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ABSTRACT 

The application of big data forms a challenge for many organisations, given the variety, 

velocity, and veracity of the data. Furthermore, a diversity of data sources often results in 

information silos that are hard to access.  

Data lake systems have been proposed to store and manage data from different sources, 

e.g., unstructured, semi-structured, and structured data in one place.  

However, simply storing all data in a data lake without effective metadata management 

and information extraction tooling only results in the creation of a “data swamp”.  

Evaluation and selection of the appropriate set of data lake tooling is a complex decision-

making process that involves multiple (sometimes conflicting) criteria and differing tool 

sets. Furthermore, this process needs to take into account that each organisation has 

specific requirements and varying knowledge levels. To address this issue, this research 

proposes a criteria driven method for selecting the appropriate information extraction 

tooling, which can be used to generate a solution that is tailored to an organisation’s 

specific needs.  

This study describes the different models, and commercial and open-source tooling 

available for information abstraction from data lakes, and discusses each of their 

advantages and disadvantages. It serves to illustrate how different information extraction 

tools can be used to handle different situations based on user criteria. The result of this 

research is an automated solution that enables the user to input organisation specific 

criteria, and subsequently generates a priority based list of the most appropriate toolsets. 

The application of this method has been verified at five large-scale companies in the 

Netherlands. 
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1. INTRODUCTION 

1.1 Current state 

At this moment in time, organizations are enthusiastic about data lake implementations. So 

does Koninklijke Ahold Delhaize is referred to as KAD, which generates approximately 

five terabytes of data each month. Gartner believes that 70 percent of mature organizations 

will have more data flowing from data lakes than from data warehouses in the upcoming 

years. 

 

According to new research, the global data lake market will continue growing (Market 

Research Future, 2020).  

 

Figure 1: Data lake market size by 2023 (Market Research Future, 2020) 

Data lakes support unknown data (i.e., structured, unstructured, and semi-structured data), 

low-cost storage, and easy landing data in the data lake without pre-processing.  

 

Furthermore, data lakes support fast data coming from IoT devices. Data lakes often come 

with new tools and services that need to be understood. Investments need to be made in 

skills and transition from data warehouses to data lakes. Data lakes can easily land data, 

but data lakes use different query engines than data warehouses to query the data.  

 

Wherein data warehouses support relational data from transactional systems and 

operational databases (i.e., pre-defined schema, structured data). Data warehouses are a 

well-established and proven solution, and SQL server solutions are widely available. Such 
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warehouses also deliver good performance, partially due to its structure. A data warehouse 

has a written schema, and therefore SQL servers and other data warehouse technologies 

already understand its structure. However, the storage costs are more expensive than data 

lake storage. Although there is much value in having a model, it also takes time to have the 

development team support getting data into that model. Typically, the development of 

Extract Transform Load (ETL) processes creates latency because it has high costs. 

Organizations might only store specific amounts of data in the data warehouse, which will 

result in limited exploration. 

 

The gap 

One gap in the literature is that no information is available about the combination of 

tooling for Data Lake purposes in one method. It means there is a lack of knowledge of 

query languages, ETL tooling, and visualization tooling in one method.  

 

Furthermore, no information is available about commonly used architectures or 

frameworks and criteria associated with it. So, while there has been much research on the 

different aspects individually, as of today no researchers have considered the combination.  

 

This research intends to fill this gap. This gap will be filled by research on the query 

languages, ETL tooling, and visualization tooling, including advantages and 

disadvantages, followed by a method that will connect the different parts. Furthermore, 

will the method be validated and tested at different organizations. 
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1.2 Objectives 

While data lake adoption is growing, the difficulties of this technology are growing as well. 

Data lakes are not working well for each company because of data lake adoption failures, 

high expectations, and insufficient preparations.  

This research study aims to develop a method that helps organizations assess and choose 

their data lake architecture. After the literature review, a solution will be developed, which 

will be a selection method.  

 

The deliverables will be as follows: 

• List of criteria for the tooling 

• Top 3 query languages (dynamically specified for each situation) 

• Top 3 ETL tooling (dynamically specified for each situation) 

• Top 3 visualization tooling (dynamically specified for each situation) 

• Limitations 

• Future work 

 

It will be shown which techniques and tools can increase data accessibility and tackle 

common failures, as discussed in the next chapter. This research will provide insights into 

techniques and tools to address current issues and improve the accessibility of data lakes 

in general. The created method will be evaluated and verified at KAD and, more specific 

at Albert Heijn. Furthermore, will the solution be evaluated at Etos, Jumbo, Plus, and 

AirbusDS. These data lake problems are suitable for these companies and suitable for 

similar situations in the retail industry. Look for instance to Kruidvat, Bol.com, Lidl or 

COOP; these retail companies collect a massive amount of data, so these failures and 

solutions could also be suitable for them. The research is focused on enterprise 

organization. Furthermore, will this research not be limited to Microsoft tooling but rather 

take another tooling available in the industry into account. 

 

 

 



9 

 

1.3 Research question 

1.3.1 Main question 

“What method is best suitable for selecting the appropriate tools to rapidly and 

efficiently extract data from the data lake?” 

 

1.3.2 Sub-questions 

Which criteria are essential for rapid and efficient data extraction? 

 

Which query language will enable rapid and efficient data extraction? 

 

Which ETL tool will enable rapid and efficient data extraction? 

 

Which visualization tool will enable rapid and efficient data extraction? 

 

What is the process/mechanism for selecting the appropriate tooling? 

 

These questions are essential because the data stored in data lakes are difficult to find and 

extract. Often not all the data is stored in a data lake. Data is still stored in separate 

relational database management systems, but the transition to data lake usage increases. It 

makes it a bottleneck in the organizational network because analysts are waiting for data, 

but IT cannot provide the data, and therefore data analysts try to find a workaround.  

 

The introduction of data lakes also needs control and maturity levels, but most companies 

start using data lakes without real knowledge about their capabilities and preparations 

(Woods, 2018, pp. 1–3). The list below shows the common failures of data lakes: 

• Data lakes become data swamps. 

• Data never put into production. 

• Failing to gain added value. 

• A lack of business impact 

• A lack of data governance 
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• A lack of data quality 

 

The failures mentioned before shows how companies need to rethink their processes and 

data architecture to fully utilize data lakes (Woods, 2018, pp. 1–3).  
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1.4 Method 

The first step in this research is to gather as much information as possible about the subject. 

An extensive literature review incl. focus on existing frameworks or architectures will 

focus on the subject. Next, the method to select the appropriate tools to extract data rapidly 

and efficiently from the data lake will be built. Finally, a case study through a qualitative 

research method using interviews and survey will be used for validation. Interviewing 

people who are using this process and software will provide insights into their world, 

opinions, and thoughts. For example: 

• Behaviors: what a person has done or is doing. 

• Opinions/values: what a person thinks about the topic. 

• Knowledge: to get facts about the topic. 

• Background/demographics: standard background questions, such as age, education. 

 

This approach will use a standardized, open-ended interview, wherein open-ended 

questions are asked to all interviewees, which facilitates faster interviews that can be more 

easily analyzed and compared. 
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2. BACKGROUND AND RELATED WORK 

2.1 What is a data lake? 

General information 

Research executed by Madera & Laurent (2016, pp. 1–3) showed that from the big data 

wave and the Apache Hadoop projects in 2014, a new concept appeared: the data lake. 

Another early work in this area showed that data lakes tended to govern data swamps. 

However, no formal definition was found in the literature. 

 

Data Lake is defined as a methodology to approach the raw data, structured and non-

structured within an enterprise and seen as an evolution of existing data architecture. 

Besides, a Data Lake is a methodology, a concept that embraces all enterprise data, 

moves them into one physical place to use them for future insight. The concept 

addresses the variety and the volume of the four significant data characteristics (Madera 

& Laurent, 2016, pp. 1–3). However, even if a Data Lake is defined as a methodology, 

it is not only a methodology. It is an actual new data architecture solution composed of 

hardware, software, and conceptual design, thus not limited to a methodology. The 

landscape is more comprehensive than a methodology and is an actual new reference 

data architecture and a new step in information architecture evolution (Madera & 

Laurent, 2016, pp. 1–3). 

 

The volume, the variety, and the velocity of data is another essential thing. A Data lake 

is a low-cost storage physical environment based on Hadoop technology, populated by 

all data sources available in the enterprise. When the data is processed and used by 

power users or data scientists, the results will be saved in the data warehouse (Madera 

& Laurent, 2016, pp. 1–3). 

 

The final proposed definition by Madera & Laurent (2016, pp. 1–3) is: A data lake is a 

logical view of all data sources or data set, in their raw format, available and accessible 

by a data scientist or statistician to find new insight. 
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They gave the next short overview of what a Data Lake is: 

• A data lake is governed by a metadata sources index to guarantee the data 

quality. 

• Rules, tools, and processes control a data lake to guarantee data governance. 

• A data lake is limited to data scientist or data statistician access to guarantee 

data security, data privacy and compliance. 

• A data lake accesses all types of data. 

• A data Lake has a logical and physical design. 

 

The establishment of this definition is the foundation to go further to be able to explore 

the impacts of this new evolution into the information architecture design. Figure 2 

shows that before the end of 2020, more than 44 zettabytes of data will be generated, 

with more than 80 percent of them being unstructured (Madera & Laurent, 2016, pp. 

1–3). 

 

Figure 2: Data evolution (Madera & Laurent, 2016, pp. 1–3). 

The term itself was introduced by James Dixon. Almost all modern enterprises get a 

massive amount of data about their IT infrastructure's current state. These data need to 

be processed promptly and correctly to identify information useful for business needs. 

Most of this data is unstructured (Miloslavskaya & Tolstoy, 2016, p. 303). According 

to another study executed by the IDC study “The Digital Universe of Opportunities: 
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Rich Data and the Increasing Value of the Internet of Things”, the amount of 

unstructured data in 2020 is expected to be around 44 ZB (IDC, 2014). 

Data can be structured, semi-structured, and unstructured, making it impossible to 

manage and process them effectively in a traditional way (Miloslavskaya, 2014). The 

criteria given by Miloslavskaya & Tolstoy (2016, p. 303) for determining the difference 

between big data IT and traditional IT are three “V’s”:  

 

Volume: vast volumes of data 

Velocity: very high data transfer rate 

Variety: weakly structured data 

 

Later four additional v’s were added to the existing three: 

 

Veracity: trust in the data 

Variability: to what extent, and how fast, is the structure of the data changing? 

Value: the meaning and value to derive business value from the data 

Visibility: see what is happening 

 

The data lake strategies can combine SQL and NoSQL database approach 

(Miloslavskaya & Tolstoy, 2016, p. 303). 

 

Another research executed by Laskowski (2016) showed that a data lake refers to a 

massively scalable storage repository that holds a vast amount of raw data in its native 

format until it is needed and Shalom (2014) researched that in the current dynamic 

world, the enterprises data is growing too fast. As the stream of data from sensors, 

actuators, and machine-to-machine communication in the Internet of Things and 

modern networks is very large, it has become vital for enterprises to identify what data 

is time-sensitive and should be acted upon right away and what data can sit in a database 

or data lake until there is a reason to explore it. 
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Research executed by Khine & Wang (2018, p. 3025) described that many 

implementations of Data Lake are based initially on Apache Hadoop. A variety of data 

from heterogeneous data stores will be extracted to be stored in the Hadoop Cluster. 

HADOOP (Highly Available Object-Oriented Data Platform) is a widely popular big 

data tool especially suitable for batch processing workload of big data. Hadoop has two 

main components, HDFS (Hadoop Distributed File System) and MapReduce engine. 

HDFS File System handles the single point of failure and scalability by replicating 

multiple copies of data blocks in different cluster nodes. All data stored in these data 

blocks will be processed in the MapReduce approach. Data will be retrieved as a list of 

key-value pairs, i.e., the Map phase. The same data keys will be shuffled, sorted, and 

listed into groups to perform necessary operations, i.e., Reduce phase. All data 

produced by an enterprise will be dumped into the Data Lake Hadoop Cluster. This 

research found that concepts from distributed and parallel systems are reapplied as the 

foundation of big data, such as MapReduce paradigms for handling the significant V’s 

characteristics, volume, velocity, variety, value, and value. The incumbent SQL 

databases with ACID (Atomic, Consistent, Isolated, and Durable) characteristics are 

challenged (and sometimes even replaced) by NoSQL databases with BASE (Basically 

Available, Soft state, Eventual consistency) characteristics. Also, all data generated by 

an organization, regardless of types, structures, or formats, will be stored in Hadoop 

clusters or other similar frameworks in their original forms. A data lake may contain 

raw, unstructured, or multi-structured data where most of these data may have 

unrecognized value for the organization. Metadata management is an essential aspect 

of Data Lake. As Data Lakes do not have a pre-defined schema like data warehouses, 

they must rely on metadata during the query time for the analysis process, added when 

data are stored. 

 

The research of Khine & Wang (2018, p. 3025) continues and found that the basic idea 

of Data Lake is simple, all data emitted by the organization will be stored in a single 

data structure called Data Lake. Data will be stored in the lake in their original format. 

Complex preprocessing and transformation of loading data into data warehouses will 

be eliminated. The upfront costs of data ingestion can also be reduced. Once data are 
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placed in the lake, it is available for analysis by everyone in the organization. A data 

lake uses a flat architecture to store data in its raw format. Each data entity in the lake 

is associated with a unique identifier and a set of extended metadata, and consumers 

can use purpose-built schemas to query relevant data, which will result in a smaller set 

of data that can be analyzed to help answer a consumer’s question. Data are extracted 

and transformed to conform to data warehouse schema and loaded into the Data 

Warehouse. Data Lake is a data repository where all data in an enterprise, i.e., 

structured, semi-structured, unstructured data, are stored altogether regardless of types, 

format, or structure. Pentaho CEO Jame Dixon first initiated the idea of Data Lake.  

 

Another approach is that all the data from these databases (Extract) will be stored 

(Load) into the data lake without changing their format. When data are required, data 

in the lake will be transformed (Transform) according to the enterprise system's parts 

(Khine & Wang, 2018, p. 3025). Data Lake concepts deviate from the data warehouse 

by processing data in the ELT order and utilizing the “Schema-on-Read” approach, 

then data warehouses that follow the traditional ETL process approach. First, data from 

operational databases are extracted (E). The data are then processed, cleaned, and 

transformed (T) before loading (L) them into the data warehouses or data marts. Data 

warehouses are specially designed to handle a read-heavy workload for analytics. Data 

warehouses need to define their schema in advance before data are loaded. Therefore, 

they are considered the “Schema-On-Write” approach (Khine & Wang, 2018, p. 3025). 

However, one of the biggest pitfalls of Data Lake is becoming a data swamp. No one 

knows what will be put into the lake. Moreover, no procedures are preventing them 

from entering incorrect data, repeated data, or incorrect data. 

 

The research of Khine & Wang (2018, p. 3025) ends with introducing maturity levels. 

A Data Lake may need to pass through five maturity levels. They are 

1. Consolidated and categorized raw data 

2. Attribute-level metadata tagging and linking such as joins 

3. Data set extraction and analysis 

4. Business-specific tagging, synonym identification, and links 
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5. The convergence of meaning within context. As the data lake maturity level 

increases, the usage of Data Lake across the enterprise and the value of analytics 

will increase. 

 

Existing design/architectures 

Data lakes ingest raw data in its original format from heterogeneous data sources and 

allow users to query and explore them. Research executed by Hai, Geisler, & Quix 

(2016, pp. 1–3) mentioned that schema information, mappings, and other constraints 

are not defined explicitly or required initially for a Data Lake; it is crucial to extract as 

much metadata as possible from the data sources during the ingestion phase. Metadata 

management is crucial for data reasoning, query processing, and data quality 

management. The Data lake is hardly usable without any metadata as the data's 

structure and semantics are not known, which turns a Data Lake quickly into a data 

swamp. 

 

Because of the problems discussed before, Hai, Geisler, & Quix (2016, pp. 1–3) 

propose a framework called Constance, which can be used as a basis in Data Lake 

projects because it provides flexibility extensible framework for data management 

problems within Data Lake systems. Constance manages structural and semantic 

metadata, provides means to enrich the metadata with schema matching and schema 

summarization techniques, and offers a unified interface for query processing.  
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Fig. 3 shows the architecture of Constance, as well as its key components. Constance 

can be roughly divided into three functional layers: ingestion, maintenance, and 

querying. 

 

Figure 3: Constance System Overview 

 

The ingestion layer is responsible for importing data from heterogeneous sources into 

the Data lake system. 

 

The maintenance layer mainly contributes to Constance’s metadata management 

functions.  

The backend of the maintenance layer provides the necessary functions for data storage 

and efficient querying. Metadata is crucial for future querying. 
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All the above functions, eventually, serve for information retrieval, in the form of query 

answering. In typical cases, users either input concrete queries in a particular query 

language or have an information retrieval need that supports the user in formulating a 

query starting from some keywords (Hai, Geisler, & Quix, 2016, pp. 1–3). 

 

Another research executed by Beheshti et al. (2017, pp. 1–3) created a Data Lake 

architecture. Their questions were how to store information items (from structured 

entities to unstructured documents)? What technology to use for persisting the data 

(from Relational to NoSQL databases)? How to deal with the large volume of data 

generated continuously (from Key-value and document to object and graph store)? 

How to trace and persist information about data (from descriptive to administrative)? 

What technology to use for indexing the data/metadata? How to query the data lake 

(from SQL to full-text search)?  

To address the challenges mentioned above, they presented CoreDB, an open-source 

data lake service. 

 

CoreDB offers researchers and developers a single REST API to organize, index, and 

query their data and metadata. CoreDB manages multiple database technologies (from 

Relational to NoSQL databases), exposes the power of Elasticsearch, and weaves them 

together at the application layer (Beheshti et al., 2017, pp. 1–3). 

 

Figure 4: CoreDB Architecture 
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It starts with a Database Service that powers multiple relational and NoSQL (key/value, 

document, and graph stores) database-as-a-service for developing Web data applications, 

i.e., data-driven web applications. Therefore, analysts are enabled to build a data lake, 

create relational and NoSQL datasets within the data lake, and CRUD (Create, Read, 

Update and Delete) and query entities in those datasets. Next, Elasticsearch is used as a 

search engine based on Apache Lucene to support a robust index and full-text search. 

 

Based on the literature review results in chapter 5, an extra dimension to consider is 

metadata management. Without metadata management, Data Lake will turn into a data 

swamp.  

 

The metadata management is used in the Data Lake ETL layer or ingestion phase as 

discussed in the literature review by Constance and CoreDB, and therefore, the research 

will continue to look for any tooling which will enhance the metadata management in the 

ETL part of this study. This study is mainly focused on the ETL part and not the ELT part 

because ETL is the most common way of organizing the process. 
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2.2 Data Warehouse vs Data Lake 

After the literature review, it can be concluded what main differences Data warehouses and 

Data Lakes have. The table below shows the differences between a Data Warehouse and a 

Data Lake. This table can be filled with more accuracy based on the research where the 

difference in query languages is added.  

 

Characteristics Data Warehouse Data Lake 

Storage Extracted and transformed 

data from other database 

resources 

Data is raw and 

unchanged. 

Data Structured data Structured, semi-

structured, and 

unstructured data 

Data Quality Data ready for use and 

serves as a single point of 

truth 

Raw data needs 

transformation 

Normalization Denormalized Not normalized 

Data timeline Current data All kinds of past, present 

and future data 

Costs of storage Higher cost storage Low-cost storage 

Accessibility Data is complicated Can be quickly updated 

and changed 

Compatibility Stored data is transformed 

and may give problems 

when changes made 

Data is raw and is flexible 

for changing 

Schema Created before 

implementation 

Created at the time of 

analysis 

Query Language OQL, LINQ, T-SQL, 

SQL, GraphQL 

Big SQL, U-SQL, Google 

Big Query, NoSQL 
Table 1: Data Warehouse vs Data Lake 
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2.3 Commonly used criteria 

Criteria are used to choose something suitable for a specific situation. These criteria are 

conditions that a product must have to be accepted by a user or customer. These conditions 

can apply to many things such as cars, clothing, or in this case, software.  

 

The list with criteria is built out of reasoning and common sense. Furthermore, discussions 

with architects, engineers, and managers in the interviews helped compose the criteria used 

in this study. 

The criteria used are: 

1. Speed/Efficiency: measures how fast a tool is and how it reaches speed. 

 

2. Integration: measures the number of different programming languages and external 

tooling that can be used. 

 

3. Usability: measures how easy the user can use a tool. 

 

4. Flexibility: measures if a tool can handle structured, semi-structured, and 

unstructured data. 

 

5. Graphical User Interface (GUI): measures the ability to have a graphical user 

interface. 

 

6. Security: describes what security measures are taken. 

 

7. Meta Data Management (MDM): measures if a tool can handle metadata 

management. 

 

8. Application Programming Interface (API): measures if a tool can have an API to 

talk with other sources. 

 

9. Code: measures the ability of coding in a tool. 
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10. Low code: measures the ability to use no or low code in a tool. 

 

The criteria discussed will be applied to the query languages, ETL tooling, and 

visualization tooling, respectively, and how all the aspects can interrelate to each other.   
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2.4 Commonly used query languages 

A database is a collection of organized information to be accessed, managed, and updated. 

Alternatively, a database is simply a place where the data is stored. Databases provide 

means of retrieving records or parts of records and performing various calculations before 

displaying the results. 

 

The interface by which such data is accessed, managed, updated, and calculated is called 

the query language. It is a specialized language for requesting information from a database. 

It refers to any computer programming language that requests and retrieves data from 

database and information systems by sending queries. 

 

One part of this study is researching different query languages and finding strengths and 

weaknesses. The list is divided into two sub-chapters. The first one is the commonly used 

query languages with examples, and the second one is about other query languages that are 

not commonly used without examples.  

 

The commonly used query languages are listed below: 

 

MapReduce-based Big SQL:  

Big SQL is MapReduce-based designed for providing native SQL for querying data 

managed by Hadoop (Birjali, Beni-Hssane, & Erritali, 2018, pp. 1–3). 

 

Big SQL is fast due to its parallel processing SQL abilities and low-latency parallel 

execution processing. It runs on the top of Hadoop and translates all queries to native 

MapReduce (MR) jobs, supports queries expressed in native SQL declarative language, 

JDBC/ODBC driver access from Linux and Windows platforms, Java, C#, Python, C++, 

and R integration. Furthermore, does it use HCatalog (metastore) of Hbase for data access 

and the Hive storage engines to read/write data. Big SQL is flexible, and usability is added 

with Cloudera Navigator, the GUI of this tool. Furthermore, does it use end to end security 

and extra security layer is added with open source projects Knox and Ranger. Knox 

provides a framework for managing security and supports security implementations on 
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Hadoop clusters. The Ranger project is focused on developing tools and techniques to help 

users deploy and standardize security across Hadoop clusters. Big SQL has integration with 

other languages and can query unstructured data. However, it does not benefit from adding 

nodes. As a result, the running time performance is decreased by 43% from one to ten 

nodes and has no API capabilities. 

 

Figure 5: Big SQL query example 

 

U-SQL:  

U-SQL is a language that combines declarative SQL with imperative C# to let processing 

data at any scale. Through the scalable, distributed-query capability of U-SQL, data can 

efficiently be analyzed across relational stores such as Azure SQL Database. USQL is 

intended to be a cross-platform query language that enables discovering various types of 

services in a unified manner (Tsalgatidou, Pantazoglou, & Athanasopoulos, 2006, pp. 1–

3). 

 

U-SQL is based on T-SQL while it uses C# types as default. This easily allows 

conceptualization of how data will be processed while writing queries and not being scared 

with new frameworks or concepts. With this architecture, it can process any type of data 

and integrates custom code seamlessly. U-SQL can efficiently scale to any size of data, is 

for massive data processing, and therefore can dump whatever in the data lake and run U-

SQL on top of it. It is flexible and easy to develop. U-SQL can handle any type of data, is 

integrated with many different languages, up to 1 million GB supported with visual studio 

or web portal as GUI, and is secure with Azure Active Directory. However, the U-SQL 

language is not to substitute the existing and emerging service description protocols in the 

various service areas (e.g., WSDL, WSDL-S, OWL-S). Furthermore, it is not available on 

other than Azure platforms yet and has no API capabilities. 
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Figure 6: Easy USQL query 

 

 

Figure 7: Difficult USQL query  
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NoSQL:  

NoSQL databases are interchangeably referred to as nonrelational, NoSQL DBs to 

highlight the fact that they can handle vast volumes of rapidly changing, unstructured data 

in different ways than a relational SQL database with rows and tables (Cattell, 2011, p. 12). 

 

NoSQL allows freedom, has more speed due to the efficient use of distributed indexes and 

RAM for data storage and flexibility to change both schema and queries to adapt to data 

requirements. It provides compelling operational advantages and savings with the ability 

to scale "out" horizontally or add less expensive servers without having to upgrade. No 

SQL is compatible with large volumes of rapidly changing structured, semi-structured, and 

unstructured data. Geographically distributed scale-out architecture instead of expensive, 

monolithic architecture. Integration with C# and .NET. API connections available and a 

GUI with MongoDB manager. Nevertheless, NoSQL is not mature, has less support, and 

the system can have only two out of three of the following properties: consistency, 

availability, and partition-tolerance. The NoSQL systems generally give up consistency 

and are less secure. 

 

 

Figure 8: Easy NoSQL query  
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Figure 9: Difficult NoSQL query  

 

Google big query:  

Google big query is a fully managed cloud service that enables storage and fast querying 

of large and multi-faceted datasets. (Lopez, Seaton, Ang, Tingley, & Chuang, 2017, pp. 1–

3). 

Google Big Query is highly scalable, cost-effective, has no technical overhead costs for 

maintaining infrastructure, scalability of processing research data products across a 

growing number of courses and users, is fast, is secure due to Identity and Access 

Management, and has API capabilities. However, Google Big Query is only compatible 

with specific extensions such as JSON, CSV, or Avro. It has file size limits; query prices 

are high, queries need to be optimized to be cost-effective, cannot use it outside the Google 

platform, is challenging to learn, cannot join different tables with unstructured data, and 

has only a web UI as GUI. 
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Figure 10: Easy Google BigQuery query  

 

 

Figure 11: Difficult Google BigQuery query  
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Figure 12: Difficult Google BigQuery query  
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SQL:  

SQL or Structured query language is used as a medium of communication with the 

relational database management systems. 

 

SQL is fast on structured data, has data integration standards, is mature, is secure due to its 

RBAC capabilities, has data integration script available, and has SQL management studio 

as GUI. Nevertheless, SQL has a difficult interface, is expensive, has no API capabilities, 

and is not flexible because it has predefined schemas.  

 

Figure 13: Easy SQL query  
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Figure 14: Difficult SQL query  

 

Python:  

Python is an object-oriented, open-source programming language. (Lutz, Lewin, & 

Willison, 2001, pp. 1–3) 

It is easy to work with, runs on every platform, has integration with other tools and 

languages. Furthermore, Python is stable, has API capabilities, is flexible, has a GUI with 

PyCharm but is not fast, has run-time errors, lacks multi-processor support, database access 

layer problems, and is not secure (broaden security with security scans available). 

 

 

Figure 15: Easy Python query  
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Figure 16: Difficult Python query  
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R:  

R is a scripting language for statistical data manipulation and analysis (Matloff, 2011, pp. 

1–3). 

R is an open-source tool, has many packages available, can visualize data, is highly 

compatible with other languages, has API capabilities, is compatible with many sources, is 

flexible, and has a GUI with R studio. However, R's security capabilities are not well, are 

not fast and efficient on large datasets due to memory management problems, and without 

programming experience, a bit hard to learn. 

 

Figure 17: Easy R query  

 

 

Figure 18: Difficult R query  
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The less commonly used query languages are: 

Embedded SQL: 

Embedded SQL combines a programming language's computing power and SQL's 

database manipulation capabilities. This is a method for combining SQL's data 

manipulation capabilities and any programming language's computing power. Then 

embedded statements are in line with the program source code of the host language. The 

code of embedded SQL is parsed by a preprocessor, which is also embedded and replaced 

by the host language called for the code library; it is then compiled via the host's compiler. 

This language was used in the past, but it is old now and therefore not considered in the 

mechanism. 

 

Embedded SQL is easy to understand because of less syntax to learn and its one-step 

deployment. Furthermore, it integrates with other languages available and has good error 

handling but does not perform well on large datasets. 

 

HTSQL: 

According to Evans (2006, p. 2-4), HyperText Structured Query Language (HTSQL) is a 

schema-driven URI to SQL query language that takes a request over HTTP, converts it to 

a SQL query, executes the query against a database, and returns the results in a format best 

suited for the user agent (CSV, HTML). HTSQL is an extension to the HTTP/1.1 protocol 

that allows clients to access a standard SQL database remotely. This language was used, 

but it is old now and therefore not considered in the method. 

 

HTSQL has a rapid web application development architecture, is a fast language on 

transactional data, has a web-friendly syntax, has integrated use of the HTTP protocol to 

provide authentication, and uses data caching and encryption. Furthermore, is HTSQL 

mainly considered as a web query language. 
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Object Query Language:  

Object Query Language (OQL) is a query language standard for object-oriented databases 

modeled after SQL as researched by (Li, J. Z., Ozsu, M. T., Szafron, D., & Oria, V. (1997, 

September)). This language was used, but it is old now and therefore not considered in the 

method. 

 

It uses entity and association names instead of actual database table names and can use 

predefined relations to join objects without calculating which columns should be coupled 

quickly. Many SQL keywords also work in OQL and deal with complex objects without 

changing the set construct and the select-from-where clause. Furthermore, does it integrate 

with different languages, and is API compatible. However, OQL queries do not take 

security into account out of the box. 

 

Language Integrated Query:  

Language Integrated Query (LINQ, pronounced as "link") is a Microsoft .NET Framework 

component that adds native data querying capabilities to .NET languages, released initially 

as a significant part of .NET Framework 3.5 in 2007.  

LINQ allows users to write queries uniformly in the programming language itself, taking 

full advantage of strong typing and tool support (Torgersen, 2006, p. 736). LINQ extends 

the language by adding query expressions, which are takin to SQL statements, and can be 

used to extract conveniently and process data from arrays, enumerable classes, XML 

documents, relational databases, and third-party data sources. This language was used, but 

it is old now and therefore not considered in the method. 

 

LINQ supports safety, is easy to deploy, is easy to learn, is compatible with .NET, and 

supports multiple databases. Furthermore, LINQ allows writing queries uniformly in the 

programming language itself, taking full advantage of strong typing and tool support. The 

LINQ framework comes with LINQ providers for in-memory objects, SQL data, and XML 

documents and is fast due to its multi-threading processing. However, it needs to process 

the entire query, which might have a negative performance impact. Suppose a change was 
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made in the query; the entire query needs to be recompiled and redeployed. Without 

knowledge of this query language, it is easy to build inefficient code. 

 

GraphQL:  

GraphQL is an open-source data query and manipulation language for APIs, and a runtime 

for fulfilling queries with existing data and need to write all endpoints manually. GraphQL 

is a recently proposed and increasingly adopted a conceptual framework for providing a 

new type of data access interface on the Web. The framework includes a new graph query 

language whose semantics has been specified informally only. This has prevented the 

formal study of the main properties of the language. (Hartig & Pérez, 2018, pp. 1–3). This 

language is mainly used for API configuration and therefore not taken into consideration 

in the mechanism. 

 

GraphQL is self-documenting, defines precisely the user wants, replaces multiple REST 

requests with a single call, adopted by an increasing number of users including Coursera, 

GitHub, Neo4J, and Pinterest, works efficiently, has integration with other API and 

languages, is fast and stable. Nevertheless, it does not support all entities and relationships 

with APIs, does not follow the HTTP spec for caching, and instead uses a single endpoint, 

has some cache errors, and a fundamental understanding of the language's properties is 

missing.  

 

Transact-SQL: 

Transact-SQL is Microsoft's and Sybase's proprietary extension to the SQL (Structured 

Query Language) used to interact with relational databases. T-SQL expands on the SQL 

standard to include procedural programming, local variables, various support functions for 

string processing, date processing, mathematics, and changes to the DELETE and 

UPDATE statements. This language was used, but it is old now and therefore not 

considered in the method. 

 

T-SQL has error checking and is globally accepted. Nevertheless, it works best with 

Microsoft SQL server and cannot use T-SQL in SQL environments. 
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PL SQL:  

PL SQL or Procedural Language extensions to the Structured Query Language is an Oracle 

query language (Feuerstein & Pribyl, 2005, pp. 1–3). This language is immature and 

therefore not taken into consideration in the method.  

It is highly structured, readable, accessible, well-integrated with Oracle databases, has high 

performance, and has API capabilities. However, it is not integrated with other databases, 

is not secure due to its vulnerabilities, such as SQL injection. 

 

Spark SQL:  

Spark SQL is a new module in Apache Spark that integrates relational processing with 

Spark’s functional programming API (Armbrust et al., 2015, p. 1384). This language is 

immature and therefore not taken into consideration in the method. 

Spark SQL can call complex analytics libraries in Spark, is API friendly, has high 

performance, has a variety of data sources available, can process large amounts of data, 

API capabilities, has integrations with Java, Scala, Python, and R. But has problems with 

small files and has big latency problems. 

 

Scala:  

Scala stands for scalable language. Scala can be applied to various programming tasks 

(Odersky, Spoon, & Venners, 2008, pp. 1–3). This language is immature and therefore not 

taken into consideration in the method.  

Scala is easy to get into, has java integration, and is mainly for building large systems. It 

is scalable, secure due to Authentication and Authorization access control, and has API 

capabilities. However, it is immature and has a risk of abandonment. 
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2.5 Commonly used ETL tooling 

Extract transform and load or ETL were introduced in the 1970s to integrate and load data 

into mainframes or supercomputers. This data was used for computation and analysis. 

From the late 1980s through the mid-2000s, it was the primary process for creating data 

warehouses that support business intelligence. 

 

ETL is the process of transferring data from the source database to the destination data 

warehouse. In the process, there are three different sub-processes, which are E for Extract, 

T for Transform, and L for Load. The data is extracted from the source database, which 

can be any source in the extraction process, which is then transformed into the required 

format, such as changing portal codes from 1234aB to 1234AB and then loaded to the 

destination data warehouse; below a more detailed overview of the three sub-processes. 

 

EXTRACT: 

In the data extraction step, data is copied or exported from source locations to a staging 

area. The data can come from any structured or semi-structured or unstructured source such 

as SQL or NoSQL servers, CRM databases, ERP databases, text and document files, 

emails, web pages. 

 

TRANSFORM: 

In the staging area, the raw data is transformed to be useful for analysis and fit the eventual 

target data warehouse's schema. In this stage, filtering, cleansing, de-duplicating, 

validating, and authenticating the data is completed.  

 

LOAD: 

In this last step, the transformed data is moved from the staging area into a target data 

warehouse. Typically, this involves an initial loading of all data, followed by periodic 

loading of incremental data changes and, less often, full refreshes to erase and replace data 

in the warehouse. 

There is a second form of ETL, ELT extract, load, and transform, which is the reverse of 

the ETL process's second and third steps. It copies or exports the data from the source 
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locations, but instead of moving it to a staging area for transformation, it loads the raw data 

directly to the target data store, where it can be transformed if needed. 

 

In ELT, the target data store can be a data warehouse, but more often, it is a data lake, a 

large central store designed to hold both structured semi-structured and unstructured data. 

 

Another part of this study is researching different ETL tools and finding strengths and 

weaknesses. The list is divided into two sub-chapters. The first one is the commonly used 

ETL tools, and the second one is about other ETL tools that are not commonly used. 
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The commonly used ETL tools are listed below: 

 

IBM Infosphere Information Server:  

It is a product family that provides a unified data integration platform so that companies 

can understand, cleanse, transform and deliver trustworthy and context-rich information 

(Zhu et al., 2011, pp. 1–3). 

 

Unique Selling Point: Increased investment in open source with new Apache Spark 

capabilities. 

 

It can be integrated with Oracle, IBM DB2, and Hadoop System, it supports SAP via 

various plug-ins, ETL without coding, data source integration, integrated with BI, 

infrastructure rationalization and risk compliance, secure due to RBAC, API capabilities, 

flexible, fast due to symmetric multiprocessing (SMP) and massively parallel processing. 

Furthermore, does it have a built-in MDM system. Nevertheless, it lacks a robust web 

development environment, metadata propagation in jobs is somewhat complicated, slow 

configuration, and is expensive. 

 

Figure 19: Example of IBM Infosphere Information Server  
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Oracle Data Integrator:  

Oracle Data Integrator (ODI) is a graphical environment to build and manage data 

integration (Lungu, 2015, p. 19). 

 

Unique Selling Point: Best integration with Oracle databases and APIs. 

 

ODI is mature, has high performance, data source integration, can perform complex 

transformations, it automatically identifies incorrect data and recycles it before moving 

into the target application. ODI supports databases like IBM DB2, Teradata, Sybase, 

Netezza, Exadata. Able to handle complex transformations, secure due to authentication, 

and is flexible. ODI has MDM capabilities due to a reverse engineering approach with 

Oracle Enterprise Metadata Management and API capabilities. However, it has a complex 

user interface GUI, a complex building tool, is expensive, needs in-depth technical 

knowledge, and can be faster. 

 

Figure 20: Example of Oracle Data Integrator 
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Google Dataflow:  

Google Dataflow is a unified stream and batch data processing service (Palmer, Sferrazza, 

Just, & Najman, 2015, pp. 1–3). 

 

Unique Selling Point: Offers the ability to create jobs based on templates. 

 

Google Dataflow has reduced infrastructure administration, is fast due to its automatic 

scaling, SDK with native support for both batch and streaming modes, has API capabilities, 

is secure due to dataflow permissions, supports up to 60GB of data per minute for 

streaming, integration and has MDM with Google Data Catalog. Google Data Catalog is a 

metadata management service that quickly discovers, understands, and manages all data. 

Nevertheless, dataflow needs a new development approach, no low code available, not 

flexible, and need Data Proc for unstructured data. 

 

Figure 21: Example of Google Dataflow  
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Hadoop data lake:  

Data Lake is defined as a methodology to approach the raw data, structured and non-

structured within an enterprise and seen as an evolution of existing data architecture. The 

data is physically moved into one physical place, based on Hadoop technology; no change 

is made around the origin’s format at the captured moment. Data Lake is more batch 

processing oriented based on MapReduce usage (Madera & Laurent, 2016b, pp. 1–3). 

 

Unique Selling Point: It is open source. 

 

Hadoop Data Lake is fast, less expensive, scalable, flexible, performs well on large 

amounts of data, secure due to access and privileges, has network isolation and data 

protection secure search. Furthermore, MDM with Cloudera Navigator helps manage and 

organize the data stored in the data lake (Quinto, 2018, p. 501). Cloudera Navigator is a 

data governance solution for Hadoop, offering capabilities such as data discovery, 

continuous optimization, audit, lineage, metadata management, and policy enforcement. 

Furthermore, good integration, low-code, and API capabilities are less mature, not real-

time, and have no advanced analytics. 

 

AWS Data Pipeline:  

Data Pipeline as an ETL platform in the form of a web service with a control panel. This 

web service will help process and move data between different AWS compute and storage 

services and on-premises data sources. 

 

Unique Selling Point: An infinitely scalable and cheap platform as low as 1-3cents a gig 

per month for hosting a Data Lake. 

 

AWS Data Pipeline is simple to use, added security suite for used data, fault-tolerant 

architecture, fast, is flexible, has good error handling, is scalable, API, low-code and has 

MDM with EMRFS. EMRFS tracks consistency using a DynamoDB to track objects in 

Amazon S3 synced with or created by EMRFS. The metadata is used to track all operations. 

This metadata is used to validate whether the objects or metadata received from Amazon 
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S3 matches what is expected. However, it lacks integration with third-party data sources, 

difficult to use with on-premises data sources, fast but not fast on large amounts of data. 

 

 

Figure 22: Example of AWS Data Pipeline  

 

Informatica PowerCenter:  

PowerCenter provides an environment that allows loading data into a centralized location. 

Data can be extracted from multiple sources, transform the data according to business logic, 

built in the client application, and load the transformed data into a file and relational targets 

(Informatica Corporation, 2014). 

 

Unique Selling Point: It has add-on packages. 

 

PowerCenter is easy to use, good support, fast due to parallel processing, data quality 

monitoring, and data migration capabilities. PowerCenter has a single point of control, 

ensuring a high degree of security and MDM with Enterprise data catalog. Enterprise Data 

Catalog is a data catalog that provides a machine-learning-based discovery engine to scan 

and catalog data assets.  
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It is powered by the CLAIRE engine, which provides intelligence by leveraging metadata 

to deliver recommendations, suggestions, and automation of data management tasks. 

Furthermore, API capabilities, flexible, has a GUI, and low code. However, it lacks 

integration with other languages such as R, python, java, no reporting functionality, many 

settings interfaces, no AI capabilities, and connectors not working well, such as Hadoop 

connector. 

 

Figure 23: Example of Informatica PowerCenter  

 

Microsoft Azure Data Factory:  

Azure Data Factory is a hybrid data integration service offering a code-free experience. 

Azure Data Factory is a data integration service explicitly designed to collaborate with 

existing services for the movement, transformation, and processing of raw data from 

disparate systems and transform it into useful information (Klein, 2017, pp. 1–3). For 

Microsoft Azure Data Factory, the Azure Data Catalog is most suitable to add metadata 

management. Data Catalog tags data with metadata stored in the Azure Data Catalog for 

easy discovery (Klein, 2017b, pp. 1–3). 

 

Unique Selling Point: It is a unique data integration service that manages and automates 

the movement and transformation of data across an organization with low-code 

capabilities. 
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Azure Data Factory is fast due to parallel processing, has a visual drag-and-drop UI, has 

SSIS migration to cloud, multiple language support, hybrid data movement, and 

transformation. Furthermore, does Data Factory has support, a lot of data source integration 

is secure due to AAD, MI, and VNET. Data Factory has MDM due to Data Catalog, is 

flexible, has API capabilities, can program in low-code, and is stable, but scratch 

configuration could be challenging. So, it needs an understanding of the tool to use it at its 

best. 

 

Figure 24: Example of Azure Data factory  

 

The less commonly used ETL tooling are: 

SAP BW ETL: 

SAP BW ETL provides a collection of objects and tools that allow users to import, export, 

and transform heterogeneous data between one or multiple types of data formats, such as 

MS Excel, text files, SAP ECC (Lomet & Chaudhuri, 1999, p. 38). This tool was used, but 

it is old now and not considered in the method. 

 

SAP BW ETL runs on various third-party RDBMSs, provides open Business Application 

Programming Interfaces (BAPIs) for data loading, and provides a pre-configured metadata 

repository InfoCube catalog, report catalog, and information source catalog. Furthermore, 

shipped with many pre-defined InfoCubes for typical business applications, e.g., market 

segment analyses, profitability analyses, stock inventory analyses, and corporate indicator 

systems. It has a GUI, sharing functions and Microsoft Office compatibility, data 
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visualization, and analytics applications, extending with SAP BI security for role-based 

security and API capabilities. However, this tool has expensive licensing and is not able to 

perform on high loads. 

 

Talend:  

Talend is a French software vendor specialized in open source integration. The company 

democratizes integration through its products and enables IT users and organizations to 

deploy complex architectures in more straightforward and comprehensive ways. (Azarmi, 

2014, pp. 1–3). Talend is provided for on-premises deployment and the Software as a 

Service (SaaS) delivery model. Talend Open Studio is used for integrating operational 

systems as well as an ETL tool for Data Warehousing, Business Intelligence, and data 

migration. (Katragadda, Sremath Tirumala, & Nandigam, 2015, pp. 1–3). This tool is not 

mainly considered an ETL tool and, therefore, not considered in the method. 

 

Talend is easy to use, helps business users graphically design their business processes, has 

a high-volume integration, parallelization feature, data source integration, free open source 

ETL tool, and secure and API capabilities. However, to use more inside tools like machine 

learning add-ons, licenses need to be bought. It is developed as a product for individual use 

only, and so it is not possible to have more than one user (not just one user at a time but 

just one user per system); the free version does not support automation of tasks like 

scheduling, routing data, Lack of any commercial support and not efficient. 

 

Microsoft SQL Server Integrated Services (SSIS):  

SQL Server Integration Services (SSIS) is one of the Business Intelligence tools developed 

by Microsoft to ease and automate the ETL process (Katragadda, Sremath Tirumala, & 

Nandigam, 2015, pp. 1–3). The data integration is much faster as the integration process, 

and data transformation is processed in the memory. This tool is not mainly used as an ETL 

tool anymore and, therefore, not considered in the mechanism. 

 

SSIS automates the SQL Server Maintenance Plan by creating an SSIS package. SSIS can 

handle data from heterogeneous data sources at the same package. Data sources can be 
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diverse, including custom or scripted adapters, deficient in cost compared to the famous 

Informatica Power Center and almost offers everything needed to build the ETL solution. 

It is easier to maintain with package configuration, better for complex transformations, 

multi-step operations, aggregating data from different data sources or types, and structured 

exception handling. Furthermore, data can be loaded in parallel to many varied 

destinations, build ETL solutions with very minimum background knowledge, very easy 

to install and configure, offers comprehensive documentation and support, provides best 

practices, debugging capabilities, easy to use, API capabilities and secure due to threat and 

vulnerability mitigation. However, to see the package execution report, the Management 

Studio is needed rather than being published to reporting services or another way. SSIS 

cannot support non-windows operating systems; SSIS is more suitable for enterprise and 

may not be cost-efficient for small businesses, no integration with other languages, need 

more sources, and sometimes an error is returned without knowing what error it is. 

 

MongoDB:  

MongoDB is an open-source NoSQL database developed in C++ (Abramova & 

Bernardino, 2013, p. 17). This tool is not an ETL tool and, therefore, not taken into 

consideration in the method. 

MongoDB is efficient, fast, durable, secure due to authentication, access control, and 

encryption. Has API capabilities and integration but uses much internal memory, lacks the 

support of join queries, has no MDM. 

 

Cloudera Apache Hive.  

Hive is a data warehouse software that facilitates queries and manages an extensive data 

set in distributed storage. Hive runs on top of Hadoop (Fuad, Erwin, & Ipung, 2014, p. 

298). This tool is like Hadoop Data Lake and, therefore, not taken into consideration in the 

method. 

Apache Hive can process petabytes of data, integration, scalable, fast, MDM, API 

capabilities, but the configuration is a bit tricky, designed for analytical purposes not for 

transactional purposes, lack of security, lack of support and runtime errors. 
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2.6 Commonly used visualization tooling 

Visualization tooling allows users to create charts, images, diagrams, and dashboards to 

communicate a message. It is a graphical representation of data and information. In today’s 

world, data visualization tools and technologies are essential to analyze massive amounts 

of information and make data-driven decisions. 

 

The commonly used visualization tooling are: 

Power BI:  

Power BI is a tool that displays interactive dashboards that can be created and updated 

from many different data sources (NEGRUT, 2012, pp. 1–3). 

Unique Selling point: Live dashboards, trend analysis, sharing capabilities and data source 

integration. 

Power BI is not expensive, easy to use, receives constant updates, integrates with many 

sources, and can handle large amounts of data, sharing and collaboration features, fast, 

secure due to RBAC authentication, and RLS. Furthermore, Power BI has API capabilities, 

has a GUI, low-code and code capabilities, has an internal MDM if needed, is flexible but 

is limited in the free version capabilities, table relationship is a bit lagging, not able to 

handle large amounts of data in the free version and the dataset has a max of one GB in the 

free version and ten GB in the pro version. 

 

Figure 25: Example of Power BI  
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Tableau:  

Tableau is a software that can help users explore and understand their data by creating 

interactive visualizations (Ko & Chang, 2017, pp. 1–3) 

Unique Selling Points: Perform queries without a single line of code, sharing capabilities. 

Tableau connects users with various data sources and enables them to create data 

visualizations by making charts, maps, dashboards, and stories through a simple drag and 

drop interface. Tableau has a tremendous and reliable speed due to TDE files. Furthermore, 

doe Tableau offers API capabilities and is flexible with the MarkLogic feature. Tableau is 

secure due to IT controls, which are regularly audited by independent firms. Extra security 

is added due to database login with authentication. Finally, does Tableau offer MDM with 

VizQL Model, and can be used with low-code and code. However, Tableau is still not 

widely used and has basic security with no RLS. 

 

Figure 26: Example of Tableau 
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Google data studio:  

Google Data Studio is a new data visualization program designed as a user-friendly tool 

for representing complex data sets attractively and clearly (Snipes, 2018, pp. 1–3). 

Unique Selling Points: People who are using the Google platform are familiar and easy to 

use. 

Google Data Studio is recognizable to anyone who works with the Google office suite, free 

to anyone with a Google account, has an interactive GUI, sharing and collaboration 

features, unlimited amount of data can be used, fast, API capabilities, secure due to 

physical security, encryption, incident management, identity, and access management. 

Furthermore, does it support code and low code. Nevertheless, it cannot comply with IRB 

requirements for protecting personally identifiable data. It cannot modify underlying data, 

offers fewer calculation and visualization options, limited data sources, 100MB file size 

limit per dataset, not flexible, and no metadata feature. 

 

Figure 27: Example of Google Data studio  
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Oracle Business Intelligence:  

This solution was designed to address the entire spectrum of analytical requirements 

facing businesses, including information access, analysis, and reporting. (Bozdoc, 2011, 

pp. 1–3). 

Unique Selling Points: Aggregate content from various sources, including the Internet, 

shared file servers, and document repositories. 

Oracle Business Intelligence has ad hoc analysis, enterprise reporting, Microsoft Office 

and other integration, API capabilities, security due to Authentication and authorization, 

and user groups. It has a GUI for low-code and code, but has high prices for large 

configurations, not fast due to the number of users, lacks visualization, needs technical 

knowledge to use, not flexible, and no MDM available. 

 

Figure 28: Example of Oracle Business Intelligence  
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Amazon Quicksight:  

Amazon QuickSight is a fast, cloud-powered BI service that makes it easy to build 

visualizations, perform ad-hoc analysis, and quickly get business insights from massive 

data (Mathavi, Jeyarubi, Ganesh, Tamilselvi, & Karthi, 2018, pp. 1–3). 

Unique Selling Points: Pay only for what you use. 

Quicksight is superfast due to parallel and in-memory processing. Furthermore, does it use 

a Calculation Engine (SPICE), which uses a combination of columnar storage, in-memory 

technologies enabled through hardware, machine code generation, and data compression 

to allow users to run interactive queries on large datasets and get rapid responses. It is easy 

to use, secure due to RLS, compliance programs, AWS WAF logs, training and awareness, 

integration with many sources, has a GUI which allows low code. However, still immature, 

sharing to non-AWS users not possible, not available on android, limited APIs and 

extensions, the standard edition has a limit of 25GB per dataset, and the enterprise edition 

has a limit of 500GB per dataset and is not flexible and no MDM available. 

 

Figure 29: Example of Amazon Quicksight  
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Kibana:  

Kibana was designed as a visualization platform for Elasticsearch. It provides a web-based 

interface for search, view, and analyzing data stored in the Elasticsearch cluster and is part 

of the Elastic stack Elasticsearch, Logstash, and Kibana (Bajer, 2017, p. 67). 

 

Unique Selling Points: Open-source. 

 

Kibana is fast with the Elasticsearch engine, is interactive, efficient, easy to extend to 

needs, able to show massive volumes of data, custom visuals, secure data sharing, secure 

due to X-Pack RBAC, has API capabilities, is even faster with NGINX, flexible with 

Elasticsearch index and is low-code. However, it has no user management available out of 

the box, works on top of elastic only, issues with large datasets, less integration and no 

MDM available. 

 

Figure 30: Example of Kibana 
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MicroStrategy:  

MicroStrategy is a vendor in BI products that supports interactive dashboards, scorecards, 

highly formatted reports, ad hoc queries, thresholds and alerts, and automated report 

distribution. (Anoshin, Rana, & Ma, 2016, pp. 1–3). 

 

Unique Selling Points: easily integrated into the broader enterprise landscape. 

 

MicroStrategy is easy to use, fast due to in-memory processing, is secure, integration with 

different data sources,  two TB data size availability, has monitoring features, has a GUI, 

is stable, secure due to ACL, and has API capabilities. Nevertheless, with more than two 

TB of data, timeout errors are thrown, sharing not available, no support, need more 

visualizations, not flexible and no MDM available. 

 

Figure 31: Example of MicroStrategy 

 

 

 

 

 

 



57 

 

Redash:  

It is an open-source tool used to create, visualize, and share queries and dashboards 

(Leibzon & Leibzon, 2018, pp. 1–3). 

 

Unique Selling Points: SQL client makes it easy to browse data in-app. 

 

Redash is easy to use and to setup with a GUI. No installation is needed because Redash is 

browser-based and uses SQL templates. Furthermore, many data source integration is 

available; it has API capabilities; it is easy to export data to different formats and is fast 

due to the delta engine of Databricks. The security is developed due to complete industry 

standards and penetration tests. Low-code and code are available, and MDM possible with 

Databricks. However, Redash has scalability problems, and technical knowledge is 

required and is not flexible.  

 

Figure 32: Example of Redash 

 

The less commonly used visualization tooling is: 
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IBM Cognos:  

Cognos provides a unified workspace for business intelligence and analytics that the entire 

organization can use to answer critical business questions. (Browne et al., 2010, pp. 1–3). 

Deliver timely, accurate, and actionable performance management solutions to users across 

the enterprise (Oehler, Gruenes, & Ilacqua, 2012, pp. 1–3). This tool is old and, therefore, 

not taken into consideration in the method. 

Cognos has an easy view, good collaboration, transparency, and accountability, access data 

everywhere (mobile devices), link dashboards to workflows, different data sources 

available, flexible, drag and drop feature, secure due to data protection protocol, LDAP 

and active directory. Furthermore, it is fast due to performance monitoring and tuning in 

the database, application server, web server, IBM Cognos BI, and API capabilities. 

Nevertheless, only a few sites and communities exist, most experience has been gained by 

intuition and trial, and error, the file size limit of 100MB per user, no predictive analytics, 

and reports themselves can become very large. 

SAS:  

SAS is a software pack with various visualization capabilities implemented in the product 

suite, an interface that allows interaction with charts (ARGHIR, DUŞA, & ONUŢĂ, 2019, 

p. 87). This tool is not widely used anymore and, therefore, not taken into consideration in 

the method. 

Various visualization capabilities implemented in the product suite, interactive, allows the 

creation of basic queries and reports, handle large databases, debug feature, secure due to 

data security feature and has a GUI but has high costs. 

Qlik:  

Qlik provides a possibility for end-users to use integrated ETL and to construct their data 

schema themselves. (Grabova, Darmont, Chauchat, & Zolotaryova, 2010, p. 39). This tool 

lacks many features and is therefore not taken into consideration in the method. 

Qlik provides a clean interface to analysts, removes the need to pre-aggregate data, can 

change analysis axes any moment at any level of query detailing, ability to connect tables, 

flexible, integration, API automatically. However, it lacks a unified metadata view, lack of 
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predicting models, lacks advanced visualization features to help them graphically wade 

through complex data, no customization, lack of speed, the data security model is 

complicated, data greater than ten GB cannot be uploaded and a glitch in user access which 

gives access to unauthorized users. 

  



60 

 

2.7 Working example 

The chapters before explained the different tooling with advantages and disadvantages. To 

illustrate how such an environment could work together, we developed a working example.  

 

It starts with extracting the data from different sources, which is the E step in the ETL 

process. Next, the data is processed and, in this case, joined in the T step of the ETL 

process. After these steps, the data is loaded into a SQL database to be visualized in Power 

BI in the L step of the ETL process. 

 

Figure 33 shows the resources needed for this example. First, a storage account is created 

to store any data. Furthermore, a SQL server, SQL database, and a Data Factory are created. 

The SQL server is used to host the SQL database, the SQL database is used to store 

transformed data, and the Data Factory is used to create the pipeline the user wants.  

 
Figure 33: All resources 

 

 

 

 

 

 

 



61 

 

In the storage account, a container is created to store input. In this case, two files with car 

data are stored and named input. 

 
Figure 32: Storage account 

 

 

 
Figure 34: Stored files 
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Figure 35 shows the dataflow created in the data factory. This dataflow imports the two car 

files and joins them in one. Next, the output is exported to a SQL database. 

 
Figure 35: Dataflow in a data factory 

 

The picture below shows the pipeline created. This pipeline is created to execute the 

dataflow created in the previous step. 

 
Figure 36: Pipeline in data factory 
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The picture below shows the resulted database after completion of the pipeline. 

 
Figure 37: SQL server 
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After the data is stored in the SQL server, the next tool is the visualization tool. The picture 

below shows the connection made from Power BI to the SQL server.  

 
Figure 38: Power BI import wizard 
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The data can be visualized in the shape or form the user wants. Below, a count of car 

models by the origin and car type by make are created. 

 

 
Figure 39: Power BI visual 
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3. RECOMMENDED SELECTION METHOD 

3.1 Decision matrix analysis 

A decision matrix analysis, also known as Multi-Attribute Utility Theory, is a useful 

technique to make decisions. It is powerful when several good alternatives are available 

and many different factors to consider. The matrix below is the first matrix made with the 

different query languages, criteria, and points. The criteria can be found in chapter 2.3. 

 

Figure 40: Example of first decision matrix 

The next step was to improve this matrix to a dynamic mechanism with reliable criteria, 

query language, ETL tooling, visualization tooling and advice. It will show how the 

different query languages, ETL tools, and visualization tools are scored based on the pros, 

cons, and criteria found through the research. 

Then, through a user interaction pane, the user can spend a max of  20 points to distribute 

over the different criteria. Based on the distributed 20 points, advice is showed at the 

bottom of the method. The formula returns a top 3 of query languages, ETL tools, and 

visualization tools based on the points the user has spent. On the next page, a picture of the 

method is shown.



 

Figure 41: Example of method



The method is built out of several things. The criteria are shown on the horizontal axes; 

these criteria are explained in more detail in chapter 2.3. The different tools are explained 

in more detail in chapter 2.4, 2.5, and 2.6.  

At the bottom of the matrix, a factor is added to identify the importance of the criteria. In 

this matrix, they are all set to 1, but the user can change the factor to his/her wishes as 

shown in chapter 4. Furthermore, a total is shown to visualize the number of points a tool 

has received. 

 

Figure 42: Example of the first part of the matrix  
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This pane shows the different criteria available, and the user can use 20 points to distribute 

over the criteria, based on his/her situation and wishes. 

 
Figure 43: Example of the second part of the method 
 

Different tooling is advised based on the weight given to a criterion by the user at the 

bottom of the matrix. 

 

 
Figure 44: Example of the third part of the method 
 

These matrixes are a scored overview of the different tooling with a neutral factor 1. They 

are sorted from best scorer to worst scorer. When using this matrix for a specific situation, 

the factors can be changed to other values. This might result in a different outcome based 

on that specific situation. In chapter 4, the method is used for specific situations at different 

organizations. Here the outcomes might be different than used in the neutral matrixes. 
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Furthermore, if the user has spent more than the max number of points, an exception is 

thrown. This exception is shown below: 

 

 

Figure 45: Example of the thrown exception 

 

After this exception is thrown, the user can try again by clicking the “Retry” button. 
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3.2 Mechanism formula 

The researcher developed a formula to create an automated and dynamic matrix that 

responds to the number of points a user has given to a criteria. This formula is shown in 

figure 46. 

 

Figure 46: Formula 1 

 

This formula takes the amount of points one criteria has and multiplies it by the factor 

(weight) a criteria is given.  

When a user has distributed the 20 points over all the criteria, some advice is given. The 

formula chosen is a dynamic formula that changes every time the user has changed the 

number of points. 

 
Figure 47: Formula 2 

Another formula is needed to make a top 3 of tooling. One of the problems faced is that 

tied values gave a spill error. This formula solved the problem of ranking the top 3 tools, 

including tied values.  

The formula connects the list of tools on the left in the matrix with the list of the total 

amount of points on the right in the matrix and takes a large amount of the list calculated. 

Next, the filter function is used to rank the top 3 of the resulted calculation. 

If the formula is just left like this, Excel will return a “spill” error because this formula 

cannot handle tied values. This problem is solved by using the “textjoin” function.  

The “textjoin” function handles the tied values by recognizing the delimiter, which is a 

comma in our case. The formula needs to ignore empty cells by setting the following 

formula to TRUE, and finally, the first formula with the filter function is combined in the 

“textjoin” function. This formula will show the top 3 values, and if there is one tied value, 

it will separate the tied values with a comma and show it in a shared place 1, 2, or 3.  



4. VALIDATION RESULTS 

4.1 Application of mechanism to KAD 

 

Figure 48: Method for KAD the Netherlands 

The KAD team gave some useful advice. Some criteria to add to the method are cloud provider specification, team skills, costs, and 

market penetration tools (how is a tool used in the market). Some tools are missing, for example, Spark, Airflow, Kafka, Apache Beam, 

and elastic search. The interesting thing is that according to these respondents, it is not essential to have MDM as criteria. It is more 

important to structure this information in a process instead of using MDM.  
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4.2 Application of mechanism to Jumbo 

 
Figure 49: Method for Jumbo 

This respondent reacted excitedly and said that this is a relevant, exciting method and can be used as an architectural picture. Some 

things to add are an extra layer in speed/efficiency, which counts how fast a cluster is started, Databrick, Azure Synapse, and the primary 

format in which the data is saved. Furthermore, would it help if there is some explanation of the criteria and the points per tool in a 

second tab because it is not useful to have the points in the center of the method; criteria and advice are essential. Finally, add additional 

criteria such as one cloud vendor vs multi-cloud vendor but criteria used now are sufficient.  
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4.3 Application of mechanism to Plus 

There is no picture for this example because the person for this use case still did not send the filled in method after the interview. 

Nevertheless, during the interview, we talked about many aspects of this method. 

 

In practice, there is a real need for a solution that can help better understand the available tools, and he found that this method is a useful 

tool that can help gain a better understanding of all those tools available. However, the question raised is if this method is sufficiently 

covering the tools available.  

 

The criteria used in this method are sufficient, but there could be more criteria added such as costs, tool maturity, payment method (fixed 

vs pay as you go), industry, phase of data lake implementation (start, middle, finishing), and SMB vs Enterprise. 

He said that a separate part could be added with more information about the criteria and the method's layout. The current method uses 

comments for some criteria to explain the meaning, but it could become chaotic when all the criteria have a red dot as a comment. By 

adding a separate part with extra information about the criteria, further interpretation of criteria from different people can be eliminated. 

It could help if the input parts of the points light up in a different color to highlight where the user is at that moment. 

The covered tools in this method are not sufficient. For instance, PostgreSQL and Qlik are missing. Other tools need to be added to the 

method. A link of all the used tools to the magic quadrant could help as well. This way, the user can elaborate more on how the tool is 

performing in the market. 

Bottom line will this method help with choosing a toolset, but it can be enhanced more.  
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4.4 Application of mechanism to Etos 

 
Figure 50: Method for Etos 

This respondent said that there is a lot of tooling available, and it is difficult to understand and select these tooling. This method would 

help and is welcome and could be used as a referential architecture. The criteria used in this method are complete, but I could add the 

amount of knowledge a company has, which contracts a company already has, and the tooling costs. Furthermore, a comparison between 

two tooling helps better understand a specific number of tooling and a list with all the criteria meaning. Last, tools as Plotydash, 

Salesforce, MuleSoft and a comparison between master data management and  metadata management are missing. 
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4.5 Application of mechanism to Airbus 

 

 
Figure 51: Method for Airbus 

Finally, the Airbus respondents reacted enthusiastically about the method. In their own words, “this is awesome”. It would help gain 

structural and basic knowledge about the Data lake ecosystem and help choose the tooling. However, some parts are missing with the 

current method, which will make the method more usable. First of all, a necessary explanation about how the method works and how to 

use it. Furthermore, should a list with an explanation of all the acronyms be added. Last are the criteria costs, existing vendor support 

contracts, the table's customizability, and cloud vs on-premise missing. 



4.6 Summary of main survey findings 

Survey results 

First question:  

“How effective is this method in helping you find alternative/replacement components for 

your existing toolset (if existing)?” 

 

This question scored an average of 2.8. 

 

Second question: 

“Did the method give you a better overview of the tool components required for data lake 

information extraction?” 

 

This question scored an average of 4. 

 

Third question: 

“Do you think the set of criteria identified cover the complete set of criteria applicable to 

data lake extraction tooling (if not, please suggest additional ones in the comment section 

below)?” 

 

This question scored an average of 3.4. 

 

Fourth question: 

“How effective is this method in helping you selecting a data lake toolset for your 

organization?” 

 

This question scored an average of 3. 

 

Fifth question: 

“Do you have any other comments or suggestions?” 

This was an open question for comments. See chapter 5 and appendix 5 for more 

information. 
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Reflection 

The respondents were excited and confirmed that it would help them gain extra knowledge 

of the tools available in a structured way. Furthermore, could and should the method be 

used as a reference architecture. 

 

The first part on why the method scores the points above is that visualizing in Excel is 

right, but it could be better with a better layout. The most important thing to consider is 

enhancing the less technical criteria such as team knowledge; this part will be explained 

more in chapter 5. Furthermore, should the customizability of the method be considered. 

For instance, the way how to add new criteria as a column or a new tool as a row.  

 

The data suggest that the method is not effective in finding an alternative or replacing the 

existing toolset. Although the method is not effective in finding an alternative in the 

existing toolset, it shows a better overview of the tool components needed for data lake 

information extraction. The method does not cover all the criteria and tools needed, but the 

current criteria and tools are not wrong. However, they should be enhanced more to reach 

a more accurate and useful method. The criteria and tools to add will be discussed in 

chapter 5. On average, does the method effectively help to select the data lake toolset for 

organizations. 

 

Finally, does the data suggest that more research is needed on other parts of this method as 

well. The method's effectiveness and overview can increase by adding the missing criteria 

and tooling, as discussed in chapter 5. 
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Lessons learned 

As the interviews and surveys are an essential part of the study, one should start planning 

the interviews on time because it takes much time to respond and plan a date. If someone 

does not answer the first mail, do not wait too long to send the reminder because that will 

take a while. For this study, the researcher admits that he waited too long before sending a 

reminder in some cases. 

Use a tool that will help create a stable and transparent form for the survey, such as 

Microsoft Forms or Google Forms. Due to such a tool's abilities, the researcher can create 

a form and send it to anyone. This research made use of Microsoft Forms, and that worked 

out well. 

Another lesson is that for this study, most retail organizations were interviewed and filled 

in the survey. For other industries, only Airbus was interviewed, but this number of 

respondents in the Airbus industry is too small to generalize. 
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5. DISCUSSION 

Research-problem 

At the beginning of this research, the research problem was a gap in the literature that no 

information is available about the combination of tooling in one place to use for Data Lake 

purposes. Furthermore, no information is available about commonly used architectures or 

frameworks and criteria associated with it. So, while there has been much research on the 

different aspects individually, no researchers have considered the combination. The 

research questions will be discussed with the help of the interview input and the literature 

review. 

 

The main research question is: 

“What method is best suitable for selecting the appropriate tools to rapidly and efficiently 

extract data from the data lake?” 

 

The sub-questions are: 

Which criteria are essential for rapid and efficient data extraction? 

 

Which query language will enable rapid and efficient data extraction? 

 

Which ETL tool will enable rapid and efficient data extraction? 

 

Which visualization tool will enable rapid and efficient data extraction? 

 

What is the process/mechanism for selecting the appropriate tooling? 

 

 

 

 

 



81 

 

The main findings 

In line with the literature review, we found that in practice, the data lakes are hot. All the 

respondents have data lakes running or are in the data lake transition and know precisely 

what a data lake is. The big v’s found in the literature review are used in practice, and 

companies consider the possibilities of different data structures. Apache Hadoop was used 

a lot during the literature review because research executed by Khine & Wang(2018, p. 

3025) described that many implementations of Data Lake are based initially on Apache 

Hadoop. A variety of data from heterogeneous data stores will be extracted to be stored in 

the Hadoop Cluster. The results show that the claims of Khine & Wang (2018, p. 3025) are 

valid but are decreasing. Many implantations of data lakes are based on new technologies 

such as those of Microsoft and AWS. 

 

Research by Madera & Laurent (2016, pp. 1–3) concludes that the volume, the variety, and 

the velocity of data is another essential thing. A Data lake is a low-cost storage physical 

environment based on Hadoop technology, populated by all data sources available in the 

enterprise. When the data is processed and used by users or data scientists, the data 

warehouse will save the results. However, the analysis does not support this outcome. Data 

lakes can be based on different technology and not only on Hadoop technology. 

Furthermore, does the processed data not only be saved to data warehouses, but it could 

also be saved back to the data lake. It depends on how scientists or analysts will use the 

data. The data warehouses are logic storage if the data needs fast pre-processing or 

aggregated data or reporting purposes. 

 

Furthermore, do the results indicate that the criteria used in this study are sufficient. During 

the interview and the survey, the respondents found that the number of criteria used is 

enough. However, the respondents found that some missing criteria need to be added as 

well. Some proposed criteria to add are cloud provider specification, team skills, costs and 

market penetration tools, extra layer in speed/efficiency which counts how fast a cluster is 

started, amount of knowledge a company has, which contracts a company already has, tool 

maturity, fixed price model vs pay as you go, customizability of the method and the costs 

of the tooling. 
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The different tools compared are not sufficient; tools such as Spark, Airflow, Kafka, 

Apache beam, DataBricks, Azure Synapse, PostgresSQL, Qlik, Plotydash, MuleSoft, and 

elastic search should be added to the method to create a better view of the current 

landscape. The tools mentioned came from the interviews, but future research could take 

more tools into account. 

 

Furthermore, is there no clear answer for the best query language, ETL tooling, and 

visualization tooling. It depends on the user and the organization. However, the most 

common query language during the interviews was U-SQL, the most common ETL tool 

was Hadoop data lake, and the most common visualization tool was Power BI and Tableau. 

 

This method will work like a reference architecture, but the method's tools are not 

sufficient. Some essential tools are missing, which needs to be added to represent a better 

picture. Finally, should the method explain the different criteria in a separate tab, and 

should the unique selling points be added to the method. 

 

What-do-these-results-mean? 

In line with the expectations, we found that there is a need for such a method. People are 

looking for a reference architectural design which can help them with decision making.  

 

However, the method can be enhanced more. The survey patterns expose that the method 

helps identify the right tooling for the data lake ecosystem. However, there is still some 

work needed to enhance the number of criteria. Furthermore, should the center part of the 

method with all the points given by the researcher be separated with more points or better 

elaboration on why a point is given. The change of criteria points by the user gives no real 

difference when making choices. This gives the feeling that it is a subjective selection. 

 

Selecting a tool does not only depend on the technical fit within the subject. Existing 

contracts, team knowledge, and company resources play a significant role in choosing such 

a toolset. This, again, is linked to the criteria which need to be enhanced more.  



83 

 

The current method does not take care of a specific combination of tooling. Does a 

combination of some specific tooling add extra benefit for choosing linked tools? This 

means that further research should take into consideration to check this as well. 

 

Overall, does the results meet the expectations. Beforehand we have not thought that the 

criteria are complete or the method would help that good. Nevertheless, the interviews and 

the surveys show that such a method is needed in the market. Furthermore, the hypothesis 

at the beginning of this research is in line with the research results.  

 

Finally, the respondents did not choose MDM as an essential part of the method. We found 

that MDM is a critical subject in choosing and architecting the data lake during the 

literature review. However, the respondents did not focus on that at all. It was more about 

the knowledge which a company has and how much money a tool cost. It is interesting to 

discover MDM's ability in more detail, but for this study, the survey concludes that MDM 

is not essential, countering the literature review findings. Another interesting part of MDM 

is the abilities of Meta Data Management vs the abilities of Master Data Management and 

what they can add to the method. 

 

The results do agree and support previous research and do add extra information to it. The 

research provides new insights into the relationship between using a method and the 

practical decision-making process. It seems that companies cannot see all the tools 

anymore because they come with so much. Although all information needed to get to a 

decision is available, it is difficult to get there in a structured way while still keeping the 

business criteria in mind. This research added a significant amount of knowledge to the 

current information, mainly the created method and its findings.   
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6. CONCLUSION 

The objective of building a data lake is to derive value from it. If done correctly, having all 

data stored in a single repository and quickly analyzing the raw data will provide 

organizations with significant new insights. Mixing different data sources and analyzing 

them opens new possibilities, and with a data lake, that process suddenly becomes a lot 

easier. Therefore, organizations that have implemented a data lake will reap the benefits 

from it in the future if done correctly. 

 

The study shows that large companies often lack a standard when choosing data lake 

software. This research aimed to identify the use of a method for enterprise organizations 

using or planning to use a data lake. Based on an extensive literature review and fife case 

studies, it can be concluded that a method is an essential factor to consider when designing 

data lake architectures. The results indicate that organizations are confused with the 

availability of tools and need help choosing from everything available. 

 

Referring to the main research question, it can be concluded that the created method is 

suitable for selecting tooling to extract data from a data lake. This approach provides new 

insight into such a method's usage and urgency. This research clearly illustrates that the 

created method can help organizations choose the right tooling, but it also raises the 

question of using such a method to help with everything in one method. 

 

Bottom line, even though most of the respondents were optimistic about the research, it 

should not be forgotten that choosing tooling is not only about the technical aspects of 

tooling; instead, it is also important to consider non-technical aspects. 

 

Based on these conclusions, practitioners should consider the ability of a method to answer 

all the questions. 
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Contributions 

This research contributes in several ways; first, returning to the problem statement, the 

research helps solve and show the importance of a standard for choosing data lake tooling. 

Current approaches are lacking to focus on concrete requirements and practices. The 

research has focused on the applicability of a method in general. The findings here confirm 

and validate previous research; and, they combine the information in one place. This study 

extends to show how a method can be built and what factors to consider. This study 

assessed the formula to calculate the advice, the criteria, and the used tools. Referring to 

the literature review, the study addressed the gap of using a combination of tooling with 

the right criteria in the form of a method. Although in-depth research is needed to elaborate 

more on some criteria. As discussed in the first chapter, data lakes have common failures, 

such as data lakes become data swamps, and therefore the data will never be put into 

production and failing to gain added value. The connection to that is that a data lake will 

lack business impact, lack data governance, and lack data quality. An important note here 

is that a standard or method, plays a significant role in mitigating these problems. An 

overall, structured method of building the data lake ecosystem is key to reaping this 

technology's benefits. 

 

Limitations 

The context where this study was executed was within one industry and one country. Four 

of the five participants are from one industry, which means they are familiar with the same 

environments and cultures. It does not give a definite viewpoint on how the method will 

work in the context of complex IT environments in other industries and countries. The 

method has only been validated by a group of people interviewed and filled in the survey, 

which means that it possibly will not serve a larger group of people. A group of people 

gave their feedback, but there is still a small chance that the feedback is biased. The study 

used a group of active companies in enterprise environments while there is still room for 

optimizing the method for smaller companies. 
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Recommendations for future research 

This study provides some directions for future research. One of the things future research 

could cover is the development of a more detailed method. Concrete, it means that more 

research is needed on extra tooling, additional criteria such as costs and cloud on-premise, 

and a better way to present all this information in one page, such as another platform and 

availability to add additional criteria. All the feedback and a starting points can be found 

in chapter 5. Furthermore, further research is required to establish whether the method is a 

factor in smaller companies and other industries.  

 

To better understand the implications of these results, future studies could also address 

several things. First, further research on the difference between metadata management and 

master data management and what their connection could be to a method. Second, research 

on business criteria to add to the already known technical criteria. Third, research on how 

MDM (master data management or metadata management) can help eliminate the data 

swamp risk of data lakes or eliminate this risk through another approach. Furthermore, 

research on the relationship between tooling. Is a specific set of tooling better to use in 

combination rather than separate? 
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7. APPENDICES 

Appendix 1: Query language table 

 Pros Cons 

Embedded SQL: is a method 

of combining the computing power of a 

programming language and the 
database manipulation capabilities of 

SQL. 

- Easy to understand 

 

- Not performing well 

on large data sets 

HTSQL: is a schema-driven URI-

to-SQL query language that takes a 
request over HTTP, converts it to a 

SQL query, executes the query against 

a database, and returns the results in a 

format best suited for the user agent 

- Rapid web 

development 

- Fast on transactional 

data 

- Web-friendly syntax 

- Authentication, data 

caching, and 

encryption over 

HTTP 

- Considered mainly 

as a web query 

language 

OQL: is a query language standard 

for object-oriented databases 
- Uses entity and 

association names 

instead of database 

table names 

- Can use predefined 

relations 

- Many SQL 

keywords also work 

in OQL 

- Deals with complex 

objects 

- Integration 

- API compatible 

 

- OQL queries do not 

take security into 

account out-of-the-

box 

LINQ: is a Microsoft .NET 

Framework component that adds native 

data querying capabilities to .NET 

languages 

- Supports safety 

- Easy to deploy 

- Easy to learn, 

- Compatible with 

.NET 

- Supports multiple 

databases,  

- Write queries 

uniformly in your 

programming 

language itself 

- Taking full 

advantage of strong 

- It needs to process 

the entire query, 

which might have a 

negative 

performance impact 
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typing and tool 

support 

- In-memory objects 

- SQL data and XML 

documents. 

GraphQL: is an open-source data 

query and manipulation language for 
APIs 

- Self-documenting, 

- Precisely define the 

data you want, 

- Replacing multiple 

REST requests with 

a single call 

- Adopted by an 

increasing number 

of users 

- efficient,  

- integration with 

other API and 

languages 

- Does not support all 

entities and 

relationships with 

API’s 

- Does not follow the 

HTTP spec for 

caching and instead 

uses a single 

endpoint,  

- Fundamental 

understanding of the 

properties of the 

language is missing 

T-SQL is Microsoft's and Sybase's 

proprietary extension to the SQL 
(Structured Query Language) used to 

interact with relational databases 

- Error checking 

- Globally accepted 

- Works best with 

Microsoft SQL 

server 

- Not able to use tsql 

into SQL 

environments 

Big SQL: is MapReduce-based 

designed for providing native SQL for 
querying data managed by Hadoop 

- Parallel processing 

SQL,  

- Low-latency parallel 

execution 

processing, 

- Run on the top of 

Hadoop and to 

translate all queries 

to native MR jobs, 

- Supports queries 

expressed in native 

SQL declarative 

language,  

- JDBC/ODBC driver 

access from Linux 

and Windows 

platforms 

- Uses HCatalog 

(metastore) of 

Hbase for data 

access and the Hive 

storage engines to 

- It does not benefit 

from adding nodes. 

As a result, the 

running time 

performance is 

decreased by 43% 

from one to ten 

nodes. 
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read/write data 

 

U-SQL: is a language that 

combines declarative SQL with 

imperative C# to let you process data at 
any scale 

- The syntax is based 

on T-SQL while it 

uses C# types as 

default. 

- Process any type of 

data, 

- Integrates custom 

code seamlessly, 

- Efficiently scale to 

any size of data,  

- For massive data 

processing,  

- Dump whatever you 

want in the data lake 

and run USQL on 

top of it, 

- Flexibility and 

extensibility, and 

ease of development  

- A handful of state-

of-the-art tools for 

XML processing 

- any type of data,  

- integration,  

- MDM 

- Not to substitute the 

existing and 

emerging service 

description 

protocols in the 

various service 

areas (e.g., WSDL, 

WSDL-S, OWL-S) 

No-SQL: is referred to as 

“nonrelational” or “non-SQL” to 

highlight the fact that they can handle 

vast volumes of rapidly changing, 
unstructured data in different ways than 

a relational (SQL) database with rows 

and tables. 

- More freedom,  

- Speed 

- Flexibility 

- Provide compelling 

operational 

advantages and 

savings with the 

ability to scale "out" 

horizontally—or 

add less expensive 

servers without 

having to upgrade,  

- Large volumes of 

rapidly changing 

structured, semi-

structured, and 

unstructured data,  

- Geographically 

distributed scale-out 

- Not mature 

- Less support 

- The system can 

have only two out 

of three of the 

following 

properties: 

consistency, 

availability, and 

partition-tolerance. 

The NoSQL 

systems generally 

give up consistency 

- less secure 
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architecture instead 

of expensive,  

- Monolithic 

architecture, 

- Integration with c# 

and .NET,  

- The ability to 

horizontally scale 

“simple operation” 

throughput over 

many servers,  

- Efficient use of 

distributed indexes 

and RAM for data 

storage. 

 

Google Big Query: a fully 

managed cloud service that enables 

storage and fast querying of large and 

multi-faceted datasets. 

- High scalable 

- Cost-effective  

- No technical 

overhead costs for 

maintaining 

infrastructure, 

- Scalability of 

processing research 

data products across 

a growing number 

of courses and users 

- Fast 

- secure 

- Only compatible 

with specific 

extensions such as 

JSON, CSV, or 

Avro 

- File size limits 

SQL: Structured query language or 

SQL is used as a medium of 

communication with the relational 

database management systems. 

- Fast,  

- Data integration 

standards,  

- Mature 

- secure (RBAC) 

- Difficult interface,  

- Expensive 

PL SQL - It is highly 

structured 

- Readable 

- Accessible 

- Is right integrated 

with Oracle 

databases 

- Has high 

performance 

- Has API 

capabilities.  

- It is not integrated 

with other databases 

- Not secure due to its 

vulnerabilities, such 

as SQL injection. 
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Spark SQL - Can call complex 

analytics libraries in 

Spark 

- Is API friendly 

- High performance 

- Has a variety of data 

sources available 

- Can process large 

amounts of data 

- API capabilities 

- Has integrations 

with Java, Scala, 

Python, and R 

- But it has problems 

with small files and 

latency. 

Scala - Is easy to get into 

- Has java integration 

and is mainly for 

building large 

systems.  

- It is scalable 

- Secure 

- API capabilities 

- Immature  

- Risk of 

abandonment 

Python - Easy to work with 

- Runs on every 

platform 

- Integration with 

other tools and 

languages 

- Stable 

- API capabilities 

- Flexible 

- GUI  

- Not fast 

- Run-time errors 

- Lack of multi-

processor support 

- Database access 

layer problems 

- Not secure 

R - Open-source 

- A lot of packages 

available 

- Can visualize data 

- Highly compatible 

with other languages 

- API capabilities 

- Is compatible with 

many sources 

- Flexible 

- GUI 

- Not secure 

- Not fast 

- Not efficient on 

large datasets 

- Hard to learn 

 

 



92 

 

Appendix 2: ETL tooling table 

 Pros Cons 

SAP BW ETL: provides a 

collection of objects and tools that 

allow users to import, export, and 
transform heterogeneous data 

- Runs on a variety of 

third-party 

RDBMSs 

- Provides open 

Business 

Application 

Programming 

Interfaces for data 

loading 

- Provides a pre-

configured metadata 

repository consisting 

of InfoCube catalog 

- Report catalog 

- Information source 

catalog 

- Shipped with many 

pre-defined 

InfoCubes for 

typical business 

applications 

- Profitability 

analyses 

- Stock inventory 

analyses 

- Corporate indicator 

systems 

- Graphical user 

interface 

- Sharing functions 

and Microsoft 

Office compatibility 

- Data visualization 

and analytics 

applications 

- API compatible 

 

- Expensive licensing 

- Not able to perform 

on high loads 

- No MDM 

integration 

Talend: is used for integrating 

operational systems as well as an ETL 

tool for Data Warehousing, Business 
Intelligence, and data migration 

- Easy to use 

- Helps business users 

to design their 

business processes 

graphically 

- To use more inside 

tools like machine 

learning add-ons, 

you need to buy 

licenses  
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- High volume 

integration 

- Parallelization 

feature 

- Data source 

integration 

- Free open source 

ETL tool 

- Secure 

- API compatible 

 

- It is developed as a 

product for 

individual use only, 

and so it is not 

possible to have 

more than one user 

- The free version 

does not support 

automation of tasks 

like scheduling, 

routing data. 

- Lack of any 

commercial support. 

- Need to add on 

Talend MDM 

platform for MDM 

Microsoft Azure Data 

Factory: is a data integration 

service that is explicitly designed to 

collaborate with existing services for 

the movement, transformation, and 
processing of raw data 

- Visual drag-and-

drop UI 

- SSIS migration to 

the cloud 

- Comprehensive 

orchestration 

Multiple language 

support 

- Hybrid data 

movement and 

transformation 

- Support Data source 

integration. 

- Secure 

- API compatible 

- Configuration from 

scratch could be a 

bit hard 

- Need understanding 

of the tool 

- Need to add on data 

factory MDM 

platform for MDM 

IBM – Infosphere 

Information Server: 
Is a product family that provides a 

unified data integration  

- It can be integrated 

with Oracle, IBM 

DB2, and Hadoop 

System 

- It supports SAP via 

various plug-ins 

- ETL without coding 

- Data source 

integration 

- Integrated with BI 

- Master data 

management 

- Infrastructure 

rationalization and 

risk compliance 

- Lack of a robust 

web development 

environment 

- Metadata 

propagation in Jobs 

is somewhat 

complex 

- Slow configuration 

- Expensive 

- Need to add on 

infosphere 

information server 

MDM platform for 

MDM 
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- Secure (R and C) 

- API compatible 

Oracle Data Integrator: 
Is a graphical environment to build and 
manage data integration 

- Mature 

- High performance 

- Data source 

integration 

- Can perform 

complex 

transformations 

- It automatically 

identifies faulty data 

and recycles it 

before moving into 

the target 

application 

- Supports databases 

like IBM DB2, 

Teradata, Sybase, 

Netezza, Exadata. 

- Able to handle 

complex 

transformations 

- ODI security 

- API compatible 

- Difficult user 

interface 

- Complex build tool 

- Expensive 

- Need deep technical 

knowledge 

- Need to add on to 

data integrator 

MDM platform for 

MDM 

Google Dataflow: Google 

Dataflow is a unified stream and batch 

data processing service 

- Reduced 

infrastructure 

administration 

- Automatic scaling 

 

- SDK with native 

support for both 

batch and streaming 

modes 

- API compatible 

- Needs a new way of 

the development 

approach 

- Need to add on to 

dataflow data 

catalog for MDM 

Microsoft – SQL Server 

Integrated Services 

(SSIS): 
is one of the Business Intelligence tools 
(BI) to ease and automate the ETL 

process 

- Automate the SQL 

Server Maintenance 

Plan 

- Very low in cost  

- Easier to maintain 

and package 

configuration 

- Better for complex 

transformations, 

multi-step 

operations, 

aggregating data 

- To see the package 

execution report, 

need Management 

Studio rather than 

being published to 

reporting services or 

another way 

- The lack of ability 

to support non-

windows operating 

systems 



95 

 

from different data 

sources or types, 

and structured 

exception handling 

- Data can be loaded 

in parallel to many 

varied destinations 

- Build ETL solutions 

with very minimum 

background 

knowledge 

- Very easy to install 

and configure 

- Offers broad 

documentation and 

support 

- Provides best 

practices 

- Is more suitable for 

enterprise and may 

not be cost-efficient 

for small businesses 

- Need third party 

tools for API 

integration 

- No MDM 

Hadoop data lake: The data is 

physically moved into one physical 

place. Based on Hadoop technology, no 
change is made around the origin’s 

format at the captured moment. The 

Data Lake is more batch processing 
oriented as it is based on MapReduce 

usage 

- Fast 

- Less expensive 

- Integration 

- API compatible 

- Less mature 

- Not realtime 

- No advanced 

analytics 

- Data not secured by 

default 

- Need add to 

Hadoop, Cloudera 

navigator for MDM  
AWS Data Pipeline: This is an 

ETL platform in a web service 

with a control panel. 

- Simple to use 

- Secure 

- Fault-tolerant 

- API compatible 

- Lacks third-party 

integration 

- Difficult to use with 

on-premises data 

sources 

- Need the third party 

for MDM 
MongoDB: MongoDB is an open-

source NoSQL database developed in 

C++ 

- Efficient 

- Fast 

- Durability 

- Flexible 

- API compatible 

- uses internal 

memory 

- lacks the support of 

join queries 

- Need the third party 

for MDM 
Cloudera Apache Hive - Able to process 

petabytes of data 

- Integration 

- Scalable 

- Fast 

- MDM 

- The configuration is 

a bit tricky 

- Designed for 

analytical purposes, 

not for transactional 

purposes 
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- API - Security 

- Lack of support 

- Runtime errors 
Informatica PowerCenter - Easy to use 

- Support 

- Fast 

- Data quality 

monitoring 

- Data migration 

- Single point of 

- MDM data catalog 

- API 

- Flexible 

- GUI 

- Low code  

- Lacks integration 

with other 

languages 

- No reporting 

functionality 

- A lot of settings 

interfaces 

- No ai capabilities 

- Connectors not 

working well 
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Appendix 3: Visualization tooling table 

 Pros Cons 

Power BI: is an online SaaS 

service offer (SaaS) from Microsoft 

Power BI that 
displays interactive dashboards 

- Not expensive 

- Easy to use 

- Receive constant 

updates 

- Integration with 

many sources 

- Able to handle large 

amounts of data 

- Sharing and 

collaboration 

features 

- Limited free version 

capabilities 

- A table relationship 

is a bit lagging 

- Not able to handle 

large amounts of 

data in the free 

version 

- Simple dashboards 

easy to make, 

complicated 

dashboard 

challenging to make 

Tableau: is a software that can help 

users explore and understand their data 

by 

creating interactive visualizations 

- Connects users with a 

variety of data sources 

and enables them to 

create data 

visualizations by 

making charts, maps, 

dashboards, and stories 

through a simple drag 

and drop interface 

- Help users explore and 

understand their data by 

creating interactive 

visualizations 

- Easy to use by dragging 

and dropping 

- Is still not widely 

used 

Google data studio: is a new 

data visualization program 
- Recognizable to anyone 

who works with the 

Google office suite 

- Free to anyone with a 

Google account 

- Interactive GUI 

- Sharing and 

collaboration features 

- Cannot comply with 

IRB requirements 

for protecting 

personally 

identifiable data 

- Lacks the ability to 

modify underlying 

data 

- Offers fewer 

calculation and 

visualization 

options 

IBM Cognos: provides a unified 

workspace for business intelligence and 

analytics 

- Easy View 

- Collaboration 

- Transparent and 

accountable 

- Access data everywhere 

(mobile devices) 

- Only a few sites and 

communities exist 

- Most experience has 

been gained by 

intuition and trial 

and error 
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- Link dashboards to 

workflows 

Oracle Business 

Intelligence: This solution was 

designed to address the entire spectrum 

of analytical requirements 

- Ad hoc analysis 

- Enterprise reporting 

- Microsoft Office 

integration 

- High prices for 

large configurations 

SAS: Software pack with various 

visualization capabilities 
- Various visualization 

capabilities 

implemented in the 

product suite 

- Interactive 

- Allows the creation of 

basic queries and 

reports 

- High costs 

Qlik: Provides a possibility for end-

users to use integrated ETL and to 
construct their data schema themselves 

- Provides a clean 

interface to analysts 

- Removes the need to 

pre-aggregate data 

- Possible to change 

analysis axes any 

moment at any level of 

query detailing 

- Ability to automatically 

connect tables 

- Lack of a unified 

metadata view 

- Lack of predicting 

models 

- Lacks advanced 

visualization 

features to help 

them graphically 

wade through 

complicated data 

Amazon Quicksight: is a fast, 

cloud-powered BI service that makes it 

easy to build visualizations 

- Superfast 

- Parallel 

- In-memory 

- Calculation Engine 

(SPICE) 

- Immature 

- Sharing 

- Not available on 

android 

Kibana: Kibana was designed as a 

visualization platform for Elasticsearch 
- Interactive 

- Efficient 

- easy to extend to needs, 

able to show massive 

volumes of data 

- No user 

management 

available 

MicroStrategy - Easy to use 

- Fast 

- Secure 

- Integration with 

different data 

sources 

- 2TB data size 

- Monitoring 

- GUI 

- Stable 

- Secure 

- API 

- Timeout errors with 

more than 2 TB of 

data  

- Sharing 

- Support 

- Need more 

visualizations 

- Not flexible 

- No MDM 

Redash - Easy to use and 

setup 

- Scalability problems 

- Technical 

knowledge required 

- Not flexible 
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- No installation 

needed (browser-

based) 

- SQL templates 

- Many data source 

integration 

- API 

- Easy export to 

different formats 

- Fast 

- Secure  

- Low-code and code 

- MDM  
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Appendix 4: Interview setup 

  

Hi …., 

  

Hope you are doing well. I am a CSA intern and team leader at Albert Heijn XL in Leiden, so 

for me the customer to interview for my thesis can hopefully be Ahold Delhaize. Can you please 

support me in reaching out to possible respondents? 

  

I am currently working on my thesis about the use of data lakes. While data lake adoption is 

growing, the complexity and options for technology are growing as well. My research aims to 

provide a methodology for architecture design and tool selection based on business 

requirements. 

  

The main question of the thesis is: “What method is best suitable for selecting the appropriate 

tools to rapidly and efficiently extract data from the data lake?” 

  

It would be great if I can validate or mirror my methodology with people from Ahold Delhaize 

as a customer organization. The ideal roles would be a technology lead, architect, and data 

scientist.  

  

The initial meeting would take 45 minutes  

  

Of course, I will present my end result and share my thesis with them.  

  

Thanks a lot in advance. 

  

------------------------------------------------------------ 

  

Kind Regards, 

  

Ahmed Lachal 

Cloud Solution Architect Intern 
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Appendix 5: Survey results 
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