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Abstract

Breast cancer (BC) is one of the most common forms of cancer seen among females in Western
countries. However, many breast cancer cases occur in a minority population at increased risk.
Susceptibility to breast cancer is multifactorial. During the last two decades, there has been an
increase in studies investigating the genetic risk factors associated with BC. In the late 1990s, a
nationwide study started called HEBON with a primary goal to identify genetic variations, estimate
cancer risk within families, and develop better treatment methods. However, the HEBON data is
poorly connected with publicly available databases and not accessible. Therefore, for allowing a
connection to existing non-HEBON datasets, such as ClinVar, LOVD, Gnomad, UniProt, GTex,
TCGA, and making it accessible and machine-readable, we propose a FAIR model for FAIRification
of the data. In addition, and to demonstrate the power of connecting to public databases, we
analyse the association between the genetic profile of HEBON study participants and family
history. We performed transcriptome-wide association analysis using the SNP arrays and found 14
genes associated with breast cancer incidence. We found that these 14 genes significantly changed
expression levels in cases and played a role in the cellular immune response. Later, we wanted
to understand the interaction of our findings with the known BC genes (from Wu et al. and
Ferreira et al.) and the implicated processes. We performed enrichment analysis on the network
for understanding the involved processes and pathways. Our results found that the genes in the
network play a role in chromatin organisation, cellular localisation, hinting at involvement in DNA
repair. The network was also enriched in various KEGG pathways involved in cancer. Lastly, to
demonstrate the power of FAIR data, we computed polygenic risk scores (PRS) for individuals who
are the carrier of BRCA1/2 mutation and non-carrier, followed by correlating the PRS and cancer
risk score based on family history.
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Chapter 1

Introduction

Cancer is often termed a ”disease of the genes” to emphasise the significance of cataloguing and
analysing mutations associated with it. The recent advancements in sequencing technology have
underpinned several large-scale projects to compile genomic information related to cancer systemat-
ically [1]. For example, the Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/) focuses
on identifying links or genomic mutations associated with cancer have vast clinical applications [2].

Cancer’s primary cause is somatic mutations in specific tissues that accumulate over time, although
it may be favoured by genetic predisposition, i.e., Germline variants. It has been seen that both rare
and common germline variants have been associated with specific diseases [1, 3]. The association of
common germline variants with clinical features and disease can be studied through Genome-Wide
Association Studies (GWAS). GWAS uses large cohorts of cases to measure and analyse DNA
sequence variations to identify the relationship between the disease and mutations across the
entire genome [1, 3]. The ultimate aim of GWAS is to predict the risk of an individual to develop
the disease using the risk factors and to identify the underpinnings of disease susceptibility for
developing better strategies for prevention and treatment.

Breast cancer (BC) is one of the most common forms of cancer seen among females in the Western
population. However, a large proportion of breast cancer cases occurs in a minority population at
an increased risk [4]. Susceptibility to breast cancer is multifactorial. Many genetic variants and
reproductive, lifestyle, and hormonal factors are associated with the risk of incurring the disease [5].
Turnbull et al. represent the frequency-risk profiles for BC based on the clinical characterization by
plotting the Allele frequency vs Relative risk [6]. Figure 1.1 demonstrates that the genes BRCA1 and
BRCA2 have high penetrance, other BC genes have a moderate penetrance, and risk variants have
low penetrance. Colditz et al. showed that an estimated 15% to 30% of cases of breast cancer are
heritable. However, the genetic alterations accounting for BC are not fully defined [7]. Mutations in
regions of high and moderate penetrance genes which are known with breast cancer susceptibilities,
such as BRCA1, BRCA2, PALB2, ATM, and CHEK2, have been identified in 5% of breast cancer
cases and about 30%–40% of cases associated with a family history of breast cancer [8, 9, 10, 11, 12].
During the last two decades, there has been an increase in studies investigating the genetic risk
factors associated with BC and explaining the missing heritability. GWA studies have identified
many genetic loci associated with BC, explaining up to 18% heritability and suggests that BC
is a complex, polygenic disease. Studies like The Breast Cancer Association Consortium (BCAC)
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CHAPTER 1. INTRODUCTION 7

investigate the risk of BC in more than 200,000 individuals and found 65 new loci associated with
BC [13]. Another study by Milne et al. identified ten more variants associated with BC, specifically
with ER-negative disease risk [14]. With all the studies, we can now explain approximately 50% of
the familial risk of breast cancer in terms of identified genes and genomic variants. In Figure 1.2,
we represent the known familial risk factors as a pie chart.

Figure 1.1: Risk penetrance profile for genetic susceptibility factors [6]

Jointly, GWA studies resulted in identifying a total of more than 170 genomic loci with BC risk
association. Wu et al. took a different approach in identifying genomic association by using the
SNP profile of the individuals to predict their gene expression profile and identified a total of 179
genes with increased risk of breast cancer incidence. Of these, 23 have not been reported previously
to have an association [15]. This method of identifying genomic association by predicting the
transcriptome from the SNP profiles is known as a Transcriptome-wide association study or TWAS.

In the Netherlands, a nationwide study called HEBON, i.e., Hereditary Breast and Ovarian cancer
research Netherlands, primarily focussing on the families with breast and ovarian cancer cases
started in the late 1990s and is still ongoing. This study’s primary goal is to identify genetic
variations, estimate the cancer risk within families, and develop better treatment methods. This
study consists of various groups and departments from the eight University Medical Centres across
the Netherlands and the NKI or the Antoni van Leeuwenhoek institute. Estimation of liability to a
disease can be done based on the individual’s genotype, i.e., polygenic risk score, or the risk factors
(such as hormonal, lifestyle), genetic test results, and family history of an individual. The CanRisk
tool [16] estimates the risk based on the risk factors, pedigree information, genetic test results and
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Figure 1.2: The familial risk factors known to be associated with Breast cancer. GWA studies have
identified ∼ 170 genomic loci, and various genes [8, 9, 10, 11, 12, 13, 14, 15]. The genetic factors
that jointly explain ∼ 50% of familial risk to BC.

PRS. The CanRisk tool allows researchers and healthcare professionals to carry out multifactorial
breast and ovarian cancer risk predictions.

In science, the amount of data generated is astronomical. It requires interoperability for exchanging
information between research groups, which leads to the development of FAIR principles [17].
FAIR principles allow tackling the issue of sharing data between researchers by making data
Findable, Accessible, Interoperable, and Reusable. The FAIR principles imply the data to be found
on the internet, retrievable with or without authentication, integrated with other data sets, and
documentation of data generation [18]. Sinaci et al. [19], and Jacobsen et al. [20] presents a workflow
for FAIRification of health care data from raw data.

1.1 Problem Statement

The HEBON study has collected various data on participating individuals such as genetic testing
information, risk factor, pedigree data, patient data, treatment data, mammographic data. The nine
centres collect the data, then Antoni van Leeuwenhoek (AVL) anonymizes it. Various centres hold
the data about a specific domain of expertise (such as DNA treatment, risk factors, Imaging). The
AVL hold the central record of IDs for mapping the data, the Erasmus Medical Center, Rotterdam
manages data on cancer treatment, LUMC manages data on genetic testing.

The development of better treatment approaches requires continually update of the data based on
the current community knowledge. For example, new information on genomic variants and their
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pathogenicity are published every month. Keeping track of such information can become tedious and
can be expedited by following FAIR data standards. FAIR HEBON data will allow researchers to
exploit the new knowledge in improving patient treatment, performing a meta-analysis, re-analysis
based on updated domain knowledge. Another application of FAIR HEBON data will allow a more
streamlined, automated usage of online tools such as the CanRisk tool [5, 16] for risk prediction.
Hence, we propose FAIRification of HEBON data in this thesis.

The FAIRification of the data allows easier connection to public databases. As proof of concept, a
meta-analysis of genotyped data would identify associated genes with breast cancer. Hence, we
propose to perform a TWAS analysis on the genotyped data of HEBON participants. We propose
to showcase another application of FAIR HEBON data to compute a risk score based on known
genomic variants for Breast Cancer. Lastly, we would compare these polygenic risk scores with risk
prediction by the CanRisk tool for each individual.

In this thesis, we answer why FAIRification of HEBON data is important? HEBON data is made
FAIR in order to connect it with publicly available databases. To show the application of FAIRified
HEBON data, we run the TWAS pipeline to identify the associated genes with BC with help of
GTEx data. What are the remaining familial risk factors associated with BC? By performing the
TWAS analysis of genotype data. How do the genes found in TWAS analysis interact with known
BC genes? By performing network analysis and enrichment of the network. Lastly, we want to see
how PRS and predicted risk scores are correlated based on risk factors, genetic test results, and
pedigree data.

1.2 Thesis outline

In chapter 2, we will give a brief background about the FAIRification process, GWAS analysis,
PRS computation and CanRisk tool. The research in this thesis can be split into two parts, first
the FAIRification of HEBON data and second, running the analysis pipeline using the HEBON
data. Next, in chapter 3, we present the dataset and the methods used. We discuss all our results
in the subsequent chapter 4. Finally, we conclude and describe the future work in chapter 5.



Chapter 2

Background

This chapter describes the underlying concepts and principles to understand FAIRification and the
genome-wide association studies process.

2.1 FAIR Principles

The Science builds over prior discoveries, and the progress of science intrinsically depends on the
amount of available information. With the digital age, data being produced in the field of science is
reaching enormous sizes. With increased data volume, there is a need for scientific data management.
In 2016, in the journal Scientific Data, Wilkinson et al. [17] published ”FAIR Guiding Principles
for scientific data management and stewardship.” to provide a framework and need to make the
information found, accessed, interoperable, and reusable by the community. The principles primarily
emphasise machine-actionability in order to automate the computational processes. The author
defined principles for making data FAIR, i.e., findable, accessible, interoperable, and reusable, which
can be seen in the following sections.

2.1.1 Findable

1. Metadata and data are assigned a persistent and globally unique identifier: A
globally unique identifier refers to only one resource globally, and persistence means that this
identifier is always used to refer to the same resource [21, 22].

2. Rich metadata describes data: This principle allows the resource to be discovered through
search or filtering, as a not well-described resource cannot be discovered accurately [21, 22].

3. Metadata includes the data identifier it describes.

4. Indexing of the Metadata and the data in a searchable resource: Registering and
indexing metadata and the data in a searchable resource helps accomplish the first, second,
and third principles [21, 22].
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2.1.2 Accessible

1. Metadata and the data can be retrieved using their identifier through a stan-
dard communication protocol: the Communication protocol needs to be universally
implemented, open, and free. Moreover, it should allow for authentication and authorisation
when needed [21].

2. Even if the data is not accessible, however, the metadata can still be accessed.

2.1.3 Interoperable

1. The metadata and the data use a widely accepted, formal, and accessible language
for knowledge representation.

2. Use of vocabularies following FAIR principles for metadata and data modelling.

3. Metadata and data should include relevant and meaningful references.

2.1.4 Reusable

1. Metadata and data are with accurate and relevant attributes: Metadata and data
include a data usage licence, a detailed description of how data was generated and meets
community standards.

2.2 FAIRification

Kush et al. [23] show the advantages of using a common data element (CDE) for the FAIRification
of data. CDEs are standardised data collection units that try to answer one or more questions with a
set of values. CDEs often contain terminology concepts defining the meaning of the data, identifiers
for each CDE. CDEs allows the researchers in developing better machine-readable and interoperable
semantic models [23]. Zhang et al. [24] showcase semantic modelling of their oncology data for
achieving interoperability with the public databases. Zhang proposes an ontology framework for
modelling the data using the National Cancer Institute (NCI) Thesaurus [25] and, as proof of
concept, perform survival analysis on the data [24].

2.3 Genome-wide association study

The goal of population-based association studies is to identify genomic variants that vary systemat-
ically and proportionally between individuals with different disease states and represent the effects
of risk-enhancing or protective alleles [26]. SNPs are the single base-pair changes occurring in the
DNA sequence and have a high frequency in the human genome [27]. Thus, SNPs are considered the
modern unit of genetic variation and are used as genomic markers. SNPs typically have two alleles,
i.e., two commonly occurring base-pair possibilities for an SNP location within a population. SNP fre-
quency is given in terms of the minor allele frequency or the frequency of the least common allele [26].
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The population geneticists describe the changes in the frequency of genetic variation over time
within a population mathematically by Linkage disequilibrium (LD), related to the chromosomal
linkage. Chromosomal linkage is where two markers remain physically linked on a chromosome
through generations. LD is a property of SNPs, and it is a measure of co-occurrence of two alleles
of two different SNPs [3, 26]. LD is commonly represented in D′, and r2, where D′ represents the
recombination between markers and r2 is the statistical measure for correlation [28, 29].

Ford et al. showed that the genomic variation in BRCA1 and BRCA2 were contributed towards
inherited breast cancer [30]. Over the decades, research studies such as Wu et al., Ferreira et al.
analysed genotyped data using transcriptome- and genome-wide association studies to identify
more than 88 genes that were not known to be associated with Breast Cancer. GWAS analysis
strategies generally include four components: (i) pre-processing the data; (ii) generation of new
data; (iii) statistical analysis of the data; and (iv) post-analysis investigations. These investigations’
primary goal is to identify and characterise the association among SNPs and measure the disease
progression or disease outcomes [31].

Figure 2.1: GWAS Pipeline as decirbed by Reed et al. [31]



CHAPTER 2. BACKGROUND 13

2.3.1 Preprocessing

Pre-processing/Quality control is a vital part of the GWAS pipeline, as the raw genotype data are
inherently imperfect. The genotype data can have errors for various reasons, such as poor quality
DNA samples, ineffective genotype probes, bad DNA hybridisation, contamination, or mix-ups of
the sample. QC involves filtering SNPs and individuals based on missingness, inconsistencies in the
sex, minor allele frequency, heterozygosity, relatedness.

SNP-level filtering

SNP-level filtering excludes SNPs with missing information. One of the criteria for filtering is the
call rate, i.e., for a SNP, the information of proportion of individuals on the corresponding SNP is
available in the study. Thus, for example, a call rate of 95% is used as a filter, that retains SNPs
with less than 5% missing data.

The following criteria for filtering are minor allele frequency (MAF). A significant degree of homozy-
gosity for an SNP across participants often results in inadequate power for inferring a significant
association between the trait and the SNP. A very small MAF would mean that most individuals
will have two copies of the major allele.

Other filtering criteria are the Hardy–Weinberg (dis)equilibrium (HWE) law. HWE assumes an
indefinitely large population where no mutation, migration, or selection. Thus, violation of the HWE
law would mean that the genotype and the allele frequencies are not constant over generations,
and the genotype frequencies are significantly different from expectations. For example, if allele A
has the frequency of 0.20 and allele T has the frequency of 0.80, then the expected frequency of
genotype AT would be 2 ∗ 0.2 ∗ 0.8 = 0.32.

In GWA studies, it is assumed that any deviation from the HWE is due to the genotyping errors.
The threshold for cases is often less stringent than that of controls. If the case-control status is
known, then the HWE law violation indicates genetic association with the trait. The deviations
from HWE are measured by performing a goodness-of-fit test between the expected and observed
genotypes.

Sample-level filtering

In the next stage of data pre-processing, sample-level filtering is performed for excluding the
individuals from the analysis based on sample contamination, missing data, population stratification,
and ethnic, gender, or racial ambiguity. Similar to SNP-level filtering, individuals with missing
genotype data across the study are excluded based on the call rate. Sample-level filtering also
includes filtering based on heterozygosity, i.e., the presence of both the alleles of a given SNP for an
individual. The heterozygosity can be filtered using the HWE threshold. Lastly, SNP relatedness,
duplicates and population stratification can be dealt with by SNP pruning. This pruning is applied
by thresholding the linkage disequilibrium value.
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2.3.2 Data generation

After the pre-processing of data, new data is generated before performing the statistical analysis.
The genotypes of non-typed SNPs that may have a functional relationship to the results are
generated by imputation. Imputation of non-typed SNPs can be performed using a reference
haplotypes panel and their LD map, such as Haplotype Reference Consortium (HRC) and 1000
Genomes data. Thus, this provides additional power for the identification of the association. After
imputing the non-typed SNPs, as part of quality control, the imputed data with high uncertainty is
filtered out. Standard measures of uncertainty are the information content and R2, and a threshold
is often applied to R2 for filtering. R2 is the value associated with the linear model regressing the
imputation.

2.3.3 Statistical analysis

Generally, association analysis includes regressing each of the SNPs individually for the given trait.
A typical GWAS analysis examines each SNP independently for associations with the trait by
performing a series of single-locus statistical tests. Commonly, for analysing quantitative traits, a
generalised linear model (GLM) and analysis of variance (ANOVA) are used. ANOVA is comparable
to linear regression, as it uses a categorical predictor variable. Both methods assume that the traits
are normally distributed, and the groups in the study are independent and homoscedastic [3].

These tests measure the deviation from the null hypothesis (i.e., no association between the
phenotype and the genotype class) in terms of p-value and effect size. The null hypothesis is rejected
5% of the time, with a small probability of false positives. However, in GWA studies, hundreds of
million tests are computed, which needs to be corrected. Correction for multiple testing is often done
using the Bonferroni correction, and false discovery rate (FDR)[3]. FDR estimates the proportion
of significant results by using a false positive rate (α) of 0.05. In comparison, Bonferroni correction
adjusts this alpha to α/k, where k represents the total statistical tests performed [32].

2.3.4 Post-analysis visualization and interrogation

GWA analysis findings can be visualised in various ways. One of them is the Manhattan plot, which
allows visualising the significance level of a GWA study by the chromosomal location. Each SNP is
plotted based on its chromosomal location and the negative log scaled p-value [33]. SNPs with a
smaller p-value will have a higher negative log scaled p-value, meaning by inspecting the plot, one
could identify associated SNPs. This identification is often based on the Bonferroni correction used
as a threshold in the plots. Lastly, the SNPs which were found to be associated with the trait are
mapped to their genomic location using the base pair position and the chromosomal location. This
mapping helps in identifying the genes associated with the trait. The SNP-level findings can also
be used for predicting the genomic expression levels [15].

Polygenic Risk scores

Another post-analytic interrogation is computing the polygenic risk scores (PRS), a single-valued
estimate of an individual developing a disease/trait, which has potential applications in the field of
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precision medicines [34]. The PRS is computed as the sum of their genotypes, weighted effect sizes
taken from the summary statistics of the GWAS.

PRS =
k∑

i=1

βiNi (2.1)

Igo et al. [35] describe the calculation of a polygenic risk score as the sum of the log of odds ratio, βi,
multiplied by the number of risk alleles, Ni for each locus. The equation 2.1 provides the estimated
risk for the disease.



Chapter 3

Materials and Methods

This chapter covers the description of the dataset used and the methods for FAIRification of the
data and analysis pipeline.

3.1 Dataset

In 5 − 10% of breast cancer incidences, heredity is the cause, and other factors play a role in the
other 90 − 95%, along with the genetic predisposition. In the mid-90s, researchers found BRCA1
and BRCA2 to be related to breast and ovarian cancer. Women with a mutation in either of the
two genes have significantly increased breast and ovarian cancer risk. Men and women can pass on
the BRCA gene mutation to their daughters and their sons [36].

The dataset used in this project is from the HEBON study, a nationwide survey of families with
breast and ovarian cancer incidence, to facilitate researchers and these families. Individuals from
families with breast or ovarian cancer incidences and have at least one member genetically tested
can participate. Each tested individual receives an invitation letter and is grouped based on their
response to participation in the study, does not want to participate, and does not respond. HEBON
collects various information from the participating individuals, such as the age of cancer incidence,
lifestyle factors (i.e., alcohol consumption, smoking status), genetic mutations, family history, and
medical records (such as MRI images, mammograms).

Analysis Instances Data source
FAIRification 54,890 individuals HEBON DNA data

TWAS analysis
2155 cases;

1778 controls
cases: HEBON;
controls: BCAC

Risk score
2132 carrier cases and control

2155 non carrier cases
1778 non-carrier controls

BRCA1/2 carrier: CIMBA;
non-carrier cases: HEBON;
non-carrier control: BCAC

Table 3.1: Data distribution for the data used in this study.

In this project, we FAIRified the DNA determinations or testing information and genomic variant
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data and analysed the genotype and pedigree data of the participants. The DNA determinations
data is represented using a relational database using ten tables containing information of 54,890
individuals. The DNA determinations data consist of genetic testing results, variants found after
testing, various studies the individual was part of, and testing centre details. The genetic testing
data consist of mutation in either of the eight genes (BRCA1, BRCA2, RAD51C, RAD51D, BRIP1,
PALB2, CHEK2 and ATM). For our TWAS analysis, we use the genotype data, i.e., SNP array
is represented using a PLINK file [37] containing a total of 2323 individuals who do not carry a
BRCA1/BRCA2 mutation. Lastly, for comparison between the PRS and the CanRisk tool prediction,
we used the genotype data of individuals with a mutation in BRCA1/BRCA2 from the CIMBA
study, pedigree information and diagnostic test information.

3.2 FAIRification

As shown by Jacobsen et al. [20] (seen in figure 3.1), the FAIRification can be split into three phases:
pre-FAIRification, FAIRification and post-FAIRification. The first step of the pre-FAIRification
phase is identifying the FAIRification objective, which here is to make the HEBON data interop-
erable and findable. The next step in this phase is analysing the HEBON data and metadata by
checking the data representation, data description and existing FAIR features. Before moving to
the FAIRification process, the data is preprocessed, such as mapping the variant to their genomic
location, anonymising individual identifiers while following the FAIR guiding principles.

Figure 3.1: FAIRification workflow as decribed by Jacobsen et al. [20]. The workflow can be divided
into 3 parts, pre-FAIRification, FAIRification,, and post-FAIRificaition.

FAIRification of data requires defining a semantic model, which depicts the relation between the
available data. Semantic models are often considered as a template for transforming the data into an
interoperable and machine-readable format. It describes the data, formally depicting the relationship
between data elements while using common vocabularies for annotation and interoperability with
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other available resources. We referred to the common data element model of EJP-rare diseases. We
used Resource Description Framework (RDF), Resource Description Framework Schema (RDFS),
and Web Ontology Language (OWL) for our semantic model. RDF, RDFS and OWL are the
common representation languages used in Semantic modelling.

3.3 TWAS pipeline

We used SNP arrays of 2155 cases from the HEBON study and 1778 controls from the BCAC
study [13] for our TWAS analysis. All participants in our study are females who come from the
Netherlands and do not carry a BRCA1/BRCA2 mutation.

3.3.1 Pre-processing the genotype data

A crucial step for analysing population-wide genomic data is pre-processing the data by performing
quality control (QC). We use PLINK [37], a command-line program that allows the users to perform
a wide range of genetic analyses for handling the genotyped data. The first step of QC is to deal
with SNPs and individuals’ missingness, and we excluded the SNPs and individuals with a call rate
below the threshold of > 95%. The next step in the QC is handling the SNPs with low MAF and
deviation from the Hardy-Weinberg equilibrium. We excluded the SNPs below the MAF threshold
of 0.05 and the Hardy-Weinberg equilibrium p-value below e−6 for controls and e−10 for cases. The
next step is handling the heterozygosity and the relatedness of samples, discrepancies related to
sex. We performed QC with strict thresholds, similar to the authors [15].

3.3.2 Imputation

Next, we phased the genotype data using Eagle [38], which estimates the haplotype phase using a
phased reference panel, improving the imputation quality. We imputed the phased genotype data
using Minimac3 [39] to the Haplotype Reference Consortium reference panel [40] with the genome
built GRCh37. Minimac3 is a computationally efficient and lower memory software for genotype
imputation [39]. We included only the SNPs with an imputation quality of ≥ 0.8, a MAF of ≥ 0.05,
and a call rate ≥ 98% for the association study.

3.3.3 TWAS analysis

We predict the gene expression of each individual based on the included SNPs using the PrediXcan
algorithm [41]. PrediXcan uses an elastic net with alpha = 0.5 as recommended by Gamazon et
al. We use weights of the pre-trained model on GTEx V7 data of Breast tissue from European
individuals. We applied PrediXcan using these weights on the genotype data; first, it predicts the
gene expression and then runs association tests for a trait. The genes with a prediction score (R2)
≥ 0.09 and a p-value below the Bonferroni-correlated threshold, ≤ 5.82 ∗ 10−6, were associated with
breast cancer.
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3.3.4 Network analysis

After predicting the gene expression and identifying the associated genes, we wanted to understand
the interaction of our findings with the known genes and the implicated processes. We used the
STRING [42] database for identifying the interaction between associated genes and known genes
associated with breast cancer [36] using network analysis. The network is in the form of a graph
G = (V,E). The vertices, V , represent genes and the edges, E, exhibits interaction based on curated-
literature interactions from STRING [42]. Next, we perform network enrichment for understanding
the relationships between genes in the network. The enrichment of network was done using gene
ontology (GO) terms to investigate enriched GO biological processes.

3.3.5 PRS Calculation

We compute the PRS for the individuals with a BRCA1/BRCA2 mutation using the formula given
by Igo et al [35] and in Equation 2.1 based on the 313-breast cancer-associated variants.



Chapter 4

Results and Discussion

In this chapter, we report our findings of the FAIRification and association analysis of the HEBON
data. First, the results of the FAIRification process are discussed where the proposed semantic
model is reported, followed by the FAIRness of the data. Next, the results of the association
and network analysis are discussed in depth. The HEBON data is patient sensitive, therefore has
restricted access and is stored at the LUMC. The code for this study can be found at GitHub:
Mandloi2309/HEBON-analysis.

4.1 FAIRification

We followed the FAIRification workflow, and our objective for HEBON FAIRification was to
make the data interoperable and findable with the publicly available databases and tools. Before
FAIRification, the data was represented using a relational database and lacked persistent URIs.
The information on variants is represented in a VCF, which was standardised according to the EVA
standards. Next step, after analysing the data, we defined a semantic model for representing the
data. We used existing ontologies like Semanticscience Integrated Ontology (SIO)[43], Genotype
Ontology (GENO)[44], SNOMED Clinical Terms (SNOMEDCT)[45], Sequence Types and Features
Ontology (SO)[46], National Cancer Institute Thesaurus (NCIT)[25], and DCMI Metadata Terms
(DC) for describing the data.

The semantic model can be seen in Figure A.1 and in figures 4.1, 4.2, 4.3, and4.4. In figure 4.1, the
information about the individual is represented, such as their HEBON identifier, the study they were
part of and the date and time of the entry. Each HEBON participant is assigned a unique identifier,
i.e., HEBON number, and we use this as a URI for each individual in our model. Most participants
of the HEBON study has also taken part in various other studies (like CIMBA, BRIDGES, IBCCS),
and we use SIO to define this relationship between the study and the participant. We created 13
study instances of ’NCIT: study’ for defining the relationship of the HEBON individuals and the
studies.

In figure 4.2, the information pertaining the variant detected is represented. The variant information
includes HGVS notation of the variant, its effect on DNA and protein molecules, the genomic
location of the variant, the reference sequence used for detecting the variant, and the gene where
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the variant is found. We used ClinVar IDs as a URI and Wiki ontology for HGVS notation for each
variant. Sequence alteration caused by the variants is represented using instances of the sequence
alteration class of GENO. Effect on protein is represented using SO and SNOMEDCT vocabularies.
Each individual in the HEBON study was tested at one of the 9 test centres, and we represent the

Figure 4.1: Semantic model representing the general information and detailed studies regarding the
individuals part of the FAIRification process. Ontologies such as SIO, NCBI, NCIT were used in
representing the data.

test centre information using an instance in figure 4.3. The test type information is represented using
instances of NCIT genetic testing. The instances have either partial screening, mutation carrier
screening, genetic screening and are undetermined as its value. The test results are represented using
clinical test results from NCIT, and each instance is described using vocabularies from SNOMEDCT
and SIO. The genetic tests identified the variants for each individual, which are represented as an
instance of modification class from GENO. Test results were divided into two categories, general
test results and variant test results. The general test results provide information if a known variant
was found during the test. The variant test result provides detailed information on the variant,
such as heterozygous or homozygous. Lastly, in the HEBON study, each variant is classified using
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Figure 4.2: The model represents the variant information such as HGVS notation of the variant, its
effect on DNA and protein molecules, the genomic location of the variant, the reference sequence
used for detecting the variant, and the gene where the variant is found. We used ontologies such as
GENO, NCIT, SIO, SNOMEDCT for model building.

three classifications; gold classification, HEBON classification, and IARC classification and is
represented in the figure 4.4. The gold classification describes whether the individual is a carrier or
non-carrier of a pathogenic mutation for each gene and the number of pathogenic mutations. It
is based on the joint analysis of available genetic data for an individual and represents a carrier
status summary score. The International Agency for Research on Cancer (IARC) categorised
the variants based on their pathogenicity to humans [47]. Lastly, the HEBON classification is
the carrier classification based on original reports from the diagnostic lab with a variant descrip-
tion. HEBON classification and gold classification, in principle, should be identical. However,
based on available data, gold classification will evolve and be different over time. Each classifica-
tion was represented using instances of NCIT classification class and relationship from SNOMEDCT.

The FAIRification of HEBON data for linking it with heterogeneous datasets has demonstrated
the usefulness of using semantic data integration to resolve schematic, syntactic and semantic
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heterogeneities across various data sources. The use of ontologies and common data elements
(CDEs) facilitates data integration in various ways:

1. A shared, controlled vocabulary helps in standardising the data elements. It makes it easy to
understand the data for humans and computers.

2. Modelling the data and defining semantic relationships between data elements explicitly states
the assumptions based on domain and data.

3. FAIR represents the data in a formal and machine-readable language.

Figure 4.3: The model represents the testing information such as test centre details, type of test
done for variant detection, and the result of the tests. We used ontologies such as GENO, NCIT,
SIO, SNOMEDCT for model building.
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Figure 4.4: The model represents the three classifications used in HEBON study such as gold,
IARC, and HEBON classification test. The gold classification describes whether the individual is a
carrier or non-carrier of a pathogenic mutation based on the available genetic data and represents a
carrier status summary score. The International Agency for Research on Cancer (IARC) categorised
the variants based on their pathogenicity to humans [47]. Lastly, the HEBON classification is the
carrier classification based on original reports from the diagnostic lab with a variant description.
We used ontologies such as GENO, NCIT, SIO, SNOMEDCT for model building.

4.2 Association analysis

To assess the association between genes in breast cancer, we analysed the genotypes of participating
individuals in the HEBON study. We performed the association analysis on SNPs between cases
and controls, and we can see the association analysis results in the Manhattan plot in Figure
4.5. The Manhattan plot represents the p-values of SNPs and their genomic location. The x-axis
represents the chromosome position, and the y-axis represents the −log10 of the p-value. The genetic
variants have significant p-values and rise on the Manhattan plot. SNPs above the red line have a
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p-value less than the Bonferroni threshold and are considered to be associated with the trait. The
Figure4.5 shows SNPs above the red line accumulating on specific locations, such as chromosome 6
and chromosome 10. We plotted 7371964 SNPs using the Manhattan plot, and 1596 SNPs were
below the Bonferroni threshold. Out of the 1596 SNPs, 1455 SNPs overlap with the known SNPs
associated with BC.

The single SNPs often do not have sufficient power to be detected in the GWA study; however, we
know that multiple SNPs can influence gene expression by working together. Thus, it is possible
that multiple SNPs that individually did not associate with the disease might affect a single gene
in the same way and whose increased (or decreased) expression could be associated with the
disease. Hence, we wanted to see the gene expression of the participants, and we used PrediXcan
for predicting the expression and run association tests to a trait, i.e., breast cancer, in the cohort.
We predicted expression for 4628 genes by using 98143 out of 143827 SNPs in the model. Our
association analysis found 14 genes associated with breast cancer with a predictive score of more

Figure 4.5: Manhattan plot of genome-wide association analysis results between 2155 cases from
the HEBON study and 1778 controls from the BCAC study [13]. The figure depicts the level
of statistical significance (y-axis), measured using the negative log of the p-value for each SNP,
arranged by the chromosomal location on the x-axis. A grey or black dot indicates each typed
SNP. Imputation was performed using the HRC reference panel [40]. The red line represents the
Bonferroni level of significance (p ≤ 5 ∗ 10−8), and the blue line represents the False Discovery Rate.
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(a) ALG11 (b) HLA-DQA2

(c) MAP1LC3A (d) TMEM80

(e) WDR90 (f) BTN3A2

Figure 4.6: Predicted gene expression levels in 2155 cases from the HEBON study and 1778 controls
from the BCAC study.
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than 0.9 and p-value below the Bonferroni threshold (See Appendix B Table B.1). We represented
the expression of the genes using a boxplot (can be seen in Figure 4.6 and Appendix C. Out of 14
genes, ALG11, PSMG1, C16ORF13, HLA-DQA2 were upregulated in cases relative to controls.
MAP1LC3A, TMEM80 and BTN3A2 were downregulated in cases relative to controls, and the
rest genes had ambiguous expression relative to controls. The expression of BTN3A2 is seen to
be suppressed in many tumor cell lines. BTN3A2 encodes the protein involved in the adaptive
immune response. CASP8 plays a role in cell apoptosis, PSMG1 plays a role in proteasome assembly,
HLA-DQA2 plays a role in peptide folding, and most genes in immune response and tumour
suppression.

Our TWAS analysis of 2155 cases and 1778 controls predicted gene expression of ∼ 4600 genes and
found 14 gene found to be associated with BC. In our findings, few genes play a role in peptide
folding, chromatin assembly, and most genes play a role in the immune response. BC genes are
known to play a role in DNA damage but not so much in immune response, which can be due to
the small sample size, and missed gene signals as we were only able to predict the expression of a
quarter of genes. Out of our findings three genes CASP8, BTN3A2, and TRIM4 overlap with the
BC associated findings of Wu et al. and Ferrire et al. and literature such as Cox et al. [48] and Cai
[49] has shown that these genes associated with BC and regulate DNA repair and T-cell receptor
interaction respectively. One of the reason for such a small overlap could be due to the fact that
the HEBON participants used in this study have never been part of any GWAS studies as of now.
Another reason could be the sample size, previous studies used a larger sample size compared to
the one used in this study.

4.3 Network analysis

We performed network analysis for identifying the biological interaction of our findings (i.e. 14
genes) with the genes from Wu et al. [15] and Ferreira et al. [36] (i.e. a total of 192 genes found to
be associated with BC). We analysed 204 genes (combined from our findings and the two studies)
using the STRING database and then expanded to their first neighbours for identifying all possible
interactions. We used a cutoff of 0.7 for the interaction between the genes and expanded to 275 genes
(can be seen in figure D.1), and then we clustered the network using Markov Cluster Algorithm
based on the interactions (can be seen in figure 4.7). We can see that our findings interact with the
known set of genes to be associated with breast cancer.

The summary statistics of the network is represented in the table 4.1. The average number of
neighbours in the network is 29.578, and the network density of 0.92. In figure 4.7 we represent the
interaction network where the size of the node depends on the connectivity of each gene. The green
coloured genes are the ones found in our analysis, and purple coloured genes (i.e. CASP8, TRIM4,
BTN3A2) are overlapping genes. In the table D.1 we represent the network statistics for each node.
The Histone genes have the highest number of connections in the network, i.e. 32, betweenness and
closeness centrality and the clustering coefficient (≥ 0.9) and can be seen as a cluster at the top
left in the figure.
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Figure 4.7: STRING interaction network. We analysed 204 genes (combined from our findings,
Wu et al. [15] and Ferreira et al. [36]) using the STRING database and then expanded to their
first neighbours for identifying all possible interactions. We used a cutoff of 0.7 for the interaction
between the genes. The network then expanded to 275 genes, and then we clustered the network
based on their interactions. The green coloured genes are the ones found in our analysis, and purple
coloured genes (i.e. CASP8, TRIM4, BTN3A2) are overlapping genes.
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Summary statistics
Number of nodes 275
Number of edges 1071

Avg. number of neighbours 29.578
Network diameter 2

Network radius 1
Connected components 73

Network density 0.92
Network heterogeneity 0.12
Network centralization 0.08
Clustering coefficient 0.95

Table 4.1: Summary statistics of the STRING network.

4.4 Enrichment analysis

We performed enrichment analysis for exploring the biological function of genes associated with
breast cancer. Figure 4.8 represents the enriched network, and we found 158 genes to be involved
in various biological processes and enriched in a network based on gene ontology (GO) terms and
KEGG pathways (see table 4.2). The top 8 enriched GO processes were organelle organisation, a
cellular component organisation, cellular localisation, symbiont process, chromatin organisation, in-
terspecies interaction between organisms, antigen processing and presentation of exogenous peptide
antigen via MHC class II, and intracellular transport. The enriched processes such as chromatin
organisation and cellular localisation, which can be essential in DNA repair. The top 8 enriched
KEGG pathways were viral carcinogenesis, systemic lupus erythematosus, alcoholism, Huntington’s
disease, pathways in cancer, MicroRNAs in cancer, Colorectal cancer, platinum drug resistance.
These enriched pathways show that the genes are involved in pathways in cancer.

Few genes such as RBL2, TRIM4, CASP8 out of our findings (i.e. 14 genes from TWAS analysis)
are enriched in processes such as chromosome organization, cellular component organization etc.and
the remaining genes were interacting with the enriched genes. In the figure 4.8 and table E.1,
the cluster 1 with Histone genes is enriched in the organelle and chromosome organization, and
cellular localization. The cluster 2 with CASP8 and RBL2 is enriched in organelle and chromosome
organization, and intra-cellular transport. The cluster 3 with HLA-DQA2 is enriched in antigen
processing, and intra-cellular transport. The cluster 4 (with TRIM4) is enriched in chromosome
organization and regulation of mitotic cell cycle. The processes enriched are involved in DNA repair
mechanism, aligning with the literature that the BC genes are often involved in regulating DNA
repair. We can see our findings are also involved in these processes showing an association.
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Figure 4.8: Network enrichment of the STRING network based on GO terms. We found 158 genes
to be involved in various biological processes and enriched in a network based on gene ontology
(GO) terms (see table 4.2).
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4.5 Polygenic risk score

We analysed 2132 individuals with the BRCA1/2 mutation, 2155 without a BRCA1/2 mutation
and 1778 controls for computing the polygenic risk score based on 313 -breast cancer-associated
variants. We standardised the PRS scores by computing z-scores using the 1778 BCAC control
individuals.

The PRS density curve can be seen in the figure 4.9 and the statistics can be seen in table 4.3,
and we can see that the PRS distribution for the non-carrier controls and controls with BRCA1/2
mutation have a similar mean PRS. On the other hand, the cases that are BRCA1/2 carriers
have a higher mean than the non-carrier cases. The distribution shows the BRCA1/2 mutation is
involved in cancer risk as we see a right shift in the cases with a BRCA1/2 mutation compared to
non-carriers. Based on the curve between the controls with and without the mutation, we can say
that it does not mean that the individuals will develop cancer; it might increase the chances.

(a) PRS curve of BRCA1
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(b) PRS curve of BRCA2

Figure 4.9: PRS density curve between 2132 individuals with the BRCA1/2 mutation, 2155 without
a BRCA1/2 mutation and 1778 controls. On the x-axis is the standardised PRS scores and y-axis
represent the density. PRS in a population is known to follow a normal distribution.

Category Mean
Standard
deviation

No breast caner (non-carrier controls) 1.40 0.61
Non-carrier cases (HEBON-cases) 1.72 0.58

BRCA1 carrier - controls 2.04 0.64
BRCA1 carrier - cases 2.42 0.56

BRCA2 carrier - controls 2.14 0.62
BRCA2 carrier - cases 2.64 0.58

Table 4.3: Mean and standard deviation of PRS distribution based on the categories.

Lastly, to see if the family history and genetic test result correlate with the polygenic risk score, we
used CanRisk Tool to predict cancer risk based on the family history and genetic test. CanRisk
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tool takes pedigree data along with risk factors such as Menarche, BMI, height etc and returns a
risk score. We can see in the figure 4.10 that the PRS and risk based on family history and genetic
tests are very weakly correlated with a Pearson coefficient of −0.009. CanRisk tool predicts the
scores based on the rare variants found to be associated with breast and ovarian cancer whereas
PRS is computed based on the common variants. A weak correlation shows that PRS is not entirely
dependent on the family history but more on the genetic variations. This shows that both the
variables are independent of each other hence can be combined in computing an overall risk score.

Figure 4.10: Scatter plot representing the Pearson correlation between the PRS and CanRisk
predicted cancer risk score.
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Conclusion and future work

In this work, our objective was FAIRification of HEBON data to make it interoperable with publicly
available datasets and tools. We worked on the DNA determination data from the HEBON study.
We followed the workflow presented by Jacobsen et al. and FAIR principles for the FAIRification of
HEBON DNA data. In our semantic model of the data, we made use of various existing ontologies
and vocabularies.

Post-FAIRification, as proof of concept, we analysed the genotype data using the TWAS pipeline
for association analysis. We performed TWAS pipeline on the genotype data of individuals who
did not have a BRCA1/BRCA2 mutation and found 14 genes below the Bonferroni threshold
associated with breast cancer. We used the 14 genes and the findings of Wu et al. and Ferreira
et al. for network analysis. In network analysis, we used the STRING database for identifying
the possible interactions. We found that our findings interact with the known set of genes with
high network connectivity. Moreover, we wanted to see the role of these genes in various biological
processes. Therefore, we performed enrichment analysis on the network and found that 158 genes
were involved in various biological processes based on GO terms organelle organisation, cellular
localisation, chromatin organisation, and immune response. The top enriched KEGG pathways
were viral carcinogenesis, alcoholism, Huntington’s disease, pathways in cancer, MicroRNAs in
cancer, Colorectal cancer, platinum drug resistance.

Moreover, we computed polygenic risk scores for individuals who were carriers of BRCA1 and
BRCA2 mutation vs the non-carrier. We found from the PRS distribution that the risk scores of
individuals with BRCA1/2 mutation and non-carriers in controls have similar means. However,
cases with the BRCA1/2 mutation had a much higher mean compared to the non-carries cases.
Lastly, we looked at the correlation between the risk prediction based on the risk factors and PRS
using the CanRisk tool and found that they are very weakly correlated. This shows that the PRS
is majorly dependent on the genetic profile.

The most plausible extension of this project would be to host the FAIRified data using a FAIR
data point and perform a meta-analysis using a bigger sample size. Studies like this could help in
identifying and understanding the risk factors involved in BC development and treatment. The
detected genes could have a possible role in immune therapy in cancer and help develop personalized
treatment methods.

35
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BIBLIOGRAPHY 41

Rainer Fagerholm, Kirsimari Aaltonen, Carl Blomqvist, Heli Nevanlinna, Sheila Seal, Anthony
Renwick, Michael R Stratton, Nazneen Rahman, Suleeporn Sangrajrang, David Hughes, Fabrice
Odefrey, Paul Brennan, Amanda B Spurdle, Georgia Chenevix-Trench, Jonathan Beesley, Arto
Mannermaa, Jaana Hartikainen, Vesa Kataja, Veli-Matti Kosma, Fergus J Couch, Janet E
Olson, Ellen L Goode, Annegien Broeks, Marjanka K Schmidt, Frans B L Hogervorst, Laura
J Van't Veer, Daehee Kang, Keun-Young Yoo, Dong-Young Noh, Sei-Hyun Ahn, Sara Wedrén,
Per Hall, Yen-Ling Low, Jianjun Liu, Roger L Milne, Gloria Ribas, Anna Gonzalez-Neira,
Javier Benitez, Alice J Sigurdson, Denise L Stredrick, Bruce H Alexander, Jeffery P Struewing,
Paul D P Pharoah, and Douglas F Easton and. A common coding variant in CASP8 is
associated with breast cancer risk. Nature Genetics, 39(3):352–358, February 2007.

[49] Peian Cai, Zhenhui Lu, Jianjun Wu, Xiong Qin, Zetao Wang, Zhi Zhang, Li Zheng, and Jinmin
Zhao. BTN3a2 serves as a prognostic marker and favors immune infiltration in triple-negative
breast cancer. Journal of Cellular Biochemistry, 121(3):2643–2654, November 2019.



Appendix A

Semantic model

42



APPENDIX A. SEMANTIC MODEL 43

Figure A.1: Semantic model representing the HEBON-DNA data
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Appendix C

Predicted expression levels

(a) C16orf13 (b) CASP8

(c) EFCAB13 (d) OR2AE1
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(e) PSG4 (f) PSMG1

(g) RBL2 (h) TRIM4

Figure C.1: Predicted gene expression levels in controls and cases.



Appendix D

Network analysis

Genes
Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient

Degree Eccentricity
Neighbor-

hood
Connectivity

ACTR10 0.010931 1 0.904762 15 1 13.66667
ACTR1A 0.010931 1 0.904762 15 1 13.66667

AHI1 0 1 0 1 1 1
AKT1 0.014229 0.741935 0.838095 15 2 14.53333
ALB 0.091992 0.766667 0.783333 16 2 14

ALG11 0 0.666667 0 1 2 2
ALK 0 0.638889 1 11 3 16

ALS2CL 0 1 0 1 1 1
ALS2CR12 0 0.442308 0 1 3 16

ANKRD34A 0 1 0 1 1 1
APOBEC3A 0 0.6 1 4 2 10.5

APRG1 0 0.666667 0 1 2 2
ARHGEF19 0 1 0 1 1 1

ATF4 0 0.638889 1 10 2 15.8
ATG10 0 1 1 3 1 3
ATG5 0 1 1 3 1 3
ATG7 0 1 1 3 1 3
ATM 0.027099 0.741935 0.780952 15 2 14.06667

ATP5A1 0.030465 0.923077 0.818182 11 2 9.545455
ATP5C1 0.077183 1 0.727273 12 1 9
ATP5G1 0.030465 0.923077 0.818182 11 2 9.545455
ATP5H 0.040314 0.923077 0.8 11 2 9.454545
ATP5I 0.008748 0.857143 0.911111 10 2 10.1
ATP5O 0.008748 0.857143 0.911111 10 2 10.1

ATP6AP1L 0 0.631579 1 5 2 10.4
ATP6V0A1 0.009091 0.75 0.892857 8 2 10
ATP6V0C 0.020996 0.857143 0.844444 10 2 9.7
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Table D.1 continued from previous page
AZGP1 0 0.442308 0 1 3 16

B3GALNT2 0 1 1 3 1 3
B3GNT1 0 1 1 3 1 3
BAZ1B 0 0.695652 1 18 2 31.61111
BBS2 0 0.6 0 1 2 3
BDH2 0 0 0 0 0 0

BRCA1 0.024925 0.741935 0.790476 15 2 14.13333
BRMS1 0 0.744186 1 21 2 31.42857
BTN3A1 0 1 1 2 1 2
BTN3A2 0 1 1 2 1 2
BTN3A3 0 1 1 2 1 2
C14orf79 0 1 1 2 1 2
C16orf13 0 0.666667 0 1 2 2
C17orf105 0 1 1 3 1 3
C1orf189 0 0.555556 0 1 2 5
C21orf58 0 1 0 1 1 1
C5orf52 0 1 1 3 1 3
C5orf56 0 1 0 1 1 1
C6orf163 0 1 0 1 1 1
C9orf3 0 0 0 0 0 0
CANX 1 1 0 2 1 1
CASP3 0.105826 0.793103 0.713235 17 2 13.35294
CASP8 0.102372 0.766667 0.725 16 2 13.5625
CBX8 6.41E-04 0.842105 0.978462 26 2 30.69231
CBY1 0 1 0 1 1 1

CCBL2 0 1 0 1 1 1
CCDC110 0 0.571429 0 1 2 4
CCDC13 0 0.833333 1 4 2 4.25
CCDC14 0 0.833333 1 4 2 4.25
CCDC18 0.4 1 0.6 5 1 3.4
CCDC66 0 0.833333 1 4 2 4.25

CCT2 1 1 0 3 1 1
CDC20 0 0.875 1 12 2 12.83333
CDC42 0 1 1 2 1 2
CDRT4 0 1 0 1 1 1
CEBPB 0 1 0 1 1 1
CEP131 0 1 0 1 1 1
CEP63 0 1 0 1 1 1

CLEC18A 0 0 0 0 0 0
CMTR2 0 0.565217 1 3 2 13

CNEP1R1 0 0.571429 0 1 2 4
CPLX1 0.666667 1 0.333333 3 1 1.666667
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Table D.1 continued from previous page
CPLX4 0 0.6 0 1 2 3
CPNE1 0 1 0 1 1 1

CREBBP 0.00109 0.914286 0.970443 29 2 30.41379
CRHR1 0 1 0 1 1 1
CRIP2 0 0 0 0 0 0

CTNNB1 1 1 0 2 1 1
CUL1 0.049712 1 0.813187 14 1 11.57143
CUL3 0.049712 1 0.813187 14 1 11.57143
CYC1 0.025884 0.857143 0.844444 10 2 9.7
CYCS 0.018939 0.8 0.861111 9 2 9.777778

DCTN1 0.010931 1 0.904762 15 1 13.66667
DCTN2 0.010931 1 0.904762 15 1 13.66667
DCTN3 0.010931 1 0.904762 15 1 13.66667
DCTN4 0.010931 1 0.904762 15 1 13.66667
DCTN5 0.010931 1 0.904762 15 1 13.66667
DCTN6 0.010931 1 0.904762 15 1 13.66667
DFNA5 0 0.479167 0 1 3 20
DGKQ 0 1 0 1 1 1
DPPA4 0 0 0 0 0 0

DYNC1H1 0.002597 0.9375 0.967033 14 2 14.14286
DYNC1I2 0.002597 0.9375 0.967033 14 2 14.14286
DYNLL1 0.002597 0.9375 0.967033 14 2 14.14286
DZIP1L 0 0 0 0 0 0
ECT2L 0 0.56 1 3 2 14
EDEM2 0 1 0 1 1 1

EFCAB13 0 1 0 1 1 1
EGFR 0.002758 0.71875 0.934066 14 2 15.35714
EIF4E 0 1 0 1 1 1
EP300 0.003495 0.969697 0.926882 31 2 29.64516
ESR1 0.00109 0.914286 0.970443 29 2 30.41379
EZH2 6.65E-04 0.914286 0.980296 29 2 30.55172

FAM122A 0 0.571429 0 1 2 4
FAM149B1 0 1 0 1 1 1

FAT4 0 0.666667 0 1 2 2
FES 0 0.666667 1 2 2 4

FLOT1 0 0.666667 0 1 2 2
GALNT16 0 0.666667 0 1 2 2
GAPDH 0.005035 0.741935 0.895238 15 2 14.93333

GGH 0 1 1 3 1 3
GOSR1 0 0.789474 1 11 2 14.72727
GPR144 0 0 0 0 0 0
GPR156 0 1 0 1 1 1
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GPRC5D 0 1 0 1 1 1
GSTM3 0 1 1 3 1 3
GSTM4 0 1 1 3 1 3
GSTM5 0 1 1 3 1 3

GYLTL1B 0 1 1 3 1 3
H2AFX 0.002919 0.969697 0.937634 31 2 29.80645

HAPLN4 0 1 0 1 1 1
HDAC1 0.003274 0.969697 0.931183 31 2 29.70968
HDAC2 0.001773 0.941176 0.956322 30 2 30.13333
HDAC3 0.001544 0.941176 0.96092 30 2 30.2

HIST1H2AC 0.003019 0.969697 0.935484 31 2 29.77419
HIST1H2AD 0.003019 0.969697 0.935484 31 2 29.77419
HIST1H2AJ 0.003019 0.969697 0.935484 31 2 29.77419
HIST1H2BA 0.004043 1 0.919355 32 1 29.5
HIST1H2BB 0.004043 1 0.919355 32 1 29.5
HIST1H2BD 0.004043 1 0.919355 32 1 29.5
HIST1H2BH 0.004043 1 0.919355 32 1 29.5
HIST1H2BJ 0.004043 1 0.919355 32 1 29.5
HIST1H2BK 0.004043 1 0.919355 32 1 29.5
HIST1H2BL 0.004043 1 0.919355 32 1 29.5
HIST1H2BM 0.004043 1 0.919355 32 1 29.5
HIST1H2BN 0.004043 1 0.919355 32 1 29.5
HIST1H2BO 0.004043 1 0.919355 32 1 29.5
HIST2H2AC 0.003019 0.969697 0.935484 31 2 29.77419
HIST2H2BE 0.004043 1 0.919355 32 1 29.5
HLA-DQA2 0 0.882353 1 13 2 14.46154
HOMER3 0 1 0 1 1 1

HRAS 0.041065 0.766667 0.716667 16 2 13.4375
HSF2 0 0.666667 1 2 2 4

HSP90AA1 0.25 1 0.5 4 1 2.5
HSPA4 0.25 1 0.5 4 1 2.5
HSPA5 3.95E-04 0.657143 0.981818 11 2 15.54545
HSPA8 0.001425 0.8125 0.977778 10 2 11.6

INS 0 1 0 1 1 1
IST1 0 0.6 0 1 2 3
JUN 0.001418 0.941176 0.963218 30 2 30.23333

KDM6B 2.33E-04 0.888889 0.992063 28 2 30.82143
KEAP1 0 0.875 1 12 2 12.83333

KIAA1377 0 0.833333 1 4 2 4.25
KIF3A 0 0.882353 1 13 2 14.46154
KLC1 0 0.882353 1 13 2 14.46154
KLF5 0 0.511111 1 4 3 17.25
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KLHDC10 0 1 0 1 1 1
KLHDC7A 0 1 0 1 1 1

KLHL5 0 0.875 1 12 2 12.83333
L3MBTL3 0 1 0 1 1 1

LMO4 0 1 0 1 1 1
LRRC37A 0 1 0 1 1 1
LRRC37A2 0 1 0 1 1 1
LRRC3B 1 1 0 2 1 1
MAN2C1 0 1 0 1 1 1

MAP1LC3A 0 1 1 3 1 3
MAPK8 0.005035 0.741935 0.895238 15 2 14.93333

METTL10 0 0.666667 0 1 2 2
MMP24 0 1 0 1 1 1

MTHFD1L 0 1 0 1 1 1
MUTYH 0 0.511111 1 4 3 16.5

MYC 0.034153 0.793103 0.742647 17 2 13.58824
MYRF 0 0 0 0 0 0
NCBP1 0.004452 0.866667 0.945455 11 2 11.36364
NCBP2 0.004452 0.866667 0.945455 11 2 11.36364

NDUFS7 1 1 0 2 1 1
NR1H3 0 1 0 1 1 1

NUDT17 0 1 0 1 1 1
NUP107 0.001425 0.8125 0.977778 10 2 11.7
OGFOD3 0 1 0 1 1 1
OR1E2 0 1 1 2 1 2

OR2AE1 0 1 0 1 1 1
OXLD1 0 1 0 1 1 1
PACS1 0 1 0 1 1 1
PAIP1 0 1 0 1 1 1

PDLIM4 0 0.45098 0 1 3 17
PIDD1 0 0.534884 1 4 3 17
PILRA 0 1 0 1 1 1
PILRB 0 1 0 1 1 1

PLEKHD1 1 1 0 2 1 1
POLR2J 0 0.8 1 24 2 31.125
PPFIA1 0 0.75 1 2 2 2.5
PPFIA2 0 0.75 1 2 2 2.5

PPP2R1A 1 1 0 4 1 1
PRADC1 0 0.555556 0 1 2 5
PRSS46 0 1 0 1 1 1
PSG1 0.05 0.714286 0.666667 3 2 3
PSG11 0 0.555556 0 1 2 5
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PSG4 0.75 1 0.2 5 1 1.8
PSG6 0 0.625 1 2 2 4
PSG8 0 0.625 1 2 2 4

PSMA1 1 1 0 2 1 1
PSMG1 0 0.666667 0 1 2 2

PSORS1C1 0 1 0 1 1 1
PSORS1C2 0 1 0 1 1 1

PTDSS2 0 0 0 0 0 0
PTPN11 0 1 0 1 1 1
RAB7A 0 1 0 1 1 1

RAN 0 1 0 1 1 1
RBBP4 0.002423 0.969697 0.944086 31 2 29.90323
RBBP7 0.002423 0.969697 0.944086 31 2 29.90323
RBL2 0 0.522727 1 5 3 16.6
RBX1 0.009419 0.933333 0.923077 13 2 12.30769

RCCD1 0 1 0 1 1 1
RHOA 0 1 1 2 1 2
RHOD 0 1 1 2 1 2
RIC8A 0 0.681818 1 8 2 15

RMND1 0 1 0 1 1 1
RPLP2 0 0.764706 1 9 2 11.88889
RPS27A 0.009419 0.933333 0.923077 13 2 12.30769
SAMD13 0 1 0 1 1 1

SERTAD4 0 0.571429 0 1 2 4
SH3TC2 0 1 0 1 1 1
SIKE1 0 0.571429 0 1 2 4
SIRT1 8.74E-04 0.914286 0.975369 29 2 30.48276
SKP1 0.049712 1 0.813187 14 1 11.57143

SLC22A5 0 1 0 1 1 1
SLC39A9 0 0.666667 0 1 2 2
SMIM7 0 0.666667 1 2 2 3
SMIM8 0 1 0 1 1 1
SMN2 0 0.684211 1 7 2 12.14286

SNRPD1 0.01422 0.928571 0.878788 12 2 10.91667
SNRPD2 0.01422 0.928571 0.878788 12 2 10.91667
SNRPD3 0.01422 0.928571 0.878788 12 2 10.91667
SNRPE 0.056955 1 0.769231 13 1 10.23077
SNRPF 0.056955 1 0.769231 13 1 10.23077
SNRPG 0.056955 1 0.769231 13 1 10.23077
SNUPN 0.005495 0.8125 0.933333 10 2 11.4
SNX32 0 0 0 0 0 0

SPANXN1 0 0.571429 0 1 2 4
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SPATA18 0 1 0 1 1 1

STAT3 0.020516 0.766667 0.808333 16 2 14.1875
STXBP4 0 1 0 1 1 1
SUMO1 2.33E-04 0.761905 0.987013 22 2 30.90909
SYTL3 0 0.666667 1 2 2 3

TBC1D32 0 1 0 1 1 1
TBX5 0 0.666667 0 1 2 2

TM6SF1 0 1 0 1 1 1
TM6SF2 0 1 0 1 1 1
TMC4 0 1 0 1 1 1

TMCO1 0 1 1 2 1 2
TMEM136 0 1 1 3 1 3
TMEM42 0 1 1 3 1 3
TMEM5 0 1 1 3 1 3
TMEM80 0 1 0 1 1 1

TP53 0.168869 0.884615 0.563158 20 2 11.85
TRIM4 0 0.875 1 12 2 12.83333

TRIOBP 0 1 1 2 1 2
TSPAN5 0 0 0 0 0 0
UBA52 0.009419 0.933333 0.923077 13 2 12.30769
UBB 0 0.875 1 12 2 12.83333
UBC 0 0.875 1 12 2 12.83333
UBD 0 0.666667 1 7 2 13.42857

UBE2C 0.009419 0.933333 0.923077 13 2 12.30769
UBLCP1 0 0.666667 0 1 2 2
UQCRH 0.001894 0.8 0.972222 9 2 10.44444
USP19 0 0.666667 1 2 2 4
WDR90 0 0.6 0 1 2 3
YBEY 0 1 0 1 1 1

ZFYVE21 0 1 1 2 1 2
ZNF165 0.833333 1 0.166667 4 1 1.5
ZNF334 0 0 0 0 0 0
ZNF404 0 1 0 1 1 1

ZNF735P 0 1 0 1 1 1
ZNF839 0 1 1 2 1 2
ZSWIM5 0 0 0 0 0 0

Table D.1: Detailed Network statistics of each node in the STRING network.
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Figure D.1: String interaction network of 275 genes, after expanding using a cutoff of 0.7.



Appendix E

Enrichment analysis

description genes
organelle organiza-
tion

SIRT1, RBX1, GOSR1, NUP107, GAPDH, SKP1, NDUFS7, BBS2,
PDLIM4, ACTR10, KDM6B, DCTN3, RBL2, CREBBP, EP300,
KIAA1377, CUL3, ATP6V0A1, STAT3, RAB7A, TP53, CBX8,
RPS27A, HIST1H2BA, ATM, HIST1H2BD, ATP5O, WDR90,
SPATA18, ATP5H, HSPA4, HDAC3, UBB, ATP5I, CYCS, RHOD,
CCDC13, ALS2CL, EZH2, PPP2R1A, HIST1H2AJ, ATP6V0C, FES,
DZIP1L, HIST2H2AC, HSP90AA1, CEP63, HIST1H2AD, BAZ1B,
CTNNB1, ATG7, UBE2C, DYNC1H1, ATP5C1, HIST1H2BK,
CASP8, DCTN1, AHI1, ATG5, HIST2H2BE, ACTR1A, JUN,
CDC20, RBBP4, HDAC1, MAP1LC3A, HIST1H2BL, HIST1H2AC,
RBBP7, SUMO1, DYNLL1, ATP5G1, RCCD1, CCDC66, MAPK8,
DYNC1I2, TMEM80, TBC1D32, ATP5A1, CDC42, TRIOBP, KIF3A,
UBA52, CEP131, BRMS1, RHOA, ESR1, CNEP1R1, DCTN2,
KLC1, BRCA1, HDAC2, L3MBTL3, H2AFX, IST1, UBC, RAN,
AKT1, HIST1H2BJ, HIST1H2BO, HIST1H2BM, HIST1H2BH, MYC,
HIST1H2BB, HIST1H2BN

cellular component
assembly

SIRT1, SNRPD3, RBX1, NUP107, SKP1, NDUFS7, BBS2, DCTN3,
CREBBP, EP300, KIAA1377, CUL3, RAB7A, SNRPF, TP53,
RPS27A, SNRPG, DGKQ, HIST1H2BA, HIST1H2BD, WDR90,
CCT2, SNRPD1, HSPA4, HDAC3, UBB, RHOD, CCDC13,
PPP2R1A, CUL1, PSMG1, DZIP1L, HSP90AA1, CEP63, SNRPD2,
CTNNB1, ATG7, UBE2C, DYNC1H1, HIST1H2BK, CASP8, DCTN1,
AHI1, ATG5, HIST2H2BE, ACTR1A, CDC20, RBBP4, HDAC1,
MAP1LC3A, NCBP1, FLOT1, UBD, HIST1H2BL, KLF5, RBBP7,
SMN2, DYNLL1, CCDC66, DYNC1I2, TMEM80, TBC1D32, CDC42,
KIF3A, UBA52, PILRB, CEP131, RHOA, SNRPE, DCTN2,
ENSP00000410764, H2AFX, IST1, UBC, SNUPN, HIST1H2BJ,
HIST1H2BO, HIST1H2BM, CBY1, HIST1H2BH, MYC, HIST1H2BB,
HIST1H2BN

56
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Table E.1 continued from previous page
description genes
chromosome organi-
zation

SIRT1, RBX1, NUP107, SKP1, KDM6B, RBL2, CREBBP, EP300,
CUL3, TP53, CBX8, RPS27A, HIST1H2BA, ATM, HIST1H2BD,
HDAC3, UBB, EZH2, PPP2R1A, HIST1H2AJ, HIST2H2AC,
HSP90AA1, HIST1H2AD, BAZ1B, CTNNB1, HIST1H2BK,
HIST2H2BE, CDC20, RBBP4, HDAC1, HIST1H2BL, HIST1H2AC,
RBBP7, RCCD1, UBA52, BRMS1, ESR1, DCTN2, HDAC2,
L3MBTL3, H2AFX, UBC, RAN, HIST1H2BJ, HIST1H2BO,
HIST1H2BM, HIST1H2BH, MYC, HIST1H2BB, HIST1H2BN

cellular localization SNRPD3, DCTN6, GOSR1, NUP107, SKP1, BBS2, CANX, PP-
FIA1, ACTR10, DCTN3, GGH, CUL3, ATP6V0A1, STAT3,
RAB7A, SNRPF, TP53, RPS27A, SNRPG, EGFR, ATM, ATP5O,
ALB, CCT2, CPLX4, DCTN5, SNRPD1, ATP5H, HSPA4, UBB,
CPLX1, ATP5I, TSPAN5, RHOD, SNX32, PACS1, CYC1, CPNE1,
EZH2, RPLP2, HSPA5, PPP2R1A, NCBP2, ATP6V0C, DZIP1L,
HSP90AA1, CEP63, SNRPD2, CTNNB1, ATG7, DYNC1H1,
ATP5C1, DCTN1, AHI1, ACTR1A, NCBP1, STXBP4, FLOT1,
KLF5, SMN2, SUMO1, DYNLL1, ATP5G1, DYNC1I2, INS,
TBC1D32, ATP5A1, CDC42, KIF3A, UBA52, CEP131, RHOA,
SNRPE, ESR1, CNEP1R1, DCTN2, DCTN4, CCDC14, EIF4E,
HSPA8, IST1, HOMER3, UBC, RAN, C14orf79, PPFIA2, AKT1,
SNUPN, SYTL3

antigen processing
and presentation of
exogenous peptide
antigen via MHC
class II

DCTN6, CANX, ACTR10, DCTN3, RAB7A, DCTN5, DYNC1H1,
DCTN1, ACTR1A, HLA-DQA2, DYNLL1, DYNC1I2, KIF3A,
DCTN2, DCTN4, KLC1

intracellular trans-
port

SNRPD3, DCTN6, GOSR1, NUP107, ACTR10, DCTN3, CUL3,
STAT3, RAB7A, SNRPF, TP53, RPS27A, SNRPG, ATP5O, DCTN5,
SNRPD1, ATP5H, HSPA4, UBB, ATP5I, RHOD, SNX32, CYC1,
RPLP2, HSPA5, NCBP2, HSP90AA1, SNRPD2, DYNC1H1, ATP5C1,
DCTN1, ACTR1A, NCBP1, STXBP4, SMN2, DYNLL1, ATP5G1,
DYNC1I2, INS, ATP5A1, CDC42, KIF3A, UBA52, CEP131, SNRPE,
DCTN2, DCTN4, EIF4E, HSPA8, HOMER3, UBC, RAN, C14orf79,
PPFIA2, AKT1, SNUPN, SYTL3

cellular response to
stress

KEAP1, SIRT1, RBX1, SKP1, CANX, KDM6B, GSTM3, RBL2,
CREBBP, EP300, CUL3, TP53, CBX8, RPS27A, EGFR, ATM,
ATG10, POLR2J, SPATA18, ALB, HDAC3, UBB, CEBPB, CYCS,
CCDC13, CASP3, EZH2, HSPA5, CUL1, HSP90AA1, CEP63, ATF4,
PIDD1, PTPN11, BAZ1B, ATG7, DCTN1, HSF2, ATG5, JUN, MU-
TYH, EDEM2, MAP1LC3A, STXBP4, FLOT1, RBBP7, SUMO1,
MAPK8, UBA52, RHOA, USP19, HRAS, PSMA1, BRCA1, HDAC2,
HSPA8, H2AFX, UBC, AKT1, MYC, TMCO1
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Table E.1 continued from previous page
description genes
regulation of mi-
totic cell cycle
phase transition

RBX1, SKP1, DCTN3, RBL2, EP300, CUL3, TP53, EGFR, ATM,
EZH2, PPP2R1A, CUL1, HSP90AA1, CEP63, PIDD1, UBE2C,
DYNC1H1, DCTN1, ACTR1A, CDC20, UBD, DYNLL1, DYNC1I2,
CEP131, DCTN2, PSMA1, BRCA1, AKT1

symbiotic process KEAP1, PILRA, SIRT1, RBX1, NUP107, GAPDH, SKP1, CANX,
CREBBP, EP300, STAT3, RAB7A, TP53, RPS27A, EGFR, UBB,
PACS1, RPLP2, CUL1, ATP6V0C, HSP90AA1, CTNNB1, ATG7,
CASP8, ATG5, JUN, HDAC1, SUMO1, DYNLL1, DYNC1I2, CDC42,
UBA52, RHOA, KLC1, EIF4E, HSPA8, H2AFX, IST1, UBC, RAN

protein-containing
complex assembly

SNRPD3, RBX1, NUP107, SKP1, NDUFS7, CREBBP, EP300,
CUL3, SNRPF, TP53, RPS27A, SNRPG, DGKQ, HIST1H2BA,
HIST1H2BD, CCT2, SNRPD1, HSPA4, UBB, PPP2R1A, CUL1,
PSMG1, HSP90AA1, SNRPD2, CTNNB1, UBE2C, HIST1H2BK,
CASP8, HIST2H2BE, RBBP4, HDAC1, NCBP1, HIST1H2BL,
RBBP7, SMN2, UBA52, PILRB, SNRPE, ENSP00000410764,
H2AFX, UBC, SNUPN, HIST1H2BJ, HIST1H2BO, HIST1H2BM,
CBY1, HIST1H2BH, MYC, HIST1H2BB, HIST1H2BN

protein-DNA com-
plex assembly

RBX1, RPS27A, HIST1H2BA, HIST1H2BD, UBB, HIST1H2BK,
HIST2H2BE, RBBP4, HIST1H2BL, RBBP7, UBA52, H2AFX, UBC,
HIST1H2BJ, HIST1H2BO, HIST1H2BM, HIST1H2BH, HIST1H2BB,
HIST1H2BN

chromatin assembly
or disassembly

SIRT1, TP53, HIST1H2BA, HIST1H2BD, BAZ1B, HIST1H2BK,
HIST2H2BE, RBBP4, HDAC1, HIST1H2BL, RBBP7, H2AFX,
HIST1H2BJ, HIST1H2BO, HIST1H2BM, HIST1H2BH, HIST1H2BB,
HIST1H2BN

regulation of cell cy-
cle

SIRT1, RBX1, SKP1, DCTN3, RBL2, EP300, CUL3, STAT3, TP53,
EGFR, ATM, CASP3, EZH2, PPP2R1A, CUL1, HSP90AA1, CEP63,
PIDD1, PTPN11, CTNNB1, UBE2C, DYNC1H1, DCTN1, ACTR1A,
JUN, CDC20, RBBP4, STXBP4, UBD, RBBP7, DYNLL1, DYNC1I2,
INS, CDC42, CEP131, RHOA, USP19, HRAS, DCTN2, PSMA1,
BRCA1, EIF4E, HSPA8, H2AFX, AKT1, MYC

Table E.1: List of genes involved in the enriched GO processess.
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