
Master Computer Science

Empirical Study of Dimensionality Reduction and

Feature Selection Methods for Evolution Strategy

in High Dimension

Name: Yangjie Mei
Student ID: S2368285

Date: 11/05/2021

Specialisation: Computer Science and Advanced
Data Analytics

1st supervisor: Dr. H. Wang
2nd supervisor: Prof.dr. T.H.W. Bäck
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Abstract

Over the past decades, evolution strategy is widely used as a heuristic method in some
specific fields. However, when the dimensionality increases, the computational cost grows
much faster than dimensionality. Therefore, how to tackle a good result with a small
computation cost becomes a problem that needs to be address. In this thesis, we will
use dimensionality reduction methods such as Principal Component Analysis (PCA),
Random Forest (RF), Permutation, Boruta, and SHapley Additive exPlanations (SHAP)
to reduce the covariance matrix dimension in different iterations of the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) sampling process. In addition, this
thesis evaluates the performance of the new CMA-ES, which combined dimensionality
reduction methods, and regular CMA-ES in terms of convergence rates and optimal
values on the problems of the Black-Box Optimization Benchmark (BBOB) problem
set. Making a benchmark for all these new methods and analyzing the advantages and
disadvantages of each algorithm.

Keywords— Evolutionary Algorithm, Principal component analysis, Random Forest, Permutation,
Boruta, Shapley Additive Explanations, Covariance Matrix Adaptation Evolution Strategy, Black-Box
Optimization Benchmarking
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1 Introduction

Evolutionary algorithms are widely used as a good heuristic method to solve optimization prob-
lems in various laboratory scenarios as well as industrial scenarios. However, although evolutionary
algorithms can find the best solution, sometimes its computational cost typically grows much faster
than the dimensionality increases. Therefore, in this thesis, we aim to delve into potential methods to
alleviate this problem. One method is to use dimensionality reduction[1] for continuous optimization
problems. We plan to investigate the usefulness and effectiveness of various dimensionality reduction
methods like PCA [2], Random Forest [3], Permutation[4], Boruta [5] and SHAP that based on Shap-
ley value [6] and couple them with an evolutionary algorithm Covariance Matrix Adaptation Evolution
Strategy(CMA-ES) [7], which is a widely-applied evolutionary algorithm for black-box optimization
problems in continuous domains. Also, this integration of dimensionality reduction methods shall
be implemented in an online manner, where the dimensionality reduction mapping and the inverse
mapping thereof should be learned or adapted in each iteration of CMA-ES.

1.1 Research questions

The concept of CMA-ES has been published for several years, and its variants are considered the
most advanced technique in evolutionary computation and are used in many different fields. At the
same time, dimensionality reduction methods are widely used in various areas. Therefore, to explore
the feasibility of combining the dimensionality reduction method with CMA-ES, we aim to answer
the following questions.

1. What is the general impact of the dimensionality reduction method on the performance of
CMA-ES?

2. Why are the variables reliable after dimensionality reduction?

3. Can the dimensionality reduction method really save time throughout the CMA-ES process?

1.2 Outline of the thesis

From the beginning, we focus on CMA-ES, a special evolutionary algorithm for black-box
optimization problems in continuous domains. Its variances are used as a state-of-the-art method
by different research groups and laboratories, and it is also applied in various industrial situations.
Then, we investigate a class of dimensionality reduction methods such as PCA, RF, Permutation,
Boruta, and SHAP. The methods can be divided into two types. The first one is feature projection,
also called feature extraction [8] like PCA, which maps the data onto the first few components to
obtain low-dimensional data while preserving as much variation in the data as possible. The second is
the other four methods, which belong to the feature selection [9], where the most important features
are selected, and the unimportant ones are discarded according to the importance calculated for
the given data. In this thesis, we inserted feature projection and feature selection methods during
the sampling operation of CMA-ES to accomplish the ability to transform variable dimensions in an
iteration dynamically. Subsequently, we tested the new combined methods on the BBOB problem
set, compared and analyzed their performance. We identified the advantages and disadvantages of
the different techniques based on the results.

The rest of this thesis is structured as follows. Section 2 talks about the principle of CMA-
ES and introduces the dimensionality reduction methods such as PCA, RF, Permutation, Boruta,
and SHAP. This section also presents some related work that has been done to combine PCA with
evolutionary algorithms, which can provide inspiration for the following research. Section 3 will talk
about the combination of CMA-ES and dimensionality reduction methods. The experiment in this
thesis is divided into two parts: Section 4 describes the experiment setup, and Section 5 discusses
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the performance of the new methods based on the experimental results. Section 6 Summarize the
experimental results and look forward to future research.

2 Background

CMA-ES is an evolutionary strategy for solving complex black-box optimization problems in
continuous domains. CMA-ES and its variants are considered state-of-the-art evolutionary computa-
tional methods and have been adopted by many research laboratories and industrial settings around
the world. The following section will first discuss the CMA-ES, followed by the dimensionality reduc-
tion method.

2.1 Covariance Matrix Adaptation Evolution Strategy

In contrast to GA, which is an evolutionary algorithm focusing on discrete problems, CMA-ES is
excellent for continuous numerical optimization problems and is widely used in various laboratory and
industrial scenarios. More importantly, compared to the most straightforward evolutionary strategy
algorithm, CMA-ES algorithm gets the results of each iteration and adaptively increases or decreases
the search space in the next generation of search.
CMA-ES uses the covariance matrix C to track the pairwise dependencies between samples obtained
in the distribution. The new distribution parameter becomes:

θ = (µ, σ, C), pθ(x) ∼ N(µ, σ2C) ∼ µ+ σN(0, C) (1)

where where N(0, C) denotes a multivariate Gaussian distribution with mean 0 and covariance C,
pθ(x) indicates the populations, µ is the mean value of population, σ represents the step, C means
the covariance matrix and C is symmetric.

Mutation The way to obtain the mutations in CMA-ES is to use the covariance matrix C to
sample the results that satisfy a normal distribution where the expectation equals zero and stand
deviation equals C. The following equation shows how CMA-ES samples the population:

x
(t+1)
i = µ(t) + σ(t)y

(t+1)
i where yi ∼ N(0, C(t)), i = 1, ..., λ (2)

Where λ is the size of offspring population, x
(t+1)
i denotes the new candidates of the next generations,

µ(t) indicates the mean of elites of the last generation and σ(t) represents the step of the current
generation and yi obeys the normal distribution where the mean of distribution equals zero and the
stand deviation equals C(t).

Recombination

µ(t+1) =

m∑
i=1

wix
(t+1)
i:λ (3)

m∑
i=1

wi = 1, w1 ≥ w2 ≥ ...wm > 0 (4)

Where m is the number of samples which selected from (xt+1
1 , ..., xt+1

λ ), µ(t+1) is the weighted means

of m samples and x
(t+1)
i:λ is the ith best individual in (xt+1

1 , ..., xt+1
λ )

5



Step-size adaptation CMA-ES uses σ(t) to control the step of each iteration. To determine

a good step-size, CMA-ES gets the sum of consecutive moving sequence 1
λ

∑λ
i y

(j)
i , j = 1, 2, ..., t

to get the evolution path pσ and compare the evolution path with the path generated by random
selection. If the evolution path is longer than the random selection path, CMA-ES will reduce the
σ(t), and vice versa.

Covariance matrix The eigendecomposition of Covariance Matrix C obeys: C = BD2BT .
The expression of Covariance Matrix C can re-estimate like this:

C
(t+1)
λ =

λ∑
i=1

wi(x
(t+1)
i:λ − µ(t))(x

(t+1)
i:λ − µ(t))T (5)

In this formula, this estimate is reliable only if the population is large enough. However, in each
iteration CMA-ES would like to have a fast and reliable iteration when the population size is lower.
Therefore CMA-ES has a more reliable but more complex method to update C. It consists of two
parts. The first method uses the history of C.

C(t+1) = (1− αcλ)C
(t) + αcλC

(t+1)
λ = (1− αcλ)C

(t) + αcλ
1

λ

λ∑
i=1

y
(t+1)
i y

(t+1)T

i (6)

where αcλ is the learning rate of first way.
The second way is using an evolution path pc, pc also follows to the normal distribution N(0, C):

p(t+1)
c = (1− αcp)p(t)

c +
√
αcp(2− αcp)λ

µ(t+1) − µ(t)

σ(t)
(7)

and CMA-ES uses pc to update the covariance martix C:

C
(t+1)
λ = (1− αc1)C(t) + 1− αc1p(t+1)

c p(t+1)T

c (8)

Ultimately, this final update formula can be obtained by combining these two methods:

C(t+1) = (1− αc1 − αcλ)C
(t) + αc1p

(t+1)
c p(t+1)T

c + αcλ
1

λ

λ∑
i=1

y
(t+1)
i y

(t+1)T

i (9)

2.2 Dimensionality Reduction

Dimensionality reduction is a kind of method to convert high dimensional data to low dimen-
sional data, while using this low dimensional data to retain some meaningful attributes of the original
dimensional data to the maximum extent. The overall dimensionality reduction can be roughly di-
vided into two categories: feature projection and feature selection. Feature projection converts data
from high dimensionality to low dimensionality, and this transformation can be linear or nonlinear; in
contrast to feature projection, feature selection is an attempt to find the best subset that can go on
to represent a given set of input variables. In this experiment, we choose linear PCA as the feature
projection method and select RF, Permutation, Boruta and SHAP as the feature selection methods.

2.2.1 Principal Component Analysis

Monitoring data with multiple variables and analyzing them is inevitable in many domains of
research. Multivariate can provide a wealth of information, but it can also be computationally and
analytically intensive. Also in global optimization problems, if the dimensionality increases, optimiza-
tion algorithms usually require an exponentially increasing number of function evaluations [10] to
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find the optimal value. Therefore, reducing variables while preserving their information becomes one
of our research goals. And there are some kinds of known methods like single value decomposition
(SVD) [11], PCA, linear discriminant analysis (LDA) [12] to reduce the dimensionality of the data.
In our study, we choose linear-PCA as the feature projection method.

PCA is one of the most widely used algorithms for dimensionality reduction of data. the main
idea of PCA is to map n-dimensional features to k-dimensions, where k is less than n. This k-dimension
is a brand new orthogonal feature also called principal component, which is a k-dimensional feature
reconstructed on the basis of the original n-dimensional features. PCA calculates the covariance ma-
trix of the data matrix, then gets the eigenvalue eigenvectors of the covariance matrix, and selects
the matrix composed of the eigenvectors corresponding to the k features with the largest eigenvalues
(i.e., the largest variance), so that the data matrix can be transformed to the new space when the
dimensionality reduction of the data features is achieved.

Also during the last few years, PCA has proven to be useful when combined with optimization
algorithms. In 2016, Dimitrios Kapsoulis [13] introduced the combination method of Kernel-PCA [14]
with evolutionary algorithm. In the iterative process of traditional evolutionary algorithms, there are
four basic steps. Initialization, selection, crossover and mutation. Dimitrios Kapsoulis applied the
Kernel-PCA method before the crossover operation to reduce the dimensionality of the variables
and after the mutation operation to invert and map the variables at lower latitudes to the previous
dimensions. Dimitrios Kapsoulis confirmed that in subsequent experiments, this new algorithm in the
iterative process has a fast convergence rate as well as a relatively low computational cost.

In 2020, Elena Raponi1, Hao Wang [15] apply the PCA method on Bayesian Optimization
(BO) [16] and run the benchmark on COCO[17] and assess the performance of PCA-BO in terms
of the empirical convergence rate and CPU time on multi-modal problems from BBOB problem sets
and gain some progress through the PCA method.

2.2.2 Random Forest

Unlike PCA, which is a feature mapping method. The methods we discuss next are another
class of methods called feature selection, each of which has its importance assessment and selects
the important features by their importance for the purpose of dimensionality reduction.

Random forests are often used as one of the feature selection methods in the data preprocessing
phase of many problems. Random forest is a model consisting of multiple trees that embodies the
concept of ensemble learning. Its basic components are decision trees or regression trees. In a random
forest, each tree is a classifier or regressor and RF collects the results of each tree and summarizes a
result. There are three methods to build decision trees: id3, C4.5, and CART. Inside the subsequent
experiments, this thesis only chooses CART to build the tree because only CART is supported for
regression problems.

CART CART’s [18] full name is Classification And Regression Tree. This implies that it is also
possible to build a regression tree compared to ID3 and C4.5. The CART algorithm is a binary
recursive segmentation technique. The current sample can only be divided into two subsamples, so
each non-leaf node generated has only two branches. Therefore, the tree generated by the CART
algorithm is a binary tree with a simple structure. Even if a feature has multiple categories, the data
can still only be divided into two parts.

When CART deals with classification problems, one very important difference from ID3 and
C4.5 is that while ID3 and C4.5 use entropy as a criterion for reducing the instability of a data set,
CART chooses the reduction of the Gini index [19] as a criterion instead. The Gini calculation is
easier to implement and compute than the entropy calculation, which uses logarithmic operations
and causes time consumption. Here is how the GINI impurity works in classification, if the dataset
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D has K classes, each with probability pk, the Gini coefficient can be expressed as follows.

Gini(D) = 1−
K∑
k=1

p2
k (10)

After the D is divided into D1 and D2 by the attribute A, the Gain Gini can be like this:

GI(A) =
|D1|
|D|

Gini(D1) +
|D1|
|D|

Gini(D2) (11)

where,

• |D1| - the sample amount of Dataset D1

• Gini(D1) - the Gini index of Dataset D1

CART will select the attribute with the smallest Gain Gini as the split point.
On the other hand, if the problem handled by random forest is a regression problem, CART uses least
squares in constructing a binary tree to minimize the sum of residuals between the observations and
the mean in each node. In the input space of the training data, each region is recursively divided into
two subregions and the output value of each subregion is derived. A binomial tree is then constructed
to find the best attribute j and cut point s.

min
j,s

=

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 (12)

where, c1 = ave(yi|xi ∈ R1(j, s)), c2 = ave(yi|xi ∈ R2(j, s)), each attribute j and cut point s has
it’s value and CART will split the point with the lowest value. CART will build the tree recursively
according to the formula.

Using Random Forest for selection In 2009, Bjoern H Menze [20] combined the Gini
importance selection in Random Forest with partial least squares regression [21]. The combined
approach is applied to specific datasets such as medical diagnostics, chemical taxonomy, biomedical
analysis, food science, etc. Finally, they not only reduce the dimensionality, but also erase the noise.

So how does RF select the features? At the beginning of building RF, RF will use Bootstrap [22]
to initialize the dataset. Bootstrap sampling method selects N samples from the original N samples,
and each instance is put back after each sampling operation. When N goes to infinity, the set of
samples taken is about two-thirds of the original sample set, and these are the training set. The
remaining one-third is called the ”out-of-bag” (OOB) set. After the RF is built, the RF will use the
OOB to evaluate the model. The details of the random forest algorithm are shown in Alg. 1.

Algorithm 1 Random Forest

Input: Dataset: Draw, Maximum number of decision trees: n
Output: Random Forest: RF
1: while Not reach n do
2: Generate Dataset with the Bootstrap method
3: Generate the Decision Tree with the CART algorithm
4: end while
5: Use Out-of-Bag(OOB) to evaluate the Random Forest Model
6: return RF
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After establishing the random forest, for different problems, the random forest will have dif-
ferent importance assessment criteria. If the problem is a classification problem, then RF uses the
GINI index for feature selection; if the problem is a regression problem, then RF uses the residual
sum of squares (RSS) as an indicator for feature selection. Regardless of the type of problem, after
establishing the RF, the variable importance measure can be expressed as V IM .

Inside the classification problem, the GINI index is defined as GI. If we have a set of C at-
tributes. X1, X2, X3, ..., XC ], V IM i

jm denotes the average change in node split impurity of attribute
j on m nodes in the ith decision tree, the GINI index can be computed as follows.

GI(m) =
|D1|
|D|

Gini(D1) +
|D1|
|D|

Gini(D2) (13)

where, node m split the tree into two parts D1 and D2, Gini(D1) means the GINI Index of D1 and
Gini(D2) is the GINI Index of D2. After the tree is split by the node m, the variation of the GINI
Index is shown like this:

V IMjm = GIm −GIl −GIr (14)

Where GIl means the GINI Index of the left part split by the node m and GIr indicates the GINI
Index of the right part split by the node m. If the problem is a regression problem, then the criteria
for importance assessment are somewhat different. When the tree is partitioned by node m, the sum
of squares of the residuals of the nodes is computable:

RSS =
∑

xi∈R1(m)

(yi − c1)
2 +

∑
xi∈R2(m)

(yi − c2)
2 (15)

where c1 = ave(yi|xi ∈ R1(m)), c2 = ave(yi|xi ∈ R2(m)) and the variation of the VIM in this node
is shown like this:

V IMjm = RSSm −RSSl −RSSr (16)

If set M means all the nodes of attribute Xj in tree i. We calculate the importance of Xj in i tree
as follows:

V IM i
j =

∑
m∈M

V IM i
jm (17)

and if RF has n trees, the importance of attribute j is the sum of all trees:

V IM Imp
j =

n∑
i=1

V IM i
j (18)

Therefore, RF can obtain the importance ranking of all features in the dataset S by calculating the
GINI index or RSS for all features, with larger V IM meaning more important.

2.2.3 Permutation Importance

Permutation is another method of feature selection. In 2017, Baptiste Gregorutti [23] used
the Permutation importance metric as a ranking criterion for eliminating variables and demonstrated
that this method can acquire good predictions with lower variables. Finding important features in
Permutation is also very simple, when the data has been trained by a model such as RF, then at the
beginning of the algorithm, Permutation will randomly shuffle one feature at a time and calculate
the score of the corrupted dataset (e.g., the accuracy of the classifier or the Euclidean distance of
the regressor), and the Permutation method will repeat this step k times and rank the importance
based on the average score. The details of Permutation in random forests are shown in Alg.2.

In this algorithm Permutation will repeat a feature shuffle several times and average it, then
get the importance ranking of the feature based on the score of each feature and select the features
that we want to keep. The higher the score means the more important the feature is.
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Algorithm 2 Permutation in Random Forest

Input: Fitted Random Forest Model M and dataset D
Output: Set of importance S
1: Compute the score s of the model M on dataset D
2: for each features f in dataset do
3: Initialize the Sumf = 0
4: while repetition time not reach k do
5: Randomly shuffle the column f of Dataset D and get the corrupted dataset Dc

6: calculate the score sf with the given model M and corrupted dataset Dc, add sf
into Sumf : Sumf = Sumf + sf

7: end while
8: end for
9: The importance If for each feature f is: If = s− Sumf

k

10: Rank If and insert most important features into set S
11: return S

2.2.4 Boruta

In 2010, Miron B. Kursa cite kursa2010feature introduced Boruta. As a new feature selection
method, Boruta is very similar to Permutation, it differs from permutation in that it does not shuffle
one feature at a time, it will shuffle each feature in a single run and then construct shadow features,
which will be talked about later. The key ideas of Boruta are shadow features, impurity, Z-score and
binomial distribution, which will be introduced one by one.

Shadow Features First, Boruta creates shadow features with the given dataset. In Boruta,
features do not compete with other features. They will compete with newly created features, which
are called shadow features. Boruta will randomly shuffle each feature and get the shadow dataset.
Boruta will then merge the shadow dataset with the original dataset to get a new dataset that ends
up with twice the number of columns as the old data frame.

Impurity After getting the new dataset, Boruta will use a model such as RF to train it and
understand the importance of each feature (including shaded features). Here the importance is
calculated using the GINI index or RSS as a criterion, which is shown in CART 2.2.2.

Z-score Boruta uses Z-score as a criterion for all features, and Boruta calculates the Z-score
several times in succession. The Z-score is calculated by the following formula:

Zij =
Gij∑m
j=1Gij

, Gij =

∑T
k=1G

k
ij

T
(19)

where, Gkij means the importance of j feature in kth tree of ith iteration and we totally have T trees.
And the Z-score is shown like this:

Z11 Z12 · · · Z1m Zs11 · · · Zs1m
Z21 Z22 · · · Z2m Zs21 · · · Zs2m

...
... · · ·

...
... · · ·

...
Zn1 Zn2 · · · Znm Zsn1 · · · Zsnm


Where Zsij means the feature importance of shadow feature, now we compare the importance of
each original feature with a threshold value, which is defined as the highest feature importance of
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the shadow feature and can be expressed as Zmaxn = max{Zsn1, Z
s
n2..., Z

s
nm}. When the importance

of a feature is above a threshold, we can call it a ”hit” and we can get the number of ”hits” for each
original feature in n iterations.

Binomial distribution Boruta uses a binomial test to determine if a feature gives rise to a
importance that is significantly lower than its shadow counterpart. With this test Boruta classifies the
features into three categories: unimportant, important and uncertain, and in subsequent experiments
we remove only the unimportant features.
Therefore, this section describes how Boruta determines the importance of features and selects them.
Boruta’s pseudo-code is shown in Alg. 3.

Algorithm 3 Boruta

Input: Dataset S, Iteration I, Random Forest method RF , tail accounts pt
Output: List of Importance L
1: Generate empty List L
2: while Not reach iterations do
3: Randomly shuffle each feature of the original dataframe and get the shadow

dataframe, contract the shadow dataframe with the original dataframe to obtain a
new dataset Snew

4: Train model RF with Snew
5: Calculate Z-score of each feature
6: Zmax is the biggest Z-score of shadow features
7: for each feature i of original dataframe do
8: if Zi larger than Zmax then
9: Hiti = Hiti + 1

10: end if
11: end for
12: end while
13: Calculate the binomial distribution of I iterations and the probability p = 0.5
14: Append the feature which is in area of irresolution and area of acceptance into List

L
15: return List L

2.2.5 Shapley Additive Explanations

In 2017, Lundberg, Scott M and Lee, and Su-In [24] proposed a unified framework. shapley, to
help understand a model and to be able to obtain the importance of each feature. They argue that
their Shapley provides better understanding of features compared to traditional methods.
This section will introduce a new approach Shapley Additive Explanations (SHAP) based on Shapley
Value [6], which is a concept of using cooperative game theory. Then in the case of computer
problems, SHAP uses the idea based on Shapley Value to rank the importance of features and select
the most important ones. And unlike the traditional methods discussed before, SHAP focuses more
on the importance of local features, and it can also integrate the importance of local features to find
the importance of global features.

The main idea behind SHAP is the Shapley value, which Shapley created in 1953. It is a
method of allocating expenses to players based on their contribution to the total expenses. Players
cooperate in coalitions and receive a certain amount of revenue from this cooperation. And this can
be used in machine learning models as well. Features are seen as ”contributions” and SHAP can tell
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us the impact of each feature in each sample. It can also tell us the impact of all the data. Here’s
an example to help understand how SHAP works.

Imagine that we have a model that uses features A, B and C to obtain predicted values
V . SHAP considers every possible combination of feature outcomes to determine the importance
of individual features; in this case, we have eight feature combinations because 23 = 8. These
combinations are shown in the figure 1. Each node represents a feature combination and each row
represents a feature that is not included in the previous node. Now SHAP will train a model for each
combination. Then, we take a new data x0 and get the predicted value for each combination, and
we get the result as shown in the figure 2. So, if we want to calculate the Shapley value of feature
A we can do so.

SHAPA(x0) =w1 ×MCA,{A}(x0) + w2 ×MCA,{A,B}(x0)+

w3 ×MCA,{A,C}(x0) + w4 ×MCA,{A,B,C}(x0)

where MCA,{A}(x0) = PredictionA(x0)− Prediction(x0) = 40− 50 = −10 and the contribution
marginal weight of an feature-model is the reciprocal of the number of possible contributions of all
feature-models and it also be write like this: f×

(
F
f

)
, where f means the number of feature in current

combination and F means the amount of all features. Therefore, w1 = w4 = 1
3 , w2 = w3 = 1

6 . Thus,

SHAPA(x0) =(1×
(
3

1

)
)−1 ×MCA,{A}(x0) + (2×

(
3

2

)
)−1 ×MCA,{A,B}(x0)+

(2×
(
3

2

)
)−1 ×MCA,{A,C}(x0) + (3×

(
3

3

)
)−1 ×MCA,{A,B,C}(x0)

=− 11.33

and we can also get the Shapley value of feature B: SHAPB(x0) = −2.33 and C: SHAPC(x0) =
46.66 and the mathematics explanation of Shapley values is like this:

φi =
∑

S⊆M {i}

|S|!(M − |S| − 1)!

|M |!
[f(S ∪ i)− f(S)] (20)

where, S refers to a subset of features that doesn’t include the feature i and S ∪ i is the subset that
include features in S and also plus feature i and M means total set of all features.

Samely SHAP evaluates the importance of each feature in its unique way and is able to select
the important features.
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Figure 1: Each node in the figure represents one combination of features, each line means
a feature which is not contained in former node

Figure 2: This figure also shows the predicted value of each model with the new data x0
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3 Methods

3.1 CMA-ES with Dimensionality Reduction Methods

This section will specifically talk about how to combine CMA-ES with the dimensionality
reduction method. It is well known that there are two important steps in CMA-ES (2.1) sample
and Update. In this thesis, we try to dynamically insert our dimensionality reduction method into
the Sample part, which means that the dimensionality of the variables obtained from the Sample
part of CMA-ES is different during each iteration.At the beginning of each iteration of the Sample
operation, we will apply a dimensionality reduction method to the population, which can also be
called elite, based on the population generated in the previous iteration. For the feature mapping
approach, we will get a conversion matrix that can converts the covariance matrix C from high
to low dimensions during sampling in CMA-ES; for the feature selection approach, we will get a
ranking based on importance assessment, representing which features are important, and applying
this ranking will also convert the covariance matrix from high to low dimensions. After obtaining
the low-dimensional populations, our new method also needs to invert the low-dimensional variables
back to the original dimensions for the subsequent Update section. Note that we will not use our
downscaling method in the first iteration of CMA-ES, because in the first iteration CMA-ES does
not have the populations from the previous iteration. Figure 3 shows the flow of this step, and all
the dimensionality reduction used in our thesis adhere to this plan.

Figure 3: This figure shows how dimensionality reduction methods do in Sample Oper-
ation of CMA-ES
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3.1.1 CMA-ES with PCA

The first algorithm to combine with CMA-ES is PCA, and the previous section shows that
CMA-ES has two important parts, sampling and updating. Our proposed merging scheme is to com-
bine PCA with the sampling method of CMA-ES by training PCA with the population data of the
previous iteration before sampling starts, and obtaining the PCA transformation matrix P . The con-
version matrix is then used to convert the covariance matrix of CMA-ES from high-dimensional to
low-dimensional back to generate low-dimensional samples, and then the pseudo-inverse matrix P T

of the conversion matrix P is used to convert the low-dimensional samples to the original dimension.
This concludes the merging of CMA-ES with PCA. Next, an example is used to help understand how
this process works.

Before discussing the example we need to know that the calculation of the covariance satisfies
the following equation:

Cov(x1 + x2, y) = Cov(x1, y) + Cov(x2, y) and Cov(a ∗ x1, b ∗ x2) = a ∗ b ∗ Cov(x1, x2)
If the original dimension of the problem is three-dimensional, then the covariance matrix of three

dimensions can be obtained Cold

 cold11 cold12 cold13

cold21 cold22 cold23

cold31 cold32 cold33

. Also using the population data from the pre-

vious iteration, PCA is applied to obtain the transformation matrix P

[
1 0 −1
−1 1 0

]
This matrix

converts 3D (x1, x2, x3) into 2D (y1, y2), and the expression for the conversion can be written as
follows: [

y1

y2

]
= P

[
1 0 −1
−1 1 0

]
×

 x1

x2

x3


So the new variables are represented as follows: y1 = x1 − x3 and y2 = −x1 + x2. Using the

newly obtained low-dimensional variables, we calculate the covariance Cov(y1, y2) between the new
variables y1 and y2:

Cov(y1, y2) = Cov(x1 − x3,−x1 + x2)

Cov(x1 − x3,−x1 + x2) = −Cov(x1, x1) + Cov(x1, x3) + Cov(x1, x2)Cov(x1, x2)

Cov(y1, y2) = −cold11 + cold13 + cold12 − cold12 = cold13 − cold11

Cov(y1, y2) = cold13 − cold11

Similarly the covariance of the new variable with itself can be calculated to obtain the new
low-dimensional covariance matrix. In general, with the given Covariance Matrix Cold and Transform
Matrix P generated by PCA. The rules of gettting new Cnewi,j can be like this:

Cnewi,j =
n∑
a=1

n∑
b=1

Pi,aPj,bCov
old
a,b , i, j <= m (21)

After getting the new Covariance Matrix Cnew, the sample formula is:

x
(t+1)
i = µ(t) + σ(t)y

(t+1)
i where yi ∼ N(0, C(t)

new) (22)

and with the sampled solutions Ynew, CMA-ES-PCA will use the pseudo-inverse matrix P T to get
the population X: X = P TYnew

The complete algorithm is shown in Alg. 4. The bolded lines 6-11 explain how the new method
combines CMA-ES and PCA. PCA obtains the transformation matrix(PCA retains 90% of the vari-
ance in experiment) from the population of the previous generation, and then transforms the covari-
ance matrix C from the original dimensional matrix to a low-dimensional matrix. The low-dimensional
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sample is obtained by sampling the low-dimensional CMA-ES, and the original dimensional popula-
tion is obtained by multiplying it with the pseudo-inverse matrix of the transformation matrix. One
thing to note is that the method does not use PCA to obtain the transformation matrix at every
iteration, but updates the transformation matrix after every 20 generations.

Algorithm 4 Covariance Matrix Adaptation Evolution Strategy with PCA
Input: Learning rates: αµ, ασ, αcp, αc1, αcλ
Input: Generation Count: t = 0
Input: Attenuation Factor: dσ
Input: Evolutionary Paths: p

(0)
σ = 0, p

(0)
c = 0

Input: Default Covariance Matrix: C(0) = I
Output: µ(t), σ(t), C(t)

1: Sample x
(1)
i = µ(0) + σ(0)y

(1)
i where yi∼ N(0, C(0)), i = 1, ...,Λ

2: Evaluate x
(t+1)
i ’s fitness, i = 1, ..., λ of each candidate

3: Select top λ samples based on the fitness
4: Update the parameters
5: while Not hit stopping criteria do
6: if The number of iterations is a multiple of twenty then
7: Get the PCA Matrix P with the last generation’s population
8: end if
9: Transform the Covariance Matrix from C

(t)
Λ to C

(t)
Θ with the PCA Matrix

P
10: Sample x

(t+1)
i = µ(t) + σ(t)y

(t+1)
i where yi∼ N(0, C(t)), i = 1, ...,Θ

11: Re-map x
(t+1)
i = P Tx

(t+1)
i

12: Evaluate x
(t+1)
i ’s fitness, i = 1, ..., λ of each candidate

13: Select top λ samples based on the best fitness
14: µ(t+1) ← µ(t) + αµ

1
λ

∑λ
i=1(x

(t+1)
i − µ(t))

15: p
(t+1)
σ ← (1− ασ)p

(t)
σ +

√
ασ(2− ασ)λC(t)−

1
2 µ(t+1)−µ(t)

σ(t)

16: σ(t+1) ← σ(t)exp(ασ
dσ

( ||p
(t+1)
σ ||

E||N(0,I)|| − 1))

17: p
(t+1)
c ← (1− αcp)p(t)

c +
√
αcp(2− αcp)λµ

(t+1)−µ(t)
σ(t)

18: C(t+1) ← (1− αc1)C(t) + αc1p
(t+1)
c p

(t+1)T

c

19: C(t+1) ← (1− αc1 − αcλ)C(t) + αc1p
(t+1)
c p

(t+1)T

c + αcλ
∑λ

i=1wiy
(t+1)
i:λ y

(t+1)T

i:λ

20: t+ 1← t
21: end while
22: return µ(t), σ(t), C(t)

3.1.2 CMA-ES with Feature Selection

In this thesis, we chose four methods: RF, Permutation, Boruta and SHAP as feature selection
to combine with CMA-ES. Similar to CMA-ES-PCA, we mainly applied the feature selection methods
to the sampling process of CMA-ES. Using the last generation population, different feature selection
methods can obtain the importance of each feature (variable), and then select the important features
and discard the unimportant ones in order of importance. In our experiments, we take the importance
values obtained by the feature selection methods as a percentage (the sum of the percentages of all
features is 100%) and keep the features with 90% importance.

16



Subsequently, the new method obtains a low-dimensional covariance matrix by saving the rows
inside the covariance matrix that belong to the important features and eliminating the rows that do
not belong to the important features. The same sampling process is then performed to obtain the
low-dimensional samples. For the unimportant features of the current generation, the value of these
features from the previous iteration is used to gain the original dimensional population. The feature
selection method is also used to find the importance of features every 20 generations and the feature
selection method is not used in the first iteration because the feature selection methods need to find
the importance of features by population.

The pseudo-code of CMA-ES with feature selection is shown in Alg. 5. This algorithm is similar
to the above algorithm combining CMA-ES and PCA, the difference is that the Update parameter is
simplified and the bolded lines 6-11 show how the new method works. line 7 uses feature selection to
know which features are important, and then the covariance matrix is dimensioned down according
to the important features to obtain a low Then, the covariance matrix is downscaled based on the
important features, and then the missing values are inserted to obtain the final population.

Here is an example to help understand how CMA-ES-Feature-Selection works. If the original
dimension of the problem is three, then the covariance matrix must also be three-dimensional and
can be expressed as follows:

Cold =

 c11 c12 c13

c21 c22 c23

c31 c32 c33


In the current iteration, if a list of important features L[1, 2] is obtained, which contains the

important features selected by the feature selection method based on the population of the previous
iteration. In this example, the feature selection method concludes that features one and two are
more important than feature three. The new low-dimensional covariance matrix can be obtained by
keeping the first two rows and the first two columns of the three-dimensional covariance matrix:

Cnew =

[
c11 c12

c21 c22

]
For the general case. By the obtained list L containing the important features. The rule for

obtaining the new covariance matrix Cnew is to keep the columns and rows in the list L

Cnewi,j = Coldi,j , i ∈ L, j ∈ L (23)

And sample the new populations by using the new Covariance Matrix Cnew:

x
(t+1)
i = µ(t) + σ(t)y

(t+1)
i where yi ∼ N(0, C(t)

new) (24)

By this method, we are able to obtain the new low-dimensional population pnew. As for the
unimportant features of the current generation, the value of these features from the previous iteration
is used to fill to gain the original dimensional population.

All feature selection methods in this section are similar. The only difference is that each feature
selection method has its unique way to select features.

3.2 Summary

In this section, we will describe how to combine CMA-ES with two types of dimensionality re-
duction methods: feature projection and feature selection. Different dimensionality reduction methods
have their set of means to accomplish the downscaling effect during CMA-ES sampling, and each of
these dimensionality reduction methods has been proven to be effective in their domain. Therefore,
theoretically, our chosen dimensionality reduction method can make our variables maintain the origi-
nal features of low dimensionality during the iterative process of CMA-ES populations. However, the
specific performance depends on the subsequent experimental results and analysis.
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Algorithm 5 Covariance Matrix Adaptation Evolution Strategy with Feature Selection
Method

Input: Parameters: αµ, ασ, αcp, αc1, αcλ, dσ, p
(0)
σ = 0, p

(0)
c = 0

Input: Generation Count: t = 0
Input: Feature Selection Method: FS
Output: µ(t), σ(t), C(t)

1: Sample x
(1)
i = µ(0) + σ(0)y

(1)
i where yi∼ N(0, C(0)), i = 1, ...,Λ

2: Evaluate x
(t+1)
i ’s fitness, i = 1, ..., λ of each candidate

3: Select top λ samples based on the fitness
4: Update the parameters
5: while Not hit stopping criteria do
6: if The number of iterations is a multiple of twenty then
7: Get the Important features IF with the last generation’s population
8: end if
9: Transform the Covariance Matrix from C

(t)
Λ to C

(t)
Θ with the IF

10: Sample x
(t+1)
i = µ(t) + σ(t)y

(t+1)
i where yi∼ N(0, C(t)), i = 1, ...,Θ

11: Complement the values of unimportant features
12: Evaluate x

(t+1)
i ’s fitness, i = 1, ..., λ of each candidate

13: Select top λ samples based on the best fitness
14: Update all parameters
15: t+ 1← t
16: end while
17: return µ(t), σ(t), C(t)

4 Experiments

The purpose of the experiment we designed is to solve the three research questions we men-
tioned above: how the dimensionality reduction method affects CMA-ES, whether the variables re-
liable after dimensionality reduction, and whether the dimensionality reduction method can shorten
the time consumption of CMA-ES. Therefore, the subsequent experiment can be divided into two
parts, the first part is used to try to answer the first two questions, and the second part is to try to
answer the last question.

4.1 Impact of dimensionality reduction and the reliable of vari-
ables generated by dimensionality reduction method

For the effect of the Dimensionality Reduction methods on the general of CMA-ES, we want
to record the new dimensions obtained in the Dimensionality Reduction methods in each iteration
and the average of the evaluated values of the target equations in each iteration. The best-so-far
method is used to visualize the evaluated values and to analyze the similarities and differences of the
different Dimensionality Reduction methods. The x- and y-axes are plotted logarithmically with e as
the base to facilitate the reading and analysis. To determine the validity of the variables obtained by
the Dimensionality Reduction method, we mainly want to figure out if the new method is as effective
as the original CMA-ES in obtaining the optimal solutions.
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4.1.1 CPU Time

To answer whether dimensionality reduction methods combined with CMA-ES can reduce
the computation cost, we recorded the CPU time consumed by each method for each function in
each dimension. In addition, we also record the total number of iterations for each method in each
dimension for each problem going from the analysis.

4.2 Experimental Setup

All new methods are tested on ten multi-modal functions taken from the BBOB problem set [25]
and compare their experimental result with CMA-ES. The methods were tested on functions F15-
F24. F15-F19 are multi-modal functions with an adequate global structure, while F20-F24 are multi-
modal functions with a weak global structure. All methods are tested on dimensions D ∈ {10, 40}
with D × 103 function evaluations. The experiment is terminated by reaching a specified number
of iterations, or the difference of evaluation value of two consecutive iterations is less than 1e−11.
To make a statistically significant comparison, we conducted 30 independent runs for each pair
of the algorithm, problem, and dimension (the problem instance is fixed to zero). Moreover, In
ten dimensions, we added supplementary experiments to the new five methods, and supplementary
experiments represent a certain probability that CMA-ES does not use the downsampling method in
the sampling process but uses the original sampling method(this probability is 20% in our experiment).
The experiment is worked on an Intel Intel® Core™ i7-9700K Processor @ 3.6GHz machine with
single-thread mode.

5 Discussion

This section and the next section analyze the experimental results and attempt to draw a
summative conclusion for the research question. This section is also divided into two parts based on
our research question.

5.1 Dimensionality Reduction’s general impact on CMA-ES and
the reliable of lower variables

The most intuitive way to investigate the widespread impact of the dimensionality reduction
method on CMA-ES is to compare the results of the new method and the old method in the same
graph. Figure 4, Figure 5, Figure 6, record the evaluation value in each iteration, the average value of
the final iteration, and the dimensionality change of the dimensionality reduction method during the
iteration. In Figure 4, the length of different lines is different. The reason for this is that CMA-ES has
its unique termination criteria. If CMA-ES reaches a specified number of iterations or the difference
of evaluation value of two consecutive iterations is less than 1e−11, it will be eliminated.

5.1.1 Dimension 10

Overall, CMA-ES performs well for almost all functions, as can be seen in Figure 4, where
CMA-ES converges quickly, and in Figure 5, where CMA-ES obtains the best optimal values in most
functions. For the dimensionality reduction with CMA-ES, feature projection seems to be better than
the feature selection. In all functions, PCA performs roughly similar to CMA-ES, the only difference
is that PCA requires more iterations to converge, but it finds better results than CMA-ES for some
specific functions. At the same time, we can also discover from the dimension diagram that PCA
usually reduces the dimension to less than half of the initial dimension, which means that the Low-
dimensional variables obtained from PCA can be relied on.
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For the feature selection methods, Boruta stands out from the rest, while the other three
algorithms: RF, Permutation, and SHAP performed relatively poorly in our experiments. As to why
Boruta is much better than other feature selection methods, even getting better results than CMA-ES
in some functions such as F16, F17, and F18. The dimensional plots in Figure 6 give some evidence.
Moving average [26] is used to facilitate the analysis, the figure without the moving average method
is shown in Appendix B. This graph shows the dimensionality change of the different methods at
different iterations with different functions. What is more, we list the statistics of dimensional change
in Appendix B. Here we give a part of this table, which is shown in Table.1. This table contains the
dimensional changes of all methods only in functions 15 and 16 when the problem’s dimension
equals 10. By comparing the picture and the table, we found that Boruta does not have a strong
dimensionality reduction effect than other feature selection methods. Unlike other algorithms that
move to reduce the dimensionality to 1 or 2 dimensions, Boruta often retains the high dimensionality.
For example, for function 16, Boruta considers all variables essential and no downscaling 37.66%
of the total time. This means that when Boruta is combined with CMA-ES, the covariance matrix
of CMA-ES retains original dimension at a specific period. Then naturally, the results obtained are
relatively better than other feature selection methods.

PCA Boruta RF Permutation SHAP
D10 D Percent(%) D Percent(%) D Percent(%) D Percent(%) D Percent(%)

F15

10
5
4
3
2

0.06
4.54
29.90
58.60
6.90

10
6
2
1

3.45
26.27
29.56
40.72

7
6
5
4
3

4.33
12.99
26.41
38.69
12.20

10
3
2

2.38
45.24
52.38

7
5
4
3
2

4.28
4.50
36.94
4.50
49.55

F16

5
4
3
2
1

16.14
39.88
18.69
19.94
5.30

10
6
2
1

37.66
38.17
8.06
16.11

6
5
4
3
2

17.18
6.04
13.75
10.31
45.02

10
2
1

1.22
47.56
51.22

6
5
4
3
2

4.33
4.33
26.41
12.99
47.62

Table 1: This table shows the dimension changes in dimensionality reduction for the 10D
problem, where only F15 and F16 are listed; the whole table is in the Appendix 3. In this
table, D represents the unique value of reduced dimensions across all repetitions on this
function. The percentage represents the percentage of times that dimension appears in all
iterations. For each cell of data, only the top 5 dimensions in terms of the percentage of
occurrences are kept.

5.1.2 Dimension 40

For the experiments results performed in high dimension. With the given Figure 4 5 6, we can
conclude that PCA performs roughly the same as at low dimensions. It can obtain the optimal solution
similar to the original CMA-ES and converges faster than other dimensionality reduction methods.
For the feature selection method, Boruta does not show its absolute lead in the ten-dimensional
experiments to other methods, and the lead is small. According to Table 4, we discovered that
Boruta rarely considers all variables to be important in the 40-dimensional condition. Here a part
of the table is given, which only contains the dimension changes in function 15 and 16, shown
as Table 2. Boruta generally considers half or less of the variables to be important. Therefore the
covariance matrix of CMA-ES will often reduce the dimensionality during the iterative process which
is different from what it does in ten dimensions. So Boruta does not have a large lead in higher
dimensions. As for other feature selection methods, although they are not as good as CMA-ES or
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Figure 4: This figure records the performance of the dimensionality reduction method in
combination with CMA-ES and the initial CMA-ES in 10 and 40 dimensions at different
functions. The top one represents 10 dimensions, and the bottom one represents 40 di-
mensions. The horizontal coordinates represent the number of iterations, and the vertical
coordinates represent the evaluation value at the current number of iterations. Both X
and Y axes are logarithmically processed with e as the base. The shaded area indicates
the 95% confidence interval of the mean target precision. The linear-scaled version can be
found in Appendix A
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Figure 5: This figure explains the final results of the dimensionality reduction method com-
bined with CMA-ES and general CMA-ES in 10 and 40 dimensions at different functions.
The top one represents 10 dimensions, and the bottom one represents 40 dimensions. The
different bars represent different methods, and the Y-axis represents the optimal value of
each method under the current functions. The error bars used here donate the standard
deviation
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Figure 6: This figure records the dimensionality of the samples generated by the dimension-
ality reduction method combined with CMA-ES for each iteration with different functions
in 10 and 40 dimensions. The moving average method is applied here to facilitate the ob-
servation of dimensional changes, and the size of the sliding window is 100. the top part
of this plot represents 10 dimensions, and the bottom part represents 40 dimensions. The
x-axis represents the number of iterations, and the y-axis represents the dimensionality.
The graph without using the sliding window can be found in Figure.16
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PCA, they still demonstrate their optimization ability and obtain optimal values similar to CMA-ES
for some equations. And they all always turn 40-dimensional variables into about 10 in the iteration,
which is similar to PCA in terms of the degree of dimensionality reduction.

PCA Boruta RF Permutation SHAP
D40 D Percent(%) D Percent(%) D Percent(%) D Percent(%) D Percent(%)

F15

11
10
9
8
7

5.95
56.51
12.11
10.09
4.04

20
4
3
2
1

1.93
60.39
1.14
11.20
25.33

10
8
6
4
2

7.53
8.61
12.91
18.24
23.67

40
10
4
2

2.22
42.22
44.44
11.11

10
9
8
4
2

7.40
5.00
36.60
7.80
12.20

F16

40
11
10
9
8

0.03
0.50
42.84
26.22
30.41

20
4
3
2
1

12.75
4.78
3.95
31.89
38.62

12
6
4
3
2

6.90
9.86
16.76
9.86
20.70

40
13
4
2
1

0.35
6.74
7.09
14.18
71.63

8
6
4
3
2

8.97
13.68
14.57
7.85
29.15

Table 2: This table shows the dimension changes in dimensionality reduction for the 40D
problem, where only F15 and F16 are listed; the full table is in the Appendix B. In this
table, D represents the unique value of reduced dimensions across all repetitions on this
function. The percentage represents the percentage of times that dimension appears in all
iterations. For each cell of data, only the top 5 dimensions in terms of the percentage of
occurrences are kept.

5.1.3 Supplementary Experiment

Since in lower-dimensional problems, Boruta chooses to keep all variables during the iterations
to obtain good experimental results. We decided to add one more set of experiments: under the ten-
dimensional problem, for all the methods combining dimensionality reduction and CMA-ES. Suppose
we deliberately choose to keep all variables at some points during the iterations (i.e., using the regular
CMA-ES sampling method). Would it improve RF, Permutaion, and SHAP performance, which was
mediocre in the original experiments? In the subsequent experiments, we set the probability p of this
particular retention of all variables to 20%, leaving everything else unchanged to explore its impact.
The results are shown in Figure 7, 8.

From the results, the main change is that RF, Permutation, and SHAP have improved compared
to the previous ones, both in terms of iterative drop rate and error bar of the final results. For the
error bar of the final results, we made a table 5, the average improvement rate for PCA came
to 0.72%, for Boruta to 17.55%, for RF to 84.82%, for Permutation to 80.21% and SHAP to the
average improvement came to 78.19%. All three algorithms: RF, Permutation, and SHAP, which were
performed normally in the previous experiments, got about 80% improvement. Although Boruta’s
improvement was not significant, it should be noted that it obtained an optimal value similar to that
of PCA after using this method, which means that its optimization ability is already identical to that
of PCA.

The lack of improvement in PCA using the new method is understandable since PCA maps
the low-dimensional variables back to higher dimensions with their inverse matrix without losing a
lot of information during the inverse dimensionality reduction phase. The experimental results also
confirm that the combination of PCA and CMA-ES does not differ significantly from the original
CMA-ES in terms of optimization capability. PCA can even find better results than general CMA-ES
on some specific functions. The only difference between them is the time, which will be discussed in
the next section. Therefore, if the dimensionality reduction method is PCA, we can conclude that the
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Figure 7: This graph records the evaluation value of each iteration of the dimensionality
reduction method in 10 and 40 dimensions and different functions when ”Guide” is added
to the method (in the experiment, the probability is 20%). The shaded area indicates the
95% confidence interval of the mean target precision. Both X and Y axes are logarithmic
with e as the base.

Figure 8: This figure explains the optimal values of different dimensionality reduction
methods in different dimensions with different functions after using the ”Guide” method.
The different bars represent the different methods, and the Y-axis represents the optimal
value of each method under the current function. The error bars used here are donated
to the standard deviation
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variables after dimensionality reduction are reliable. If the downscaling method is feature selection,
the downscaled variables are less reliable than the feature projection method.

5.2 CPU Time

In this part, the main question we want to answer is whether the dimensionality reduction
algorithm can reduce time consumption. Therefore, when doing the experiments, we recorded the
CPU time of different methods for different functions in various dimensions and also the number
of iterations at the end of the iteration. Since different methods have different iterations ending,
we compare the CPU time consumed per iteration for each method as a basis for judging the
computational consumption. We explored the time consumption of different methods by visualization.
The results are shown in Fig 9, and the CPU time consumed by each iteration of each method is
also recorded in Appendix D.

As can be seen from the figure, CMA-ES has the shortest computational consumption inside
basically all algorithms for both high and low dimensional problems even though it consumes the
most CPU time for some specific functions on low dimensions. Similarly, PCA and CMA-ES show
similar results, with PCA outperforming all the feature selection methods in terms of computational
consumption. Moreover, for low-dimensional problems, among the feature selection methods, Boruta
tends to require more CPU time in a single iteration, Permutation follows, and then SHAP is the
least time required method inside the feature selection algorithms.

In the graph of the results in 40 dimensions, we discover that CMA-ES does not perform as
poorly as it does in functions 17, 18, and 22 in 10 dimensions. It is able to go inside most of the
functions with a better score. In contrast, the dimensionality reduction methods do not appear to
be as good. Our speculation is that each training time of each dimensionality reduction method’s
model increases after the dimensionality becomes higher, and the negative effect of this increase in
training time outweighs the benefit to CMA-ES.

What is more, combined with Figure 6 and Table 6, although the single iteration of the
dimensionality reduction method sometimes consumes less CPU time than CMA-ES in some specific
functions. They also require more iterations to terminate the iterations, which will instead take more
time than CMA-ES. Therefore, the answer to the research question of whether the dimensionality
reduction algorithm can reduce the time consumption of CMA-ES is No. As for why the dimensionality
reduction algorithm needs more iterations than CMA-ES, our deduction is that the dimensionality
reduction algorithm can bring more search space to CMA-ES, which means that sometimes CMA-ES
can jump out when it is stuck in a local optimum, and this can also explain why the combination
of the dimensionality reduction algorithm with CMA-ES can sometimes obtain better results than
usual. However, this also has the negative impact that the new CMA-ES cannot eliminate iterations
quickly.
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Figure 9: The graph explains the CPU time and the number of iterations required to
complete the iterations for different methods with different functions in different dimen-
sions. Different bars represent different method. The Y-axis is the CPU time divided by
iterations. The error bars used here are donated by the standard deviation
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6 Conclusions and Further Research

In general, the normal CMA-ES is better in terms of optimal values and number of iterations
per function per dimension, followed closely by PCA. In terms of the optimal value results per func-
tion, PCA does not perform much worse than CMA-ES, especially in some specific functions, such as
F16, F17. PCA shows better results than normal CMA-ES. We consider that adding PCA to CMA-ES
can make the search space of CMA-ES larger, thus avoiding the dilemma of falling into the local
optimum. However, the combination of PCA and CMA-ES requires more iterations and computation
time.

For Boruta algorithm, the reason why it performs so well than other feature selection algo-
rithms for low-dimensional problems is that it sometimes considers all variables to be important. So
it keeps all variables, during which CMA-ES does not reduce the dimensionality, i.e., it performs
particularly well as the regular CMA-ES. In high-dimensional problems, it does not keep all the vari-
ables compared to low-dimensional ones, so it does not outperform as much as before. For the RF,
Permutation, and SHAP methods, they are not as good as Boruta for low-dimensional problems, but
they do not perform much worse than Boruta for high-dimensional problems. For all feature selection
algorithms, they are effective in combination with CMA-ES, but just not as effective as PCA and
CMA-ES, because all feature selection algorithms need to eliminate some variables in the iterations,
which is essential and useful for problems like sparse data filtering, but it is not particularly helpful
for our experiments.

For the supplementary experiments, we draw inspiration from the Boruta experiments on
whether we would have good results if we do not allow the dimensionality reduction method to
reduce the dimensionality of CMA-ES at some specific times, i.e., using the traditional CMA-ES
sampling method in some period. From my perspective, this method of keeping CMA-ES from being
downsampled at certain times is a ”Guide” that can lead the feature selection method down the right
path if it goes off course. The RF, Permutation, and SHAP methods can achieve about 80% increase
in the 10-dimensional problem if the ”Guide” is used. Also, in some specific functions, F16, F17,
F18, these new methods go beyond CMA-ES, which means the combination of the dimensionality
reduction method and CMA-ES has the potential to do better than the normal CMA-ES. This can
also be helpful for subsequent studies.

Last, the answer to our first research question: ”What is the general impact of Dimensionality
reduction method on the performance of CMA-ES?” is that all dimensionality reduction algorithms
can make CMA-ES do its task and find the optimal value. However, feature selection is not as effec-
tive as feature projection algorithms. The combination of PCA and CMA-ES can find better results
than traditional CMA-ES, although it requires more iterations to converge. However, according to
the results of the supplementary experiment, we discovered that if we give a ”Guide” to the dimen-
sionality reduction methods during the iterative process, they can obtain a much better result and
even better than the traditional CMA-ES in some specific functions. Then, the answer to the second
research question about: ”reliable of dimensionality reduction” is Reliable, which is described in de-
tail in the supplementary experiment. For the last research question: ”Does dimensionality reduction
methods save time in the whole process of CMA-ES?” My answer is No. Although the dimensionality
reduction algorithm gets shorter time consumption than CMA-ES under certain functions in some
dimensions, its total time consumption increases due to the rise in the number of iterations. We
consider this is because the dimensionality reduction method gives CMA-ES more space to search for
the optimum, which prevents CMA-ES from falling into local optima, but with it comes an increase
in the number of iterations and instability. So the dimensionality reduction method usually takes
more time to find the optimum, and then it does not save time.

In further research, we want to improve our methods in four points:

1. Apply dimensionality reduction methods not only in the ”Sample” part of CMA-ES but also
in the ”Update” part.
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2. Use a longer history to train the dimensionality reduction methods.

3. Develop an algorithm that can automatically select the dimensionality reduction methods.

4. Add more Dimensionality reduction methods like LDA, T-SNE, and Autoencoders.

References

[1] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimensionality reduction: a
comparative. J Mach Learn Res, 10(66-71):13, 2009.

[2] Markus Ringnér. What is principal component analysis? Nature biotechnology, 26(3):303–304,
2008.

[3] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
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A The original result of experiment
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Figure 10: The figure documents the combination of the dimensionality reduction method
with CMA-ES and the performance of CMA-ES in general under different functions in
10 dimensions. The horizontal coordinates represent the number of iterations, and the
vertical coordinates represent the evaluated values at the current number of iterations.

Figure 11: The figure documents the combination of the dimensionality reduction method
with CMA-ES and the performance of CMA-ES in general under different functions in
10 dimensions. The shaded area indicates the 95% confidence interval of the mean target
precision. The horizontal coordinates represent the number of iterations, and the vertical
coordinates represent the evaluated values at the current number of iterations.
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Figure 12: The figure documents the combination of the dimensionality reduction method
with CMA-ES and the performance of CMA-ES in general under different functions in
40 dimensions. The horizontal coordinates represent the number of iterations, and the
vertical coordinates represent the evaluated values at the current number of iterations.

Figure 13: The figure documents the combination of the dimensionality reduction method
with CMA-ES and the performance of CMA-ES in general under different functions in
40 dimensions. The shaded area indicates the 95% confidence interval of the mean target
precision. The horizontal coordinates represent the number of iterations, and the vertical
coordinates represent the evaluated values at the current number of iterations.
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Figure 14: The graph records the overall performance of different dimensionality reduc-
tion methods and CMA-ES with different functions in 10 dimensions when the ”Guide”
method is used. The horizontal coordinates represent the number of iterations and the
vertical coordinates represent the evaluated values at the current number of iterations.

Figure 15: The graph records the overall performance of different dimensionality reduc-
tion methods and CMA-ES with different functions in 10 dimensions when the ”Guide”
method is used. The shaded area indicates the 95% confidence interval of the mean target
precision. The horizontal coordinates represent the number of iterations and the vertical
coordinates represent the evaluated values at the current number of iterations.
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B Dimensional change of experiment

Figure 16: This figure records the dimensionality of the samples generated by the dimen-
sionality reduction method combined with CMA-ES in 10 and 40 dimensions at different
functions for each iteration. The top one represents 10 dimensions, and the bottom one
represents 40 dimensions. The X-axis represents the number of iterations, and the Y-axis
represents the dimensionality.
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PCA Boruta RF Permutation SHAP
D10 D Percent(%) D Percent(%) D Percent(%) D Percent(%) D Percent(%)

F15

10
5
4
3
2

0.06
4.54
29.90
58.60
6.90

10
6
2
1

3.45
26.27
29.56
40.72

7
6
5
4
3

4.33
12.99
26.41
38.96
12.20

10
3
2

2.38
45.24
52.38

7
5
4
3
2

4.28
4.50
36.94
4.50
49.55

F16

5
4
3
2
1

16.14
39.88
18.69
19.94
5.30

10
6
2
1

37.66
38.17
8.06
16.11

6
5
4
3
2

17.18
6.04
13.75
10.31
45.02

10
2
1

1.22
47.56
51.22

6
5
4
3
2

4.33
4.33
26.41
12.99
47.62

F17

10
5
4
3
2

0.09
22.06
54.51
19.93
3.41

10
8
6
2
1

91.94
0.73
5.86
0.73
0.73

7
6
4
3
2

4.74
9.48
9.48
4.74
66.35

10
3
2
1

0.55
10.44
10.99
78.02

6
5
4
3
2

10.20
14.93
24.88
9.95
39.80

F18

10
5
4
3
2
1

0.08
19.56
48.34
22.66
7.85
1.51

10
7
6
2
1

37.04
2.74
32.92
13.58
13.72

6
5
4
2
1

7.38
18.45
22.14
22.14
18.82

10
4
2
1

0.25
4.73
9.95
85.07

6
5
4
3
2

14.93
10.45
29.85
9.95
29.85

F19

10
5
4
3

0.10
26.46
61.18
12.26

10
8
6
2
1

43.42
1.83
29.25
10.88
1.46

8
6
5
4
3

7.47
15.33
7.66
65.13
4.21

10
4
2
1

0.66
12.50
13.16
73.68

6
4
3
2
1

7.12
17.79
21.35
35.59
7.47

F20

10
5
4
3
2
1

0.07
18.32
45.26
21.22
13.72
1.41

10
6
2
1

36.21
38.34
8.52
16.93

6
4
3
2
1

6.87
44.67
17.18
20.62
3.78

10
4
2
1

0.18
3.38
3.56
92.88

7
6
4
3
2

3.78
3.98
7.97
7.97
76.10

F21

10
5
4
3
2
1

0.07
18.32
45.26
21.22
13.72
1.41

10
6
2
1

36.21
38.34
8.52
16.93

6
4
3
2
1

6.87
44.67
17.18
20.62
3.78

10
4
2
1

0.18
3.38
3.56
92.88

7
6
4
3
2

3.78
3.98
7.97
7.97
76.10

F22

10
5
4
3
2
1

0.07
19.20
47.44
22.24
9.56
1.48

10
6
2
1

3.97
27.78
7.94
60.32

8
6
5
4
3

6.29
26.49
19.87
40.40
6.62

10
3
1

0.31
5.90
93.79

8
6
4
3
2

6.74
7.09
28.37
28.37
28.37

F23

10
5
4
3

0.12
29.18
58.49
12.21

10
6
2
1

54.09
18.41
9.21
18.30

6
5
4
3
2

14.22
14.22
47.39
9.48
9.95

10
3
1

0.49
9.36
90.15

7
6
4
3
2

4.11
4.33
25.97
38.96
26.41

F24

10
5
4
3

0.20
43.45
44.44
11.90

10
6
2
1

7.31
15.90
7.31
69.47

6
5
4
3
2

11.49
3.83
19.16
11.49
50.19

10
3

2.27
97.73

7
6
4
3
2

3.77
11.90
35.71
19.84
28.57

Table 3: This table shows the changes in dimensionality reduction for the 10D problem.
In this table, D represents the dimension that appears in this iteration, and the percentage
represents the percentage of times that dimension appears in the iteration. For each cell
of data, only the top 5 dimensions in terms of the percentage of occurrences are kept.
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PCA Boruta RF Permutation SHAP
D40 D Percent(%) D Percent(%) D Percent(%) D Percent(%) D Percent(%)

F15

11
10
9
8
7

5.95
56.51
12.11
10.09
4.04

20
4
3
2
1

1.93
60.39
1.14
11.20
25.33

10
8
6
4
2

7.53
8.61
12.91
18.24
23.67

40
10
4
2

2.22
42.22
44.44
11.11

10
9
8
4
2

7.40
5.00
36.60
7.80
12.20

F16

40
11
10
9
8

0.03
0.50
42.84
26.22
30.41

20
4
3
2
1

12.75
4.78
3.95
31.89
38.62

12
6
4
3
2

6.90
9.86
16.76
9.86
20.70

40
13
4
2
1

0.35
6.74
7.09
14.18
71.63

8
6
4
3
2

8.97
13.68
14.57
7.85
29.15

F17

40
11
10
9

0.05
1.82
67.26
30.88

40
20
4
2
1

0.94
5.36
1.79
25.90
62.48

8
6
4
3
2

10.60
11.48
1.41
10.60
28.45

40
12
4
2
1

1.22
23.17
24.39
24.39
26.83

8
6
4
2
1

5.89
2.94
5.08
72.71
2.94

F18

10
9
8
7
6
5

15.59
12.60
23.20
18.80
29.20
0.60

21
20
3
2
1

3.77
4.85
4.85
41.22
39.36

9
6
4
3
2

24.91
7.55
13.51
9.54
24.63

40
11
4
2
1

0.05
0.88
1.85
3.70
93.52

6
5
4
3
2

9.15
8.38

23.78
9.15
28.96

F19

40
11
10
9
8

0.06
2.24
73.93
22.65
1.12

40
22
20
2
1

6.78
6.73
12.33
29.32
34.75

7
6
4
3
2

3.81
9.53
30.49
10.48
26.63

10
5
2
4
1

1.07
1.12
4.48
1.12
92.15

8
6
4
3
2

9.66
17.68
9.66
7.82
15.18

F20

40
11
10
9
8

0.04
63.02
1.62
32.90
2.43

22
20
4
2
1

0.82
1.65
3.29
13.17
79.42

10
8
6
4
2

10.65
7.10
15.22
13.70
9.18

40
11
4
2
1

0.03
0.55
1.17
1.17
97.08

6
4
3
2
1

6.21
13.46
5.28
28.99
19.67

F21

40
11
10
9

0.05
2.73
77.81
19.41

22
21
20
2
1

3.10
1.86
4.34
25.67
61.94

10
6
4
2
1

9.06
6.04
6.34
27.19
30.21

40
9
2
1
5

0.50
9.41
49.50
30.69
9.90

8
4
3
2
1

7.68
9.88
6.59
31.83
26.45

F22

40
11
10
9

0.05
1.81
76.74
21.41

20
4
3
2
1

1.33
1.33
1.33
5.99
89.98

6
4
3
2
1

5.22
10.45
5.97
17.16
47.76

10
6
3
2
1

6.69
7.04
7.04
28.17
50.70

8
6
4
2
1

7.56
10.59
13.62
16.64
33.43

F23

40
11
10
9
8

0.06
3.31
75.11
24.53
1.12

40
22
20
2
1

27.65
7.43
10.83
27.55
7.43

8
7
6
5
4

10.67
4.57
20.58
9.15
39.02

40
11
4
2

2.27
43.18
45.45
9.09

8
6
4
3
2

6.73
8.97
18.16
14.57
34.75

F24

40
11
10
9
8

0.05
0.90
59.58
38.57
0.90

40
22
20
2
1

6.78
14.52
13.45
22.42
28.25

14
12
10
8
6

11.62
8.30
16.60
16.60
10.79

40
11
4
2

2.27
43.18
45.45
9.09

8
6
4
3
2

7.85
13.45
13.45
11.21
41.70

Table 4: This table shows the changes in dimensionality reduction for the 40D problem.
In this table, D represents the dimension that appears in this iteration, and the percentage
represents the percentage of times that dimension appears in the iteration. For each cell
of data, only the top 5 dimensions in terms of the percentage of occurrences are kept.
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C Improvement in Supplementary Experiment

PCA Boruta RF Permutation SHAP
Prev Current Improve Prev Current Improve Prev Current Improve Prev Current Improve Prev Current Improve

F15 28.97 33.85 -16.84% 67.47 -19.70 129.19% 1052.03 93.41 91.12% 1423.39 252.79 82.24% 1138.29 285.28 74.94%
F16 -230.43 -243.13 -5.51% -241.14 -245.79 -1.93% -162.21 -212.53 -31.03% -168.55 -212.20 -25.90% -171.39 -214.00 -24.86%
F17 -36.11 -35.88 0.66% -38.51 -37.80 1.85% 280.30 -32.22 111.49% 195.51 -18.83 109.63% 220.61 -32.54 114.75%
F18 -32.29 -33.35 -3.28% -30.91 -36.99 -19.65% 270.22 -10.84 104.01% 363.70 45.31 87.54% 394.75 -15.64 103.96%
F19 48.56 48.54 0.05% 44.32 47.29 -6.70% 632.57 54.62 91.36% 593.60 86.56 85.42% 572.43 52.25 90.87%
F20 184.61 184.84 -0.12% 185.02 184.83 0.10% 2822.88 185.84 93.42% 2597.55 187.03 92.80% 1526.47 185.66 87.84%
F21 321.05 328.43 -2.30% 327.87 335.86 -2.44% 439.73 354.06 19.48% 419.76 350.92 16.40% 446.33 335.84 24.75%
F22 50.25 53.42 -6.30% 92.83 58.56 36.92% 166.24 83.53 49.75% 165.28 87.58 47.01% 157.64 79.70 49.44%
F23 214.36 218.58 -1.97% 218.55 214.64 1.79% 262.83 226.19 13.94% 244.07 233.95 4.15% 254.15 223.47 12.07%
F24 122.72 111.55 9.10% 69.86 72.39 -3.61% 185.54 161.06 13.20% 207.16 182.31 12.00% 202.05 134.10 33.63%
Avg 67.17 66.68 0.72% 69.54 57.33 17.55% 595.01 90.31 84.82% 604.15 119.54 80.21% 474.13 103.41 78.19%

Table 5: This table represents the difference before and after the ”Guide” was used under
the ten-dimensional problem, where the dimensionality reduction method has a 20% prob-
ability of not reducing the dimensionality. The values under Prev and Current represent
the final evaluation value of the two methods respectively, and Improve represents the
improvement value of using the latter method over the original method. Red data is the
average values.

D Computation cost

PCA Boruta RF Permutation SHAP CMA-ES
D10 CPU Time/Iter(sec) Percent(%) CPU Time/Iter(sec) Percent(%) CPU Time/Iter(sec) Percent(%) CPU Time/Iter(sec) Percent(%) CPU Time/Iter(sec) Percent(%) CPU Time/Iter(sec) Percent(%)
F15 0.023778 79.30% 0.118464 395.09% 0.034564 115.27% 0.206194 687.68% 0.034461 114.93% 0.029984 100.00%
F16 0.028931 111.56% 0.132568 511.17% 0.034558 133.25% 0.108184 417.15% 0.036323 140.06% 0.025934 100.00%
F17 0.029021 1.87% 0.104379 6.73% 0.036758 2.37% 0.533913 34.45% 0.036818 2.38% 1.549944 100.00%
F18 0.039975 5.68% 0.189284 26.89% 0.03132 4.45% 0.047545 6.76% 0.038761 5.51% 0.703848 100.00%
F19 0.017302 16.77% 0.152201 147.54% 0.027211 26.38% 0.052734 51.12% 0.021607 20.95% 0.103159 100.00%
F20 0.012108 126.79% 0.05002 523.77% 0.018593 194.69% 0.053489 560.09% 0.01449 151.73% 0.00955 100.00%
F21 0.195358 114.97% 0.269877 158.82% 0.179014 105.35% 0.171798 101.10% 0.163316 96.11% 0.169922 100.00%
F22 0.059705 24.74% 0.186089 77.10% 0.081449 33.75% 0.039608 16.41% 0.076269 31.60% 0.241361 100.00%
F23 0.046708 144.66% 0.191484 593.03% 0.039544 122.47% 0.021808 67.54% 0.031394 97.23% 0.032289 100.00%
F24 0.05599 168.17% 0.089913 270.06% 0.038033 114.23% 0.338778 1017.53% 0.034201 102.72% 0.033294 100.00%

D40
F15 1.492534 134.99% 1.279624 115.73% 3.510754 317.52% 11.776563 1065.09% 0.397532 35.95% 1.10569 100.00%
F16 2.703425 259.19% 1.496461 143.47% 1.869975 179.28% 2.737339 262.44% 1.602677 153.66% 1.043036 100.00%
F17 2.713127 216.40% 1.52315 121.48% 1.720872 137.25% 8.744808 697.47% 1.029842 82.14% 1.253784 100.00%
F18 1.63029 132.89% 1.100141 89.67% 0.782471 63.78% 9.830788 801.31% 2.527945 206.05% 1.226835 100.00%
F19 1.774037 186.93% 1.142688 120.40% 2.974737 313.44% 2.364934 249.19% 1.0576 111.44% 0.949062 100.00%
F20 1.621102 2841.15% 0.224417 393.31% 0.17094 299.59% 1.294787 2269.25% 0.326583 572.37% 0.057058 100.00%
F21 4.265215 83.74% 2.080908 40.86% 9.971553 195.78% 22.151512 434.91% 12.301203 241.52% 5.093315 100.00%
F22 1.447814 86.25% 1.285445 76.58% 0.986495 58.77% 2.399194 142.93% 3.10766 185.13% 1.678607 100.00%
F23 2.300985 120.22% 1.403513 73.33% 1.656345 86.54% 7.625 398.38% 3.181455 166.22% 1.914023 100.00%
F24 1.706661 149.67% 1.550094 135.94% 1.332336 116.84% 5.283235 463.33% 2.015325 176.74% 1.140267 100.00%

Table 6: This table shows the computational consumption of all methods for different
functions in different dimensions. The computational consumption is obtained by dividing
the CPU time by the number of iterations. The Percent under each method refers to the
percentage form of the time consumption of that method divided by the time consumption
of CMA-ES.
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