver overhead. The solving duration is the
sum of the fastest solver duration on each instance. The total duration is the time between the
first job is allocated on the grace cluster and the time the last job is finished. The overhead is the
difference between the total duration and the solver duration and is split into job overhead and
solver overhead. The job overhead is part of the overhead but contains only the time that Grace
needs to allocate a job on a free slot. The solver overhead is the difference between the overhead
and the job overhead.
The reason that the measurements are useful is that it tries to show the difference between the
optimal (perfect) portfolio performance and the actual portfolio performance. The solver overhead
can be used to compare itself with the overhead of a single solver, to see if scaling a portfolio

15

5 Experiments

causes additional overhead, and if there is an ideal portfolio size in which the overhead and solving
duration are optimised.

Table 3: The results of the scaling experiment

The shown time is in wallclock time(seconds)

Experiment Solving duration Total duration Job overhead Solver overhead
Scaling 2 - 1 7775.13976 7808 13 19.86024
Scaling 2 - 2 7763.02517 7797 14.5 19.47483
Scaling 4 - 1 4339.06393 4378 20 18.93607
Scaling 4 - 2 4294.0182 4332 20 17.9818
Scaling 8 - 1 3012.40122 3261 233.75 14.84878
Scaling 8 - 2 3087.40345 3300 198 14.59655
Scaling 16 - 1 969.23 1172 182.25 20.52
Scaling 16 - 2 969.61 1189 200.5 18.89
Scaling 32 - 1 603.23 855 222.96875 28.80125
Scaling 32 - 2 573.11 850 240.25 7.8287
Scaling 64 - 1 295.89 328 27.28125 4.82875
Scaling 64 - 2 291.98 546 246.28125 7.73875
Scaling 128 - 1 174.628304 456 219.59375 61.77625
Scaling 128 - 2 136.2 535 228.875 169.925
Scaling 256 - 1 144.96 936 237.453125 553.586875
Scaling 256 - 2 109.15 990 208.234375 672.615625
Scaling 512 - 1 66.55 3546 100.668 3378.782
Scaling 512 - 2 66.55 3870 160.572 3642.878

Figure 3: The results of the scaling experiment

16

5 Experiments

The results from the experiment, as seen in Table 3 and Figure 3, show several trends. The solving
duration decreases -as expected- when the portfolio size increases. On the contrary, the total
duration decreases until scaling 64 and it even rapidly increases at scaling 256 and scaling 512.
The reason for this is the increase in solver overhead, which increases from scaling 64 and onward.
There are two possible explanations for the occurrence of an increase in solver overhead. First, the
cluster could have issues with handling a large amount of SCANCEL commands, which is used to
cancel jobs and executing the commands with a delay. Second, the job could take longer to cancel
itself since a job is not removed from the cluster by the command. Instead, the job receives a signal
which orders it to terminate itself, and a job could malfunction by either responding to the signal
delayed or not at all. Another visible trend is that starting from scaling 8, the job overhead jumps
from a value close to 15 seconds to a value around 200 seconds. To gain more insight into these
trends the solving duration, as well as the job overhead and finally, the solver overhead will be
further laid out by dividing the values over each instance.

Table 4: Solving duration of the scaling experiment for each instance [1/2]

The shown time is in wallclock time(seconds)

Experiments 1 2 3 4 5 6
Scaling 2 - 1 617.226 40.0705 2.61909 66.0515 1047.56 112.903
Scaling 2 - 2 615.711 39.7278 2.61911 66.4632 1047.89 113.906
Scaling 4 - 1 142.909 40.0302 2.62047 61.6609 947.423 113.215
Scaling 4 - 2 141.338 39.7486 2.61393 61.6764 907.866 133.374
Scaling 8 - 1 143.99 2.47451 1.90187 13.2067 298.948 113.524
Scaling 8 - 2 144.623 2.45854 1.91279 13.1044 304.176 112.209
Scaling 16 - 1 143.656 2.47563 1.92776 13.1589 263.44 81.826
Scaling 16 - 2 143.031 2.46436 1.91032 13.1273 262.383 80.8171
Scaling 32 - 1 7.31694 2.47723 1.93571 1.75906 89.97 82.1803
Scaling 32 - 2 7.31619 2.51213 2.02872 1.73456 90.2146 81.139
Scaling 64 - 1 7.3091 2.47392 0.244388 1.7191 94.0032 63.5464
Scaling 64 - 2 7.43889 2.48951 0.246015 1.74337 47.2311 63.9643
Scaling 128 - 1 7.33814 2.49891 0.136804 1.73572 26.5555 63.5934
Scaling 128 - 2 7.33731 2.5096 0.136509 1.71898 13.2815 31.8469
Scaling 256 - 1 7.41834 1.83645 0.072849 1.73947 10.1743 40.2369
Scaling 256 - 2 7.32076 1.80777 0.073139 3.08754 13.4494 32.0764
Scaling 512 - 1 2.58685 0.80658 0.072139 1.74083 10.2211 40.3761
Scaling 512 - 2 2.62517 0.812128 0.071634 1.72417 10.1258 32.1944

17

5 Experiments

Table 5: Solving duration of the scaling experiment for each instance [2/2]

The shown time is in wallclock time(seconds)

Experiments 7 8 9 10 11 12
Scaling 2 - 1 22.2122 1225.7 6.9538 1.33367 1632.47 3000
Scaling 2 - 2 22.4546 1225.44 6.93835 1.31511 1620.56 3000
Scaling 4 - 1 22.3551 658.014 6.95634 1.33992 1617.9 723.64
Scaling 4 - 2 22.4024 659.102 6.96444 1.31943 1619.16 718.403
Scaling 8 - 1 7.3732 635.442 3.07333 1.25461 1570.74 220.473
Scaling 8 - 2 7.38389 654.727 3.04489 1.25794 1622.38 220.126
Scaling 16 - 1 0.555941 26.504 3.08136 0.970107 224.834 206.805
Scaling 16 - 2 0.549536 26.488 3.04717 0.97028 225.199 209.62
Scaling 32 - 1 0.322493 53.4917 3.0689 0.486446 149.329 210.895
Scaling 32 - 2 0.320874 26.7195 3.06986 0.489347 149.425 208.14
Scaling 64 - 1 0.318797 27.0211 2.26361 0.281899 80.4603 15.5293
Scaling 64 - 2 0.323549 53.3798 2.2574 0.286102 81.4766 31.1446
Scaling 128 - 1 0.325075 26.9023 2.59016 0.163215 17.2172 30.5697
Scaling 128 - 2 0.325356 26.9294 2.28074 0.16464 34.0782 15.5945
Scaling 256 - 1 0.321753 18.5162 0.094808 0.167674 33.8516 30.5312
Scaling 256 - 2 0.331569 18.4717 0.096828 0.164086 16.5933 15.68
Scaling 512 - 1 0.107514 1.71828 0.095419 0.065699 8.1916 7.37746
Scaling 512 - 2 0.107306 3.12258 0.095153 0.066854 8.18758 7.42152

Tables 4 and 5 confirm the trend seen in Table 3, which is that the solving duration decreases when
the portfolio size increases. Note that the running time of 3000 seconds is the set cutoff time of the
experiment and that these instances have not been solved at that point. Further note, that when
comparing the increase in overhead with the reduction of solving duration it might be beneficial to
run a small-scale experiment with a short cutoff time e.g. 100 seconds. After the short experiment
finishes only rerun the instances that were not solved on a larger size portfolio and with a longer
cutoff time.

18

5 Experiments

Table 6: Job overhead of each instance
The job overhead of Scaling 512 is excluded because the size of the delay causes the jobs to start asynchronously
and cannot be compartmentalised to instances. The shown time is in wallclock time(seconds)

Experiments 1 2 3 4 5 6 7 8 9 10 11 12
Scaling 2 - 1 2 0.5 1 1 1 1 1 1 1 1 1 1.5
Scaling 2 - 2 3 1 1 1 1 1 1 1 0.5 0.5 1 1
Scaling 4 - 1 4 1.5 1.5 1.5 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Scaling 4 - 2 4 0.75 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Scaling 8 - 1 5 4.13 26 27 16 28.75 5 21.13 23 25.1 26.5 18.1
Scaling 8 - 2 5 3.13 26.5 27.1 15.13 6.13 6.13 22 22.13 25.5 28 8.13
Scaling 16 - 1 4 4.06 26 26 15 5 17 28 1.06 25 27 1
Scaling 16 - 2 5 4 25.94 26.1 15.06 4.06 10 27.06 2.06 25.4 27.7 25.1
Scaling 32 - 1 3 20 26 26 26 25 6 27 6.81 24 27 3
Scaling 32 - 2 4 19 23.97 24.9 24.97 27 7 27 29 25.1 25.9 0.03
Scaling 64 - 1 1 2 1.97 2.42 2.45 1.97 1.97 2.55 1.97 1.97 1.88 1.97
Scaling 64 - 2 4 19 25 27 25 10 27 27 26 24 26 6
Scaling 128 - 1 4 19 25 13 25 26.94 25 0.09 25 27 25 9
Scaling 128 - 2 3 20 25 25 12 25 13 23 19 22 25 4
Scaling 256 - 1 4 18 18 15 23 9 17 8 21 13 6 18
Scaling 256 - 2 4 18 18 26 44 20 11 15 8 12 16 5

The sub-caption of Table 6 mentions that on a larger delay the jobs start to begin solving new
problem instances asynchronously. This is something that the code does account for, and each
job will have an equal chance to outperform the current fastest solver on the instance. The only
drawback to this is that the logging system used to find the starting time of an instance cannot be
used anymore. To further elaborate on this, if a solver in a portfolio solves the instance in fifteen
seconds, another solver whose start was delayed by two seconds will also get fifteen seconds to try
and solve the instance. This causes each delay on a job to further delay the start of the next job
and that is what causes the asynchronicity.

Table 7: Solver overhead when scaled shown as the average duration of overhead on all instances

*Scaling 1 is average of the results from experiment 5.1. The shown time is in wallclock time(seconds)

Experiment Average solver overhead Single step increase Total increase
Scaling 1* 50.8447 - -
Scaling 2 19.6675 -61.3% -61.3%
Scaling 4 18.4589 -6.1% -63.7%
Scaling 8 14.7227 -20.2% -71.0%
Scaling 16 19.705 33.8% -61.2%
Scaling 32 18.315 -7.1% -64.0%
Scaling 64 6.2838 -65.7% -87.6%
Scaling 128 115.8506 1743.6% 127.9%
Scaling 256 613.1013 429.2% 1105.8%
Scaling 512 3510.83 472.6% 6805.0%

19

6 Discussion

The results of the solver overhead, as shown in Table 7 (complete table in Appendix 12), show
that the solver overhead reduces when the portfolio size increases and the solving time decreases.
However, this trend is broken at Scaling 128, where the solver overhead increases. This indicates that
some jobs continue running even after a solver has already solved that instance. In the discussion,
several possible causes for this are discussed. Furthermore, possible solutions to combat the problem
will also be discussed.
Command used for the experiment:
Scaling size SIZE:
./ Commands / construct_sparkle_parallel_portfolio --portfolio -name scalingSIZE
--solver Solvers /PbO -CCSAT - Generic /,SIZE
./ Commands / run_sparkle_parallel_portfolio .py

--instances Instances / pap_experiments_instances --portfolio -name scalingSIZE

The SIZE should be varied in the commands above to get all the commands used for the experiment.

6 Discussion
In Chapter 5 the results of the conducted experiments are shown. It is within these results that
the performance of the parallel algorithm portfolio is shown. In comparison, without a portfolio,
the overhead on a single instance averages around 1.7 seconds, and with a portfolio, the overhead
on a single instance is around 3.4 seconds. This seems like a large increase, nevertheless, as seen
by attempt 2, with portfolio, in Table 10, the overhead can vary greatly. This is due to the delay
which occurs after the SBATCH script is executed, the jobs are created, and when empty cores are
allocated to the jobs. In Section 5.2 the delay is separated from the overall overhead as the job
overhead. By looking at Table 6, in well-performing sections, the delay is around 0.5 to 2 seconds.
In the other table sections of Table 6, the delay seems to average around 20 to 25 seconds. This
delay could be caused by the Grace cluster which only allocates new solvers on a 30-second interval,
due to high activity on the cluster. However, later attempts to recreate the issue in this manner
were unsuccessful. This suggests that the issue might be caused by something else. One possible
explanation could be that one week after conducting the experiments the SCRATCH directory of
the Grace cluster had to be cleaned since it almost ran out of space. This could have affected the
working memory of the nodes and resulted in the problem. Therefore, when experiments are taking
longer than excepted be sure to check the accounting logs of the cluster to see if a similar issue
occurs.
When looking at Table 2, the results of experiment 1 seem to suggest that the level of difficulty of
the instance that is being solved does not affect the size of the overhead. Furthermore, there is also
a possibility that the type of solver will not influence the amount of overhead that occurs. This is
because the implementation only considers the job, and will cancel or stop a job at the expected
moment without taking the solver into account. The difference in overhead that could occur is the
time it takes for a solver to respond to a command given by the cluster.
Up until Scaling 64 of the scaling experiment, the solver overhead itself only improved in comparison
to Scaling 1, as shown in Table 7. However, this includes the Experiment 10 which was severely
slower. When excluding this from the average, the solver overhead of scaling 1 would be 20.67
and the improvement would still hold, all be it much less significant. After scaling 64 the solver
overhead suddenly starts to increase drastically, a cause for this might be related to the issue of the

20

6 Discussion

SCRATCH directory. Nonetheless, it is clear that when the portfolio is scaled to a large enough size it
causes a strain upon the monitoring process and the cluster on which it is executed.
Another part of the delay is caused by the limitation of the Grace cluster, the running time of a
job is only reported up to full seconds. To allow all solvers to be able to compute the full duration
of their allotted time, the moment at which a job is cancelled is always rounded up to the next
full second. Additionally, this limits the usefulness to try and further examine subsections of the
solver overhead since each job has a delay of less than one second. Consequently, it would always
return a one-second delay. Besides discussing conditions required for the solver overhead to increase
rapidly, the resulting issue should also be considered. When looking at Table 3, the most logical
conclusion is that there are jobs, which should have been cancelled, continue to run even after they
have received the SCANCEL command. The reason for this is that the only other possible cause for
an increase in solver overhead would be a delay in the response to the SCANCEL command either
by SLURM or the job. However, if the delay were the reason there would be a steady increase in
overhead, as shown in Table 7, this is not the case.
When reflecting on the methodology of this thesis it states that within the experiments the practical
capabilities of parallel algorithm portfolios will be illustrated. However, the findings in Table 3
indicated some unexpected overhead, and the rest of the experiment chapter was used to gain
more insight into the overhead and the reasons why it occurred. This led to the exclusion of
two experiments. These experiments would show that not only different solver variations, but
also different solvers could be run within the same portfolio. Furthermore, the experiments were
supposed to showcase the ability of Sparkle to run deterministic, as well as non-deterministic
solvers. This limitation could be refuted by saying that the nature of the paper drifted towards
presenting the different causes of overhead, and demonstrating a somewhat trivial capability of
being able to execute the portfolio with different solvers would not fit within the scope of this study.
Consequently, a recommendation for future work would be to study these capabilities.
In the research aim, in Chapter 1, the goal is formulated that this thesis will show the potency of
parallel algorithm portfolios and its ability to improve the wallclock execution time. As observed in
Table 3 the implementation of parallel algorithm portfolios is able to reduce the wallclock time
of 16228 seconds to 4355 seconds with just a portfolio of four solvers. This reduces the time by
almost 75%. Furthermore, the extension of parallel algorithm portfolios into Sparkle enables solver
developers to support them in their development process from constructing a portfolio to running
the portfolio and reporting its findings.
When processing the results of the experiments it became clear that there were several forms of
overhead causing delays during the running of the portfolio. For future work, we will discuss the
two most significant causes of overhead and possible implementations which would resolve or at
least alleviate the issue. First, there is the Job overhead, which caused severely increased delays
when executing a lot of workload. A way to possibly help reduce the frequency of this occurring
is to remove the temporary files of cancelled jobs directly after they are cancelled. Instead of
doing this after all jobs have finished running. This will reduce the running space of the portfolio,
hopefully, making enough space to prevent the issue from occurring. Second, the issue which would
be beneficial to solve is the issue that occurs at portfolios at a size larger than 64 solvers. The most
probable cause of the increase in solver overhead is that some solvers did not receive or properly
respond to cancel commands. A possible solution for this would be to implement an additional
check in the monitoring function of run sparkle parallel portfolio to cancel jobs that have

21

6 Discussion

either failed to receive their cancel command or have failed to follow the cancel command.

To conclude, this thesis has introduced parallel algorithm portfolios to Sparkle. Within this
thesis, the design of the system is shown, and the implementation of the design is outlined by
looking at the commands and their options, as well as by conducting several experiments. The results
show the implementation has a clear reduction of the overall wallclock time with the limitation
of creating a portfolio with a size of 64 solvers. When scaling a portfolio above 64 solvers an
unexpected increase of overhead occurs. The recommendations for future work are the introduction
of an additional check during the running of the portfolio to prevent the increase in overhead.
Secondly, an effort could be made to reduce the memory usage during the running of the portfolio
by removing temporary files whilst the portfolio is running instead of after. Although the study
has various limitations, it shows that the use of parallel algorithm portfolios in Sparkle can have a
beneficial impact on its users.

22

References

References
[1] H. Hoos, “Sparkle: A PbO-based Multi-agent Problem-solving Platform,” tech. rep., Department

of Computer Science, University of British Columbia, 2015.

[2] K. van der Blom, C. Luo, and H. H. Hoos, “Sparkle: Towards automated algorithm configuration
for everyone,” 2019.

[3] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelligence, vol. 126, no. 1,
pp. 43 – 62, 2001. Tradeoffs under Bounded Resources.

[4] B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics approach to hard computational
problems,” Science, vol. 275, no. 5296, pp. 51–54, 1997.

[5] C. P. Gomes and B. Selman, “Algorithm portfolio design: Theory vs. practice,” in UAI, 2013.

[6] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, Y. Shoham, et al., “A portfolio
approach to algorithm selection,” in IJCAI, vol. 3, pp. 1542–1543, 2003.

[7] M. Lindauer, H. Hoos, and F. Hutter, “From sequential algorithm selection to parallel portfolio
selection,” in International Conference on Learning and Intelligent Optimization, pp. 1–16,
Springer, 2015.

[8] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub, “Autofolio: An automatically configured
algorithm selector,” Journal of Artificial Intelligence Research, vol. 53, pp. 745–778, 2015.

[9] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-based Algorithm
Selection for SAT,” Journal of Artificial Intelligence Research, vol. 32, pp. 565–606, 06 2008.

[10] M. Heule, M. Jarvisalo, and T. Balyo, “SAT competition 2016 - Benchmarks.” https://baldur.
iti.kit.edu/sat-competition-2016/index.php?cat=benchmarks, 2016. Accessed: 2020-
07-12.

[11] C. Luo, H. Hoos, and S. Cai, “PbO-CCSAT: Boosting local search for satisfiability using
programming by optimisation,” in International Conference on Parallel Problem Solving from
Nature, pp. 373–389, Springer, 2020.

[12] M. J. Heule, “Avoiding Monochromatic Solutions of a+ b= c and a 2+ b 2= c 2,” SAT
COMPETITION 2016, p. 63, 2016.

[13] “Grace User Guide,” 2019. Unpublished internal document.

23

https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=benchmarks
https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=benchmarks

A Listings of the User guide

Appendices
A Listings of the User guide

Listing 1: Decision algorithm example
#!/ bin/bash

Example usage of Sparkle for parallel algorithm portfolio
The example illustrates the use of an decision algorithm that uses runtime

as measurement

Initialise the Sparkle platform

Commands / initialise .py

Add instances

Add instances (in this case for the portfolio) in a given directory , without
running solvers or feature extractors

Note that you should use the full path to the folder containing the instance (
s)

Commands / add_instances .py --run -solver -later --run -extractor -later Examples /
Resources / Instances /PTN/

Add solvers

Add a solver with a wrapper containing the executable name of the solver and
a string of command line parameters , without running the solver yet

The path used should be the full path to the solver directory and should
contain the solver executable and the ‘sparkle_smac_wrapper .py ‘ wrapper

If needed solvers can also include additional files or scripts in their
directory , but try to keep additional files to a minimum as it speeds up
copying .

Use the --solver - variations option to set the default number of solver
variations of a solver which will be used when a portfolio is constructed .

Commands / add_solver .py --run -solver -later --deterministic 0 Examples / Resources /
Solvers / CSCCSat /

Commands / add_solver .py --run -solver -later --deterministic 0 Examples / Resources /
Solvers / MiniSAT /

Commands / add_solver .py --run -solver -later --deterministic 0 Examples / Resources /
Solvers /PbO -CCSAT - Generic /

Construct the portfolio

The construction of the portfolio uses all the added solvers in the Solver /
directory and keeps in mind the default overwrite setting

24

A Listings of the User guide

Overwrite is only used if a portfolio is constructed holding the same name as
an already existing portfolio .

This will happen by default unless the nickname option is used then this will
throw an error

The --nickname option can be used to name your portfolio , the option must be
followed by a nickname to name your portfolio .

For example ’--nickname runtime_experiment ’, if this option is not used then
the default nickname is used

This is sparkle_parallel_portfolio
Without using the --solver option all solvers will be added , if you want , for

example , only a subset of solvers from the Solver / directory
you can use a space seperated list , like --solver Solvers / CSCCSat Solvers /PbO

-CCSAT - Generic or --solver Solvers /TCA Solvers / MiniSAT

In order to add multiple variations of a single solver you have to add ’,
number_of_solver_variations ’ within the space seperated solver list.

For example --solver Solvers /PbO -CCSAT -Generic ,4 which will create a
portfolio containing four variations of PbO -CCSAT - Generic

Commands / construct_sparkle_parallel_portfolio .py --nickname runtime_experiment

Run the portfolio

By running the portfolio a list of jobs will be created which will be
executed by the cluster .

Use the --cutoff -time to specify the allotted time of which the portfolio is
allowed to run.

add --portfolio -name to specify a portfolio otherwise it will select the
latest constructed portfolio

The --instance -paths option must be followed by a space seperated list of
paths to an instance or an instance set.

For example --instance -paths Instances / Instance_Set_Name / Single_Instance
Instances / Other_Instance_Set_Name

Commands / run_sparkle_parallel_portfolio .py --instance -paths Instances /PTN/ --
portfolio -name runtime_experiment

Generate the report

The report details the experimental procedure and performance information .
This will be located at Components /Sparkle -latex -generator -for -parallel -

portfolio / Sparkle_Report .pdf

Commands / generate_report .py

Listing 2: Optimisation algorithm example
#!/ bin/bash

Example usage of Sparkle for parallel algorithm portfolio
The example illustrates the use of an optimisation algorithm that uses

quality as measurement

25

A Listings of the User guide

Initialise the Sparkle platform

Commands / initialise .py

Add instances

Add instances (in this case for the portfolio) in a given directory , without
running solvers or feature extractors

Note that you should use the full path to the folder containing the instance (
s)

Commands / add_instances .py --run -solver -later --run -extractor -later Examples /
Resources /CCAG/ Instances /CCAG/

Add solvers

Add a solver with a wrapper containing the executable name of the solver and
a string of command line parameters , without running the solver yet

The path used should be the full path to the solver directory and should
contain the solver executable and the ‘sparkle_smac_wrapper .py ‘ wrapper

If needed solvers can also include additional files or scripts in their
directory , but try to keep additional files to a minimum as it speeds up
copying .

Use the --solver - variations option to set the default number of solver
variations of a solver which will be used when a portfolio is constructed .

Commands / add_solver .py --run -solver -later --deterministic 0 Examples / Resources /
CCAG/ Solvers / FastCA /

Commands / add_solver .py --run -solver -later --deterministic 0 Examples / Resources /
CCAG/ Solvers /TCA/

Construct the portfolio

The construction of the portfolio uses all the added solvers in the Solver /
directory and keeps in mind the default overwrite setting

Overwrite is only used if a portfolio is constructed holding the same name as
an already existing portfolio .

This will happen by default unless the nickname option is used then this will
throw an error

The --nickname option can be used to name your portfolio , the option must be
followed by a nickname to name your portfolio .

For example ’--nickname quality_experiment ’, if this option is not used then
the default nickname is used

This is sparkle_parallel_portfolio
Without using the --solver option all solvers will be added , if you want , for

example , only a subset of solvers from the Solver / directory
you can use a space seperated list , like --solver Solvers / FastCA or --solver

Solvers /TCA

In order to add multiple variations of a single solver you have to add ’,
number_of_solver_variations ’ within the space seperated solver list.

26

B Results of experiment 5.1

For example --solver Solvers /FastCA ,4 wich will create a portfolio containing
four variations of FastCA

Commands / construct_sparkle_parallel_portfolio .py --nickname quality_experiment

Run the portfolio

By running the portfolio a list of jobs will be created which will be
executed by the cluster .

Use the --cutoff -time to specify the allotted time of which the portfolio is
allowed to run.

add --portfolio -name to specify a portfolio otherwise it will select the
latest constructed portfolio

The --instance -paths option must be followed by a space seperated list of
paths to an instance or an instance set.

For example --instance -paths Instances / Instance_Set_Name / Single_Instance
Instances / Other_Instance_Set_Name

Commands / run_sparkle_parallel_portfolio .py --instance -paths Instances /CCAG/ --
performance - measure QUALITY_ABSOLUTE --portfolio -name quality_experiment

Generate the report

The report details the experimental procedure and performance information .
This will be located at Components /Sparkle -latex -generator -for -parallel -

portfolio / Sparkle_Report .pdf

Commands / generate_report .py

B Results of experiment 5.1

Table 8: 5.1 Without portfolio 2
Instance Total duration Solving duration Overhead
Ptn-7824-b20 2 seconds 1.32669 seconds 0.67331 seconds
Ptn-7824-b18 3 seconds 2.60099 seconds 0.39901 seconds
Ptn-7824-b13 23 seconds 22.3015 seconds 0.6985 seconds
Ptn-7824-b09 40 seconds 39.5757 seconds 0.4243 seconds
Ptn-7824-b11 67 seconds 65.7377 seconds 1.2623 seconds
Ptn-7824-b15 194 seconds 193.351 seconds 0.649 seconds
Ptn-7824-b06 1444 seconds 1442.56 seconds 1.44 seconds
Ptn-7824-b01 2478 seconds 2477.07 seconds 0.93 seconds
Ptn-7824-b07 3001 seconds 3000.05 seconds 0.95 seconds
Ptn-7824-b05 3001 seconds 3000.06 seconds 0.94 seconds
Ptn-7824-b04 3003 seconds 3000.05 seconds 2.95 seconds
Ptn-7824-b03 3006 seconds 3000.07 seconds 5.93 seconds

27

B Results of experiment 5.1

Table 9: 5.1 Without portfolio 3
Instance Total duration Solving duration Overhead
Ptn-7824-b20 3 seconds 2.44982 seconds 0.55018 seconds
Ptn-7824-b18 4 seconds 2.62 seconds 1.38 seconds
Ptn-7824-b13 24 seconds 22.442 seconds 1.558 seconds
Ptn-7824-b09 41 seconds 39.7472 seconds 1.2528 seconds
Ptn-7824-b11 67 seconds 65.6625 seconds 1.3375 seconds
Ptn-7824-b15 196 seconds 194.977 seconds 1.023 seconds
Ptn-7824-b06 1399 seconds 1398.25 seconds 0.75 seconds
Ptn-7824-b01 2382 seconds 2380.79 seconds 1.21 seconds
Ptn-7824-b07 3001 seconds 3000.02 seconds 0.98 seconds
Ptn-7824-b05 3003 seconds 3000.05 seconds 2.95 seconds
Ptn-7824-b04 3003 seconds 3000.05 seconds 2.95 seconds
Ptn-7824-b03 3003 seconds 3000.05 seconds 2.95 seconds

Table 10: 5.1 With portfolio 2
Instance Total duration Solving duration Overhead
Ptn-7824-b20 8 seconds 1.32852 seconds 6.67148 seconds
Ptn-7824-b18 9 seconds 2.62897 seconds 6.37103 seconds
Ptn-7824-b13 29 seconds 22.1711 seconds 6.8289 seconds
Ptn-7824-b09 46 seconds 40.0358 seconds 5.9642 seconds
Ptn-7824-b11 72 seconds 65.9823 seconds 6.0177 seconds
Ptn-7824-b15 200 seconds 193.796 seconds 6.204 seconds
Ptn-7824-b06 1421 seconds 1414.38 seconds 6.62 seconds
Ptn-7824-b01 2497 seconds 2490.21 seconds 6.79 seconds
Ptn-7824-b07 3006 seconds 3000 seconds 6 seconds
Ptn-7824-b05 3006 seconds 3000 seconds 6 seconds
Ptn-7824-b04 3008 seconds 3000 seconds 8 seconds
Ptn-7824-b03 3011 seconds 3000 seconds 11 seconds

28

C Results of experiment 5.2

Table 11: 5.1 With portfolio 3
Instance Total duration Solving duration Overhead
Ptn-7824-b20 2 seconds 1.33808 seconds 0.66192 seconds
Ptn-7824-b18 3 seconds 2.58902 seconds 0.41098 seconds
Ptn-7824-b13 23 seconds 22.2955 seconds 0.7045 seconds
Ptn-7824-b09 41 seconds 39.8896 seconds 1.1104 seconds
Ptn-7824-b11 67 seconds 66.0713 seconds 0.9287 seconds
Ptn-7824-b15 195 seconds 194.308 seconds 0.692 seconds
Ptn-7824-b06 1473 seconds 1471.65 seconds 1.35 seconds
Ptn-7824-b01 2496 seconds 2492.74 seconds 3.26 seconds
Ptn-7824-b07 3001 seconds 3000 seconds 1 seconds
Ptn-7824-b05 3003 seconds 3000 seconds 3 seconds
Ptn-7824-b04 3003 seconds 3000 seconds 3 seconds
Ptn-7824-b03 3006 seconds 3000 seconds 6 seconds

C Results of experiment 5.2

Table 12: Solver overhead when scaled shown as the average duration of overhead on each instance

* Scaling 1 are the results from experiment 5.1

Experiment Solver overhead Single step increase Total increase
Scaling 1 - 1* 19.22199 - -
Scaling 1 - 2* 82.46731 - -
Scaling 2 - 1 19.86024 -60.9% -60.9%
Scaling 2 - 2 19.47483 -61.7% -61.7%
Scaling 4 - 1 18.93607 -3.7% -62.8%
Scaling 4 - 2 17.9818 -8.6% -64.6%
Scaling 8 - 1 14.84878 -19.6% -70.8%
Scaling 8 - 2 14.59655 -20.1% -71.2%
Scaling 16 - 1 20.52 39.4% -59.6%
Scaling 16 - 2 18.89 28.3% -62.8%
Scaling 32 - 1 28.80125 46.2% -43.4%
Scaling 32 - 2 7.8287 -60.3% -84.6%
Scaling 64 - 1 4.82875 -73.6% -90.5%
Scaling 64 - 2 7.73875 -57.7% -84.8%
Scaling 128 - 1 61.77625 883.1% 21.5%
Scaling 128 - 2 169.925 2604.2% 234.2%
Scaling 256 - 1 553.586875 377.8% 988.8%
Scaling 256 - 2 672.615625 408.6% 1222.9%
Scaling 512 - 1 3378.782 451.1% 6545.3%
Scaling 512 - 2 3642.878 492.2% 7064.7%

29

D Grace specification

D Grace specification

D.1 Hardware
Note: The specifications are duplicated from Graces’ internal user guide[13]
At the time of this writing (January 2019) Grace is constituted from a total of 34 nodes. 26 of them
are so-called CPU nodes, 10 of them are GPU nodes with 2 GPUS (8 nodes) or 4 GPUs (2 nodes).
They are connected with Infiniband FDR (~56 Gb/sec/link FD) The following section describes
the hardware of the nodes. Grace is homogeneous, meaning that each CPU is the same and each
GPU is the same. And it will stay homogeneous. Each node has 2 CPUs (processor) of 16 cores.

File server
Vendor ID: GenuineIntel
Model: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Advertised max. speed: 2.1 GHz
Max. speed: 3.0 GHz
Cache size: 20 MB
Memory: ˜ 125 GB

Nodes
Vendor ID: GenuineIntel
Model: Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz
Advertised max. speed: 2.1 GHz
Max. speed: 3.0 GHz
Cache size: 40 MB
Memory: ˜ 94 GB

Note: As the turbo option is disabled for consistency, it shouldn’t reach the max. speed.

GPUs
Model: NVIDIA Corporation GP102 [GeForce GTX 1080 Ti] (rev a1)
Video Memory: 11GB

Power
Power when full load: ˜ 11 KW
Power when idle: ˜ 4 KW

D.2 Software
Operating System CentOS Linux

Scheduling System Slurm

30

Parallel portfolio report

Sparkle

30th July 2021

1 Introduction
Sparkle [2] is a multi-agent problem-solving platform based on Programming by Optimisation (PbO)
[1], and would provide a number of effective algorithm optimisation techniques (such as automated
algorithm configuration, portfolio-based algorithm selection, etc.) to accelerate the existing solvers.

This experimental report is automatically generated by Sparkle. This report presents experimental
results of Sparkle parallel portfolio containing 3 solver(s).

2 Experimental Preliminaries
This section presents the experimental preliminaries, including the list of solvers in the portfolio, the
list of instance sets and information about the experimental setup.

2.1 Solvers
There are 3 solver(s) included in Sparkle, as listed below.

1. CSCCSat
2. PbO-CCSAT-Generic
3. MiniSAT

2.2 Instance Set(s)
There are 1 instance set(s) included in Sparkle, as listed below.

1. PTN, number of instances: 12

2.3 Experimental Setup
The experimental setup is described below.

Performance computation: Sparkle runs the portfolio one time on each instance. The cutoff
time for the computation run is set to 300 seconds. The outcome of the computation is listed below.
The scores of the outcomes are calculated according to PAR10, this means that for each instance the
solver which solved the instance is scored its runtime and the remaining solvers are scored the runtime
times ten. If however the portfolio reaches the cutofftime, which means that no solvers solved the
instance, all solvers are scored the cutofftime times ten.

1. Solver PbO-CCSAT-Generic, was the best solver on 3 instance(s)

2. Solver CSCCSat, was the best solver on 4 instance(s)

1

E Example sparkle report

E Example sparkle report

31

3. 5 instance(s) remained unsolved

In the table below the computed PAR10 scores of all solvers have been listed aswell as the portfolio
itself.

Portfolio results

Portfolio nickname PAR10 #Timeouts #Cancelled #Best solver
test3 15156.91 5 0 7

Solver results

Solver PAR10 #Timeouts #Cancelled #Best solver
CSCCSat 24038.83 5 3 4

PbO-CCSAT-Generic 27118.08 5 4 3
MiniSAT 36000.0 5 7 0

2.4 Scatter Plot Analysis
Figure 1 shows the empirical comparison between the actual parallel portfolio in Sparkle and the single
best solver (SBS).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

P
a

ra
lle

l-
P

o
rt

fo
lio

,
P

A
R

1
0

SBS (CSCCSat), PAR10

Parallel-Portfolio vs SBS (CSCCSat)

Figure 1: Empirical comparison between the actual parallel portfolio in Sparkle and the SBS.

References
[1] Holger H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70–80, 2012.

[2] Holger H. Hoos. Sparkle: A pbo-based multi-agent problem-solving platform. Technical report,
Department of Computer Science, University of British Columbia, 2015.

2

E Example sparkle report

32

	Introduction
	Theoretical Framework
	Related work
	Main concepts
	Parallel algorithm portfolio
	Two types of algorithm: Optimisation and decision
	Randomised solvers
	How to evaluate a result
	Status codes

	Design
	Design choices
	User guide
	System overview

	Implementation
	Command-line interface
	Data flow
	User configuration

	Experiments
	Portfolio vs. single solver
	Scaling experiment

	Discussion
	References
	 Appendices
	Listings of the User guide
	Results of experiment 5.1
	Results of experiment 5.2
	Grace specification
	Hardware
	Software

	Example sparkle report

