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Abstract

The architecture and quality of software systems continuously change as software evolves. Tra-

ditional software metrics for measuring maintainability have been introduced to measure this evo-

lution. Social network analysis techniques have been applied to software systems, but have not

yet been investigated for measuring maintainability of evolving software systems. In this thesis we

apply social network analysis to evolving software networks in order to understand architectural

changes and identify network metrics that measure such changes. Having a broader understanding

of changes to maintainability enables the improvement of all software quality attributes. In this

exploratory study, we use software networks and network metrics to asses maintainability. We

conducted an empirical study in which we modeled all versions of six open-source object-oriented

programs as networks of different levels of granularity. We selected software metrics that quan-

tify maintainability factors based on literature, and compared changes to these metrics against

changes to the network metrics. We reached the conclusion that, for all levels of granularity, the

best network metrics to measure changes to the maintainability of evolving software systems are

communities, weakly connected components, motifs and density, and the best network granularity

is the collaboration network.
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1 Introduction

Software systems are constantly evolving to accommodate the ever-changing requirements (new

technology, new customer and market requirements, performance improvement, extension of func-

tionalities and error correction). Software maintainability is concerned with how efficiently a

system can be modified to implement the required changes. Maintainability is about the ease and

ability to implement required changes, while preserving the systems functionality and stability. As

described in Lehman’s laws of evolution, an evolving software program is continuously changed,

its complexity increases, sometimes reflecting deteriorating structure, unless effort is applied to

maintain or reduce it [1].

Concepts of complex network analysis have been an effective tool in understanding and ana-

lyzing the structure of complex systems such as the World Wide Web [2, 3], Internet [4], protein

folding [5], and collaborations in science [6, 7]. A considerable number of researchers applied the

network analysis concept within the software engineering discipline. Software systems are man

made complex systems that can be represented as networks, [8, 9, 10, 11] known as software net-

works [12], where software components (classes/interfaces, methods/attributes, packages etc.) are

nodes and their interactions (class relationships, method calls, etc.) are the edges.

Studies have shown that static software networks exhibit a small-world (SW) [8, 13, 14], and

scale-free (SF) topology. One of the first works to introduce network theory into software anal-

ysis [15] found out that two software systems (JDK 1.2 and Ubisoft Prorally) have small-world

structure (a high degree of clustering and a small average distance known as six degrees of sep-

aration) and scale-free (SF) properties where few nodes have high degree (connections) and the

majority of the nodes have very few connections. Social network analysis (SNA) was employed,

to identify important critical components [16, 17], defective modules [18], and to serve as quality

indicator [19, 11]. This made it possible to gain further insight on into software structure with the

aid of SNA.

There have been several studies analyzing software evolution using networks, for example by

building a static snapshot of the software network for each software version. Analyzing changes in

network topology over successive software versions, researchers applied different metrics to obtain

detailed information about the effect of evolution on software structure. Studies were conducted

to understand the dynamics of the relationships between evolution and system complexity, stabil-

ity [20, 21], functionality [22] and maintenance effort and bug severity prediction [23].

Most studies on evolving software networks concentrate on bug prediction. However, there is

a lack of studies on evolving software network and structure attributes (security, maintainability,

portability, efficiency, usability, reliability, compatibility and functionality). Maintainability as

defined by ISO 250101 is a less investigated area in the evolving software network field. Software

systems and applications have become an integral part of daily life. As with any product software

structure, a quality standard needs to be met, and maintenance tasks need to be performed.

Maintenance cost is the highest percentage of the total project cost, so it is imperative to monitor

maintainability after every evolution cycle.

This research is based on building successive snapshots of software networks, to help investi-

1ISO/IEC 25010 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=6
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gate the structural and quality attribute changes (with focus on the maintainability attribute).

We will model software systems using different levels of granularity (inheritance network, collab-

oration network -inheritance & dependency-, call network -method/global functions- and method

to method call network). We will analyze and monitor six open source object-oriented software

systems (OOSS) from the Apache system, with versions per software system ranging from 6 to 82

and live span ranging form 4 to 11 years.

The aim of this research is to monitor the changes in the software networks topology for

successive versions in order to better understand software evolution and its effect on software

structure. In this study we model successive versions of software systems as directed graphs using

above mentioned four different levels of granularity and investigate the following questions:

1. RQ1: How can typical qualitative factors of maintainability from the software engineering

literature be assessed using quantitative software metrics?

2. RQ2: What SNA measures and metrics capture software metrics that are strong indicators

of changes in maintainability?

3. RQ3: How are the changes in SNA metrics different in the four levels of granularity for

software networks, and which network is a better representation of structural change?

The rest of this thesis is organized as follows. First section 2 presents an overview of notations

and definitions used. Then section 3 introduces previous and related work, followed by section 4

which describes the approach, data collection and analysis. Section 5 presents the experiments and

results. Finally, a conclusion and future work are presented in section 6.
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2 Preliminaries

In this section we will describe the network terminology, notations and metrics used throughout

the thesis.

2.1 Networks

Networks are represented as graphs, in this thesis we will work with directed graphs. Unless

mentioned otherwise, consider the directed network G = (V,E) where V is a set of nodes and E is

a set of ordered pairs of nodes, n = |V | and m = |E|. We define an edge (u, v) to exist if (u, v) ∈ E
(with u, v ∈ V ), the neighborhood of node v by N(u) = {v ∈ V : (u, v) ∈ E}. A path between

two nodes u and v is a sequence of distinct edges from node u to node v. Figure 1 gives an example.

Figure 1: A directed network example

V = {u, v, t, f},
E = {(u, v), (v, t), (t, f), (v, f), (f, u)}
N(v) = {t, f},m = 5, n = 4
path from u to t = ((u, v), (v, t))

The following is a list of networks measures and metrics relevant to the remainder of this thesis:

• Degree: The number of edges regardless of direction connected to a node; k

• Out-degree: The number of outgoing edges from a node; kout.

• In-degree: The number of incoming edges to a node; kin.

• Average degree: In a directed network the sum of out-degree/in-degree divided by n. In a

directed network the sum of the out-degrees is equal to the sum of the in-degrees.

• Degree distribution: In an undirected network it is the probability P (k) that a randomly

chosen node in the network has degree k. Directed networks have two degree distributions

out-degree P (kout) and in-degree P (kin).

• Scale-free networks: Networks with power-law degree distribution. For undirected net-

works P (k) ∼ k−γ , where γ is a constant parameter known as the exponent, and 2 < γ < 3.

• Density: The ratio between total number of edges in the network and the all possible edges.
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• Shortest path: The shortest path between nodes u and v is the path with the least number

of edges, its length is also referred to as the distance between u and v, denoted by d(u, v).

• Diameter: The length of the longest shortest path.

• Average shortest path length: The average number of edges over all shortest paths for

all pairs of nodes.

• Average clustering coefficient: The average of the clustering coefficient values of all

nodes in the network, where the clustering coefficient of node u is the ratio of edges connecting

the nodes in the neighborhood of node u and the number edges if the neighborhood was fully

connected.

• Weakly connected component (WCC): A maximal subgraph where all nodes are con-

nected to each other by some path, ignoring the direction of edges.

• Strongly connected component (SCC): A maximal subgraph such that for every pair

of nodes u and v, there is a direct path from u to v and a path from v to u.

• Community structure: A community is a subset of nodes within a graph for which the

connections between its members are denser than with the remainder of the network.

• Modularity: The extent to which a network can be divided as multiple communities. And

thus a community structure.

• Degree assortativity: A measure of how nodes with similar degrees tend to associate

together. A network is assortative when high degree nodes are, on average, connected to

other nodes with high degree and low degree nodes are, on average, connected to other nodes

with low degree. Assortativity measures the similarity of connections in the graph with

respect to the node degree.

• Motifs: Subgraphs of two to five nodes that repeat themselves at high numbers compared

to random networks. For example, see figure 2. Motifs are often called the building blocks

of networks. Each type of network seems to display its own set of characteristic motifs.

Figure 2: Example of motifs
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2.2 Software metrics

Metrics give a quick overview of a project helping designers with the detection of flaws or

degradation in their architecture. In this subsection we will give an overview the software metrics

used in the thesis. Designed to provide a summary of the overall quality of object oriented projects,

Chidamber and Kemerer proposed the first suite of object oriented systems design measures known

as CK Metrics [24], Abreu defined metrics for OOSS design known as MOOD metrics [25], and

McCabe’s Cyclomatic Complexity index [26]. This results in the following list of metrics:

• Coupling between objects (CBO): for a class, this is the total number of other classes to

which it is coupled; two classes are coupled if methods of one use methods and/or instance

variables of the other. It assesses the dependency of one class on other classes; high CBO

indicates a complex design.

• Lack of cohesion (LCOM4): measures the number of connected components in a class.

A connected component is a set of related methods (and class-level variables). There should

be only one such component in each class. If there are two or more components, the class

should be split into smaller classes [27].

• Depth of inheritance (DIT): the maximum path length from a class to the root class in

the inheritance hierarchy. Measures the depth of class hierarchy, the deeper a class is in the

hierarchy, the more methods and variables it is likely to inherit, making it more complex [28].

• Response for a class (RFC): the total number of methods that can be executed in

response to a message to a class. This count includes all the methods available in the whole

class hierarchy.

• Weighted methods per class (WMC): a weighted sum of methods in a class (tools

calculate the WMC metric as simply the number of methods in a class). It measures the

total complexity for all class methods.

• Number of children (NOC): number of immediate sub-classes of a class. It measures the

breadth of a class hierarchy, a high NOC might indicate high reuse.

• Coupling factor (COF): the ratio of the actual couplings among all classes to the maxi-

mum number of possible couplings. Couplings due to inheritance are not considered.

• Cyclomatic complexity (CC): a metric based on the control flow of the source code,

calculating the number of independent paths through a procedure/function. A high CC

means a program is hard to understand and hence to maintain. It is calculated from the

control flow graph of the program using the formula:

CC = e− n+ 2p where e is the number of edges, n is the number of nodes in a graph and p

is the number of connected components, which for a single component is one, hence:

CC = e− n+ 2.

2.3 Software quality

Software structural quality refers to how a software system meets non-functional requirements

that support the delivery of the functional requirements, such as robustness or maintainability. It

has a lot to do with the degree to which the software works as needed.
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The ISO/IEC 25010 quality standard also known as SQuaRE (Software product Quality Re-

quirements and Evaluation)2 classifies software according to following eight characteristics:

1. Functional suitability: the degree to which the system provides desired functions.

2. Performance efficiency: the system performance relative to the amount of resources used

under stated conditions

3. Compatibility: the degree to which the system/components can exchange information with

other systems/components, while working cross platform.

4. Usability: the degree to which the system can be used by specific users.

5. Reliability: the degree to which a system maintains the level of performance when used

under specified conditions.

6. Security: the degree to which information and data protection is ensured by the system,

so that persons or other products or systems have the degree of data access appropriate to

their types and levels of authorization.

7. Maintainability: the degree of effectiveness and efficiency with which a product or system

can be modified to improve it, correct it or adapt it to changes in environment, and in

requirements

8. Portability: the ability of software to be transferred from one environment to another.

Each of the characteristics above are further subdivided. Since our focus in this thesis is on

maintainability we will only describe maintainability in more detail.

There are many definition of maintainability in literature. One definition is “The ease with

which a software system can be corrected when errors or deficiencies occur and can be expanded

or contracted to satisfy new requirements” [29]. Maintainability is a key to other software quality

attributes. High maintainability means less effort to understand and apply changes to the system,

to improve performance or fix an issue.

Maintainability depends on the following factors [30]:

1. Understandability/Analysability: effort needed to analyze and identify which part to be

modified for the maintenance task required. Complex architecture is harder to understand,

hence the aim is to make it make it as simple as possible.

2. Testability: how testing scenarios are planned and carried out, this also depends on how

simple or complex the system is.

3. Modifiability: degree to which a system can be modified without introducing defects or

degrading quality.

4. Modularity: degree to which a system’s components may be separated and recombined,

such that a change to one component has minimal impact on other components.

2ISO/IEC 25010 https://www.iso.org/standard/35733.html
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5. Reusability: the extent of which the software in question can be integrated it in a another

software system.

Later, we use the description in section 4 to guide in selecting the appropriate software metrics

that are indicators for the maintainability characteristic.
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3 Related work

In this section we will discuss related work on software networks, software networks for evolving

software, and the mapping of network and software metrics.

3.1 Software networks

Applying complex network theory in software engineering was introduced as early as 2002, where

an undirected network was constructed (a class dependency network) using class diagram where

nodes denote classes and edges denote relationships (inheritance, aggregation, etc), and concluded

that software networks in the study exhibited small world and scale-free characteristic [15].

Emphasizing the importance of the control flow aspect of software systems Myers used directed

software graphs with edges as class collaboration. The study concluded that irrespective of the

programming language, software networks have small world and scale-free characteristics. Due to

the directionality of the network, he was able to uncover the difference between in and out-degree

distribution, the negative correlation between them, and the weak positive assortativity among

out-degree as an indication of the hierarchical layering of functionality [8]. Using directed network

for class diagram not only Small world and scale free characteristics were detected, but also the

networks shared features of hierarchical networks(small average path, and higher than random

expectation clustering coefficient) [13].

With increasing interest in software networks, various types of networks have been proposed

and used to analyze and study diverse software engineering aspects. For instance using the original

class dependency networks [31] revealing community structure, with the communities having scale

free and small world properties. Using class, method and package collaboration graphs, to analyze

the three levels of granularity through the development phase [32], their findings were in line

with Myers’s results in all levels. Empirical studies were conducted to validate the scale-free and

small-world characteristics hold for different software systems and languages [33, 34, 35].

3.2 Software networks and metrics

Scholars started applying SNA metrics to software networks. Using the lowest level of granular-

ity, [16] applied SNA metrics to a system wide binary dependency network. The conclusion of the

study is that SNA network measures can identify critical binaries that are missed by complexity

metrics, and can indicate and predict the number of defects. In a follow up study to validate the

mentioned findings, applying SNA metrics to class/method dependency graph [18], the result was

that SNA metrics are strong indicators of defective modules for large and complex systems, but

not for small scale systems.

With their seminal work, Concas et al. studied the distribution of SNA metrics in software

network then comparing them with CK metrics [19]. In [36], their findings showed negative cor-

relation between structural metrics and the number of bugs, concluding that SNA metrics can be

utilized as quality indicators.

3.3 Evolving software networks

Software evolution is inevitable, and monitoring software structure changes and measuring its

quality is the way to ensure that the probability of introducing faults is eliminated and/or mini-
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mized. Software networks can be used as means to facilitate understanding, monitoring structure

changes due to system maintenance and evolution.

To understand how change is distributed in an evolving software, studying type dependency

graphs of evolving software system over the span of two years was considered [20]. Applying

degree-based metrics the results showed that around 20% of classes are changed and about 8%

are added. This finding is useful in expecting where growth and change will occur in the software

system.

Using complex networks to study the evolution of Linux kernel (223 versions) [37], directed call

graphs of different components of the Linux Kernel (file system, Kernel , memory management

and net) were constructed and analyzed. Preferential attachment growth was observed, and all call

graphs showed scale-free and small-world characteristics. The researchers also proposed a method

to find major structural change during system evolution.

To study and predict the severity of bugs an analysis of evolving software topology of eleven

popular open source systems was performed [23]. This was done by building multi version software

networks on three levels; function call graphs, module collaboration graphs on the system level,

and bug based developer collaboration graphs on the development level. They also proposed the

NodeRank metric similar to page rank that proved powerful in bug detection.

Applying motif frequency concept to study relationship between motifs and defects in evolving

software has also been considered. In [38] software networks were represented by motif frequency

occurrence, the study was conducted on the evolution of three systems with more than 30 releases.

The conclusion was drawn that motifs are present through system evolution, and that defects and

some motifs are correlated.

Constructing multi-version multi-granular software network (methods, class, package), Pan et

al. traced network parameter throughout the software versions [39]. The findings showed that

all the networks exhibited small world, scale free phenomenon and linear growth. In addition

class and package networks are both disassortative, while method level network is assortative.

Further examination of modularity helped in providing insight identifying where refactoring might

be needed. In a following research they studied the communities in the evolving software [40, 41]

and managed to identify where refactoring was needed at both the class and package level. Results

were validated with software engineers.

We will be following the idea of tracing parameters throughout the software versions, working

with directed networks, using a multi granularity software network, considering concept of network

metrics as an indicator of software metrics.
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4 Approach

This section describes our approach, subsection 4.1 explains our choice of software metrics

answering RQ1. Subsection 4.2 describes the steps of data collection preparation, network con-

struction, and computation of metrics and measure.

4.1 Metric selection

Software metrics

A considerable amount of literature has been published on the link between the software archi-

tecture and software quality attributes including maintainability, exploring methods to quantify

them [30, 42, 43, 44, 45, 46, 47, 48].

Papers written on assessing maintainability using software metrics have been reviewed. An

empirical study on the ability to predict class quality and fault proneness was conducted com-

paring metric suits (CK, MOOD) [49]. The results show that the CK metrics suite produced the

best result for class quality and fault proneness prediction, while MOOD failed in class quality.

Metrics that are associated with modularity and encapsulation were found to be good predictors

for maintainability and fault proneness. High LCOM4 was linked to higher maintenance effort

[50], WMC and LCOM4 were good predictors of maintenance effort [50, 51, 52]. The interaction

between CBO and LCOM4 proved to be a good indicator of difficult to maintain classes [30], hence

using the product of CBO and LCOM4 as the structural complexity metric [53].

We identified the following metrics as good indicators of the six maintainability factors as shown

in table 1, addressing RQ1 of the thesis.

Below is a description of each metric and what it evaluates:

• CBO: low CBO means high modularity, less complexity, and easier reuse. High CBO means

higher inter-dependency with other modules, making it harder to understand. CBO essen-

tially evaluates reusability.

• LCOM4: high cohesion indicates modularity. Lack of cohesion increases complexity. This

metric evaluates reusability.

• DIT: the deeper a class is within the hierarchy, the greater the number methods and vari-

ables it is likely to inherit making it more complex. Deeper trees also means the possibility

of method reuse. DIT metric evaluates reuse but also relates to understandability and testa-

bility.

• RFC: a large number of methods are executed in response to a message, making it harder

to understand and test. This metric evaluates testability and understandability. High RFC

means more effort required for testing, greater design complexity and fault-proneness.

• WMC: classes with a larger number of methods are harder to understand, tend to be

application-specific, making it harder to reuse. Changes applied on these classes have impact

on children and thus have a direct effect on maintainability.
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• NOC: the greater the number of children, the greater the reusability since inheritance is a

form of reuse. If a class has a large number of children, it may require more testing of the

methods of that class, thus increase the testing time. It primarily evaluates reusability and

testability.

• COF: high value of coupling factor in the system leads to larger complexity, lower coupling

means high modularity. This metric evalutes understandability, modularity, and testability.

• CC: high complexity number means greater probability of errors with increased time to

maintain and troubleshoot. This metric evaluates understandability and testability.

Network metrics

The following network metrics have been selected for this study:

• Density : density measure the connectedness of a graph, high density would mean low

modularity, a complex software system, hence low understandability and less reusability.

• Degree distributions : the relationship between in-degrees (as proxy for the number of

called classes, methods or functions) and out-degrees (as proxy for the number of calling

classes, methods or functions. Nodes with high degree kin indicate a popular node could

mean high reuse, modifiability and testability.

• Communities : high values indicates modularity which in turns means ease of modifiability

and understandability.

• Diameter : measures the maximum distance between nodes, so a high value means higher

runtime stacks affecting testablility, stability and modifiability.

• Average clustering coefficient (CC): measures neighborhoods connectedness; high val-

ues indicates high coupling and lower modularity and stability.

• Average shortest path length (d): measures how interconnected a network is, it could

be used as an indicator for testability, modifiability and understandability.

• Motifs : high occurrence of certain motifs could mean high reusability, ease of testability,

and understandability.

Table 1: Software and Network as Maintainability indicators

Maintainability Factors Software Metrics (literature) Network Metrics (hypothesis)

Understandability WMC, RFC, CC, CBO, DIT, COF Motifs, Communities, Density, d, CC

Testability RFC, DIT, NOC, COF, CC Diameter, Motifs, d, γin, γout, γ
Reusability WMC, CBO, NOC, DIT Motifs, Density, γin, γout, γ
Modularity CBO, COF, LCOM4 Density, Communities, CC

Modifiability WMC, RFC, LCOM4, CBO, CC Diameter, Communities, d, γin, γout, γ
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4.2 Data collection and preparation

In this subsection we describe the steps followed to calculate the software and network met-

rics. The main steps are: collecting the software systems source code, constructing networks, and

computing metrics. This is schematically shown in figure 3.

Figure 3: Data collection and preparation steps

1- Raw data: software system source code from Github repository

2- Network construction: SIG3 proprietary tool, and Doxygen4

3- Metrics calculation: using Analizo5 , SonarQube6 and konect7 toolbox

4.2.1 Software systems source code

We have selected different Apache software systems, which are object-oriented open-source

systems. The selected systems provided different system sizes, are being actively updated, have

wide range of versions from 6 to 82 (major, minor and revisions) and with life spans between 4

and 11 years.

The source code of the systems in the study was obtained from Apache releases in the Github

repository8. As seen in table 2 they vary in number of versions, time span and number of contrib-

utors. Below is a short description of the systems.

Apache Cassandra is an open-source NoSQL distributed database management system, pro-

viding high availability, performance, and linear scalability with no single point of failure.

3SIG, Software Improvement Group https://www.softwareimprovementgroup.com/
4Doxgen https://www.doxygen.nl/index.html
5Extensible Multi-Language Source Code Analysis and Visualization Toolkit https://www.analizo.org/
6Software evaluation tool based on SQuaRE httphttps://www.sonarqube.org/
7The KONECT Project http://konect.cc/
8e.g ant-ivyhttps://github.com/apache/ant-ivy/releases
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Apache Chukwa is an open source data collection system for monitoring large distributed

systems.

Apache Hadoop is a collection of open-source software utilities that provides a software

framework for distributed storage and processing of big data.

Apache HttpComponents is an open-source system for creating and maintaining a toolset

of low level Java components focused on HTTP and associated protocols.

Apache Ant-Ivy is a tool for managing (recording, tracking, resolving and reporting) project

dependencies.

Apache Jena is a framework for writing Semantic Web applications.

Table 2: Systems analyzed

System Versions
Time Span

(mm/yy)
Contributors

Cassandra 82 09/09 - 09/13 325

Chukwa 6 05/09 - 12/15 10

Hadoop 55 04/06 - 06/14 357

HttpComponents 33 07/08 - 05/15 53

Ant-Ivy 18 12/06 - 01/13 20

Jena 32 06/12 - 03/21 70

4.2.2 Network construction

As depicted in figure 3, after getting the software source code from the Github repository,

the different networks are constructed. This was done using two approaches. One is to generate

the inheritance, collaboration and call UML diagrams using Doxygen and then build the directed

networks for each version using a program we developed. The other is using SIG proprietary

software to create a network of method calls.

Doxygen is a document generator for object oriented software, it produces inheritance graphs,

collaboration (inheritance & dependencies ) graphs and call (method/global functions) graphs. We

utilize the so- called graph dot file to build networks. For each software system version Doxygen

will generate separate diagrams for each class inheritance.

Software Improvement Group (SIG) is a company specialised in improving the health and

security of software. They have developed a proprietary software that constructs networks for

method calls.

The next step was to construct the networks, we wrote a program that goes through the Doxy-

gen dot graph files of the diagrams, extracts the edges (inheritance, dependencies, and method/-

function calls) and the nodes (classes, method/global function) in edges and nodes files. This is

demonstrated in figure 4, showing an example of two call graphs, and figure 5 showing the resulting

call network.
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Figure 4: Two call graphs

generated by Doxgen, using Graphviz9 to visualize the Dot files

Figure 5: Constructed network from dot files

created from dot files of figure 4

Below are descriptions of constructed software networks and their level of granularity:

• Class level

– inheritance network: nodes are classes and the edges are inheritance relations.

– Collaboration network: nodes are classes and the edges are the class dependencies (in-

heritance, aggregation, composition and class reference variables).

– Method-call network: nodes the are class methods and the edges are the method calls

(generated by SIG).

• Subroutine level

– Call network: nodes are global functions or class methods and the edges are the calls.
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Figure 6: Cassandra-2.0.0 collaboration network - 2213 nodes and 5560 edges

An illustration of a software network is shown in figure 6, created using Gephi10 and coloring

the nodes according to communities.

4.2.3 Metrics computation

Network metrics

We calculate the network metrics using the NetworkX package in python, and Konect toolbox

in matlab. The following network measures and metrics are calculated:

1. NetworkX: number of nodes, average degree, in and out degree distributions and their respec-

tive powerlaw parameter γ, average shortest path (based on the undirected largest WCC),

network density number of SCC, number of WCC, largest WCC (nodes, degrees), average

clustering coefficient, number of communities.

2. Konect: Network diameter, motifs (two ,three, and four stars - see figure 2), degree distribu-

tion exponent γ (treating the network as undirected).

10Gephi is an open-source visualization software for networks. https://gephi.org/
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Software metrics

We used Analizo to compute software metrics. Analizo provides project-level metrics (calculated

for the entire project) and module-level metrics (calculated individually for each module). Below

are the metrics produced by Analizo. It should be noted that we will use only the underlined

metrics as explained in subsection 4.1.

• Project level metrics: Total Coupling Factor (COF), Total Lines of Code, Total number

of methods per abstract class (WMC), Total Number of Modules/Classes, Total number of

modules/classes with at least one defined attributes, Total number of modules/classes with

at least one defined method, Total Number of Methods.

• Module level metrics: Afferent Connections per Class, Average Cyclomatic Complexity per

Method(CC), Average Method LOC, Average Number of Parameters per Method, Coupling

Between Objects (CBO), Depth of Inheritance Tree(DIT), Lack of Cohesion of Methods

(LCOM4), Lines of Code, Max Method LOC, Number of Attributes, Number of Children

(NOC), Number of Methods, Number of Public Attributes, Number of Public Methods,

Response For a Class (RFC).

On a project-level, Analizo also provides basic descriptive statistics for each of the module-level

metrics: sum, mean, median, mode, standard deviation, variance, skewness and kurtosis of the

distribution, minimum, and maximum value. Analizo also provides a change cost metric which

calculates the percentage of software components affected when one component in the system is

changed - a measure of the coupling degree, and structural complexity which is the product of CBO

and LCOM4 which is used as measure of how attractive is the software system to contributors [54].

SonarQube is another tool that evaluates the eight software characteristics explained in sub-

section 2.3. SonarQube provides a score for each attribute along with a value cognitive complexity

(Cog.c) as a measure for understandability.
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5 Experiments

In this section we examine the data with the aid of plots and tables to track changes in the

software systems, and describe methods utilised to analyze the metrics mentioned in section 4.2.3.

In subsection 5.1 we describe the experimental setup. Subsection 5.2 presents the result and data

descriptives. Subsection 5.3 attempts to identify SNA metrics that are good indicators of changes

in maintainability, providing an answer to RQ2. Finally, subsection 5.4 identifies which network

granularity best captures the maintainability factors, addressing RQ3.

5.1 Experimental setup

A number of tests were performed following the computation of the metrics to validate that

results are aligned with the expectations as per literature.

We fitted the degree distributions of the networks to powerlaw distribution, and performed a

comparative analysis against lognormal and exponential distributions using the powerlaw python

package. We also compared plots across system versions of basic network metrics and correspond-

ing software metrics (e.g., nodes vs. functions/classes) to confirm consistency of the network

representation of the software systems.

Moreover, we computed both Pearson correlation and the non parametric Spearman rank corre-

lation between software and network metrics on all networks. Figure 8 is an example of a resulting

heatmap of such a correlation. Finally, we identified the highly correlated metrics and drew scatter

plots of the correlated metrics preserving the time factor (versions), for example as in figure 7 (for

more see Appendix D).

Figure 7: Scatter plot - Network vs. software metrics

Cassandra collaboration network
the color darkness increases with version number

5.2 Descriptives of data

To confirm that constructed software networks follow a powerlaw degree distribution, we fitted

the degree distributions of the networks to powerlaw distribution, and compared it to lognormal

18



Figure 8: Collaboration network with software metrics heatmap

Cassandra Pearson correlation

and exponential distributions. Results always supported the powerlaw distribution. Most versions

had a positive value for R, and three versions had a negative value for R combined with a p value

> 0.05 (even though some versions had values less than two for γ, γin and γout). As example of

such a distribution is shown in figure 9.

Network metrics were compared to software metrics and changes in software architecture. This

comparison confirmed consistency of the network representation for the software systems. As an
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Figure 9: Collaboration network in and out degree distributions

for the first and last versions of Cassandra

example, the graphs shown in figure 10 compare the changes in number of functions to changes

in the number of nodes in the call networks, demonstrating that they follow the same pattern.

The same applies to collaboration networks with number of files. Both inheritance and method

network nodes show the same pattern as the number of classes (except for Cassandra in method

networks). The full set of graphs is to be found in Appendix A.

We observed from the graphs of software metrics across versions that NOC increases at a slow

rate in all systems except for Hadoop. CBO, LCOM4, average cyclomatic complexity and DIT

follow the same pattern. WMC increases, except for the Chukwa data set. COF decreases and

RFC increases in general.

Analizo calculates software metrics per module and aggregates them at project level. Some of

the values, like CBO, in some systems had mode of zero, median of 1, skeweness of 6 and Kurtosis

of 64. For this reason we have used total instead of mean.

Similarly, network metrics for the same software systems show that the number of nodes, edges,

communities, average clustering coefficient, WCC and size (nodes & edges) of the largest WCC

increase in all network as they evolve. We also notice that density and average shortest path

decrease over time (except for the HttpComponents and Ant-Ivy data sets).

Average degree slightly increases over time for call and collaboration networks suggesting that

functions get called slightly more as the software evolves. In the inheritance and method networks

average degree does not change much indicating that the class inheritance is stable. We observe

these changes through the versions in all granularity.

It should be noted that the average shortest path length did not exhibit correlation with any

of the software metrics; this could be due to the fact it was calculated using the undirected largest

weakly connected component. Tables 3 to 7 show changes to network and software metrics between

first and last versions of each of the software systems. These results demonstrate the growth of

each evolving software system as expected.
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Figure 10: Software and call network metrics change as software evolves

Functions on the left vs. Nodes on the right
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5.3 SNA metrics for maintainability (RQ2)

In this section we address RQ2, on how SNA measures and metrics capture software metrics

that are strong indicators of changes in maintainability.

After examining the heatmaps (see figure 8 as an example and Appendix B for full set of

heatmaps), and correlation tables (see tables 8 and 9 as example and Appendix C), the results

indicate that the strongest correlation across all software systems are the density, motifs commu-

nities and weakly connected components(WCC). This applies to all networks across all software

systems.

Correlation was observed between the network metrics mentioned below and all software met-

rics except for WMC. A strong positive correlation is observed between communities, WCC and

motifs and software metrics except for COF, which shows a negative correlation. Strong nega-

tive correlation is observed between density and software metrics except for COF, which shows

a positive correlation. The correlation between WCC and software metrics is positive, but not

strong.

Diameter is also a strong indicator for software metrics. Jena, as an outlier, was not consid-

ered in arriving to this observation. This is explained by the limitation of Analizo described in

section 5.5.

A negative correlation has been observed between γout for call networks and all software metrics

(except for COF where this correlation is positive). This correlation was not strong for the Ant-Ivy

data set. The reverse of this correlation is observed for the Average clustering coefficient in call

networks.

Finally, γout in collaboration networks demonstrates negative correlation with WMC, RFC,

LCOM4 and NOC.

Table 8: Correlation between CBO and inheritance network metrics

Cassandra Chukwa Hadoop
Http-

Components
Ant-IVY Jena

Diameter 0.6734 0.9132 0.6558 0.8192 0.1277 -0.4956

2-star motifs 0.9849 0.3821 0.6803 0.8976 0.8404 0.3157

3-star motifs 0.9796 0.0971 0.5565 0.7613 0.7729 0.3721

4-star motifs 0.9663 0.0547 0.5290 0.6296 0.7394 0.3886

Nodes 0.9945 0.8250 0.7970 0.9847 0.9650 0.2477

Edges 0.9888 0.7424 0.8041 0.9498 0.9542 0.1872

Avg. degree 0.7924 -0.9385 -0.4834 0.6968 0.7405 -0.3306

Communities 0.9969 0.9593 0.8004 0.9956 0.9630 0.3234

Avg. shortest path 0.7264 0.7634 0.3795 0.8261 -0.7878 -0.5071

Density -0.8840 -0.8692 -0.7453 -0.9600 -0.9925 -0.2184

Avg. clust. coeff. 0.4955 0.6234 0.5528 -0.1561 -0.1847

WCC 0.9955 0.9490 0.8019 0.9954 0.9880 0.3665

Largest WCC nodes 0.9352 0.4336 0.6972 0.8364 0.7598 0.1009

Largest WCC edges 0.9550 -0.0548 0.7383 0.8032 0.3630 -0.0823

γ 0.6678 -0.8232 -0.5600 -0.8667 0.3383 0.7086

γin -0.1611 0.6082 0.3020 -0.1584 -0.4431 -0.0462

γout -0.5114 -0.6798 -0.6342 -0.1015 -0.4780 -0.0120
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Table 9: Correlation between Average Cyclomatic complexity and collaboration network metrics

Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Diameter -0.041 0.876 0.683 -0.527 0.727 -0.662

2-star motifs 0.809 0.995 0.737 0.736 0.988 0.627

3-star motifs 0.619 0.977 0.626 0.681 0.971 0.487

4-star motifs 0.532 0.953 0.601 0.672 0.959 0.373

Nodes 0.968 0.988 0.832 0.985 0.995 0.536

Edges 0.795 0.990 0.801 0.875 0.997 0.348

Avg. degree 0.375 0.952 0.304 -0.148 -0.853 -0.568

Communities 0.930 0.942 0.834 0.907 0.936 0.459

Avg. shortest path 0.058 0.855 0.460 -0.811 -0.720 0.099

Density -0.665 -0.998 -0.768 -0.923 -0.977 -0.522

Avg. clust. coeff. 0.408 -0.517 0.092 0.752 0.886 -0.351

WCC 0.895 0.885 0.772 0.412 0.601 0.452

Largest WCC nodes 0.953 0.997 0.831 0.983 0.996 0.548

Largest WCC edges 0.792 0.998 0.799 0.877 0.997 0.345

γ 0.173 0.158 -0.568 -0.036 0.721 0.544

γin 0.338 -0.336 -0.670 -0.157 -0.169 -0.053

γout -0.303 -0.401 -0.581 0.723 -0.720 -0.384

5.4 Representation of structural changes by different types of networks

(RQ3)

In this section we address RQ3, on how the changes in SNA metrics are different for the

four levels of granularity for software networks, aiming to understand which network is a better

representation of structural change.

The correlation between changes to each of the network metrics identified in section 5.3 and

changes to software metrics has been compared for each of the different network granularity levels.

Collaboration network has demonstrated consistently the strongest level of correlation in this

comparison.

It should be noted that the inheritance network was the least to resemble a real world net-

work. The diameter clearly correlates with DIT and NOC as demonstrated in the heat maps (see

Appendix B). These observations are inline with our original expectations.

Furthermore, a comparison between the characteristics of the different networks has been carried

out, see table 10. This demonstrates that collaboration networks best represent the characteristics

of real world networks: small-world (4 < average shortest path length < 6) , scale-free (

2 < γin ,γout ,γ < 3 ) and average clustering coefficient between 0.02 and 0.083 [55].

Therefore, we concluded that changes in collaboration networks metrics best reflect changes in

software maintainability metrics.
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Table 10: Networks metrics for all network granularities

Cassandra Chukwa Hadoop
Http-

Components
Ant-Ivy Jena

In
h
er

ta
n
ce

Avg. shortest path
min 3.8777 1.9091 2.9463 3.2277 2.2836 6.8939

max 6.5374 1.9938 8.2514 8.1287 4.6090 12.2975

Avg. clust. coeff.
min 0.0000 0.0084 0.0000 0.0000 0.0094 0.0086

max 0.0036 0.0055 0.0101 0.0010 0.0281 0.0113

γin
min 1.3331 1.4076 1.4729 1.5330 1.5334 1.5216

max 4.7987 12.2442 1.7045 2.3550 1.7229 1.7053

γout
min 1.6921 0.1847 1.6933 1.8189 1.7732 1.6872

max 2.0893 0.2410 2.1495 2.0778 2.7721 1.8564

γ
min 3.3235 4.4234 2.8771 3.5787 3.7454 3.4613

max 4.0787 5.2579 3.8743 4.3710 4.3326 3.5403

C
ol

la
b

or
at

io
n

Avg. shortest path
min 3.3311 3.5740 3.6062 3.0094 3.3833 4.0137

max 4.2224 3.6828 4.2329 4.9436 3.5002 4.4592

Avg. clust. coeff.
min 0.0238 0.0232 0.0283 0.0207 0.0514 0.0333

max 0.0511 0.0317 0.0468 0.0439 0.0831 0.0533

γin
min 1.4642 1.6201 1.6704 1.6689 2.0695 1.5469

max 2.0217 1.7699 2.0476 1.8005 2.2738 2.0605

γout
min 1.6243 1.5845 1.6309 1.7507 2.0764 1.6665

max 2.1743 1.9508 2.2605 2.0048 2.5811 1.8779

γ
min 1.9117 2.0745 1.8446 2.1182 1.9719 2.0901

max 2.2944 2.1576 1.9993 2.3280 2.0323 2.1603

C
al

l

Avg. shortest path
min 5.3573 5.7881 6.3903 7.1153 4.9172 7.2171

max 8.2380 7.8454 8.1607 8.8956 5.4715 7.6397

Avg. clust. coeff.
min 0.0145 0.0161 0.0163 0.0096 0.0283 0.0258

max 0.0287 0.0343 0.0301 0.0174 0.0327 0.0314

γin
min 1.5495 1.6841 1.5441 1.5515 1.6399 1.5796

max 1.8154 2.1933 1.8394 1.8306 1.8363 1.7352

γout
min 1.5753 1.5692 1.5265 1.6092 1.6165 1.5486

max 1.7791 1.8135 1.8668 1.7965 1.9649 1.6173

γ
min 2.1032 2.3641 2.0994 2.3902 2.0539 2.0849

max 2.2126 2.4972 2.3696 2.5473 2.1013 2.1249

M
et

h
o
d

Avg. shortest path
min 6.9281 6.1026 6.2269 8.7976 5.0093 8.1131

max 8.2782 7.7431 6.8572 10.4079 5.6166 8.1573

Avg. clust. coeff.
min 0.0091 0.0173 0.0194 0.0162 0.0244 0.0186

max 0.0134 0.0302 0.0227 0.0162 0.0264 0.0194

γin
min 1.4039 1.5680 1.4572 1.4238 1.4615 1.4676

max 1.5592 1.6833 1.6116 1.5200 1.6243 1.5401

γout
min 1.3619 1.3809 1.3891 1.4346 1.5001 1.3290

max 1.7575 1.6773 1.4610 1.6038 1.6009 1.3530

γ
min 2.2463 2.2427 2.1418 2.4273 2.0655 2.1236

max 2.4109 2.4071 2.4146 2.7697 2.1129 2.1296
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5.5 Possible limitations

Visual assessments of plots for metrics across versions (e.g. figure 10) has been used in this

study rather than treating software versions as time series. This choice was made due to the

complexity of handling major versions, minor versions and revisions (e.g. major to major vs.

major to minor vs. revision to minor, ...etc.). The used software has some technical limitations.

The software metrics program Analizo produces accurate results when the main program is in the

root directory and remaining modules are located in sub-directories. It skips modules that are

located in the same directory of the main program (as with Jena) resulting in less accurate metric

values.

SonarQube uses the CK suite to calculate maintainability metrics, but it only provides the

score for maintainability as a whole as its output, together with CC and cognitive complexity for

software systems and versions. All versions of the six software systems selected for this study were

given the same maintainability score, indicating that the sample may not be representative of the

full spectrum.

The timestamps associated with some versions of the selected software systems are inaccurate

(i.e., some versions have got earlier timestamps than earlier ones). Versions were sequenced man-

ually based on version numbers and last commitment date (as per Github and Apache official

site).
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6 Conclusion and future work

In this exploratory study, we have identified social network analysis metrics that provide an

indication of changes to maintainability of software systems as they evolve. We generated different

types of networks for a sample of six evolving open-source software systems and compared their

SNA metrics against conventional software metrics for maintainability. We have demonstrated that

communities, weakest connected components, motifs and density are strong indicators of changes

in the maintainability of evolving software systems. Moreover, we concluded that the collaboration

network provides the best representation of software systems for this purpose.

We suggest two directions future work. First, combining collaboration and call networks into

an aggregate network and evaluating if the SNA metrics for that network will provide better

representation of changes to maintainability of software systems as they evolve, might give insightful

results. Second, it may be interesting to develop an approach for representing software versions as

a time series in order to enable a more in-depth statistical analysis over time.
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PhD thesis, Universidade de São Paulo, 2013.

[54] A. Terceiro, J. Costa, J. Miranda, P. Meirelles, L. R. Rios, L. Almeida, C. Chavez, and F. Kon,

“Analizo: an extensible multi-language source code analysis and visualization toolkit,” in

Brazilian conference on software: theory and practice (Tools Session), 2010.

[55] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of mod-

ern physics, vol. 74, no. 1, p. 47, 2002.

35



Appendix A Descriptive plots

Software metrics changes

Average cyclomatic complexity

Coupling between objects

Lack of cohesion

Number of Children
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Depth of inheritance

Coupling factor

Response for a class

Weighted methods per class
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Software Vs. network metrics changes

Functions vs. Nodes in call networks

Classes vs. Nodes in inheritance networks
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Files vs. Nodes in collaboration networks

Methods vs. Nodes in methods networks
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LCOM4 vs. Edges in collaboration networks

LCOM4 vs. Edges in methods networks
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Cassandra’s methods networks have been excluded as an outlier
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Network metrics change

Density in collaboration networks

Density in call networks

Density in inheritance networks

42



Average degree in collaboration networks

Average degree call networks

Average degree in inheritance networks
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Weakly connected components in collaboration networks

Weakly connected components in call networks

Weakly connected components in inheritance networks
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Appendix B Heat maps

Heat maps using Pearson and Spearman rank correlation between software and network

metrics for all software systems and all network granularities, the network metrics of impor-

tance are the diameter, Communities, Density , Average clustering coefficient and Weakly

connected components. The 2-stars, 3-stars and 4-stars were used to show the importance of,

but not usedf for depth analysis.
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Pearson correlation

Call networks

Cassandra

Chukwa
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Call networks

HttpComponents

Ant-Ivy

Jena
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Collaboration networks

Cassandra

Chukwa

Hadoop
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Collaboration networks

HttpComponents

Ant-Ivy

Jena
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Inheritance networks

Cassandra

Chukwa

Hadoop
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Inheritance networks

HttpComponents

Ant-Ivy

Jena
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Methods networks

Cassandra - Excluded from analysis as an outlier

Chukwa

Hadoop

52



Methods networks

HttpComponents

Ant-Ivy

Jena
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Spearman rank correlation

Call networks

Cassandra

Chukwa

Hadoop
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Call networks

HttpComponents

Ant-Ivy

Jena
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Collaboration networks

Cassandra

Chukwa

Hadoop
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Collaboration networks

HttpComponents

Ant-Ivy

Jena
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Inheritance networks

Cassandra

Chukwa

Hadoop
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Inheritance networks

HttpComponents

Ant-Ivy

Jena
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Methods networks

Cassandra - Excluded from analysis as an outlier

Chukwa

Hadoop
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Methods networks

HttpComponents

Ant-Ivy

Jena
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Appendix C Correlation tables

Correlation tables between each network metric and software metrics for all software systems

for all network regularities. Avg. cc indicates Average cyclomatic complexity. Call Networks

Correlation between communities and software metrics

Communities Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc. 0.9103 0.1692 0.8503 0.9589 0.9930 0.6905

CBO 0.9213 0.1947 0.8252 0.9875 0.9765 0.4057

DIT 0.9230 0.3924 0.8477 0.9828 0.9951 -0.0038

LCOM4 0.9197 0.2374 0.8552 0.9880 0.9820 0.8305

NOC 0.9159 0.5782 0.8342 0.9973 0.9950 0.2059

RFC 0.9344 0.5448 0.8537 0.9478 0.9667 0.5914

COF -0.9480 -0.3874 -0.7819 -0.9445 -0.9946 -0.7093

WMC 0.2908 -0.6250 -0.3010 0.7870 -0.2965 -0.1451

Cognitive c. 0.9444 0.1787 0.9896 0.9783 0.9792 0.9762

Struct. ccomplexity 0.9126 0.1009 0.8388 0.9574 0.9531 0.8378

Correlation between Density and software metrics

Density Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.9103 0.1692 0.8503 0.9589 0.9930 0.6905

CBO 0.9213 0.1947 0.8252 0.9875 0.9765 0.4057

DIT 0.9230 0.3924 0.8477 0.9828 0.9951 -0.0038

LCOM4 0.9197 0.2374 0.8552 0.9880 0.9820 0.8305

NOC 0.9159 0.5782 0.8342 0.9973 0.9950 0.2059

RFC 0.9344 0.5448 0.8537 0.9478 0.9667 0.5914

COF -0.9480 -0.3874 -0.7819 -0.9445 -0.9946 -0.7093

WMC 0.2908 -0.6250 -0.3010 0.7870 -0.2965 -0.1451

Cognitive c. 0.9444 0.1787 0.9896 0.9783 0.9792 0.9762

Struct. complexity 0.9126 0.1009 0.8388 0.9574 0.9531 0.8378
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Correlation between Diameter and software metrics

Diameter Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc -0.3615 -0.9214 0.6835 0.8538 0.8334 0.0986

CBO -0.4296 -0.9276 0.6558 0.8846 0.8899 0.1849

DIT -0.3884 -0.8499 0.6883 0.8668 0.8418 0.5995

LCOM4 -0.4011 -0.8752 0.6808 0.8979 0.9021 -0.0735

NOC -0.4050 -0.6992 0.6714 0.9050 0.8600 0.5187

RFC -0.4968 -0.7200 0.6794 0.8659 0.9200 0.1410

COF 0.5515 0.8146 -0.7680 -0.8791 -0.8595 -0.0842

WMC -0.5563 0.7151 -0.2138 0.7497 0.1927 -0.2472

Cognitive c. -0.4887 -0.9505 0.7325 0.8812 0.8716 -0.5120

Struct. complexity -0.3761 -0.9641 0.6701 0.8525 0.9259 -0.1551

Correlation between Weakly connected components and software metrics

WCC Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.8931 0.4737 0.8484 0.9662 0.9958 0.6714

CBO 0.8945 0.5215 0.8244 0.9908 0.9694 0.3781

DIT 0.9025 0.6440 0.8448 0.9842 0.9962 -0.0375

LCOM4 0.8934 0.5172 0.8543 0.9849 0.9770 0.8198

NOC 0.8897 0.7583 0.8297 0.9967 0.9944 0.1752

RFC 0.9087 0.7566 0.8524 0.9557 0.9622 0.5689

COF -0.9322 -0.5824 -0.7670 -0.9541 -0.9944 -0.6916

WMC 0.2756 -0.7272 -0.2791 0.7729 -0.2875 -0.1137

Cognitive c. 0.9208 0.4990 0.9883 0.9817 0.9860 0.9834

Struct. complexity 0.8844 0.4329 0.8389 0.9478 0.9489 0.8270

caption*Correlation between average clustering coeffient and software

Avg. clust. coeff. Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.3199 0.7545 0.4184 0.8699 0.3586 -0.2239

CBO 0.3140 0.7329 0.3705 0.7838 0.2096 -0.0352

DIT 0.3519 0.5841 0.4265 0.7231 0.3183 0.4534

LCOM4 0.2171 0.7080 0.4260 0.6950 0.1977 -0.4339

NOC 0.3769 0.4097 0.4345 0.7515 0.2682 0.3077

RFC 0.3262 0.4570 0.3955 0.8839 0.1907 -0.1557

COF -0.2778 -0.5603 -0.6051 -0.9034 -0.2636 0.2496

WMC 0.3448 -0.2345 -0.5361 0.2365 -0.4662 -0.1288

Cognitive c. 0.2961 0.7238 0.2527 0.8409 0.3731 -0.8074

Struct. complexity 0.2729 0.7716 0.4015 0.5888 0.1706 -0.4918
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Correlation between average degree and software

Avg. degree Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.3199 0.7545 0.4184 0.8699 0.3586 -0.2239

CBO 0.3140 0.7329 0.3705 0.7838 0.2096 -0.0352

DIT 0.3519 0.5841 0.4265 0.7231 0.3183 0.4534

LCOM4 0.2171 0.7080 0.4260 0.6950 0.1977 -0.4339

NOC 0.3769 0.4097 0.4345 0.7515 0.2682 0.3077

RFC 0.3262 0.4570 0.3955 0.8839 0.1907 -0.1557

COF -0.2778 -0.5603 -0.6051 -0.9034 -0.2636 0.2496

WMC 0.3448 -0.2345 -0.5361 0.2365 -0.4662 -0.1288

Cognitive c. 0.2961 0.7238 0.2527 0.8409 0.3731 -0.8074

Struct. complexity 0.2729 0.7716 0.4015 0.5888 0.1706 -0.4918

Correlation between average shortest path and software

Avg. shortest path Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc -0.6334 -0.8901 0.4486 0.8098 0.9580 0.4891

CBO -0.6630 -0.8625 0.4534 0.7384 0.9420 0.4909

DIT -0.6685 -0.8154 0.4446 0.6962 0.9685 0.7161

LCOM4 -0.6429 -0.8613 0.4335 0.7440 0.9613 0.2978

NOC -0.6819 -0.6819 0.4281 0.7575 0.9781 0.7111

RFC -0.7028 -0.6861 0.4568 0.7979 0.9391 0.5054

COF 0.8152 0.8336 -0.3773 -0.8625 -0.9839 -0.4737

WMC -0.5521 0.7048 -0.0593 0.2749 -0.2069 -0.4635

Cognitive c -0.6961 -0.8865 0.4817 0.8249 0.9366 -0.1572

Struct. complexity -0.6320 -0.9066 0.4579 0.7151 0.9300 0.2252

Correlation between in degree distribution γin and software

γin Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc -0.5413 -0.5284 -0.5982 0.5923 -0.6263 -0.0005

CBO -0.6004 -0.5349 -0.5920 0.7063 -0.7610 0.1520

DIT -0.5582 -0.3259 -0.5947 0.7577 -0.6418 0.3023

LCOM4 -0.5539 -0.4448 -0.5909 0.7628 -0.7524 -0.1355

NOC -0.5865 -0.0908 -0.5896 0.7188 -0.6639 0.2232

RFC -0.6042 -0.1417 -0.6054 0.5634 -0.7880 0.0624

COF 0.5200 0.2703 0.5692 -0.5595 0.6509 0.0220

WMC -0.1095 0.0335 0.3329 0.8448 -0.2973 -0.2034

Cognitive c. -0.5938 -0.5542 -0.6663 0.6299 -0.6805 -0.3926

Struct. complexity -0.5695 -0.6144 -0.6046 0.7818 -0.8021 -0.1407
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Collaboration Networks

Correlation between communities and software metrics

Communities Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.9301 0.9419 0.8338 0.9065 0.9356 0.4590

CBO 0.9266 0.9079 0.8093 0.9139 0.9743 0.2608

DIT 0.9389 0.8515 0.8356 0.9283 0.9485 -0.2269

LCOM4 0.9002 0.9240 0.8356 0.8880 0.9764 0.6316

NOC 0.9327 0.7389 0.8149 0.9002 0.9617 -0.0552

RFC 0.8940 0.7611 0.8336 0.8642 0.9713 0.3923

COF -0.8112 -0.8606 -0.7579 -0.8676 -0.9550 -0.4785

WMC 0.1678 -0.6129 -0.3160 0.6452 -0.1594 -0.0637

Cognitive c 0.8838 0.9011 0.9545 0.8999 0.9407 0.8922

Struct. complexity 0.9241 0.9221 0.8240 0.8659 0.9712 0.6842

Correlation between Density and software metrics

Density Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc -0.6651 -0.9979 -0.7681 -0.9232 -0.9769 -0.5215

CBO -0.7320 -0.9867 -0.7382 -0.9685 -0.9823 -0.2490

DIT -0.7070 -0.9716 -0.7672 -0.9655 -0.9852 0.1893

LCOM4 -0.7567 -0.9911 -0.7516 -0.9699 -0.9889 -0.7027

NOC -0.7290 -0.8920 -0.7733 -0.9783 -0.9926 -0.0160

RFC -0.7757 -0.9072 -0.7632 -0.9204 -0.9759 -0.4194

COF 0.8623 0.9589 0.9681 0.9045 0.9911 0.5441

WMC -0.4512 0.8193 0.4633 -0.8674 0.2244 -0.0032

Cognitive c -0.7966 -0.9849 -0.8004 -0.9465 -0.9656 -0.9668

Struct. complexity -0.7302 -0.9848 -0.7394 -0.9371 -0.9664 -0.7157
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Correlation between Diameter and software metrics

Diameter Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc -0.0407 0.8759 0.6835 -0.5269 0.7269 -0.6625

CBO -0.0865 0.8766 0.6558 -0.6642 0.5545 -0.4095

DIT -0.0689 0.8557 0.6883 -0.7026 0.7114 -0.0657

LCOM4 -0.2157 0.8804 0.6808 -0.7192 0.5676 -0.7798

NOC -0.0881 0.8259 0.6714 -0.6906 0.6796 -0.2523

RFC -0.1056 0.8642 0.6794 -0.5197 0.5100 -0.5793

COF 0.3289 -0.8105 -0.7680 0.4656 -0.6901 0.6824

WMC 0.1306 -0.5893 -0.2138 -0.9628 -0.7537 0.1731

Cognitive c -0.1605 0.8360 0.7325 -0.5752 0.6543 -0.8727

Struct. complexity -0.1670 0.8273 0.6701 -0.7383 0.4733 -0.7735

Correlation between Weakly connected components and software metrics

WCC Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.8951 0.8850 0.7720 0.4120 0.6010 0.4519

CBO 0.9549 0.8379 0.7581 0.2683 0.4767 0.2592

DIT 0.9280 0.7812 0.7701 0.1870 0.5731 -0.2334

LCOM4 0.9305 0.8766 0.7654 0.2047 0.4600 0.6285

NOC 0.9463 0.6776 0.7493 0.2568 0.5334 -0.0630

RFC 0.9664 0.7008 0.7745 0.4316 0.4355 0.3852

COF -0.9239 -0.8048 -0.6844 -0.4888 -0.5261 -0.4717

WMC 0.3864 -0.5074 -0.2711 -0.2755 -0.7553 -0.0684

Cognitive c. 0.9655 0.8224 0.8946 0.3842 0.5726 0.8950

Struct. complexity 0.9347 0.8503 0.7715 0.1304 0.3916 0.6811

caption*Correlation between average clustering coeffient and software

Avg. clust. coeff. Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.4084 -0.5170 0.0923 0.7520 0.8863 -0.3515

CBO 0.5224 -0.4920 0.0818 0.8471 0.7665 -0.2553

DIT 0.4419 -0.3087 0.0761 0.8572 0.8755 0.3063

LCOM4 0.4923 -0.4687 0.1237 0.8652 0.7798 -0.5539

NOC 0.4832 -0.1176 0.0687 0.8613 0.8582 0.1800

RFC 0.5812 -0.1699 0.1014 0.7634 0.7432 -0.3185

COF -0.6014 0.2872 0.0516 -0.7271 -0.8650 0.3648

WMC 0.4416 -0.0687 0.3448 0.9541 -0.5003 0.1185

Cognitive c. 0.5628 -0.4833 0.2845 0.7878 0.8387 -0.8383

Struct. complexity 0.4716 -0.5502 0.0726 0.8401 0.7141 -0.6520
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Correlation between average degree and software

Avg. degree Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.3746 0.9518 0.3042 -0.1479 -0.8533 -0.5681

CBO 0.2845 0.9743 0.2980 -0.3096 -0.7473 -0.3129

DIT 0.3362 0.9296 0.3221 -0.3539 -0.8598 -0.1675

LCOM4 0.2667 0.9102 0.2908 -0.4025 -0.7819 -0.6454

NOC 0.2913 0.8242 0.3256 -0.3570 -0.8562 -0.3519

RFC 0.2227 0.8465 0.3034 -0.1554 -0.7267 -0.4664

COF -0.1331 -0.8737 -0.4351 0.0984 0.8743 0.5818

WMC -0.2005 -0.8165 -0.2376 -0.8168 0.4599 0.0567

Cognitive c. 0.2017 0.9855 0.3687 -0.2154 -0.7923 -0.6767

Struct. complexity 0.2928 0.9751 0.2901 -0.4519 -0.7075 -0.5745

Correlation between average shortest path and software

Avg. shortest path Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.0583 0.8545 0.4601 -0.8109 -0.7203 0.0990

CBO 0.0176 0.8308 0.4256 -0.8953 -0.6891 0.0979

DIT 0.0377 0.8789 0.4770 -0.9074 -0.7252 -0.4477

LCOM4 -0.0422 0.9062 0.4429 -0.9204 -0.7304 0.2955

NOC 0.0222 0.8486 0.4833 -0.9144 -0.7363 -0.3848

RFC -0.0456 0.8414 0.4408 -0.8089 -0.7293 0.0951

COF 0.2152 -0.8988 -0.7489 0.7799 0.7452 -0.1054

WMC -0.3205 -0.8310 -0.5812 -0.9525 -0.1495 -0.0562

Cognitive c. -0.0459 0.8361 0.2818 -0.8474 -0.7583 0.6210

Struct.complexity -0.0002 0.8432 0.4350 -0.9062 -0.7357 0.4282

Correlation between in degree distribution γin and software

γin Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.3381 -0.3361 -0.6699 -0.1573 -0.1695 -0.0528

CBO 0.2278 -0.3905 -0.6656 -0.0035 -0.0463 0.0913

DIT 0.2908 -0.1677 -0.6581 0.0418 -0.1489 0.0251

LCOM4 0.1729 -0.2624 -0.6443 0.1347 -0.0605 -0.0519

NOC 0.2313 0.0350 -0.6736 0.0594 -0.1268 -0.0274

RFC 0.1841 -0.0378 -0.6696 -0.1673 -0.0465 0.0086

COF -0.0748 0.0390 0.7804 0.2022 0.1360 0.0544

WMC -0.0678 -0.1486 0.4412 0.5734 0.2745 -0.1918

Cognitive c. 0.1525 -0.3928 -0.5662 -0.0810 -0.1465 -0.0611

Struct.complexity 0.2052 -0.4433 -0.6562 0.2181 0.0053 -0.0040
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Inheritance Networks

Correlation between communities and software metrics

Communities Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.9578 0.9438 0.8185 0.9659 0.9913 0.5199

CBO 0.9969 0.9593 0.8004 0.9956 0.9630 0.3234

DIT 0.9822 0.9802 0.8174 0.9927 0.9895 -0.1673

LCOM4 0.9757 0.9362 0.8074 0.9715 0.9694 0.6800

NOC 0.9941 0.9362 0.8117 0.9912 0.9857 0.0046

RFC 0.9868 0.9438 0.8212 0.9607 0.9590 0.4506

COF -0.9218 -0.9441 -0.8136 -0.9473 -0.9832 -0.5369

WMC 0.2779 -0.9333 -0.4083 0.8066 -0.2689 -0.1214

Cognitive c. 0.9786 0.9644 0.9492 0.9749 0.9921 0.9160

0.6842

Struct.complexity 0.9893 0.9397 0.8054 0.9250 0.9470 0.7269

Correlation between Density and software metrics

Density Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc -0.8454 -0.8689 -0.7711 -0.9895 -0.9679 -0.4208

CBO -0.8840 -0.8692 -0.7453 -0.9600 -0.9925 -0.2184

DIT -0.8803 -0.9591 -0.7723 -0.9301 -0.9779 0.2862

LCOM4 -0.9022 -0.8926 -0.7514 -0.9103 -0.9969 -0.6147

NOC -0.8909 -0.9852 -0.7791 -0.9460 -0.9871 0.1140

RFC -0.9061 -0.9758 -0.7669 -0.9891 -0.9899 -0.3486

COF 0.9588 0.9553 0.9594 0.9990 0.9828 0.4422

WMC -0.4471 0.9773 0.5139 -0.5822 0.1740 0.0196

Cognitive c. -0.9174 -0.8652 -0.7966 -0.9825 -0.9702 -0.9232

Struct.complexity -0.8884 -0.8254 -0.7469 -0.8405 -0.9869 -0.6686
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Correlation between Diameter and software metrics

Diameter Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.6319 0.8586 0.6835 0.7119 0.2225 -0.3168

CBO 0.6734 0.9132 0.6558 0.8192 0.1277 -0.4956

DIT 0.6812 0.8579 0.6883 0.8422 0.1984 -0.7540

LCOM4 0.6928 0.8172 0.6808 0.8669 0.1290 -0.1253

NOC 0.7190 0.7638 0.6714 0.8518 0.1801 -0.6743

RFC 0.6937 0.7979 0.6794 0.7107 0.1507 -0.3967

COF -0.7777 -0.7555 -0.7680 -0.6752 -0.1675 0.2931

WMC 0.3300 -0.7461 -0.2138 0.9778 0.0372 0.5780

Cognitive c. 0.7134 0.9195 0.7325 0.7610 0.2748 0.4031

Struct.complexity 0.7008 0.9020 0.6701 0.8731 0.1436 -0.0890

Correlation between Weakly connected components and software metrics

WCC Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.9650 0.9338 0.8191 0.9799 0.9877 0.5446

CBO 0.9955 0.9490 0.8019 0.9954 0.9880 0.3665

DIT 0.9873 0.9841 0.8176 0.9872 0.9922 -0.1280

LCOM4 0.9745 0.9339 0.8080 0.9584 0.9935 0.6974

NOC 0.9951 0.9593 0.8110 0.9834 0.9949 0.0395

RFC 0.9834 0.9662 0.8221 0.9754 0.9844 0.4835

COF -0.9213 -0.9488 -0.7991 -0.9677 -0.9914 -0.5600

WMC 0.2827 -0.9389 -0.4041 0.7522 -0.2299 -0.1686

Cognitive c. 0.9755 0.9483 0.9509 0.9809 0.9897 0.9059

Struct.complexity 0.9884 0.9186 0.8074 0.9010 0.9767 0.7470

caption*Correlation between average clustering coeffient and software

Avg. clust. coeff. Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.3867 0.6922 0.6591 -0.3492 -0.0423

CBO 0.4955 0.6234 0.5528 -0.1561 -0.1847

DIT 0.4085 0.7012 0.4733 -0.3142 0.3003

LCOM4 0.5632 0.7652 0.4350 -0.1715 -0.2045

NOC 0.4509 0.6531 0.5202 -0.2728 0.2934

RFC 0.5562 0.6773 0.7095 -0.1471 -0.1080

COF -0.6053 -0.4215 -0.7090 0.2825 0.0506

WMC 0.2426 -0.0631 0.0710 0.4212 0.2156

Cognitive c. 0.5901 0.7381 0.6200 -0.3329 -0.4594

Struct.complexity 0.5185 0.6802 0.3186 -0.1168 -0.3464
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Correlation between average degree and software

Avg. degree Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.7261 -0.9553 -0.4677 0.5695 0.8512 -0.4467

CBO 0.7924 -0.9385 -0.4834 0.6968 0.7405 -0.3306

DIT 0.7315 -0.8607 -0.4601 0.7411 0.8432 0.1926

LCOM4 0.7640 -0.9261 -0.4515 0.7846 0.7599 -0.6277

NOC 0.7517 -0.7286 -0.4398 0.7459 0.8278 0.0476

RFC 0.7745 -0.7579 -0.4771 0.5443 0.7256 -0.4116

COF -0.6277 0.8438 0.2934 -0.5100 -0.8393 0.4639

WMC -0.0634 0.6182 0.1084 0.9583 -0.4160 0.1657

Cognitive c. 0.7620 -0.9363 -0.5713 0.6315 0.8029 -0.8651

Struct.complexity 0.7799 -0.9575 -0.4907 0.8355 0.6927 -0.7013

Correlation between average shortest path and software

Avg. shortest path Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc 0.6192 0.7882 0.3996 0.7205 -0.8343 -0.2891

CBO 0.7264 0.7634 0.3795 0.8261 -0.7878 -0.5071

DIT 0.6877 0.6578 0.3990 0.8458 -0.8483 -0.7304

LCOM4 0.7317 0.7381 0.3882 0.8640 -0.8038 -0.0958

NOC 0.7430 0.4754 0.4008 0.8509 -0.8460 -0.6354

RFC 0.7642 0.4912 0.4001 0.7214 -0.7503 -0.3836

COF -0.8272 -0.6645 -0.6489 -0.6835 0.8559 0.2635

WMC 0.4878 -0.4929 -0.0764 0.9712 0.5377 0.6081

Cognitive c. 0.7760 0.7924 0.4333 0.7639 -0.7718 0.4203

Struct.complexity 0.7264 0.8319 0.3751 0.8587 -0.7403 -0.0713

Correlation between in degree distribution γin and software

γin Cassandra Chukwa Hadoop
Http-

Components
IVY Jena

Avg. cc -0.1609 0.6808 0.2844 -0.2551 -0.3550 -0.0193

CBO -0.1611 0.6082 0.3020 -0.1584 -0.4431 -0.0462

DIT -0.1566 0.5539 0.2944 -0.1211 -0.3485 0.0878

LCOM4 -0.1660 0.6867 0.2576 -0.0804 -0.4393 -0.1142

NOC -0.1569 0.4711 0.3040 -0.1063 -0.3649 0.0751

RFC -0.1650 0.4916 0.2877 -0.2168 -0.4956 -0.0327

COF 0.1977 -0.6117 -0.2644 0.2009 0.3565 0.0309

WMC -0.1554 -0.2457 -0.3513 0.2644 -0.5226 0.0184

Cognitive c. -0.1248 0.5807 0.2743 -0.1988 -0.4261 -0.2753

Struct.complexity -0.1738 0.6210 0.2835 -0.0339 -0.5042 -0.1403
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Appendix D Scatter plots

Cassandra system

Call network

Collaboration network

Inheritance network
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Chukwa system

Call network

Collaboration network

Inheritance network

we can see that the clustering coefficient did not change and is equal to zero indicating that this is a bipartite graph.
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Hadoop system

Call network

Collaboration network

Inheritance network
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Http Components system

Call network

Collaboration network

Inheritance network
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Ant-Ivy system

Call network

Collaboration network

Inheritance network
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Jena system

Call network

Collaboration network

Inheritance network
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