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1 Abstract

Accurately determining parameter identifiability is a continuing issue within the field of
pharmacometrics. More specifically, it is a challenge for drugs with high target affinity
and specificity displaying target-mediated drug disposition (TMDD) kinetics. TMDD
models are often over-parameterized and difficult to converge.
In this study, a workflow for determining parameter identifiability in TMDD models was
proposed. The workflow combines three methods: variance-based sensitivity
analysis using eFAST, analysis of the eigenvalues of the Fisher-Information Matrix
and log-likelihood profiling. The workflow was partly evaluated by testing the
Fisher-Information Matrix and the variance-based sensitivity approach on simulated
data sets. The simulated data sets were also used to learn about the identifiability of
parameters in TMDD models under different conditions.
The simulated data sets were varied in parameter values and biomarkers. A full
two-compartment TMDD model and two simplifications (Quasi-steady state
approximation and Michaelis-Menten approximation) were fitted on these data sets
with NONMEM. Regarding identifiability under different conditions, the most
remarkable result was that fitting a data set with free receptor concentration, a
Michaelis-Menten approximation and a low value of target-complex degeneration
(kint), resulted in strong overestimation of the kint. This is caused by the
disagreement between the true TMDD profile and the Michaelis-Menten profile for low
values of kint. The parameter estimates from NONMEM models fitted on the
simulated data set were compared to predictions of the Fisher-Information Matrix and
the variance-based sensitivity approach (eFAST). The results from this analysis
showed that the precision for both the Fisher-Information Matrix (20%) and the
variance-based sensitivity (23%) method were low, indicating that neither of these
approaches are reliable for determining parameter identifiability in TMDD models.
However, further research and possible adjustments are needed to make any
definitive conclusions on the usefulness of this workflow for determining parameter
identifiability in TMDD models.
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3 Introduction

3.1 Pharmacological modeling
It is imperative to study the relationship between drug concentration, response and its
underlying processes to understand and predict drug effects. This relationship is
dependent on many factors such as absorption, distribution, metabolism and
excretion of the drug, but also the interaction between drug and target. The study of
the fate of a drug in the body is called pharmacokinetics (PK) and the study of how
the body reacts to a drug is called pharmacodynamics (PD). To predict effects and
concentration in new situations, such as different individuals, doses or administration,
pharmacokinetic/pharmacodynamic (PK/PD) models are used. A method that is often
employed for constructing PK/PD models is nonlinear mixed-effects modeling [1].
These models consist of fixed and random effects. The fixed effects capture the
typical changes over time in the measured compounds and/or biomarkers. The
random effects describe the variability within the study population, which includes two
different types of variability. The variability between individuals is called the
inter-individual variability and the other is the residual unexplained variability. A
software program widely used for developing PK/PD models is NONMEM
(NON-linear Mixed Effects Modeling) [2].

3.2 Target Mediated Drug Disposition
Some drugs exhibit non-linear kinetics. A possible reason for non-linear kinetics is
that the drug has a high target affinity in combination with a high target specificity and
limited target capacity. The kinetics and dynamics of these drugs can be described by
Target-Mediated Drug Disposition (TMDD) models. Target-Mediated Drug Disposition
was first described by Levy [3]. In this article the principles of TMDD were illustrated
using anti-coagulant Warfarin, which is a small molecule drug. However, with the
rapid development of protein drugs the interest in TMDD grew. Protein drugs are
large molecule drugs which often display high target affinity and specificity, making
them ideal drug candidates. Due to their high target affinity, they regularly
demonstrate the non-linear kinetics that are described by TMDD models. [4]
The full TMDD model is similar to a two-compartment model, with an extension
consisting of compartments for the free drug, the target and the associated
drug-target complex with rate constants for the association and dissociation of the
drug and its target. So this model actually includes both the pharmacokinetics and
the pharmacodynamics. Ideally, biomarkers in all the compartments are measured,
however often only the drug compound is measured. A schematic representation can
be found in figure 2. The TMDD kinetics were first written as set of ordinary
differential equations by Mager and Jusko [5] for a one-compartment model and later
expanded to a two-compartment model by Gibiansky [6].
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Figure 2: Schematic representation of a target-mediated drug disposition PK/PD
model. Circles represent the compartments and arrows are the rate constants. De-
tailed description and equations can be found in the methods.

A typical pharmacokinetic profile of TMDD can be seen in figure 3. This
concentration-time profile contains four phases [7].

1. (A) The fast concentration drop in the short initial phase is mainly caused by the
fast association of drug and target.

2. (B) The second phase is a linear decline of the concentration caused by the
clearance of free drug from the central compartment.

3. (C) The third phase is a non-linear transition phase with mixed elimination of
free drug and internalization of drug-target complex.

4. (D) Eventually, most of the free drug has been eliminated. The fourth phase is
another linear decline phase which is characterized by the slow decrease of
drug concentration mainly through internalization of the drug-target complex.

The phases are not always as pronounced as seen in figure 3 and are strongly
dependent on the dose and parameter values.

3.3 Simplifications of the full TMDD model
The full TMDD model is often over-parameterized and difficult to converge. A solution
is to fix certain parameters or the model can be simplified. Numerous simplifications
of the TMDD model were proposed [5, 6, 8, 9]. A few of the commonly used
simplifications are explained in more detail below.

3.3.1 Quasi-steady state assumption

The first simplification that will be discussed is the quasi-steady state (QSS)
assumption, which was proposed by Gibiansky [6]. In this simplification of the TMDD
model equations, the assumption is made that the association (kon) and
disassociation (koff ) & complex degradation/internalization (kint) are in a
quasi-steady state. This assumption is made as in general these processes are much
faster compared to the others. The quasi-steady state constant Kss, which
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Figure 3: Graph showing the typical four phases of the concentration-time profile of
a drug displaying target-mediated drug disposition kinetics. Image from Peletier and
Gabrielsson (2012) [7]

represents this balance, is added to the ordinary differential equations [6]. As kon and
koff are not used in the equations of the QSS, this simplification reduces the number
of parameters by one.

3.3.2 Quasi-Equilibrium

Another common simplification similar to the QSS assumption is the
Quasi-Equilibrium (QE) assumption [8]. In this case the equations are the same as
for the QSS assumption, but with the Kss replaced by Kd, which is calculated as
koff /kon. This simplification is valid if the rate of internalization of the drug-target
complex (kint) is negligible compared to the dissociation rate. In practice, these two
simplifications are the same when fitting these models, only the underlying
parameterization is different.

3.3.3 Michaelis-Menten approximation

The Michaelis-Menten (MM) approximation describes the drug binding kinetics of the
TMDD model in Michealis-Menten terms. The constant Vmax and the equilibrium
constant Km are used. Km is equal to Kss from the QSS assumption. Vmax is equal to
total receptor concentration (Rtot) * kint. The additional assumption is made here that
Rtot is constant, therefore Vmax is a constant as well and the derivative of Rtot is 0 [6].

3.4 Parameter Identifiability
Selecting the right model for predicting (adverse) effects and determining appropriate
dosing of drugs is a difficult task. An oversimplified model may limit usability or even
result in inaccurate predictions. However, a too complex model may suffer from
over-fitting issues and may result in parameter values that do not extrapolate well to
new data. If parameter values cannot be uniquely determined this is called parameter
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unidentifiability. Therefore, analyzing identifiability is the subject of many scientific
publications, both within the scope of pharmacology as well as in other research
domains, see e.g. [6, 10–18].

3.5 Parameter Identifiability Analysis
As a full target-mediated drug disposition model is often over-parameterized, it is
important to determine when and how to simplify. Choosing which parameters to fix
or which simplification to use can be determined by parameter identifiability analysis.
Listed as follows are the main concepts pertaining to parameter identifiability.

• Structural Identifiability; parameter values can be determined given an infinite
amount of noise-free data.

• Practical Identifiability; parameter values can be accurately estimated given a
finite amount of noisy experimental data.

• Global Identifiability analysis; analysis of the identifiability of a parameter over
the entire possible parameter range.

• Local identifiability analysis; analysis of the identifiability of a parameter over
a limited parameter range.

• Globally identifiable; the parameter is identifiable over the entire possible
parameter range.

• locally identifiable; the parameter is identifiable at any point in the possible
parameter range.

The definitions for identifiability are based on those given by Browning et al. [19].
Structural parameter identifiability is a prerequisite for successful parameter
estimation. However, as in practice there is never an infinite amount of noise free
data, the main interest in this study is practical identifiability. Especially, in phase 1
studies which generally use a small number of study subjects, there is a limited data
set. Phase 1 is the first test of a new drug candidate in humans and is used to assess
safety in healthy individuals and to determine the PK and PD. Several approaches
have been proposed in literature for analyzing practical parameter identifiability, a few
of which are described below.

3.5.1 Gibiansky Hierarchical approach

In Gibiansky [6] an algorithm for determining parameter identifiability is proposed.
First the full TMDD model is fitted to the data and subsequently the parameter
estimates are used for fitting increasingly simplified models in this order QSS, QE,
MM approximations. These four models are then used for simulating
concentration-time profiles, which are compared to the full model. The simplest model
that is equivalent to the full model within the range of the available data is selected.
The reason for this is that if a more complex models is equivalent to simpler models,
the extra added parameters in the more complex model are not reliable. as they have
no influence on the result and are thus not identifiable. As fitting the more complex
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models, especially the full TMDD model, is sometimes unstable, the unfittable model
is skipped in this approach. Sometimes it helps to use the parameter estimates from
a simpler model as initial estimates for the full model, to stabilize the fitting.

3.5.2 Bootstrapping

Bootstrapping is one of the most reliable methods of estimating parameter
identifiability, but it is also very computationally demanding. This method consists of
repeatedly resampling from the observations and refitting the model on this data. The
width of the distribution of parameter estimates represents the reliability of the
parameter estimates. Different methods for resampling are possible. [20] In Thai et al.
[20] it was found that bootstrapping is a suitable method for determining uncertainty in
non-linear mixed effects models.

3.5.3 Profile Likelihood

The profile likelihood identifiability analysis consists of fixing a parameter over a range
of values and fitting all the remaining parameters, calculating the objective function
value for all the fits. The objective function is a measure of how well a model fits the
observed data. In other words, it is the likelihood of the parameter vector given the
data. Then the likelihood profile is constructed from the objective function values for
all the fitted parameter sets. If a parameter is unidentifiable, its value will have no or
little effect on the objective function values, which will result in a shallow or even flat
profile. This approach is feasible for both structural and practical identifiability
analysis. [21]. This approach has two major disadvantages. Firstly, it is very
computationally intensive, albeit not as much as the bootstrapping method. Secondly,
as it is a univariate test it assumes no covariance between variables, which may not
be valid in all cases. Therefore, an extension to log-likelihood profiling (LLP) is
proposed in [11], where they combine it with sampling importance resampling (SIR).
SIR was first proposed as a method for determining estimates of uncertainty
distributions in Non-linear Mixed-effects modeling by [18]. The first step in SIR is
sampling from a proposal distribution, which in case of [11] is the log-likelihood
profile. Secondly, the importance ratios are calculated from the samples. Finally,
through resampling using the importance ratios the confidence intervals and standard
errors of the parameters can be determined.

3.5.4 Fisher Information Matrix

One of the most common ways to assess parameter identifiability is through studying
the standard errors of parameter estimates. The standard errors are calculated in the
covariance step in NONMEM by taking the inverse of the fisher information matrix
(FIM), which is the covariance matrix [2]. However, the covariance step in NONMEM
often fails, which can be caused by a non-invertible FIM, where the determinant of the
matrix is zero.
Fisher Information provides knowledge about how much information data holds about
the true parameter value. The FIM is a matrix of n x n, where n is the number of
parameters. The values in the FIM represent the variance around the current
parameter estimate. Thus the FIM and its covariance matrix can also be used directly
to find identifiable parameter combinations [10]. The parameters in these
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combinations are unidentifiable individually, but are identifiable together. This is
valuable information for deciding on which simplification to choose in case of an
unidentifiable model.
Another possible method could be to study the eigenvalues and vectors of the Fisher
Information Matrix, so the covariance matrix is unnecessary. The eigenvalues
indicate the size of the effect on the output of a step in the direction of the
eigenvector. Therefore, the eigenvector of a large eigenvalue is an "informative
direction" and the eigenvector of a small eigenvalue might indicate a unidentifiable
direction. As the direction of eigenvector can be decomposed by parameter, the
parameters that "contribute" the most to the direction can be marked as unidentifiable
parameter (combinations).

3.5.5 Variance-based sensitivity analysis

Sensitivity analysis is a technique for determining parameter identifiability. A
parameter is sensitive if a change in its value results in a change in model output. If
this is the case, the parameter is identifiable. In variance-based sensitivity analysis
parameter values are incrementally varied, so their influence on model output can be
determined. To describe the variance in output in different dimensionality Sobol
indices were introduced. Sobol indices are a quantitative measure of sensitivity
[15, 16]. The first order sensitivity index reflects the direct influence of a single
parameter on the output. Higher order indices reflect the influence of the interaction
between sets of parameters on the output (second order is influence of interaction
between two parameters, third order between three, etc.). Both the first order and
interaction term together is the total order sensitivity. This is the total influence of a
parameter on the output. The Sobol indices can be calculated using extended Fourier
amplitude sensitivity analysis (eFAST) [14]. Performing variance-based sensitivity
analysis using eFAST, is a method of global sensitivity analysis. In a comparison
between different global sensitivity analysis methods for finding influential parameters
in physiologically-based pharmacokinetic modeling, it was found that calculating
Sobol indices uses eFAST provided the best balance between reliability and
efficiency [13].

3.6 Proposed workflow for determining parameter identifiability
in TMDD models

All the described methods for determining parameter identifiability have there own
advantages and disadvantages. This suggests that combining these methods gives a
more reliable results. In figure 4 a suggested workflow is proposed which combines
three identifiability methods that guide the modelling process. Some inspiration is
taken from the hierarchical method [6], by starting with the most complex model and
then iteratively simplifying the model. However, because the simplification steps are
guided by parameter specific methods, choices can also be made between
"hierarchically equal" models, making this method more flexible and widely applicable.
In the first step of the process the eFAST method [14] is utilized as a global sensitivity
analysis. This method applies only to the structural part of the model. It is a first scan
for unidentifiable model parameters. If such a model parameter is found, the model is
simplified by either fixing this parameter or choosing a less complex model. The
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sensitivity analysis is then performed again, until no more unidentifiable parameters
are found.
Subsequently if no un-identifiable parameters are found, the model is fitted with
NONMEM. The resulting parameter estimates can be used to apply the Fisher
Information Matrix approach. This is a local method of identifiability, however it also
applies to the random effects in addition to the fixed effects. Another advantage is
that it could, in theory, be used to find identifiable parameter combinations, further
aiding in the selection of simplifications [10]. If non-identifiable parameter
(combinations) are found, the process will be initiated again from the global sensitivity
analysis. If not, a final check of sensitivity is done using the profile likelihood on
parameters which are often misclassified as identifiable by the other two methods.
This solves one of the disadvantages of profile likelihood, namely the computational
intensity of the method, as it now only has to be applied to a few parameters. This is
the only one of these methods which uses the actual experiment data directly.

3.7 Study goals
This study has three main goals. The first is to gather more information about the
identifiability of TMDD model parameters with different parameter values through
fitting different models with NONMEM on simulated data sets consisting of different
biomarkers. Secondly to test the reliability of a part of the proposed workflow, namely
the eFAST test and the Fisher Information Matrix test. Finally, identify the "known to
be often misclassified" parameters for confirmation by the profile likelihood part of the
workflow.

Figure 4: Proposed workflow for determining parameter identifiability in TMDD models.
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4 Methods

4.1 Software
All simulations and analyses were performed in Rstudio 1.3.1093 [22] using R 4.0.3
[23]. Models were fitted in NONMEM 7.5.0 [2] using perl-speaks-NONMEM (psN) [24]
in parallel controlled from R.

4.2 Ordinary differential equations models
The ordinary differential equations and parameter derivations (equations 1-12) of a
two-compartment TMDD model with oral dosing adapted from [6] are given below.

kel =
Cl

V 1
(1)

kpt =
Q

V 1
(2)

ktp =
Q

V 2
(3)

ksyn = kdegR0 (4)
d(Ad)

dt
= −kaAd (5)

d(C)

dt
=
kaAd

V 1
− (kel + kpt)C − konC ·R + koffRC + ktp

At

V 1
(6)

d(At)

dt
= kptC · V 1− ktpAt (7)

d(R)

dt
= ksyn − kdegR− konC ·R + koffRC (8)

d(RC)

dt
= konC ·R− (kint + koff )RC (9)

Ctot = C +RC (10)
Rtot = R +RC (11)

Ad(0) = D1;C(0) =
D2

V 1
;At(0) = 0;RC(0) = 0;R(0) =

ksyn
kdeg

(12)

C is the free drug concentration, R refers to the free target concentration and RC is
the concentration of the drug-target complex (the product). Cl is the clearance. Q is
the inter-compartmental clearance. V 1 is the volume of distribution of the central
compartment and V 2 of the peripheral compartment. kel is the rate of elimination of
the drug. ksyn is the rate of influx/synthesis of the target and kdeg is the rate of
degradation of the target. kon is the rate of association and koff is the rate of
dissociation of the drug-target complex. ktp and kpt are diffusion to and from the
peripheral compartment. kint is the rate of internalization of the target complex.
Equation 12 gives the initial states of the compartments, with D1 a subcutaneous
dose and D2 an intravenous dose.
The quasi-steady state constant (Kss) is used to represent the balance between kint,
kon and koff in the Quasi-Steady state approximation. It is calculated as follows:
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Kss =
kint + koff

kon
(13)

The ordinary differential equations and derived parameters are as follows:

kel =
Cl

V 1
(14)

kpt =
Q

V 1
(15)

ktp =
Q

V 2
(16)

ksyn = kdegR0 (17)
d(Ad)

dt
= −kaAd (18)

d(Ctot)

dt
=
kaAd

V 1
− (kel + kpt)C − RtotkintC

Kss + C
+
ktpAt

V 1
(19)

d(At)

dt
= kptC · V 1− ktpAt (20)

d(Rtot)

dt
= ksyn − kdegRtot − (kint − kdeg)

RtotC

Kss + C
(21)

C =
1

2

[
(Ctot −Rtot −Kss) +

√
(Ctot −Rtot −KssS)2 + 4KssCtot

]
(22)

RC =
R0 · C
Kss+ C

(23)

R = Rtot −RC (24)

Ad(0) = D1;Ctot(0) =
D2

V 1
;At(0) = 0;Rtot(0) =

ksyn
kdeg

(25)

The Michaelis-Menten approximation describes the drug binding kinetics of the
TMDD model in Michealis-Menten terms. [6]. Km is equal to the Kss in the QSS
equations and represents the Michaelis-Menten constant of the non-linear
elimination. Vmax is the maximum non-linear elimination.

Vmax = Rtotkint (26)

km =
kint + koff

kon
(27)

The ordinary differential equations and derived parameters are as follows:
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kel =
Cl

V 1
(28)

kpt =
Q

V 1
(29)

ktp =
Q

V 2
(30)

d(Ad)

dt
= −kaAd (31)

d(C)

dt
=
kaAd

V 1
− (kel + kpt)C − VmaxC

Km + C
+
ktpAt

V 1
(32)

d(At)

dt
= kptC · V 1− ktpAt (33)

RC =
R0 · C
Km+ C

(34)

R = R0−RC (35)
Rtot = R0 (36)
Ctot = C +RC (37)

Ad(0) = D1;Ctot(0) =
D2

V 1
;At(0) = 0; (38)

4.3 Simulated Data Sets
The simulated data sets were created using the package PopED version 0.5.0
[25, 26]. PopED is a package built for population and individual optimal experimental
design. It allows for specifying experimental conditions, such as a sampling scheme,
dosing scheme, number of individuals, et cetera. Moreover, the model can be
specified using ordinary differential equations as well as the parameter values and the
intra-individual variability and residual unexplained variability. PopED has functionality
to automatically create a simulated data set from these details. The data sets created
using PopED can then be easily transformed in R to a format suitable for NONMEM.
For all the created data sets a full two-compartment TMDD model was used. Three
different parameter value sets were used. The fixed model parameters are specified
in table 1. All parameter values expect kdeg and kint are the same between the sets.
The high » 1 and low « 1 kint value are chosen to simulate the different profiles of a
membrane-bound and soluble receptor respectively. The higher kdeg > kint and lower
kdeg < kint value were chosen, because this difference generates very different
profiles.
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Table 1: Parameter value sets used for generating simulated data sets

Parameter abbreviation units Set 1 Set 2 Set 3

Absorption rate * ka /day 0.25 0.25 0.25

Clearance Cl L/day 0.2 0.2 0.2

Volume of distribution
central compartment

V 1 L 3.1 3.1 3.1

Inter-compartmental
clearance

Q L/day 0.79 0.79 0.79

Volume of distribution
peripheral compartment

V 2 L 2.8 2.8 2.8

Initial receptor
concentration

R0 nM 0.001 0.001 0.001

Rate of drug and target
association

kon /nM/day 86.4 86.4 86.4

Rate of drug-target
complex dissociation

koff /day 32.6 32.6 32.6

Rate of target
degradation

kdeg /day 82 82 20

Rate of drug-target
complex degrada-
tion/internalization

kint /day 0.01 40 40

The random effects model parameters are the same over all experiments. For the
inter-individual variability (η) the variance ω per parameter is given in table 3. The
parameters with IIV are modeled as: θ ∗ exp(η).

Table 2: Variance of the inter-individual variability (η) parameter values used for gen-
erating simulated data sets

Parameter ka Cl V 1 R0 kdeg V max

Omega 0.45 0.30 0.26 0.40 0.30 0.30

In table 2 the parameter values for the variance (σ) of the proportional residual
unexplained variability (ε) is given for each biomarker.
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Table 3: Residual unexplained variability parameter values used for generating simu-
lated data sets

Parameter C R RC Ctot Rtot

Sigma 0.250 0.300 0.400 0.325 0.350

The study design was based on a typical mAb phase 1 design in which a total of 24
individuals were included (n=6 per dose group). The simulated dose groups are
112.0 nmol, 373.6 nmol,746.4 nmol and 1493.6 nmol. The doses are administered as
intravenous doses. These doses are based on the sampling scheme in [27] (0.3
mg/kg SC, 1 mg/kg SC, 2 mg/kg SC and 4 mg/kg SC), calculated from mg/kg to nmol
with a molecular weight of 150 kDa (based on the MW of anrukinzumab 145.4 kDa
[28]), a weight of 70kg and a bio-availability of 0.8. The sampling time points were
selected as 0.5 hours, every 12 hours until day 7, once a week for 4 weeks, once
every two weeks for 4 weeks and once every 4 weeks for 8 weeks. This is based on
the sampling scheme in [27], considering a phase-1 study scheme design. All data
sets were generated with this dosing and sampling scheme.
The sampled biomarkers were varied between the data sets. Five different types of
biomarkers are used: free drug (C), free and bound drug (Ctot), free receptor (R), free
and bound receptor (Rtot) and drug-receptor complex (RC). The following
combinations of these biomarkers were used in the simulations:

• C

• C & R

• C, R & RC

• C & Rtot

• Ctot

• Ctot & R

• Ctot & Rtot

This results in 3 x 7 = 21 different simulated data sets.

4.4 NONMEM
The simulated data sets are used for fitting three different models, namely a full
two-compartment TMDD model, a two-compartment QSS model and a
two-compartment MM model. This gave 21 x 3 = 63 models that should be fitted with
NONMEM. However, the initial parameter values in NONMEM can have a profound
influence on the final results. Therefore, the choice was made to fit each of these 63
models 100 times with different initial parameter values. These 100 different initial
parameter settings were generated in R by multiplying the true/simulation parameter
value with a value randomly drawn from a log-normal distribution. The log-normal
distribution is derived from a normal distribution with a mean of 1 and a standard
deviation of 1.
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4.5 Variance-based sensitivity analysis with pksensi
For each of the different structural models a variance-based sensitivity analysis was
performed using the package pksensi [29] to execute the eFAST algorithm. With
pksensi the eFAST algorithm can be run on every sampling point. The first order,
interaction and total order measures are then the maximum value of all time points.
This was extended to the different dosing groups by performing the eFAST with
pksensi four times, once for each dosing group and then selecting the maximum from
each time-point for each dose group. All parameters were varied between half and
twice the parameter value used in the simulations. Number of samples (n) was set to
5000 and the number of replications for calculating the convergence was set to 5.
The threshold for convergence was set to the default of 0.05. For identifiability only
the total order sensitivity measure was used. The threshold for identifiability was
varied to find the optimal value. The optimal value was determined by calculating
accuracy, precision, recall and F1 [30] for each threshold value compared to the
identifiability results from the NONMEM simulation and selecting the threshold with
the highest F1 value. The highest F1 value indicates the optimal balance between
precision and recall. The statistics were calculated as follows:

accuracy =
true positives+ true negatives

true positives+ true negatives+ false positives+ false negatives
(39)

precision =
true positives

true positives+ false positives
(40)

recall =
true positives

true positives+ false negatives
(41)

F1 = 2
precision ∗ recall
precision+ recall

(42)

(43)

Positive here means that the parameter is unidentifiable and it follows that negative
means that the parameter is identifiable. The reference here is the results from the
NONMEM simulation. Thus, for example, a false positive is when a parameter is
identifiable in the NONMEM simulation, but marked as unidentifiable by pksensi.

4.6 Fisher information Matrix identifiability analysis
The PopED package was also used to generate the Fisher Information Matrix in the
same manner as the data sets were generated. The only difference is that now not
only the ODEs of the full TMDD model were used, but those for the QSS model and
the Michaelis-Menten model as well. This resulted in 63 different Fisher Information
Matrices for each scenario used in the simulation approach. These matrices were
then normalized for the structural model parameter values. The variability parameters
are not normalized as these are already relative values. The matrix was normalized
by matrix multiplication of the FIM with a diagonal with the true parameter values and
the rest of the values set to 1. Finally, the diagonal was multiplied with the resulting
matrix.
Next, the eigenvalues and vectors of the matrix were calculated. The eigenvalues
indicate the size of effect on the output of a step in the direction of the eigenvector. A
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eigenvalue of zero or close to zero indicates unidentifiability in that direction. Thus, to
mark directions as unidentifiable a threshold on the eigenvalues needs to be
determined, below which the direction is marked as unidentifiable. Two approaches
were tested for selecting the unidentifiable directions, firstly all directions that have a
eigenvalue lower than a certain threshold and secondly the largest jump between
eigenvalues on the log scale was selected as the threshold for identifiability. The
unidentifiable parameters are then selected by finding the largest absolute value in
the eigenvector, which is "the main direction" of that eigenvector. The optimal
threshold value was selected in a similar manner as for the variance-based sensitivity
analysis, by varying the threshold and selecting the optimal F1 value.

4.7 Analyzing the results
The NONMEM estimated parameters were compared to the true (used in the
simulations) parameter values. Firstly, the relative absolute differences between
these parameter values were calculated for all the replicates as follows:
difference = |estimated parametervalue−true parameter value|

true parameter value
.

A difference of larger than 20% compared to the true value was assumed to indicate
an unidentifiable parameter. The comparison to 0.2 (20%) is done by a sign test, as
preliminary analysis showed the differences were neither (log-)normally distributed
nor symmetric. The eFAST and the FIM method are then compared to the NONMEM
results. As now for each experiment the identifiability of each parameter is decided for
all methods, the accuracy, precision and F1 value of the eFAST and FIM method are
calculated. To study the identifiability of the parameters in different sampling schemes
the NONMEM results were studied in more detail by creating boxplots of the
distribution of the estimated parameter values relative to the true parameter values.
The width of the inter-quartile range is a measure of the precision of the parameter
estimates. The difference between the median and the true value is a measure of
accuracy.
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5 Results

5.1 Simulation data
An example of a simulated data set created with PopED, according to the
specifications in the methods can be seen in figure 5. It shows that the different dose
groups cover a wide range of concentrations and the sampling is sufficiently dense
and long enough to span across all phases of the typical TMDD concentration-time
profile (See figure 3).

Figure 5: Concentration-time profiles of simulated data with TMDD model (kdeg=82
/day, kint=0.01 /day). Sampling times are shown as dots and solid lines represent the
typical profile. The shaded areas are the IIV. The profiles are coloured per dose group.

Figure 6 shows an overview of the concentration-time profiles for the different
parameter value sets. It compares the profiles generated by the model simplifications
(QSS and MM) to the TMDD profile. There is very little difference between the QSS
and TMDD profile visible, except in the initial state. The initial drug-receptor complex
concentration for QSS is at the value of R0 = 0.001 nM, while for TMDD it starts at 0
nM and then rapidly approaches the QSS profile. The difference of the TMDD profile
with the MM approximation is far more pronounced and depends strongly on the
parameter set. Firstly, in the MM approximation the total receptor concentration is
constant. Additionally, the complex concentration does not initially increase/decrease
depending on the ratio of kdeg and kint. This is most noticeable when kdeg=82 /day and
kint is 0.01 /day, as this causes a strong increase of the complex concentration in
TMDD and QSS.
The difference in kint, also resulted in very different concentration-time profiles. There
is a marked difference in the length of phase 2, which is longer when kint is smaller.
This also means that while for kint = 0.01 /day there are samples in all phases, the
last sample for kint = 40 /day is taken in the third phase at the highest dose level.
If kint=40 /day and kdeg > kint, the total receptor concentration decreases from the
steady state concentration initially. While the concentration increases if kint < kdeg
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before returning to the equilibrium.

Figure 6: Simulations of concentration-time profiles for the different parameter sets and
model approximations with dose is 1494 nmol. The vertical dotted black line indicates
the final sampling point in the simulation data sets.

5.2 NONMEM parameter estimation

5.2.1 Initial results exploration

The settings of all experiments can be found in appendix 7.1. For each of the 63
experiments, 100 models with different initial estimates were constructed. All 6300
models were run with NONMEM. From the 6300 runs, 4639 minimized successfully.
1587 of the remaining runs crashed due to rounding errors. 74 runs crashed due to
other reasons, mostly parameter estimates approaching zero. These 74 runs were
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excluded from the results. Every experiment had at least 93 runs left. The number of
excluded runs per experiment can be found in figure 7.
The decision was made to include the runs with rounding errors as the distribution
over the different data sets and models was uneven (figure 8). Excluding runs with
rounding errors may have resulted in skewed results, as the sign test for
unidentifiability would have less power for data sets with less runs. Notably, the runs
with the Michaelis-Menten approximation with a data set with only the biomarkers of
free (C, dark blue) or total drug (Ctot, yellow) concentration are over-represented in
the rounding errors. In addition, the distribution of the estimates of runs with rounding
errors versus runs without, did also not seem to differ much on a visual inspection of
the relative parameter estimates (figure 9).

Figure 7: Number of excluded runs per experiment colored by the data set. Runs with
rounding errors are not excluded.
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Figure 8: Number of runs with rounding errors per model colored by the data set.

Figure 9: Boxplots of the distribution of natural logarithm of the relative estimated
parameter values of all parameters over the data set and the model type, split by
successful minimization or rounding errors. Boxes represent the inter-quartile range
(IQR) and the solid line in the box the median value. The length of the whiskers
corresponds to the furthest point from the median within 1.5 x IQR. Outliers are plotted
as points. The plot y-limit has been set to [-5,5], so not all data may be included in the
plot.
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The absolute relative difference from the true parameter values were compared with a
sign test to a value of 0.2 (20%), which was assumed to be the acceptable relative
deviation from the true value. The number of parameters marked (un)identifiable by
this test, can be found in table 4.

Table 4: Number of parameters marked as (un)identifiable by the sign test applied
to the absolute relative differences of the NONMEM estimated values from the true
value. The ratio between unidentifiable/identifiable parameters is provided as well.
The results are provided for all parameters in all experiments and for only the fixed-
effects parameters.

Number of
unidentifiable
parameter
values (True)

Number of
identifiable
parameter
values (False)

Ratio

All parameters 121 752 0.16

Fixed-effects
parameters

55 449 0.12

5.2.2 Results analysis

The parameter estimation for the different model types and parameter values relative
to the true (simulation parameter) values can provide valuable information on the
identifiability of parameters in TMDD models under different conditions. These results
must be interpreted with caution because per experiment only one data set, with 24
individuals with parameter values randomly sampled from the specified distribution,
was generated. A few of the more noteworthy results are discussed. Boxplots
providing an overview of the results of the remaining parameter estimation can be
found in appendix 7.2.
Firstly, figure 10 presents a breakdown of the results of the parameter estimation in
NONMEM of the drug-target complex internalization parameter (kint) for the different
models and parameter sets. These and all the other boxplots presented hereafter
show the distribution of the estimated parameter value relative to the true (simulated)
parameter value. It is important to note that the plots have been limited to a factor 100
larger and smaller than the true parameter value for a more clear visualization of the
bulk of the results.
What stands out in figure 10 is the wider range of predictions in the TMDD model with
only the free or total drug concentration, compared to the other data sets for all three
parameter sets. There also seems to be a strong (∼10x) over-estimation in the value
of kint for the data set with free drug, free target and complex data for the QSS model
with kint = 0.01 /day compared to the parameter sets with kint = 40 /day. However, it
should be taken into account that these are relative values and as kint is small, a
small over-prediction results in a large relative over-prediction.
This is to a lesser degree also the case for the TMDD model with only free drug &
free target concentration and total drug & total target concentration. While in contrast
the experiments with only free drug & total receptor concentration and total drug and
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total receptor concentration show an under-prediction in varying degrees for low
values of kint. Hence, the results for kint indicate that it can be most accurately
identified for higher values of kint and when target data is available.

Figure 10: Plots of the estimated parameter value kint (/ day) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.

The results for the rate of target degeneration (kdeg) are shown in figure 11. As with
kint, the range of estimated values for kdeg is wider when there is only free or total
drug concentration in the data set. It is also apparent from this figure that addition of
the drug-target complex data has little to no added value for the prediction of kdeg as
the IQR is neither smaller nor more accurate than for the data sets which only contain
the free drug concentration. Only for kint = 0.01 and biomarkers C & R and Ctot & R,
is there a slight under-prediction in the value of kdeg. This might be caused by a bias
introduced through the randomly sampled data set, as there is IIV on kdeg.
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Figure 11: Plots of the estimated parameter value kdeg (/ day) relative to the true pa-
rameter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.

From figure 12 with the estimated parameter boxplots of the Michaelis-Menten
constant (Km) it can be seen that the prediction strongly depends on the parameter
set and the data set. The most striking example of this is the extreme over-prediction
of the value of Km when kint is small and the free receptor concentration without
complex concentration is present in the dataset. This is better visible in figure 13,
where the limit to the relative parameter estimation value is higher. Interestingly, the
prediction is more accurate with only concentration data or total receptor
concentration in the data set. This behavior may be explained by the difference in the
free receptor and total receptor profile between MM and TMDD/QSS for low values of
kint, see figure 3).
Overall, these results show that the parameter identification depends on the
biomarkers in the data set, the parameter values and the model used.
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Figure 12: Plots of the estimated parameter value Km (nM) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.

Figure 13: Plots of the estimated parameter value Km (nM) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to 750, so not all data may
be included in the plot.
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5.3 Sobol Sensitivity Analysis
One of the two tested methods for predicting the identifiability of parameters in TMDD
models is the variance-based sensitivity analysis eFAST for predicting Sobol
sensitivity indices. Pksensi also provides a tool for monitoring the convergence of the
sensitivity index (scale of 0-1). The default value for convergence is smaller than 0.05
on the convergence index, however Hsieh et al. use 0.1 as threshold in their study on
applying global sensitivity analysis [13]. In figure 14 the convergence of the
parameters over each experiment is plotted. It is apparent that many of the
parameters have not reached convergence with a sample size of 10000, using 0.1 as
threshold. Especially, for many of the experiments the clearance has not converged
and overall the QSS model experiments (experiment number 21-42). Because the
non-convergence was imbalanced over the different model types, the decision was
made to include these predictions in the results. Consequently, the results for these
experiments should be interpreted with caution.
The default threshold for identifiability in the pksensi package is 0.05 as well, but by
varying the threshold value, it was found that 0.075 gave the highest F1 value and
thus the best balance between precision and recall. However, the F1 value varies
little over the entire range of threshold values, due to the precision being 25% over
the entire range of boundary values. A threshold of 0.075 is used for the comparison
to the NONMEM estimates. The accuracy at this threshold is 0.8, which means that
80% of the predictions is correct. However, there is a "class imbalance" as there are
more parameters predicted to be identifiable (i.e False) than unidentifiable (i.e. True),
thus the accuracy does not reflect the quality of the variance-based sensitivity
analysis as a classifier for unidentifiable parameters well (See table 4). More
informative is the precision. The precision at the selected threshold is 0.23, so 23% of
the parameters that eFAST predicts are unidentifiable are unidentifiable according to
the NONMEM results. Although, the precision is low, eFAST performs better than a
random classifier where a precision of 12% is expected according to the class
balance (see table 4).

Figure 14: Plot of the first order and total order Sobol indices convergence for the
different parameters. The colours indicate the degree of convergence.
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Figure 15: Plots of the accuracy, precision, recall and F1 of the eFAST variance-based
sensitivity analysis with as reference the NONMEM simulation results. The Sobol in-
dices range between 0 and 1. The purple line represents the first order sensitivity
and the blue line represents the total order sensitivity. The dotted line indicates the
selected threshold value (0.075), which has the highest F1 value.

5.4 Fisher Information Matrix
The Fisher information matrix can be used to determine the identifiability of fixed
effects and random effects parameters. Low eigenvalues indicate an unidentifiable
direction. To find the best threshold for the eigenvalues, different threshold values
were tested, as well as using the largest difference between two eigenvalues on the
log scale as the threshold. The eigenvalues were calculated relative to the sum of the
eigenvalues from the FIM, so the range of values is between 0 and 1. The accuracy,
precision, recall and F1 statistics of this experiment are plotted in figure 16. The F1
value did not vary much in the entire range of tested threshold values
(1 · 10−10 − 0.01). The threshold with the highest F1 value 1 · 10−8 was selected for
comparison to the NONMEM estimated values, as this represents the optimal
balance between the recall and precision. The recall for the studied threshold values
varied between 0.55 and 0.85, which means that between 55% and 85% of
unidentifiable parameters are found. However, the precision is lower than 0.25 over
the entire range of threshold values, which indicates that only less than 25% of
parameters marked as unidentifiable by the FIM method are actually unidentifiable
(according to the simulations). This is around the same precision achieved by
reached by the variance-based sensitivity method.
The ratio of unidentifiable to identifiable for all parameters is 0.16, thus the precision
of the FIM method is better than a random classifier.
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Figure 16: Plots of the accuracy, precision, recall and F1 of the Fisher Information
matrix with as reference the NONMEM simulation results. The threshold values are
the eigenvalues relative to the largest eigenvalue, thus the largest possible value is
1. The jump threshold is the threshold on identifiable eigenvalues set by selecting the
largest difference between two eigenvalues on the log-scale. The yellow dot indicates
the selected threshold value, which has the highest F1 value.

5.5 Comparing the methods
Using the selected boundaries for the eigenvalues from the FIM and the Sobol
indexes calculated by eFAST the identifiability of each parameter was determined. In
figure 17 these results compared to the results from the NONMEM estimation are
presented. It is clear that the results from the FIM and Sobol indexes are somewhat in
discordance with both each other and the NONMEM estimates. A positive result is
that the predictions for Cl, V 1, Q and V 2 indicate that they are mostly identifiable over
the experiments for all three methods. The eFAST method predicted that the kinetics
parameters Cl, V 1, Q and V 2 are always identifiable and the FIM that koff , kdeg and
kint are always identifiable. While the NONMEM simulation results indicated that for
all the parameters (except V 2) there are conditions where it is not identifiable.
Interestingly, for Vmax the eFAST indicates that is not identifiable in any experiment,
while the FIM indicates that it is identifiable in every experiment, and the NONMEM
results suggest it sometimes is, and sometimes is not. In contrast, the FIM predicted
that for most experiments the kon, kss and Km are unidentifiable, while the eFAST
method predicted more identifiable parameters here.
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Figure 17: Plots of the accuracy, precision, recall and F1 of the Fisher Information
matrix with as reference the NONMEM simulation results. The threshold values are
the eigenvalues relative to the largest eigenvalue, thus the largest possible value is
1. The jump threshold is the threshold on identifiable eigenvalues set by selecting the
largest difference between two eigenvalues on the log-scale. The yellow dot indicates
the selected boundary value, which has the highest F1 value.

The statistics confirmed the visual indications. Both the eFAST and the FIM method
resulted in comparable low precision scores, 0.23 and 0.20 respectively, although
both were as mentioned higher than expected for a random classifier. The recall is
considerably higher for the FIM (0.66) than the eFAST (0.38) method, with only a
small reduction in precision. However, the eFAST method has a higher accuracy
(0.79) than the FIM (0.58). This suggest that the eFAST has more true negative
values, i.e. parameters correctly predicted to be identifiable, but less true positive
values than the FIM. See table 5 for the statistics per parameter.
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Table 5: Accuracy, precision, recall and F1 for the eFAST sensitivity method and the
Fisher Information Matrix (FIM) method with the NONMEM estimates as reference.
Missing values are caused by zero denominators in the calculations.

parameter method accuracy precision recall F1

3 Cl eFAST 0.95 - 0.00 -

4 Cl FIM 0.94 0.00 0.00 -

5 V 1 eFAST 0.94 - 0.00 -

6 V 1 FIM 0.67 0.05 0.25 0.09

7 Q eFAST 0.97 - 0.00 -

8 Q FIM 0.97 - 0.00 -

9 V 2 eFAST 1.00 - - -

10 V 2 FIM 0.92 0.00 - -

11 R0 eFAST 0.71 0.00 0.00 -

12 R0 FIM 0.83 0.00 0.00 -

13 kon eFAST 0.62 0.00 0.00 -

14 kon FIM 0.05 0.05 0.50 0.09

15 koff eFAST 0.48 0.00 0.00 -

16 koff FIM 0.95 - 0.00 -

17 kdeg eFAST 0.79 0.17 0.20 0.18

18 kdeg FIM 0.88 - 0.00 -

19 kint eFAST 0.55 0.15 0.60 0.24

20 kint FIM 0.88 - 0.00 -

21 Kss eFAST 0.62 0.00 0.00 -

22 Kss FIM 0.24 0.06 0.50 0.11

23 Km eFAST 0.57 0.75 0.60 0.67

24 Km FIM 0.71 0.71 1.00 0.83

25 Vmax eFAST 0.38 0.38 1.00 0.55

26 Vmax FIM 0.62 - 0.00 -

30 IIV Cl FIM 0.32 0.27 1.00 0.43

32 IIV V 1 FIM 0.24 0.16 1.00 0.27

34 IIV R0 FIM 0.30 0.30 1.00 0.46

36 IIV kdeg FIM 0.31 0.31 1.00 0.47
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38 IIV Vmax FIM 0.43 0.27 0.80 0.40

40 RUV C FIM 0.33 0.00 - -

42 RUV R FIM 0.30 0.00 0.00 -

44 RUV RC FIM 0.11 0.11 1.00 0.20

46 RUV Ctot FIM 0.33 0.00 - -

48 RUV Rtot FIM 0.22 0.00 0.00 -

49 all eFAST 0.79 0.23 0.38 0.29

50 all FIM 0.58 0.20 0.66 0.31
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6 Discussion

The initial objective of this study was to determine the identifiability of TMDD model
parameters under different conditions. To this end models were fitted on simulated
data sets with different model simplifications, parameter values and biomarkers. In
the results some of the more interesting findings from this analysis were highlighted.

Before these results are discussed, some remarks on the practical implementation
of this study. Apart from the of course long runtime (∼days) of such a large amount of
models in NONMEM, several other challenges were encountered. To run models with
different biomarkers and different initial values, different NONMEM models need to be
created. As 6300 models is too much to code manually, three templates for these files
were generated, one for each model type (TMDD, QSS and MM) in R using the
package whisker [31]. Another issue was that the ODE for the three model types had
to be declared in three different languages, for NONMEM, the PopED package and
pksensi. All three model declarations were used for simulating and these simulations
were visually compared for ensuring integrity of the methods. For future work it may
be beneficial to automatize this process. The entire process of creating experiments,
generating data sets, generating the NONMEM model files, calculating the FIM’s and
running the eFAST sensitivity analysis was coordinated from R. The initial intention
was to run all these processes in a single for-loop and start with a random seed for
reproducibility. However, due to the heavy workload of the sensitivity analysis R
crashes repeatedly during this process. Requiring a restart part-way through the
process, means that the random seed will be reset each time, and reproducibility is
thus lost. In a further study, these processes should be separated to avoid this
problem.

Turning now to the results of the NONMEM simulations, in line with the
expectations it was found that when there is only free or total drug data, the
distribution of parameter estimates for dynamics parameters (kint, kdeg and Km) is
generally wider as there is no direct information on the target concentration. The
most remarkable finding was the strong over-estimation for Km, when there was
free/total target concentration in the data set and kint = 0.01 /day for the MM
approximation. The estimation of kint was actually better when there was only
drug-concentration data in the data set. This is likely caused by the disagreement
between the concentration-time profile of the target for the full TMDD model and the
MM approximation with a low kint value. A higher kint value will shift the curve of the
MM profile to the left, which agrees more with the receptor curve, while only
influencing the drug-concentration profile on a limited scale. Slower drug-target
complex degradation with values in the range of free-drug elimination is associated
with soluble targets [32]. Therefore, it is important to take this into account when
developing a model for a drug with a soluble target.

The disagreement between the different simplifications and its consequences
evoke another point of discussion, namely the definition of identifiability. The definition
of practical parameter identifiability in the introduction was stated as follows:
parameter values can be accurately estimated given a finite amount of noisy
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experimental data. If the model is not applicable to the data (as is the case here with
MM models for low values of kkint), according to the current definition this model is
not identifiable. However, the question is if these are not two separate issues:
identifiability and applicability. In this case another definition for identifiability might be
more appropriate, e.g. parameter values can be uniquely estimated given a finite
amount of noisy experimental data. With this definition no assumptions on the
correctness of these parameter values are made. Then, in the analysis of the
NONMEM parameter estimates the only criterion for the identifiability would be the
width of the distribution of parameter estimates.

The analysis of the NONMEM estimates had several limitations and issues. Firstly,
due to limited time and resources only a fraction of the possible situations was
studied. The choice was made to only look at a single dose "phase 1" sampling and
dosing scheme. However, the analysis could be expanded on many fronts, such as
multiple dosing, different methods of dose administration, different sampling
schemes, more individuals and other parameter sets or model simplifications.
Secondly, while the initial parameter values in NONMEM were randomly sampled for
the 100 replications, only one data set was used for each experiment. Because this is
a mixed-effects model, the data values are selected with randomness due to the IIV
and the RUV on the fixed effect parameters. For more reliable results, there should
also be replications with re-sampled data sets. Important to note is that because per
experiment only one data set, with 24 individuals with randomly sampled parameter
values from the specified distribution, was generated. This may have resulted in the
"true parameter value" not completely agreeing with the average parameter values for
the individuals in the generated data set. This made the accuracy of the estimated
parameter values difficult to assess and might have even resulted in incorrectly
marking parameters as unidentifiable by the sign test. Furthermore, not all
experiments had the same amount of runs due to a number of crashed runs. These
experiments have less power in the sign test as there are less samples and this might
have caused parameters to be classified as identifiable when they were not
identifiable. Although, it is unclear to what extent these crashes have influenced the
results.

The second aim of this study was to test a part of the proposed workflow (figure 4)
for determining parameter identifiability. First, the results of Fisher Information Matrix
method were compared to identifiability of parameters found by fitting the simulated
data sets with NONMEM. The distribution of parameter estimates by NONMEM was
transformed to a yes/no for identifiability by means of a sign test with 0.2. For the FIM
method a threshold was set on the eigenvalues. The highest value of the
corresponding eigenvector was then selected as the unidentifiable parameter. The
threshold was varied to find the optimal balance between recall and precision through
the F1 value. However, the precision was low (< 0.25) for the entire range of threshold
values, meaning that less than 25% of the parameters marked as unidentifiable are
actually unidentifiable. The recall was low as well, only 38% of the true unidentifiable
parameters were marked as unidentifiable. This indicates that this approach is not
suitable for determining the identifiability. However, the precision is better than that of
a random classifier and with some adaptations it may be improved. It is possible that
selecting just the highest value in the eigenvector is not sufficient and looking at
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parameter combinations would give a higher precision. Another method could be to
use the FIM generated by PopED in the method described by Eisenberg & Hayashi in
[10] where identifiable parameter combinations are identified by a combination of the
covariance-matrix from the FIM and log-likelihood profiling could be used instead of
the method described here.

The other method that was tested is variance-based sensitivity analysis. A
quantitative measure of sensitivity, the Sobol indices, were calculated using eFAST.
The convergences of the indices can be checked with similar indices to the Sobol
indices with the R package pksensi. These indices showed that many parameters
had not converged with a sample size of 10000. In an analysis of convergence of
variance-based sensitivity [33], it was found that sometimes sample sizes of more
than 30,000 are necessary to reach convergence. However, they also suggested that
one could also look at convergence of the screening, i.e. the split between identifiable
and unidentifiable parameters, instead of the convergence of the sensitivity indices.
The screening convergence might be reached with a smaller sampling size and is
sufficient for the aims of the analysis in this study, thus this may be a better approach
for future work. As with the FIM, the precision was low (max 23%) regardless of the
threshold value on convergence. The recall was better than for the FIM, with a recall
of 66%. However, the results may improve if convergence is reached for all
parameters. Regarding the range of parameter values used, the original intent was to
use the entire physiological range of parameter values in accordance with global
parameter sensitivity analysis. However, initial analysis using such a large parameter
range showed that the interaction term of the total index would then approach 1,
making the results uninformative. In addition, convergence was very difficult to reach
with such large ranges. Alternatively, the approach suggested in [13] was to select
the parameter value ranges by preliminary simulations and choosing the range so
that the simulated range covers the experimental data range.

For both the FIM method and the eFAST method, a threshold on sensitivity was set
by selecting the value with the highest F1 value. The F1 value is the harmonic mean
of the recall and precision. However, it may be better to weigh the recall and precision
differently, as it may be more beneficial to simplify only when really necessary (so
more "weight" on the precision) or to always simplify when there is any doubt about
the identifiability (more "weight" on the recall). This is something that should be
carefully considered and may also depend on the application of the model. Another
point of deliberation is that both the FIM and eFAST method, only use the sampling
points and the FIM an initial parameter estimate. To calculated the sensitivity they use
the ODE’s of the model they’re testing the sensitivity of. However, as no actual data is
used in these methods, if the model does not match the data the parameters will not
be found to be unidentifiable. If this is a disadvantage or not depends on the chosen
definition of identifiability. Regarding the practical applicability of these methods, it is
important to note that the calculation of the FIM was very fast (∼few minutes for all 63
experiments), in contrast to eFAST method which took over 24 hours to run. For a
sampling size of 10000 with 10 replicates and four dose groups, a single run was
around 20 minutes. However, as a larger sampling size may be needed the
necessary time will increases accordingly. Moreover, the final step of the proposed
workflow, the log-likelihood profiling, which was not tested yet, does use the
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measured data point. This approach may capture unidentifiability missed by the FIM
and eFAST, however will increases the time necessary for completing the workflow.

The final goal of this study was to identify "difficult" parameters, of which the
identifiability was often predicted incorrectly by the FIM and eFAST method. However,
as neither of these methods was successful, the results per parameter provided in
table 5 were not informative. A more extensive investigation in which conditions the
FIM and eFAST agree with the NONMEM results is necessary. This may also guide
improvements of the proposed workflow.

In conclusion, the most important findings from the simulations were the
overestimation of the kint for low values of kint with a Michaelis-Menten model using
free/total target as biomarker in the dataset. This should be taken into account when
developing models for soluble drug targets. Finally, the results for the tests of the
steps of the proposed workflow were not encouraging. However, further research and
possible adjustments are needed to make any definitive conclusions on the
usefulness of this workflow for determining parameter identifiability for TMDD models.
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7 Appendices

7.1 Experiment Settings

Table 6: Settings for each experiment on the model type, the biomarkers in the dataset
and the parameter values of kdeg and kint.

Experiment Model Data set Parameter set: kdeg (/day); kint (/day)

1 TMDD C 82; 0.01

2 TMDD C 82; 40

3 TMDD C 20; 40

4 TMDD C, R 82; 0.01

5 TMDD C, R 82; 40

6 TMDD C, R 20; 40

7 TMDD C, R, RC 82; 0.01

8 TMDD C, R, RC 82; 40

9 TMDD C, R, RC 20; 40

10 TMDD C, Rtot 82; 0.01

11 TMDD C, Rtot 82; 40

12 TMDD C, Rtot 20; 40

13 TMDD Ctot 82; 0.01

14 TMDD Ctot 82; 40

15 TMDD Ctot 20; 40

16 TMDD Ctot, R 82; 0.01

17 TMDD Ctot, R 82; 40

18 TMDD Ctot, R 20; 40

19 TMDD Ctot, Rtot 82; 0.01

20 TMDD Ctot, Rtot 82; 40

21 TMDD Ctot, Rtot 20; 40

22 QSS C 82; 0.01

23 QSS C 82; 40

24 QSS C 20; 40

25 QSS C, R 82; 0.01

26 QSS C, R 82; 40
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27 QSS C, R 20; 40

28 QSS C, R, RC 82; 0.01

29 QSS C, R, RC 82; 40

30 QSS C, R, RC 20; 40

31 QSS C, Rtot 82; 0.01

32 QSS C, Rtot 82; 40

33 QSS C, Rtot 20; 40

34 QSS Ctot 82; 0.01

35 QSS Ctot 82; 40

36 QSS Ctot 20; 40

37 QSS Ctot, R 82; 0.01

38 QSS Ctot, R 82; 40

39 QSS Ctot, R 20; 40

40 QSS Ctot, Rtot 82; 0.01

41 QSS Ctot, Rtot 82; 40

42 QSS Ctot, Rtot 20; 40

43 MM C 82; 0.01

44 MM C 82; 40

45 MM C 20; 40

46 MM C, R 82; 0.01

47 MM C, R 82; 40

48 MM C, R 20; 40

49 MM C, R, RC 82; 0.01

50 MM C, R, RC 82; 40

51 MM C, R, RC 20; 40

52 MM C, Rtot 82; 0.01

53 MM C, Rtot 82; 40

54 MM C, Rtot 20; 40

55 MM Ctot 82; 0.01

56 MM Ctot 82; 40

57 MM Ctot 20; 40

58 MM Ctot, R 82; 0.01
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59 MM Ctot, R 82; 40

60 MM Ctot, R 20; 40

61 MM Ctot, Rtot 82; 0.01

62 MM Ctot, Rtot 82; 40

63 MM Ctot, Rtot 20; 40
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7.2 NONMEM parameter estimation

Figure 18: Plots of the estimated parameter value Cl (L/day) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 19: Plots of the estimated parameter value V 1 (L) relative to the true parameter
value for each model, output measure and parameter set. Boxes represent the inter-
quartile range (IQR) and the solid line in the box the median value. The length of the
whiskers corresponds to the furthest point from the median within 1.5 x IQR. Outliers
are plotted as points. The plot y-limit has been set to [0.01,100], so not all data may
be included in the plot.

Figure 20: Plots of the estimated parameter value Q (L/day) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 21: Plots of the estimated parameter value V 2 (L) relative to the true parameter
value for each model, output measure and parameter set. Boxes represent the inter-
quartile range (IQR) and the solid line in the box the median value. The length of the
whiskers corresponds to the furthest point from the median within 1.5 x IQR. Outliers
are plotted as points. The plot y-limit has been set to [0.01,100], so not all data may
be included in the plot.

Figure 22: Plots of the estimated parameter value R0 (nM) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 23: Plots of the estimated parameter value kon (/nM/day) relative to the true
parameter value for each model, output measure and parameter set. Boxes represent
the inter-quartile range (IQR) and the solid line in the box the median value. The
length of the whiskers corresponds to the furthest point from the median within 1.5 x
IQR. Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not
all data may be included in the plot.

Figure 24: Plots of the estimated parameter value koff (/nM/day) relative to the true
parameter value for each model, output measure and parameter set. Boxes represent
the inter-quartile range (IQR) and the solid line in the box the median value. The
length of the whiskers corresponds to the furthest point from the median within 1.5 x
IQR. Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not
all data may be included in the plot.
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Figure 25: Plots of the estimated parameter value Kss (nM) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.

Figure 26: Plots of the estimated parameter value Vmax (nM) relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 27: Plots of the estimated parameter value IIV Cl relative to the true parameter
value for each model, output measure and parameter set. Boxes represent the inter-
quartile range (IQR) and the solid line in the box the median value. The length of the
whiskers corresponds to the furthest point from the median within 1.5 x IQR. Outliers
are plotted as points. The plot y-limit has been set to [0.01,100], so not all data may
be included in the plot.

Figure 28: Plots of the estimated parameter value IIV V 1 relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 29: Plots of the estimated parameter value IIV R0 relative to the true parameter
value for each model, output measure and parameter set. Boxes represent the inter-
quartile range (IQR) and the solid line in the box the median value. The length of the
whiskers corresponds to the furthest point from the median within 1.5 x IQR. Outliers
are plotted as points. The plot y-limit has been set to [0.01,100], so not all data may
be included in the plot.

Figure 30: Plots of the estimated parameter value IIV kdeg relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 31: Plots the natural logarithm of of the estimated parameter value IIV Vmax

relative to the true parameter value for each model, output measure and parameter
set. Boxes represent the inter-quartile range (IQR) and the solid line in the box the
median value. The length of the whiskers corresponds to the furthest point from the
median within 1.5 x IQR. Outliers are plotted as points. The plot y-limit has been set
to [0.01,100], so not all data may be included in the plot.

Figure 32: Plots of the estimated parameter value RUV C relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 33: Plots of the estimated parameter value RUV R relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.

Figure 34: Plots of the estimated parameter value RUV RC relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.
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Figure 35: Plots of the estimated parameter value RUV Ctot relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.

Figure 36: Plots of the estimated parameter value RUV Rtot relative to the true param-
eter value for each model, output measure and parameter set. Boxes represent the
inter-quartile range (IQR) and the solid line in the box the median value. The length
of the whiskers corresponds to the furthest point from the median within 1.5 x IQR.
Outliers are plotted as points. The plot y-limit has been set to [0.01,100], so not all
data may be included in the plot.

53


	Abstract
	Acknowledgments
	Introduction
	Pharmacological modeling
	Target Mediated Drug Disposition
	Simplifications of the full TMDD model
	Quasi-steady state assumption
	Quasi-Equilibrium
	Michaelis-Menten approximation

	Parameter Identifiability
	Parameter Identifiability Analysis
	Gibiansky Hierarchical approach
	Bootstrapping
	Profile Likelihood
	Fisher Information Matrix
	Variance-based sensitivity analysis

	Proposed workflow for determining parameter identifiability in TMDD models
	Study goals

	Methods
	Software
	Ordinary differential equations models
	Simulated Data Sets
	NONMEM
	Variance-based sensitivity analysis with pksensi
	Fisher information Matrix identifiability analysis
	Analyzing the results

	Results
	Simulation data
	NONMEM parameter estimation
	Initial results exploration
	Results analysis

	Sobol Sensitivity Analysis
	Fisher Information Matrix
	Comparing the methods

	Discussion
	References
	Appendices
	Experiment Settings
	NONMEM parameter estimation


