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Abstract

Deep supervised models often require a large amount of labelled data, which is dif-
ficult to obtain in the medical domain. Therefore, semi-supervised learning (SSL)
has been an active area of research due to its promise to minimize training costs
by leveraging unlabelled data. Previous research have shown that SSL is espe-
cially effective in low labelled data regimes, we show that outperformance can be
extended to high data regimes by applying Stochastic Weight Averaging (SWA),
which incurs zero additional training cost. Furthermore, we also conclude that
larger-than-realistic transformations are the most beneficial. Our model was trained
on a prostate CT dataset and achieved improvements of 0.12 mm, 0.14 mm, 0.32
mm, and 0.14 mm for the prostate, seminal vesicles, rectum, and bladder respec-
tively, in terms of median test set mean surface distance (MSD) compared to the
supervised baseline in our high data regime.

Keywords— semi-supervised learning, Image Segmentation, Consistency Loss, Stochastic
Weight Averaging (SWA), Convolutional Neural Networks (CNN), Adaptive Radiotherapy

1 Introduction

Supervised deep learning models have proven to be effective in many computer vision prob-
lems, but training such models for practical applications requires a large amount of labelled data
[3]. These are especially difficult to obtain in the medical domain due to the reliance on highly
specialised personnel and patient confidentiality considerations. Therefore, semi-supervised
learning (SSL), which use both labelled and unlabelled data, are especially relevant and a
number of methods for medical image segmentation have already been proposed [4, 5, 6, 7, 8].

The idea of transformation-consistent SSL, as proposed by Sajjadi et al. [9] for classification,
is that one can apply transformations or perturbations to the input image without changing
the label. For unlabelled images, this means that the network should predict the same label
before and after the transformation. This idea has already been adapted for medical image
segmentation [4, 5], so the main contribution of this paper is to show that Stochastic Weight
Averaging (SWA) [10], which averages a sample of network weights along the convergence
path, further improves performance without incurring additional training cost. This is especially
significant in high labelled data regimes, in which previous research have shown that SSL
does not outperform substantially [4, 5]. Moreover, we also examine the effects of different
transformation procedures.

The clinical context of this paper is the treatment of prostate cancer with radiotherapy, where we
maximize the treatment dose to the target organs (prostate and seminal vesicles), while mini-
mizing the dosage to the surrounding organs-at-risk (OARs) (bladder and rectum). Therefore,
it is crucial to precisely segment target organs and OARs in order to avoid treatment related
complications [11].

Note on Notation Capital letters in bold denote tensors of dimension greater than 1, e.g. X
is the input tensor, while italic capital letters indicate sets, e.g. Xu is the set of unlabelled input
images.

4



Base105 SSL105 Base105SWA SSL105SWA

Figure 1: Example segmentations from the high data regime for different networks. From top
to bottom, the images are selected from the first, second and third quartiles in terms of the
prostate MSD of the SSL105SWA network. The solid lines are groundtruth delineations by a
radiation oncologist and the dotted lines are produced by the networks. Red, yellow, blue, and
green represent the bladder, prostate, rectum, and seminal vesicles, respectively.

2 Related Work

In existing work on classification [9], the idea of consistency also extends to perturbing the
intermediate representations in the network, by using dropout [12] and randomised max-pooling
[13], but this paper focuses on transformation of the input only. The Π-model introduced in [14]
is based on the same principle, but expands the idea with Temporal Ensembling, which takes
an exponential average of the past predictions of the current image in the previous epochs as
unlabelled target, thus taking advantage of more stable predictions. Mean Teacher [15] further
builds on this idea by averaging the weights instead, which allows unsupervised targets to
update after each iteration, as opposed to every epoch in the case of Temporal Ensembling. Xie
et al. [16] contributes to the discussion by examining the effect of different input transformations
on performance, which is the motivation behind the experiment of Section 4.3.
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It is also worth noting that consistency is just one of many approaches to semi-supervised
learning. One early branch of inquiry used unlabelled data to model a joint distribution of the
input data and labels, i.e. a generative model [17]; the disadvantage with this approach is that
discriminative models performs better as the amount of training data increases [18]. A very
simplistic idea is to use the network’s own predictions on the unlabelled set as the target [19],
which encourages more confident predictions; the intuition is that this reduces the entropy of
the prediction, which is consistent with the decision boundary being in the low density regions of
the input space. Further work incorporates entropy minimisation more explicitly into the model
specification [20]. Early works with convolutional neural networks focused on using unlabelled
data to pretrain the model [21, 22], thus starting with more promising initial weights to speed
up convergence; however, other works [23, 24] have shown that random initialisation can still
produce state of the art results. A more recent idea that has been shown to work well in classifi-
cation settings is Mixup [25], which encourages smoother class boundaries [26], hence reduces
overfitting.

Cheplygina et al. [27] provided a survey of earlier research on SSL for medical image segmen-
tation and classified them into two approaches. The idea of closeness assumes that samples
close to each other in the sample space might have the same label and it is embodied by self-
training, which propagate high-confidence labels to unlabelled images as training progresses.
The second approach is the idea of clustering, which assumes that clusters of samples might
have the same label; this is typically expressed by graph- and SVM-based methods that try to
place class boundaries in low density regions.

The idea of transformation-consistency has been widely explored by recent research. In addi-
tion to Bortsova et al. and Li et al. [4, 5], on which our method is based, the Mean Teacher model
[15] from classification has also been successfully adapted for image segmentation [6, 8]. Liu
et al. [7] extended the idea of consistency to include group similarity measures, instead of fo-
cusing only on the individual-sample level. Compared to earlier research, these transformation-
consistent methods have a lot in common with self-training [28]. Finally, Athiwaratkun et al. [29]
demonstrated that SWA is especially beneficial for consistency-based SSL in a classification
setting, hence it is potentially applicable to all similar methods in a segmentation setting, even
though our methodology is the most similar to [4, 5].

3 Methodology

3.1 Context and Motivations Behind Design Choices

The semi-supervised method in this paper adapts the image classification framework in [9, 14]
for segmentation, but the intermediate representations were not perturbed, because the exist-
ing supervised baseline does not use any stochastic perturbation layers (although batch nor-
malisation is used, this is intended for data standardisation rather than perturbation). Secondly,
instead of a λ -schedule, Xie et al. [16] suggests a more sophisticated procedure, whereby a
confidence threshold is defined for unlabelled predictions and the unsupervised loss is only
calculated on individual inputs whose softmax probability of the predicted label is greater. In
effect, the unsupervised component is mostly zero towards the beginning of training and semi-
supervised learning only begins in later batches as the proportion of confident predictions in-
creases. This has the advantage of being based on a metric that attempts to capture the quality
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Figure 2: The 3D UNet-like network architecture: in teal is the input, in grey are 3D convo-
lutions with stride 1 and no padding, in blue are downsampling convolutions with stride 2, in
orange are plain upsampling layers with scale factor 2 and in yellow is the output. The num-
bers on the side of each layer are dimensions of the feature maps, while the numbers along the
bottom show the number of feature maps.

of the predictions, but its adaptation for segmentation is less straight forward. Segmentation is
akin to a joint classification task for each voxel (3D pixels), so that each will have its own set
of softmax probabilities, hence a confidence threshold will have to be applied on a voxel level.
Further, voxels close to the segmentation boundaries are the most important, but they are
also typically the ones with lower confidence, meaning that they would be under represented
in the loss function. Nevertheless, preliminary experiments were conducted with this setup,
which did not exhibit very good convergence behaviour and was abandoned early on, hence
results are not presented. Another feature that was not carried over to this work is the use of
Kullback-Leibler divergence [30] as unsupervised loss, which required consistency in terms of
the predicted probability distribution over all possible classes, which is a stronger condition than
simply making the same prediction. This also needs to be applied on a voxel level, which did
not transfer well.

3.2 Architecture

The network architecture, as shown in Fig. 2, resembles a fully-convolutional [31] 3D Unet [32].
The network is organised into a down-sampling and an up-sampling phase, with skip connec-
tions between the corresponding blocks in each phase, thus resembling an autoencoder [33]
with skip connections. The convolutional layers use 3×3×3 kernels, followed by batch normal-
isation [34] and leaky ReLU activation [35]. There are two downsampling convolutional layers
with strides of two, which are mirrored by two unsampling layers that doubles the size of each
dimension and linearly interpolate the intermediate values. The number of filters approximately
doubles after each downsampling layer and roughly halves after each upsampling layer. There
are skip connections between corresponding downsampling and upsampling blocks, where
the earlier output is center-cropped to the correct dimensions. The output layer is a softmax-
activated convolutional layer with a 1×1×1 kernel, which is equivalent to a fully connected layer
with shared weights; this is the only convolutional layer that does not use batch normalisation.
The advantage of a fully convolutional setup is that a trained network can make predictions on
inputs of different dimensions, which is crucial for the augmentation procedure as explained in
Section 3.3. The output dimensions are smaller than the input, so a segmentation is only pro-
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Figure 3: The unsupervised component, where the upper branch shows an unlabelled image
being segmented then transformed, while the lower branch shows the same image being trans-
formed then segmented. lu is the unsupervised loss function.

duced for the center of the input image. A figure of the network is available in the supplement.

3.3 Training Procedure

This section describes the loss function, which follows the same structure as existing litera-
ture and Stochastic Weight Averaging (SWA), which we introduce for semi-supervised medical
image segmentation. The pseudo codes are provided in Algorithms 1 and 2.

3.3.1 Loss Function

The loss function is a weighted sum of supervised and unsupervised losses, as shown in Eq.
(1). The unsupervised loss is based on transformation consistency, where the segmentation of
a spatially transformed image should be the same as the transformed segmentation of the orig-
inal image. Let f represents the forward pass of the network and t represents a transformation,
we assert that f ◦ t = t ◦ f . This is illustrated in Fig. 3, where any deviation between t ◦ f

θ̃
(X)

and fθ ◦ t(X) are penalised. θ̃ denotes non-trainable parameters, so t ◦ f
θ̃
(X) is used as a “fake”

label. This setup follows Li et al. [5] but differs from Bortsova et al. [4], who used a Siamese
model structure. t is a random choice between affine transformation (scaling and shearing) and
elastic deformation. The inputs to the network are sampled patches from the full CT scans, but
a larger patch is used as input to t and then cropped, so as to ensure a smooth transformation
along image boundaries. This also means that f

θ̃
(X) takes a larger input window, as it is the

input to t; this is made possible by the fully convolutional setup. The loss function is defined as
follows:

L(Xl,Xu) = E
(X,Y)∈Xl

ls( fθ (X),Y)+λ E
X∈Xu

lu( fθ ◦ t(X), t ◦ f
θ̃
(X)), (1)

where Xl and Xu are the labelled and unlabelled data sets, X and Y are tensor representations
of an input image and its label, ls and lu are the supervised and unsupervised loss functions,
both of which are Dice loss in this paper, and λ is a weighting coefficient.
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3.3.2 Dice Loss

Dice loss is based on the Sørensen–Dice coefficient (DSC):

DSC =
2|A∩B|
|A|+ |B|

(2)

which measures the proportion of overlap between two sets. This is relevant because image
segmentation is essentially a voxel (3D pixel) by voxel classification task, so A could represent
the set of voxels that are predicted as the prostate and B those whose label is the prostate.
Since DSC is a coefficient between 0 and 1, where 1 represents perfect overlap, 1 - DSC is
used for minimisation.

A few adaptations are made to define dice loss, which is as follows:

DSCk =
2∑elements Ŷk ◦Yk

∑elements(Ŷk +Yk)
(3a)

DiceLoss = 1− ∑
K
k=1 DSCk

K
(3b)

where Ŷk is a B×L×W ×D tensor containing the predicted probabilities of each voxel for class
k and Yk is the binary indicator tensor of the label for class k (i.e. the k-th slice of one-hot
encoded labels), K is the number of classes, B is the batch size, L×W ×D is the dimension
of the input, ∑element is the sum of tensor elements and ◦ is the Hadamard (element-wise)
multiplication. In the numerator of Eq. (3a), the A from Eq. (2) is replaced by a tensor containing
the predicted probabilities that each voxel is the prostate and B is a binary indicator tensor of
which voxels are labelled as such, the two are multiplied element-wise and then summed. This
ensures a smooth progression in the loss function as the predictions become more confident.
It is therefore similar to calculating a cross-entropy loss for each voxel, except probabilities are
used here instead of log-probabilities. Secondly, note that Ŷk and Yk are defined for the whole
batch, which is not the same as calculating a loss for each input then averaging across the
batch, but it is more efficient to implement this way and its numerical properties are the same.
Finally, the set cardinality operator is implemented as a sum of array elements. This calculation
is repeated for each organ and averaged to get the final loss.

3.3.3 Stochastic Weight Averaging

SWA was first introduced by Izmailov et al. [10], who proposed to average over a sample of
network weights during the latter stages of Stochastic Gradient Descent (SGD). This is ben-
eficial because the loss surface traversed by SGD near the end of training is approximately
convex [36], which implies that the average of several solutions is likely to have a lower loss.
Athiwaratkun et al. [29] examined semi-supervised learning and consistency loss specifically,
albeit in a classification setting, finding that the sampled points are further away from each other
in Euclidean space, hence that SGD traverses a wider region of the weight space; from this,
they concluded that averaging is especially beneficial for semi-supervised learning.

In our implementation, 10 sets of weights are sampled after the network has reached con-
vergence, then they are averaged to produce the SWA model. The only inputs to producing
an SWA model are the weights produced during the normal course of training, then one addi-
tional forward pass is required on the training data to recalibrate any batch normalisation layers;
hence the additional cost of producing such a model is essentially zero.
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3.3.4 Dealing with 3D Inputs

Working with sampled windows of 96× 96× 96 from the full CT scans on an RTX6000 GPU
with 24GB of memory, the largest possible batch size was 14. In order to support the large
ratio of unlabelled to labelled images in the training set, which is also reflected in the compo-
sition of each batch, gradients are backpropagated for every sub-batch of six windows, while
the optimiser only makes a step after a full batch. Each full batch always consists of one la-
belled sub-batch and multiple unlabelled sub-batches, which reflects the ratio of unlabelled to
labelled images in the training set. Consequently, the unsupervised loss for each sub-batch is
downscaled by a factor of r, the ratio of unlabelled to labelled input, otherwise the weight of
the unsupervised component would implicitly increase; this is shown in line 27 of Algorithm 1.
Mathematically, the loss is now an arithmetic mean over the sub-batches, which has the same
expected value as the loss calculated on the full batch.

Algorithm 1 Training Procedure
1: procedure TRAIN(Xl,Xu, fθ ) . subscript l means labelled and u unlabelled
2: for e← 1,num epochs do
3: for all labelled batch Bl in Xl do
4: LABELLEDITER(Bl)
5: if e≥ start ssl then
6: UNLABELLEDITERS(Xu)
7: end if
8: end for
9: θ ← OPTIMISERSTEP

10: if e≥ start swa then
11: SAVEPARAMETERS(θ )
12: end if
13: end for
14: end procedure

15: procedure LABELLEDITER(Bl)
16: Ŷl ← fθ (Bl)
17: SupLoss← DICELOSS(Ŷl,Yl) . compute supervised loss
18: BACKPROPAGATE(SupLoss)
19: end procedure

20: procedure UNLABELLEDITERS(Xu)
21: for i← 1,r do . r is the ratio of unlabelled to labelled inputs
22: Bu← NEXTBATCH(Xu)
23: Yu← TRANSFORM( f

θ̃
(Bu))

24: Yu← argmaxk Yu . probabilities are converted to class labels
25: Ŷu← fθ (TRANSFORM(Bu))
26: UnsupLoss← DICELOSS(Ŷu,Yu) . compute unsupervised loss
27: UnsupLoss← λ

r UnsupLoss . see Section 3.3.4
28: BACKPROPAGATE(UnsupLoss)
29: end for
30: end procedure
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Algorithm 2 Generate SWA Model
1: function DOSWA( f ,saved parameters,Xl)
2: θ ←MEAN(saved parameters)
3: SETBATCHNORM( fθ ,Xl) . Do one forward pass to calibrate BatchNorm layers
4: return fθ

5: end function

3.4 Types of Transformation

Three types of transformation were investigated: voxel intensity shift, affine transformations and
elastic deformations; examples are shown in Figs. 4 and 5. Intensity shift was implemented as a
uniform shift to the voxel values in the region excluding the background. Affine transformations
included random scaling and shearing in each of the three input dimensions. Elastic deforma-
tion was implemented with the code from [1], which randomly perturbs a sample of control point
in the input image, then interpolates the location of the voxels between these points, resulting in
a smooth non-linear transformation. In line with the conclusion in [16] that the appropriateness
of the transformation has a big influence on network performance, Section 4.3 compares the
relative effectiveness of each.

An implementation detail to note is that affine and elastic transformations are applied to a larger
input image, which are then cropped to ensure a smooth transformation along the edges of the
cropped output. Consequently, the input to t(◦) in Fig. 3 has a larger dimension than its output,
which means that the input to f

θ̃
(◦) is also larger than other forward passes during training; this

is only possible because f is a fully convolutional network.

4 Experiments and Results

4.1 Data

The dataset is composed of prostate CT scans from three hospitals using different scanners.
All images have a dimension of 512× 512, but varying numbers of slices and voxel spacing.
Leiden University Medical Center (LUMC) in the Netherlands contributes with 399 scans, which
have 68-240 slices and a voxel size of 1.0×1.0×3.0mm. The second dataset is from Haukeland
Medical Center (HMC) in Norway and has 161 scans, which are composed of 91-218 slices and
a voxel size of 0.9×0.9×1.5mm. The last dataset comes from Erasmus Medical Center (EMC)
in the Netherlands and has 42 scans with 90 - 180 slices and a voxel size of 0.9×0.9×2−3mm.
This is summarised by Table 1. Four target classes are delineated in all images, the prostate,
seminal vesicles, bladder and rectum, and these were done manually by radiation oncologists.
The voxel intensities were clipped to remove extreme values, then normalised to a range of -1 to
1. During training and validation, a class-balanced sampler was used to sample three windows
of dimension 96×96×96 online from each image, which are used as inputs to the network. The
network weights with the lowest validation loss are used for inference on the test set, for which
a sliding window sampler is used.
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(a) Intensity Down 0.2 (b) Intensity Up 0.2 (c) No transformation

(d) Elastic Small (e) Elastic Medium (f) Elastic Large

Figure 4: Examples of the intensity and elastic deformation transformations. For intensity, the
background is excluded and shifts of up to ±0.2 were applied to original voxel values in the
range [−1,1]. For elastic deformation, three different magnitudes were used. The grid was added
for illustrative purpose, to show the effect of the transformation. Organ labels were also overlaid
in colour to show the effect on each target class. The images shown are cross-sectional slices of
the full 3D scan.

Figure 5: Examples of the three magnitudes of affine transformation used: small, medium, and
large, which consisted of random scaling and shearing in each dimension. The images shown
are cross-sectional slices of the full 3D scan.
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Table 1: Composition of the dataset and technical attributes of the images produced by differ-
ent scanners. The sources are Leiden University Medical Center, Erasmus Medical Center in
Rotterdam and Haukeland Medical Center in Bergen.

Source LUMC EMC HMC

Number of scans 399 42 161

Image Dimension
512 x 512 x
(68 – 240 slices)

512 x 512 x
(91 – 218 slices)

512 x 512 x
(90 – 180 slices)

Voxel Spacing ∼1.0 x 1.0 x 3.0 mm ∼0.9 x 0.9 x 1.5 mm ∼0.9 x 0.9 x 2-3 mm

4.2 Experimental Setup

Two different experiments are presented in this paper. For each experiment, results are pre-
sented for a fully-supervised baseline and semi-supervised networks, both of which use the
same UNet-like [32] architecture as described in Section 3.2. The difference is that λ in Eq. (1)
is set to 0 for the baseline, while for SSL it is initially 0 for a supervised phase, then 0.5 for a
semi-supervised phase. This was so that the unlabelled predictions could reach a reasonable
accuracy for consistency loss to work.

For the experiment on the transformation procedure (Section 4.3), the supervised baseline was
trained for 500 epochs over a labelled set of 105 CT scans. The validation set consisted of 37
full scans, the test set 53, and another 105 were treated as unlabelled. Each semi-supervised
network was trained for another 300 epochs using the weights from the supervised baseline
as the starting point. The RAdam optimiser [37] was used with an annealing stepped learning
rate. The aim of this experiment is to determine the optimal transformation procedure for SSL.

For the experiment with SWA (Section 4.4), results are presented for high and low labelled
data regimes. For the high data regime, 105 CT scans were randomly selected as the labelled
training set, while 407 scans were treated as unlabelled, 37 scans as validation and 53 scans
as test. This was repeated three times to generate three folds for the high data regime and two
folds for the low data regime. Each source hospital is represented in the same proportion in
each split. For the low data regime, the labelled training set was reduced to 20 CT scans. In
Section 4.4, experiments for the high data regime are labelled “105” and low data regime are
labelled “20”.

For the high data regime, the Base network was trained for 400 epochs, while the SSL model
had 100 epochs of supervised training, plus 300 epochs of semi-supervised training. Both
models used a random start, in which all convolutional layers were initialised from a random
normal distribution of N (0,0.022). The SWA models consisted of averaged weights over the
last 50 epochs, sampled every 5 epochs. For the low data regime, the networks were trained
for a total of 1110 epochs and the semi-supervised phase started after 400 epochs. The SWA
weights were averaged over the last 100 epochs, sampled every 10 epochs; the lower sample
rate tries to account for the fact that each epoch consists of fewer iterations. Finally, all networks
were trained with the RAdam optimiser [37] with a constant maximum learning rate of 10−4.

We also compared the proposed SWA approach to three state-of-the-art methods in abdominal
CT radiotherapy: Cross-Stitch [38] is a deep learning approach that shares weights between a
segmentation and registration CNN, Elastix [39] is a conventional iterative registration method
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and a Hybrid model [40] that feeds CNN segmentations of the bladder to an iterative approach
as prior knowledge.

Three different metrics were calculated: Sørensen–Dice coefficient (DSC), mean surface dis-
tance (MSD) and 95% Hausdorff distance (HD). DSC is defined in (2). MSD is the mean dis-
tance between voxels on the segmentation surface and the closest surface voxel in the ground
truth, while HD is an outlier measure of the greatest distance between segmentation bound-
aries, which in this case is the 95th-percentile of the surface distances. While DSC can be
conveniently implemented as a loss function (see Section 3.3), it measures the percentage of
common voxels in the prediction and label, which means that it tends to be higher for larger
organs. MSD overcomes this disadvantage by measuring the mean deviation between the seg-
mentation boundaries in millimeters, which is also more meaningful in determining the clinical
usefulness and safety of the methods. Furthermore, having good segmentation on average
is not enough to guarantee safety, since excess radiation on any healthy tissue could lead to
complications, hence the inclusion of HD. The Wilcoxon signed-rank test [41] is used to test for
statistical significance against the baseline, because it is a non-parametric test and the evalu-
ated metrics on the test set do not follow a normal distribution; specifically, H0 is that the median
performance on the test set is equal between two methods.

4.3 Transformation Procedure

Table 2: Test set results for different transformation procedures. Lower values are better. †
denotes a difference from the baseline at 5% statistical significance using a Wilcoxon signed
rank test.

(a) MSD (mm)

Prostate Seminal vesicles Rectum Bladder
µ±σ Median µ±σ Median µ±σ Median µ±σ Median

Baseline 1.87±1.7 1.51 3.19±9.1 1.97 2.28±1.5 1.71 0.92±0.6 0.74
Intensity 1.88±1.1† 1.67 2.50±3.7 1.89 2.56±1.4† 2.01 1.14±0.9† 0.84
Affine S 1.79±0.7† 1.64 2.50±4.3 1.76 2.35±1.5 1.77 0.99±0.7 0.79
Elastic S 1.77±0.8† 1.53 2.45±3.9 1.91 2.55±1.7† 1.90 0.97±0.7 0.75
Aff+Ela M 1.71±0.7 1.55 2.32±3.4 1.73 2.26±1.5 1.67 0.85±0.6 0.69
Aff+Ela L 1.72±0.7 1.55 2.49±4.7 1.70 2.19±1.5 1.64 0.80±0.5† 0.65

(b) 95%HD (mm)

Prostate Seminal vesicles Rectum Bladder
µ±σ Median µ±σ Median µ±σ Median µ±σ Median

Baseline 5.9±4.3 5.7 9.2±10.4 7.3 13.9±9.7 10.3 4.3±3.7 3.0
Intensity 6.0±2.9 6.0 9.0±8.0 6.9 15.4±9.8 12.0 5.7±6.2† 3.2
Affine S 5.9±2.7 6.0 8.7±7.8 7.2 14.6±10.2 10.8 5.2±6.0 3.0
Elastic S 5.7±2.8 5.4 8.7±7.7 7.7 15.7±11.5 10.1 4.6±5.3 3.0
Aff+Ela M 5.6±2.4 5.2 8.6±8.1 6.4 14.1±10.5 9.6 4.0±3.9 3.0
Aff+Ela L 5.5±2.6 4.9 8.9±9.7 6.0 14.1±10.1 10.0 3.9±3.9† 3.0

In order to optimise the function t(·), three different types of transformation were used, as
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Table 3: Relative performance by data source, lower values are better. The test set was divided
into three groups corresponding to which hospital provided the image, for which group means
and medians were calculated for each evaluation metric and organ, these are then ranked from
one to three and the summed ranks are presented below. Aff+Ela L from Table 2 is used to
represent SSL and ”Base” refers to the supervised baseline.

SSL Mean SSL Median Base Mean Base Median

EMC 34 26 35 27
HMC 14 20 15 19
LUMC 24 26 22 26

Figure 6: Distribution of test set MSD values for the high data regime.

discussed in Section 3.4, as well as different magnitudes of transformation, as shown in Figs. 4
and 5. A selection of results are presented in Table 2, where the µ +σ column gives a sense of
variance, while the median gives a sense of the average without outliers. The † denotes that the
evaluated metric for the test set as a whole is statistically significantly different to the baseline,
using a 95% confidence interval on a Wilcoxon signed-rank test [41], it is not specifically related
to the µ +σ column.

Intensity gave consistently worse results than Elastic S and Affine S, except for 95%HD on the
seminal vesicles. It was also often statistically significantly worse than the baseline. Compared
to the baseline, Affine S and Elastic S also did not achieve better results, but most metrics did
improve when the magnitude of the transformations was increased. Aff+Ela M and Aff+Ela L
used a mix of affine and elastic transformations with increasing magnitudes of transformations,
which produced better mean MSD but not the median; 95%HD was also better. However, the
lack of statistical significance on all organs except the bladder indicates that the improvements
are small and that the conclusions could change under a different data split.

Lastly, Table 3 shows how performance differs for each source hospital. The test set was split
into three group corresponding to each source hospital, then each group was ranked by their
median and mean for each evaluation metric and organ combination; the summed ranks are
presented in Table 3, for which lower values are better. HMC consistently gave the best results,
followed by LUMC and then EMC.

4.4 Stochastic Weight Averaging

Table 4 shows that in the high data regime, SSL105 performed similarly to Base105, with size-
able improvement for the seminal vesicles, but statistically significantly worse on the prostate,
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Table 4: Test set MSD (mm) values for the high and low data regimes. Lower values are better.
† signifies 5% statistical significance vs Base20 and Base105 using a Wilcoxon Signed-Rank
Test.

Prostate Seminal vesicles Rectum Bladder
µ±σ Median µ±σ Median µ±σ Median µ±σ Median

Base105 1.85±1.1 1.63 2.24±2.4 1.74 2.43±1.7 1.81 1.04±0.8 0.80
SSL105 1.84±0.7† 1.72 2.20±2.4 1.63 2.44±1.7 1.86 1.27±1.5 0.80
Base105SWA 1.76±1.0† 1.55 2.10±2.1† 1.63 2.32±1.8† 1.72 1.09±1.5† 0.73
SSL105SWA (Proposed) 1.64±0.6† 1.51 2.08±2.3† 1.60 2.07±1.5† 1.49 0.86±0.9† 0.66
Base20 2.41±1.4 2.07 4.12±7.9 2.26 3.40±2.7 2.48 1.94±3.7 0.97
SSL20 2.12±0.8† 1.97 2.57±1.6 2.17 3.56±3.1 2.33 1.54±1.6 0.92
Base20SWA 2.63±1.9† 2.15 4.04±5.1 2.29 3.71±3.0 2.69 1.99±4.2 0.99
SSL20SWA (Proposed) 1.94±0.8† 1.77 2.46±2.6† 1.79 2.81±2.0† 2.27 1.30±1.4† 0.80

Table 5: Test set MSD (mm) comparison against other state-of-the-art methods.

Prostate Seminal vesicles Rectum Bladder
µ±σ Median µ±σ Median µ±σ Median µ±σ Median

SSL105SWA (proposed) 1.64±0.6 1.51 2.08±2.3 1.60 2.07±1.5 1.49 0.86±0.9 0.66
Cross-Stitch Segmentation [38] 1.88±2.2 1.21 4.73±8.0 1.42 3.61±5.0 2.18 2.45±2.4 1.24
Elastix [39] 1.42±0.7 1.17 2.07±2.6 1.24 3.20±1.6 3.07 5.30±5.1 3.27
Hybrid [40] 1.55±0.6 1.36 1.65±1.3 1.22 2.65±1.6 2.36 3.81±3.6 2.26

while the rectum and bladder were similar. Both SWA models, supervised and semi-supervised,
achieved statistical significance in their outperformance over Base105, while SSL105SWA
also reached statistical significance over Base105SWA for the rectum and bladder. Moreover,
SSL105SWA produced more consistent predictions, as shown by the distribution of the test set
MSD in Fig. 6. Specifically, SSL105SWA shows tighter and lower interquartile ranges for the
prostate, rectum and bladder, as well as the lowest quartiles for the seminal vesicles. Hence
the combination of SSL and SWA produced the best segmentation performance as well as the
lowest variance.

In the low data regime, SSL20 showed more marked improvements against Base20 than in the
high data regime, although it is not statistically significant for all organs. Similarly to the high
data regime, SSL20SWA produced the best results and they are also statistically significant.
However, Base20SWA did not improve over Base20 in the low data regime.

Table 5 provides a comparison in the high data regime against existing state-of-the-art results,
which are fully supervised image registration methods. The performance of our pure segmen-
tation method falls short for the prostate and seminal vesicles, but outperformed substantially
for the rectum and bladder. Our proposed model takes approximately 0.5 seconds to segment
a full CT scan, which is comparable to Cross-Stitch and shorter by an order of minutes than the
iterative and hybrid methods [38].

5 Discussion

The experiment in Section 4.3 set out to determine the optimal transformation procedure for
SSL. The results indicate that intensity shift is less useful; a possible explanation could be
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(a) Unsupervised Loss (b) Supervised Loss

Figure 7: Learning curves for the supervised and unsupervised components of the loss function
for a selection of experiments. Fig. 7a shows that network predictions are much more consis-
tent for less extreme transformations, which might not provide as much new information to
learn. Fig. 7b shows that more extreme transformations had a bigger regularisation effect and
improved generalisation, because the training loss was higher but validation loss was lower.

that it does not actually affect the segmentation boundary, whereas the other transformations
are more geometric in nature, thus more similar to the task at hand. Another possible reason is
more specific to CT scans, in which intensity values do not vary much between different patients
and should fall within a set range for different types of tissue. Consequently, intensity was
dropped from further experiments. The results for Aff+Ela M and Aff+Ela L in Table 2 suggests
that SSL has led to more consistent predictions by reducing the extremity of the outliers, since
there were improvements in the mean MSD and 95%HD, but not in median MSD.

Despite the lack of statistical significance, the general improvement when larger transforma-
tions were used is surprising. The S versions of the transformations, which gave worse results,
were tuned so that the resulting images are as similar as possible to the original dataset, while
still introducing some variations. Fig. 7a shows that a possible explanation could be that the
predictions for less extreme transformations were already very consistent, therefore it had very
little new information to learn, while more extreme transformations beget more mistakes, as
shown by the higher unsupervised loss. Another interesting observation from Fig. 7b is that
Aff+Ela L had higher training loss but lower validation loss, which means that more extreme
transformations had a similar effect to regularisation, improving generalisation. A final obser-
vation is that only the bladder showed statistically significantly better results; the explanation
could be that more extreme transformations are more appropriate for the bladder, as it is a
larger organ that shows more variation from day to day.

Table 3 shows that there are systematic differences between the source hospitals to which the
network has not been able to fully adapt, which suggests that improved preprocessing might
yield better results. However, not all differences can be eliminated, since the quality of the
segmentation labels also depends on the differing aptitudes of the clinicians who produced
them. Furthermore, outliers appear to be a large driver of this discrepancy, since the scores are
more dispersed for the mean.

The experiment in Section 4.4 set out to investigate the effectiveness of SWA for transformation-
consistent SSL in an image segmentation application, as well as the relative effectiveness of
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the model in high and low labelled data regimes. Moreover, a comparison to previous state-of-
the-art results on prostate CT datasets was also provided. The results for SSL without SWA,
SSL20 and SSL105, are in line with existing literature [4, 5], which showed that SSL outperforms
supervised learning when a small labelled dataset is used, but performs similarly when a large
labelled training set is used. The significant finding of this paper is that the use of SWA with SSL
leads to further improvement that is also statistically significant in both the high and low data
regimes. Moreover, this is achievable without additional training cost, as discussed in Section
3.3.

To differentiate how much of the improvement is attributable to SSL and SWA respectively,
supervised SWA models (Base20SWA and Base105SWA) were also provided for a second
comparison. Our results showed that SWA is especially beneficial for SSL, but can also be
beneficial for supervised learning in the high data regime. This could indicate that SWA works
well whenever a large amount of training data is available, both labelled and unlabelled. In the
high data regime, our proposed method show the most marked outperformance on the rectum
and bladder, which is consistent with the experiment on the transformation procedure. In the
low data regime, the outperformance was also substantial on the prostate and seminal vesicles,
which could reflect the supervised baseline being deprived of training data.

Compared to the current state-of-the-art, our proposed method also outperformed on the rec-
tum and bladder, but underperformed on the prostate and seminal vesicles. A likely reason is
that the other methods all use registration to some extent, meaning that the segmentation from
a planning scan is available as an input. This is particularly helpful for the prostate and seminal
vesicles, which show little spatial variation from day to day, but less so for the rectum and blad-
der, which vary a lot. Our proposed method do not make use of any prior segmentation, so it is
a pure segmentation method. A caveat, however, is that the comparison to the other methods
is not direct, since the datasets used are not exactly the same, albeit with significant overlap.

5.1 Scope for Improvement

Figure 8: An example of a sam-
pled window that has been trans-
formed by Affine L, showing the
ingress of padded regions along
the top and right edges.

While these are promising results, there are several areas
for improvement. Firstly, more parameter tuning could be
helpful; for example the maximum learning rate in Section
4.4 was carried over from previous research on the same
data set [38], as were many other network parameters,
which could benefit from more specific tuning for SSL. Sec-
ondly, more detailed study of the effect of different types and
magnitudes of transformation on each organ could be help-
ful, as Section 4.3 suggests that larger magnitudes might
lead to better performance on the bladder, but this could be
confirmed with more certainty. Moreover, Affine L introduces
padded regions into the transformed image, as shown in
Fig. 8; presently it is unclear whether this is helpful or detri-
mental. Lastly, it would be interesting to see how SSL with
SWA performs on a publicly available dataset.
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5.2 Conclusion

This paper set up to determine if semi-supervised methods can improve on a fully supervised
baseline in a CT image segmentation task. In contrast to previous applications of transformation
consistent SSL, the use of SWA is novel in our domain of application. The results showed
that SWA was beneficial in both high and low labelled data regimes, but can also be useful
for supervised learning when a large amount of training data is available. The improvement
in the high data regime is particularly significant, since existing research showed that SSL
do not outperform supervised learning in this setting without SWA. Further, since this gain in
performance comes with no additional training cost, SWA should be adopted as a matter of
course for transformation-consistent semi-supervised methods. In addition, we also found that
larger-than-realistic transformations can be beneficial, especially for organs that have more
day-to-day variation.

A Appendix

A.1 Additional Results Tables

Table A1: Test set Dice values for the high data regime. Higher values are better. † signifies 5%
statistical significance vs Base105 using a Wilcoxon Signed-Rank Test.

Prostate Seminal vesicles Rectum Bladder
Output Path µ±σ Median µ±σ Median µ±σ Median µ±σ Median

Base105 0.83±0.08 0.85 0.64±0.15 0.67 0.83±0.08 0.85 0.93±0.06 0.95
SSL105 0.84±0.05 0.84 0.66±0.14 0.68 0.83±0.07 0.85 0.92±0.07 0.94
Base105SWA 0.84±0.07† 0.86 0.65±0.15† 0.68 0.84±0.08† 0.85 0.93±0.08† 0.95
SSL105SWA 0.85±0.04† 0.86 0.67±0.13† 0.69 0.86±0.06† 0.88 0.94±0.05† 0.95
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