
 Universiteit Leiden

ICT in Business and the Public Sector

A CRITERIA DRIVEN METHOD FOR SELECTING
INFORMATION EXTRACTION TOOLING FOR
DATA LAKE OPTIMIZATION

Name: Ahmed Lachal
Student-no: s2368609

Date: 24/11/2020

1st supervisor: Guus Ramackers
2nd supervisor: Bas Kruiswijk

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2

ABSTRACT

The application of big data forms a challenge for many organisations, given the variety,

velocity, and veracity of the data. Furthermore, a diversity of data sources often results in

information silos that are hard to access.

Data lake systems have been proposed to store and manage data from different sources,

e.g., unstructured, semi-structured, and structured data in one place.

However, simply storing all data in a data lake without effective metadata management

and information extraction tooling only results in the creation of a “data swamp”.

Evaluation and selection of the appropriate set of data lake tooling is a complex decision-

making process that involves multiple (sometimes conflicting) criteria and differing tool

sets. Furthermore, this process needs to take into account that each organisation has

specific requirements and varying knowledge levels. To address this issue, this research

proposes a criteria driven method for selecting the appropriate information extraction

tooling, which can be used to generate a solution that is tailored to an organisation’s

specific needs.

This study describes the different models, and commercial and open-source tooling

available for information abstraction from data lakes, and discusses each of their

advantages and disadvantages. It serves to illustrate how different information extraction

tools can be used to handle different situations based on user criteria. The result of this

research is an automated solution that enables the user to input organisation specific

criteria, and subsequently generates a priority based list of the most appropriate toolsets.

The application of this method has been verified at five large-scale companies in the

Netherlands.

3

TABLE OF CONTENTS

ABSTRACT .. 2

1. INTRODUCTION ... 6

1.1 Current state .. 6
1.2 Objectives ... 8

1.3 Research question ... 9
1.3.1 Main question .. 9
1.3.2 Sub-questions .. 9

1.4 Method .. 11

2. BACKGROUND AND RELATED WORK ... 12

2.1 What is a data lake? .. 12
2.2 Data Warehouse vs Data Lake .. 21

2.3 Commonly used criteria .. 22
2.4 Commonly used query languages ... 24

2.5 Commonly used ETL tooling.. 39
2.6 Commonly used visualization tooling .. 50
2.7 Working example .. 60

3. RECOMMENDED SELECTION METHOD ... 66

3.1 Decision matrix analysis ... 66
3.2 Mechanism formula .. 71

4. VALIDATION RESULTS .. 72

4.1 Application of mechanism to KAD .. 72
4.2 Application of mechanism to Jumbo .. 73
4.3 Application of mechanism to Plus .. 74

4.4 Application of mechanism to Etos .. 75
4.5 Application of mechanism to Airbus .. 76
4.6 Summary of main survey findings .. 77

5. DISCUSSION .. 80

6. CONCLUSION .. 84

7. APPENDICES ... 87

Appendix 1: Query language table .. 87
Appendix 2: ETL tooling table .. 92
Appendix 3: Visualization tooling table .. 97

4

Appendix 4: Interview setup .. 100
Appendix 5: Survey results .. 101

8. REFERENCES .. 102

5

ACKNOWLEDGMENTS

First and foremost, praises and thanks to God, the Almighty, for His blessings throughout

the research to complete it successfully during covid-19.

I would like to express my sincere gratitude to everyone who helped and guided me during

the research.

Many thanks to the first supervisor, Guus Ramackers, and the second supervisor, Bas

Kruiswijk. Also, I would like to thank my managers Marleen Blok and Gijs de Witte, and

my buddies Carla Parilo and Dennis van Herk for giving me advice and input during and

even after the research. Also, a big thanks to all the companies that helped execute the

validation and opened their doors to execute the interviews, especially Ahold Delhaize,

Jumbo, Plus, Etos, and Airbus. Finally, I would like to thank my parents and my friends,

who helped me stay motivated writing the thesis.

6

1. INTRODUCTION

1.1 Current state

At this moment in time, organizations are enthusiastic about data lake implementations. So

does Koninklijke Ahold Delhaize is referred to as KAD, which generates approximately

five terabytes of data each month. Gartner believes that 70 percent of mature organizations

will have more data flowing from data lakes than from data warehouses in the upcoming

years.

According to new research, the global data lake market will continue growing (Market

Research Future, 2020).

Figure 1: Data lake market size by 2023 (Market Research Future, 2020)

Data lakes support unknown data (i.e., structured, unstructured, and semi-structured data),

low-cost storage, and easy landing data in the data lake without pre-processing.

Furthermore, data lakes support fast data coming from IoT devices. Data lakes often come

with new tools and services that need to be understood. Investments need to be made in

skills and transition from data warehouses to data lakes. Data lakes can easily land data,

but data lakes use different query engines than data warehouses to query the data.

Wherein data warehouses support relational data from transactional systems and

operational databases (i.e., pre-defined schema, structured data). Data warehouses are a

well-established and proven solution, and SQL server solutions are widely available. Such

7

warehouses also deliver good performance, partially due to its structure. A data warehouse

has a written schema, and therefore SQL servers and other data warehouse technologies

already understand its structure. However, the storage costs are more expensive than data

lake storage. Although there is much value in having a model, it also takes time to have the

development team support getting data into that model. Typically, the development of

Extract Transform Load (ETL) processes creates latency because it has high costs.

Organizations might only store specific amounts of data in the data warehouse, which will

result in limited exploration.

The gap

One gap in the literature is that no information is available about the combination of

tooling for Data Lake purposes in one method. It means there is a lack of knowledge of

query languages, ETL tooling, and visualization tooling in one method.

Furthermore, no information is available about commonly used architectures or

frameworks and criteria associated with it. So, while there has been much research on the

different aspects individually, as of today no researchers have considered the combination.

This research intends to fill this gap. This gap will be filled by research on the query

languages, ETL tooling, and visualization tooling, including advantages and

disadvantages, followed by a method that will connect the different parts. Furthermore,

will the method be validated and tested at different organizations.

8

1.2 Objectives

While data lake adoption is growing, the difficulties of this technology are growing as well.

Data lakes are not working well for each company because of data lake adoption failures,

high expectations, and insufficient preparations.

This research study aims to develop a method that helps organizations assess and choose

their data lake architecture. After the literature review, a solution will be developed, which

will be a selection method.

The deliverables will be as follows:

• List of criteria for the tooling

• Top 3 query languages (dynamically specified for each situation)

• Top 3 ETL tooling (dynamically specified for each situation)

• Top 3 visualization tooling (dynamically specified for each situation)

• Limitations

• Future work

It will be shown which techniques and tools can increase data accessibility and tackle

common failures, as discussed in the next chapter. This research will provide insights into

techniques and tools to address current issues and improve the accessibility of data lakes

in general. The created method will be evaluated and verified at KAD and, more specific

at Albert Heijn. Furthermore, will the solution be evaluated at Etos, Jumbo, Plus, and

AirbusDS. These data lake problems are suitable for these companies and suitable for

similar situations in the retail industry. Look for instance to Kruidvat, Bol.com, Lidl or

COOP; these retail companies collect a massive amount of data, so these failures and

solutions could also be suitable for them. The research is focused on enterprise

organization. Furthermore, will this research not be limited to Microsoft tooling but rather

take another tooling available in the industry into account.

9

1.3 Research question

1.3.1 Main question

“What method is best suitable for selecting the appropriate tools to rapidly and

efficiently extract data from the data lake?”

1.3.2 Sub-questions

Which criteria are essential for rapid and efficient data extraction?

Which query language will enable rapid and efficient data extraction?

Which ETL tool will enable rapid and efficient data extraction?

Which visualization tool will enable rapid and efficient data extraction?

What is the process/mechanism for selecting the appropriate tooling?

These questions are essential because the data stored in data lakes are difficult to find and

extract. Often not all the data is stored in a data lake. Data is still stored in separate

relational database management systems, but the transition to data lake usage increases. It

makes it a bottleneck in the organizational network because analysts are waiting for data,

but IT cannot provide the data, and therefore data analysts try to find a workaround.

The introduction of data lakes also needs control and maturity levels, but most companies

start using data lakes without real knowledge about their capabilities and preparations

(Woods, 2018, pp. 1–3). The list below shows the common failures of data lakes:

• Data lakes become data swamps.

• Data never put into production.

• Failing to gain added value.

• A lack of business impact

• A lack of data governance

10

• A lack of data quality

The failures mentioned before shows how companies need to rethink their processes and

data architecture to fully utilize data lakes (Woods, 2018, pp. 1–3).

11

1.4 Method

The first step in this research is to gather as much information as possible about the subject.

An extensive literature review incl. focus on existing frameworks or architectures will

focus on the subject. Next, the method to select the appropriate tools to extract data rapidly

and efficiently from the data lake will be built. Finally, a case study through a qualitative

research method using interviews and survey will be used for validation. Interviewing

people who are using this process and software will provide insights into their world,

opinions, and thoughts. For example:

• Behaviors: what a person has done or is doing.

• Opinions/values: what a person thinks about the topic.

• Knowledge: to get facts about the topic.

• Background/demographics: standard background questions, such as age, education.

This approach will use a standardized, open-ended interview, wherein open-ended

questions are asked to all interviewees, which facilitates faster interviews that can be more

easily analyzed and compared.

12

2. BACKGROUND AND RELATED WORK

2.1 What is a data lake?

General information

Research executed by Madera & Laurent (2016, pp. 1–3) showed that from the big data

wave and the Apache Hadoop projects in 2014, a new concept appeared: the data lake.

Another early work in this area showed that data lakes tended to govern data swamps.

However, no formal definition was found in the literature.

Data Lake is defined as a methodology to approach the raw data, structured and non-

structured within an enterprise and seen as an evolution of existing data architecture.

Besides, a Data Lake is a methodology, a concept that embraces all enterprise data,

moves them into one physical place to use them for future insight. The concept

addresses the variety and the volume of the four significant data characteristics (Madera

& Laurent, 2016, pp. 1–3). However, even if a Data Lake is defined as a methodology,

it is not only a methodology. It is an actual new data architecture solution composed of

hardware, software, and conceptual design, thus not limited to a methodology. The

landscape is more comprehensive than a methodology and is an actual new reference

data architecture and a new step in information architecture evolution (Madera &

Laurent, 2016, pp. 1–3).

The volume, the variety, and the velocity of data is another essential thing. A Data lake

is a low-cost storage physical environment based on Hadoop technology, populated by

all data sources available in the enterprise. When the data is processed and used by

power users or data scientists, the results will be saved in the data warehouse (Madera

& Laurent, 2016, pp. 1–3).

The final proposed definition by Madera & Laurent (2016, pp. 1–3) is: A data lake is a

logical view of all data sources or data set, in their raw format, available and accessible

by a data scientist or statistician to find new insight.

13

They gave the next short overview of what a Data Lake is:

• A data lake is governed by a metadata sources index to guarantee the data

quality.

• Rules, tools, and processes control a data lake to guarantee data governance.

• A data lake is limited to data scientist or data statistician access to guarantee

data security, data privacy and compliance.

• A data lake accesses all types of data.

• A data Lake has a logical and physical design.

The establishment of this definition is the foundation to go further to be able to explore

the impacts of this new evolution into the information architecture design. Figure 2

shows that before the end of 2020, more than 44 zettabytes of data will be generated,

with more than 80 percent of them being unstructured (Madera & Laurent, 2016, pp.

1–3).

Figure 2: Data evolution (Madera & Laurent, 2016, pp. 1–3).

The term itself was introduced by James Dixon. Almost all modern enterprises get a

massive amount of data about their IT infrastructure's current state. These data need to

be processed promptly and correctly to identify information useful for business needs.

Most of this data is unstructured (Miloslavskaya & Tolstoy, 2016, p. 303). According

to another study executed by the IDC study “The Digital Universe of Opportunities:

14

Rich Data and the Increasing Value of the Internet of Things”, the amount of

unstructured data in 2020 is expected to be around 44 ZB (IDC, 2014).

Data can be structured, semi-structured, and unstructured, making it impossible to

manage and process them effectively in a traditional way (Miloslavskaya, 2014). The

criteria given by Miloslavskaya & Tolstoy (2016, p. 303) for determining the difference

between big data IT and traditional IT are three “V’s”:

Volume: vast volumes of data

Velocity: very high data transfer rate

Variety: weakly structured data

Later four additional v’s were added to the existing three:

Veracity: trust in the data

Variability: to what extent, and how fast, is the structure of the data changing?

Value: the meaning and value to derive business value from the data

Visibility: see what is happening

The data lake strategies can combine SQL and NoSQL database approach

(Miloslavskaya & Tolstoy, 2016, p. 303).

Another research executed by Laskowski (2016) showed that a data lake refers to a

massively scalable storage repository that holds a vast amount of raw data in its native

format until it is needed and Shalom (2014) researched that in the current dynamic

world, the enterprises data is growing too fast. As the stream of data from sensors,

actuators, and machine-to-machine communication in the Internet of Things and

modern networks is very large, it has become vital for enterprises to identify what data

is time-sensitive and should be acted upon right away and what data can sit in a database

or data lake until there is a reason to explore it.

15

Research executed by Khine & Wang (2018, p. 3025) described that many

implementations of Data Lake are based initially on Apache Hadoop. A variety of data

from heterogeneous data stores will be extracted to be stored in the Hadoop Cluster.

HADOOP (Highly Available Object-Oriented Data Platform) is a widely popular big

data tool especially suitable for batch processing workload of big data. Hadoop has two

main components, HDFS (Hadoop Distributed File System) and MapReduce engine.

HDFS File System handles the single point of failure and scalability by replicating

multiple copies of data blocks in different cluster nodes. All data stored in these data

blocks will be processed in the MapReduce approach. Data will be retrieved as a list of

key-value pairs, i.e., the Map phase. The same data keys will be shuffled, sorted, and

listed into groups to perform necessary operations, i.e., Reduce phase. All data

produced by an enterprise will be dumped into the Data Lake Hadoop Cluster. This

research found that concepts from distributed and parallel systems are reapplied as the

foundation of big data, such as MapReduce paradigms for handling the significant V’s

characteristics, volume, velocity, variety, value, and value. The incumbent SQL

databases with ACID (Atomic, Consistent, Isolated, and Durable) characteristics are

challenged (and sometimes even replaced) by NoSQL databases with BASE (Basically

Available, Soft state, Eventual consistency) characteristics. Also, all data generated by

an organization, regardless of types, structures, or formats, will be stored in Hadoop

clusters or other similar frameworks in their original forms. A data lake may contain

raw, unstructured, or multi-structured data where most of these data may have

unrecognized value for the organization. Metadata management is an essential aspect

of Data Lake. As Data Lakes do not have a pre-defined schema like data warehouses,

they must rely on metadata during the query time for the analysis process, added when

data are stored.

The research of Khine & Wang (2018, p. 3025) continues and found that the basic idea

of Data Lake is simple, all data emitted by the organization will be stored in a single

data structure called Data Lake. Data will be stored in the lake in their original format.

Complex preprocessing and transformation of loading data into data warehouses will

be eliminated. The upfront costs of data ingestion can also be reduced. Once data are

16

placed in the lake, it is available for analysis by everyone in the organization. A data

lake uses a flat architecture to store data in its raw format. Each data entity in the lake

is associated with a unique identifier and a set of extended metadata, and consumers

can use purpose-built schemas to query relevant data, which will result in a smaller set

of data that can be analyzed to help answer a consumer’s question. Data are extracted

and transformed to conform to data warehouse schema and loaded into the Data

Warehouse. Data Lake is a data repository where all data in an enterprise, i.e.,

structured, semi-structured, unstructured data, are stored altogether regardless of types,

format, or structure. Pentaho CEO Jame Dixon first initiated the idea of Data Lake.

Another approach is that all the data from these databases (Extract) will be stored

(Load) into the data lake without changing their format. When data are required, data

in the lake will be transformed (Transform) according to the enterprise system's parts

(Khine & Wang, 2018, p. 3025). Data Lake concepts deviate from the data warehouse

by processing data in the ELT order and utilizing the “Schema-on-Read” approach,

then data warehouses that follow the traditional ETL process approach. First, data from

operational databases are extracted (E). The data are then processed, cleaned, and

transformed (T) before loading (L) them into the data warehouses or data marts. Data

warehouses are specially designed to handle a read-heavy workload for analytics. Data

warehouses need to define their schema in advance before data are loaded. Therefore,

they are considered the “Schema-On-Write” approach (Khine & Wang, 2018, p. 3025).

However, one of the biggest pitfalls of Data Lake is becoming a data swamp. No one

knows what will be put into the lake. Moreover, no procedures are preventing them

from entering incorrect data, repeated data, or incorrect data.

The research of Khine & Wang (2018, p. 3025) ends with introducing maturity levels.

A Data Lake may need to pass through five maturity levels. They are

1. Consolidated and categorized raw data

2. Attribute-level metadata tagging and linking such as joins

3. Data set extraction and analysis

4. Business-specific tagging, synonym identification, and links

17

5. The convergence of meaning within context. As the data lake maturity level

increases, the usage of Data Lake across the enterprise and the value of analytics

will increase.

Existing design/architectures

Data lakes ingest raw data in its original format from heterogeneous data sources and

allow users to query and explore them. Research executed by Hai, Geisler, & Quix

(2016, pp. 1–3) mentioned that schema information, mappings, and other constraints

are not defined explicitly or required initially for a Data Lake; it is crucial to extract as

much metadata as possible from the data sources during the ingestion phase. Metadata

management is crucial for data reasoning, query processing, and data quality

management. The Data lake is hardly usable without any metadata as the data's

structure and semantics are not known, which turns a Data Lake quickly into a data

swamp.

Because of the problems discussed before, Hai, Geisler, & Quix (2016, pp. 1–3)

propose a framework called Constance, which can be used as a basis in Data Lake

projects because it provides flexibility extensible framework for data management

problems within Data Lake systems. Constance manages structural and semantic

metadata, provides means to enrich the metadata with schema matching and schema

summarization techniques, and offers a unified interface for query processing.

18

Fig. 3 shows the architecture of Constance, as well as its key components. Constance

can be roughly divided into three functional layers: ingestion, maintenance, and

querying.

Figure 3: Constance System Overview

The ingestion layer is responsible for importing data from heterogeneous sources into

the Data lake system.

The maintenance layer mainly contributes to Constance’s metadata management

functions.

The backend of the maintenance layer provides the necessary functions for data storage

and efficient querying. Metadata is crucial for future querying.

19

All the above functions, eventually, serve for information retrieval, in the form of query

answering. In typical cases, users either input concrete queries in a particular query

language or have an information retrieval need that supports the user in formulating a

query starting from some keywords (Hai, Geisler, & Quix, 2016, pp. 1–3).

Another research executed by Beheshti et al. (2017, pp. 1–3) created a Data Lake

architecture. Their questions were how to store information items (from structured

entities to unstructured documents)? What technology to use for persisting the data

(from Relational to NoSQL databases)? How to deal with the large volume of data

generated continuously (from Key-value and document to object and graph store)?

How to trace and persist information about data (from descriptive to administrative)?

What technology to use for indexing the data/metadata? How to query the data lake

(from SQL to full-text search)?

To address the challenges mentioned above, they presented CoreDB, an open-source

data lake service.

CoreDB offers researchers and developers a single REST API to organize, index, and

query their data and metadata. CoreDB manages multiple database technologies (from

Relational to NoSQL databases), exposes the power of Elasticsearch, and weaves them

together at the application layer (Beheshti et al., 2017, pp. 1–3).

Figure 4: CoreDB Architecture

20

It starts with a Database Service that powers multiple relational and NoSQL (key/value,

document, and graph stores) database-as-a-service for developing Web data applications,

i.e., data-driven web applications. Therefore, analysts are enabled to build a data lake,

create relational and NoSQL datasets within the data lake, and CRUD (Create, Read,

Update and Delete) and query entities in those datasets. Next, Elasticsearch is used as a

search engine based on Apache Lucene to support a robust index and full-text search.

Based on the literature review results in chapter 5, an extra dimension to consider is

metadata management. Without metadata management, Data Lake will turn into a data

swamp.

The metadata management is used in the Data Lake ETL layer or ingestion phase as

discussed in the literature review by Constance and CoreDB, and therefore, the research

will continue to look for any tooling which will enhance the metadata management in the

ETL part of this study. This study is mainly focused on the ETL part and not the ELT part

because ETL is the most common way of organizing the process.

21

2.2 Data Warehouse vs Data Lake

After the literature review, it can be concluded what main differences Data warehouses and

Data Lakes have. The table below shows the differences between a Data Warehouse and a

Data Lake. This table can be filled with more accuracy based on the research where the

difference in query languages is added.

Characteristics Data Warehouse Data Lake

Storage Extracted and transformed

data from other database

resources

Data is raw and

unchanged.

Data Structured data Structured, semi-

structured, and

unstructured data

Data Quality Data ready for use and

serves as a single point of

truth

Raw data needs

transformation

Normalization Denormalized Not normalized

Data timeline Current data All kinds of past, present

and future data

Costs of storage Higher cost storage Low-cost storage

Accessibility Data is complicated Can be quickly updated

and changed

Compatibility Stored data is transformed

and may give problems

when changes made

Data is raw and is flexible

for changing

Schema Created before

implementation

Created at the time of

analysis

Query Language OQL, LINQ, T-SQL,

SQL, GraphQL

Big SQL, U-SQL, Google

Big Query, NoSQL
Table 1: Data Warehouse vs Data Lake

22

2.3 Commonly used criteria

Criteria are used to choose something suitable for a specific situation. These criteria are

conditions that a product must have to be accepted by a user or customer. These conditions

can apply to many things such as cars, clothing, or in this case, software.

The list with criteria is built out of reasoning and common sense. Furthermore, discussions

with architects, engineers, and managers in the interviews helped compose the criteria used

in this study.

The criteria used are:

1. Speed/Efficiency: measures how fast a tool is and how it reaches speed.

2. Integration: measures the number of different programming languages and external

tooling that can be used.

3. Usability: measures how easy the user can use a tool.

4. Flexibility: measures if a tool can handle structured, semi-structured, and

unstructured data.

5. Graphical User Interface (GUI): measures the ability to have a graphical user

interface.

6. Security: describes what security measures are taken.

7. Meta Data Management (MDM): measures if a tool can handle metadata

management.

8. Application Programming Interface (API): measures if a tool can have an API to

talk with other sources.

9. Code: measures the ability of coding in a tool.

23

10. Low code: measures the ability to use no or low code in a tool.

The criteria discussed will be applied to the query languages, ETL tooling, and

visualization tooling, respectively, and how all the aspects can interrelate to each other.

24

2.4 Commonly used query languages

A database is a collection of organized information to be accessed, managed, and updated.

Alternatively, a database is simply a place where the data is stored. Databases provide

means of retrieving records or parts of records and performing various calculations before

displaying the results.

The interface by which such data is accessed, managed, updated, and calculated is called

the query language. It is a specialized language for requesting information from a database.

It refers to any computer programming language that requests and retrieves data from

database and information systems by sending queries.

One part of this study is researching different query languages and finding strengths and

weaknesses. The list is divided into two sub-chapters. The first one is the commonly used

query languages with examples, and the second one is about other query languages that are

not commonly used without examples.

The commonly used query languages are listed below:

MapReduce-based Big SQL:

Big SQL is MapReduce-based designed for providing native SQL for querying data

managed by Hadoop (Birjali, Beni-Hssane, & Erritali, 2018, pp. 1–3).

Big SQL is fast due to its parallel processing SQL abilities and low-latency parallel

execution processing. It runs on the top of Hadoop and translates all queries to native

MapReduce (MR) jobs, supports queries expressed in native SQL declarative language,

JDBC/ODBC driver access from Linux and Windows platforms, Java, C#, Python, C++,

and R integration. Furthermore, does it use HCatalog (metastore) of Hbase for data access

and the Hive storage engines to read/write data. Big SQL is flexible, and usability is added

with Cloudera Navigator, the GUI of this tool. Furthermore, does it use end to end security

and extra security layer is added with open source projects Knox and Ranger. Knox

provides a framework for managing security and supports security implementations on

25

Hadoop clusters. The Ranger project is focused on developing tools and techniques to help

users deploy and standardize security across Hadoop clusters. Big SQL has integration with

other languages and can query unstructured data. However, it does not benefit from adding

nodes. As a result, the running time performance is decreased by 43% from one to ten

nodes and has no API capabilities.

Figure 5: Big SQL query example

U-SQL:

U-SQL is a language that combines declarative SQL with imperative C# to let processing

data at any scale. Through the scalable, distributed-query capability of U-SQL, data can

efficiently be analyzed across relational stores such as Azure SQL Database. USQL is

intended to be a cross-platform query language that enables discovering various types of

services in a unified manner (Tsalgatidou, Pantazoglou, & Athanasopoulos, 2006, pp. 1–

3).

U-SQL is based on T-SQL while it uses C# types as default. This easily allows

conceptualization of how data will be processed while writing queries and not being scared

with new frameworks or concepts. With this architecture, it can process any type of data

and integrates custom code seamlessly. U-SQL can efficiently scale to any size of data, is

for massive data processing, and therefore can dump whatever in the data lake and run U-

SQL on top of it. It is flexible and easy to develop. U-SQL can handle any type of data, is

integrated with many different languages, up to 1 million GB supported with visual studio

or web portal as GUI, and is secure with Azure Active Directory. However, the U-SQL

language is not to substitute the existing and emerging service description protocols in the

various service areas (e.g., WSDL, WSDL-S, OWL-S). Furthermore, it is not available on

other than Azure platforms yet and has no API capabilities.

26

Figure 6: Easy USQL query

Figure 7: Difficult USQL query

27

NoSQL:

NoSQL databases are interchangeably referred to as nonrelational, NoSQL DBs to

highlight the fact that they can handle vast volumes of rapidly changing, unstructured data

in different ways than a relational SQL database with rows and tables (Cattell, 2011, p. 12).

NoSQL allows freedom, has more speed due to the efficient use of distributed indexes and

RAM for data storage and flexibility to change both schema and queries to adapt to data

requirements. It provides compelling operational advantages and savings with the ability

to scale "out" horizontally or add less expensive servers without having to upgrade. No

SQL is compatible with large volumes of rapidly changing structured, semi-structured, and

unstructured data. Geographically distributed scale-out architecture instead of expensive,

monolithic architecture. Integration with C# and .NET. API connections available and a

GUI with MongoDB manager. Nevertheless, NoSQL is not mature, has less support, and

the system can have only two out of three of the following properties: consistency,

availability, and partition-tolerance. The NoSQL systems generally give up consistency

and are less secure.

Figure 8: Easy NoSQL query

28

Figure 9: Difficult NoSQL query

Google big query:

Google big query is a fully managed cloud service that enables storage and fast querying

of large and multi-faceted datasets. (Lopez, Seaton, Ang, Tingley, & Chuang, 2017, pp. 1–

3).

Google Big Query is highly scalable, cost-effective, has no technical overhead costs for

maintaining infrastructure, scalability of processing research data products across a

growing number of courses and users, is fast, is secure due to Identity and Access

Management, and has API capabilities. However, Google Big Query is only compatible

with specific extensions such as JSON, CSV, or Avro. It has file size limits; query prices

are high, queries need to be optimized to be cost-effective, cannot use it outside the Google

platform, is challenging to learn, cannot join different tables with unstructured data, and

has only a web UI as GUI.

29

Figure 10: Easy Google BigQuery query

Figure 11: Difficult Google BigQuery query

30

Figure 12: Difficult Google BigQuery query

31

SQL:

SQL or Structured query language is used as a medium of communication with the

relational database management systems.

SQL is fast on structured data, has data integration standards, is mature, is secure due to its

RBAC capabilities, has data integration script available, and has SQL management studio

as GUI. Nevertheless, SQL has a difficult interface, is expensive, has no API capabilities,

and is not flexible because it has predefined schemas.

Figure 13: Easy SQL query

32

Figure 14: Difficult SQL query

Python:

Python is an object-oriented, open-source programming language. (Lutz, Lewin, &

Willison, 2001, pp. 1–3)

It is easy to work with, runs on every platform, has integration with other tools and

languages. Furthermore, Python is stable, has API capabilities, is flexible, has a GUI with

PyCharm but is not fast, has run-time errors, lacks multi-processor support, database access

layer problems, and is not secure (broaden security with security scans available).

Figure 15: Easy Python query

33

Figure 16: Difficult Python query

34

R:

R is a scripting language for statistical data manipulation and analysis (Matloff, 2011, pp.

1–3).

R is an open-source tool, has many packages available, can visualize data, is highly

compatible with other languages, has API capabilities, is compatible with many sources, is

flexible, and has a GUI with R studio. However, R's security capabilities are not well, are

not fast and efficient on large datasets due to memory management problems, and without

programming experience, a bit hard to learn.

Figure 17: Easy R query

Figure 18: Difficult R query

35

The less commonly used query languages are:

Embedded SQL:

Embedded SQL combines a programming language's computing power and SQL's

database manipulation capabilities. This is a method for combining SQL's data

manipulation capabilities and any programming language's computing power. Then

embedded statements are in line with the program source code of the host language. The

code of embedded SQL is parsed by a preprocessor, which is also embedded and replaced

by the host language called for the code library; it is then compiled via the host's compiler.

This language was used in the past, but it is old now and therefore not considered in the

mechanism.

Embedded SQL is easy to understand because of less syntax to learn and its one-step

deployment. Furthermore, it integrates with other languages available and has good error

handling but does not perform well on large datasets.

HTSQL:

According to Evans (2006, p. 2-4), HyperText Structured Query Language (HTSQL) is a

schema-driven URI to SQL query language that takes a request over HTTP, converts it to

a SQL query, executes the query against a database, and returns the results in a format best

suited for the user agent (CSV, HTML). HTSQL is an extension to the HTTP/1.1 protocol

that allows clients to access a standard SQL database remotely. This language was used,

but it is old now and therefore not considered in the method.

HTSQL has a rapid web application development architecture, is a fast language on

transactional data, has a web-friendly syntax, has integrated use of the HTTP protocol to

provide authentication, and uses data caching and encryption. Furthermore, is HTSQL

mainly considered as a web query language.

36

Object Query Language:

Object Query Language (OQL) is a query language standard for object-oriented databases

modeled after SQL as researched by (Li, J. Z., Ozsu, M. T., Szafron, D., & Oria, V. (1997,

September)). This language was used, but it is old now and therefore not considered in the

method.

It uses entity and association names instead of actual database table names and can use

predefined relations to join objects without calculating which columns should be coupled

quickly. Many SQL keywords also work in OQL and deal with complex objects without

changing the set construct and the select-from-where clause. Furthermore, does it integrate

with different languages, and is API compatible. However, OQL queries do not take

security into account out of the box.

Language Integrated Query:

Language Integrated Query (LINQ, pronounced as "link") is a Microsoft .NET Framework

component that adds native data querying capabilities to .NET languages, released initially

as a significant part of .NET Framework 3.5 in 2007.

LINQ allows users to write queries uniformly in the programming language itself, taking

full advantage of strong typing and tool support (Torgersen, 2006, p. 736). LINQ extends

the language by adding query expressions, which are takin to SQL statements, and can be

used to extract conveniently and process data from arrays, enumerable classes, XML

documents, relational databases, and third-party data sources. This language was used, but

it is old now and therefore not considered in the method.

LINQ supports safety, is easy to deploy, is easy to learn, is compatible with .NET, and

supports multiple databases. Furthermore, LINQ allows writing queries uniformly in the

programming language itself, taking full advantage of strong typing and tool support. The

LINQ framework comes with LINQ providers for in-memory objects, SQL data, and XML

documents and is fast due to its multi-threading processing. However, it needs to process

the entire query, which might have a negative performance impact. Suppose a change was

37

made in the query; the entire query needs to be recompiled and redeployed. Without

knowledge of this query language, it is easy to build inefficient code.

GraphQL:

GraphQL is an open-source data query and manipulation language for APIs, and a runtime

for fulfilling queries with existing data and need to write all endpoints manually. GraphQL

is a recently proposed and increasingly adopted a conceptual framework for providing a

new type of data access interface on the Web. The framework includes a new graph query

language whose semantics has been specified informally only. This has prevented the

formal study of the main properties of the language. (Hartig & Pérez, 2018, pp. 1–3). This

language is mainly used for API configuration and therefore not taken into consideration

in the mechanism.

GraphQL is self-documenting, defines precisely the user wants, replaces multiple REST

requests with a single call, adopted by an increasing number of users including Coursera,

GitHub, Neo4J, and Pinterest, works efficiently, has integration with other API and

languages, is fast and stable. Nevertheless, it does not support all entities and relationships

with APIs, does not follow the HTTP spec for caching, and instead uses a single endpoint,

has some cache errors, and a fundamental understanding of the language's properties is

missing.

Transact-SQL:

Transact-SQL is Microsoft's and Sybase's proprietary extension to the SQL (Structured

Query Language) used to interact with relational databases. T-SQL expands on the SQL

standard to include procedural programming, local variables, various support functions for

string processing, date processing, mathematics, and changes to the DELETE and

UPDATE statements. This language was used, but it is old now and therefore not

considered in the method.

T-SQL has error checking and is globally accepted. Nevertheless, it works best with

Microsoft SQL server and cannot use T-SQL in SQL environments.

38

PL SQL:

PL SQL or Procedural Language extensions to the Structured Query Language is an Oracle

query language (Feuerstein & Pribyl, 2005, pp. 1–3). This language is immature and

therefore not taken into consideration in the method.

It is highly structured, readable, accessible, well-integrated with Oracle databases, has high

performance, and has API capabilities. However, it is not integrated with other databases,

is not secure due to its vulnerabilities, such as SQL injection.

Spark SQL:

Spark SQL is a new module in Apache Spark that integrates relational processing with

Spark’s functional programming API (Armbrust et al., 2015, p. 1384). This language is

immature and therefore not taken into consideration in the method.

Spark SQL can call complex analytics libraries in Spark, is API friendly, has high

performance, has a variety of data sources available, can process large amounts of data,

API capabilities, has integrations with Java, Scala, Python, and R. But has problems with

small files and has big latency problems.

Scala:

Scala stands for scalable language. Scala can be applied to various programming tasks

(Odersky, Spoon, & Venners, 2008, pp. 1–3). This language is immature and therefore not

taken into consideration in the method.

Scala is easy to get into, has java integration, and is mainly for building large systems. It

is scalable, secure due to Authentication and Authorization access control, and has API

capabilities. However, it is immature and has a risk of abandonment.

39

2.5 Commonly used ETL tooling

Extract transform and load or ETL were introduced in the 1970s to integrate and load data

into mainframes or supercomputers. This data was used for computation and analysis.

From the late 1980s through the mid-2000s, it was the primary process for creating data

warehouses that support business intelligence.

ETL is the process of transferring data from the source database to the destination data

warehouse. In the process, there are three different sub-processes, which are E for Extract,

T for Transform, and L for Load. The data is extracted from the source database, which

can be any source in the extraction process, which is then transformed into the required

format, such as changing portal codes from 1234aB to 1234AB and then loaded to the

destination data warehouse; below a more detailed overview of the three sub-processes.

EXTRACT:

In the data extraction step, data is copied or exported from source locations to a staging

area. The data can come from any structured or semi-structured or unstructured source such

as SQL or NoSQL servers, CRM databases, ERP databases, text and document files,

emails, web pages.

TRANSFORM:

In the staging area, the raw data is transformed to be useful for analysis and fit the eventual

target data warehouse's schema. In this stage, filtering, cleansing, de-duplicating,

validating, and authenticating the data is completed.

LOAD:

In this last step, the transformed data is moved from the staging area into a target data

warehouse. Typically, this involves an initial loading of all data, followed by periodic

loading of incremental data changes and, less often, full refreshes to erase and replace data

in the warehouse.

There is a second form of ETL, ELT extract, load, and transform, which is the reverse of

the ETL process's second and third steps. It copies or exports the data from the source

40

locations, but instead of moving it to a staging area for transformation, it loads the raw data

directly to the target data store, where it can be transformed if needed.

In ELT, the target data store can be a data warehouse, but more often, it is a data lake, a

large central store designed to hold both structured semi-structured and unstructured data.

Another part of this study is researching different ETL tools and finding strengths and

weaknesses. The list is divided into two sub-chapters. The first one is the commonly used

ETL tools, and the second one is about other ETL tools that are not commonly used.

41

The commonly used ETL tools are listed below:

IBM Infosphere Information Server:

It is a product family that provides a unified data integration platform so that companies

can understand, cleanse, transform and deliver trustworthy and context-rich information

(Zhu et al., 2011, pp. 1–3).

Unique Selling Point: Increased investment in open source with new Apache Spark

capabilities.

It can be integrated with Oracle, IBM DB2, and Hadoop System, it supports SAP via

various plug-ins, ETL without coding, data source integration, integrated with BI,

infrastructure rationalization and risk compliance, secure due to RBAC, API capabilities,

flexible, fast due to symmetric multiprocessing (SMP) and massively parallel processing.

Furthermore, does it have a built-in MDM system. Nevertheless, it lacks a robust web

development environment, metadata propagation in jobs is somewhat complicated, slow

configuration, and is expensive.

Figure 19: Example of IBM Infosphere Information Server

42

Oracle Data Integrator:

Oracle Data Integrator (ODI) is a graphical environment to build and manage data

integration (Lungu, 2015, p. 19).

Unique Selling Point: Best integration with Oracle databases and APIs.

ODI is mature, has high performance, data source integration, can perform complex

transformations, it automatically identifies incorrect data and recycles it before moving

into the target application. ODI supports databases like IBM DB2, Teradata, Sybase,

Netezza, Exadata. Able to handle complex transformations, secure due to authentication,

and is flexible. ODI has MDM capabilities due to a reverse engineering approach with

Oracle Enterprise Metadata Management and API capabilities. However, it has a complex

user interface GUI, a complex building tool, is expensive, needs in-depth technical

knowledge, and can be faster.

Figure 20: Example of Oracle Data Integrator

43

Google Dataflow:

Google Dataflow is a unified stream and batch data processing service (Palmer, Sferrazza,

Just, & Najman, 2015, pp. 1–3).

Unique Selling Point: Offers the ability to create jobs based on templates.

Google Dataflow has reduced infrastructure administration, is fast due to its automatic

scaling, SDK with native support for both batch and streaming modes, has API capabilities,

is secure due to dataflow permissions, supports up to 60GB of data per minute for

streaming, integration and has MDM with Google Data Catalog. Google Data Catalog is a

metadata management service that quickly discovers, understands, and manages all data.

Nevertheless, dataflow needs a new development approach, no low code available, not

flexible, and need Data Proc for unstructured data.

Figure 21: Example of Google Dataflow

44

Hadoop data lake:

Data Lake is defined as a methodology to approach the raw data, structured and non-

structured within an enterprise and seen as an evolution of existing data architecture. The

data is physically moved into one physical place, based on Hadoop technology; no change

is made around the origin’s format at the captured moment. Data Lake is more batch

processing oriented based on MapReduce usage (Madera & Laurent, 2016b, pp. 1–3).

Unique Selling Point: It is open source.

Hadoop Data Lake is fast, less expensive, scalable, flexible, performs well on large

amounts of data, secure due to access and privileges, has network isolation and data

protection secure search. Furthermore, MDM with Cloudera Navigator helps manage and

organize the data stored in the data lake (Quinto, 2018, p. 501). Cloudera Navigator is a

data governance solution for Hadoop, offering capabilities such as data discovery,

continuous optimization, audit, lineage, metadata management, and policy enforcement.

Furthermore, good integration, low-code, and API capabilities are less mature, not real-

time, and have no advanced analytics.

AWS Data Pipeline:

Data Pipeline as an ETL platform in the form of a web service with a control panel. This

web service will help process and move data between different AWS compute and storage

services and on-premises data sources.

Unique Selling Point: An infinitely scalable and cheap platform as low as 1-3cents a gig

per month for hosting a Data Lake.

AWS Data Pipeline is simple to use, added security suite for used data, fault-tolerant

architecture, fast, is flexible, has good error handling, is scalable, API, low-code and has

MDM with EMRFS. EMRFS tracks consistency using a DynamoDB to track objects in

Amazon S3 synced with or created by EMRFS. The metadata is used to track all operations.

This metadata is used to validate whether the objects or metadata received from Amazon

45

S3 matches what is expected. However, it lacks integration with third-party data sources,

difficult to use with on-premises data sources, fast but not fast on large amounts of data.

Figure 22: Example of AWS Data Pipeline

Informatica PowerCenter:

PowerCenter provides an environment that allows loading data into a centralized location.

Data can be extracted from multiple sources, transform the data according to business logic,

built in the client application, and load the transformed data into a file and relational targets

(Informatica Corporation, 2014).

Unique Selling Point: It has add-on packages.

PowerCenter is easy to use, good support, fast due to parallel processing, data quality

monitoring, and data migration capabilities. PowerCenter has a single point of control,

ensuring a high degree of security and MDM with Enterprise data catalog. Enterprise Data

Catalog is a data catalog that provides a machine-learning-based discovery engine to scan

and catalog data assets.

46

It is powered by the CLAIRE engine, which provides intelligence by leveraging metadata

to deliver recommendations, suggestions, and automation of data management tasks.

Furthermore, API capabilities, flexible, has a GUI, and low code. However, it lacks

integration with other languages such as R, python, java, no reporting functionality, many

settings interfaces, no AI capabilities, and connectors not working well, such as Hadoop

connector.

Figure 23: Example of Informatica PowerCenter

Microsoft Azure Data Factory:

Azure Data Factory is a hybrid data integration service offering a code-free experience.

Azure Data Factory is a data integration service explicitly designed to collaborate with

existing services for the movement, transformation, and processing of raw data from

disparate systems and transform it into useful information (Klein, 2017, pp. 1–3). For

Microsoft Azure Data Factory, the Azure Data Catalog is most suitable to add metadata

management. Data Catalog tags data with metadata stored in the Azure Data Catalog for

easy discovery (Klein, 2017b, pp. 1–3).

Unique Selling Point: It is a unique data integration service that manages and automates

the movement and transformation of data across an organization with low-code

capabilities.

47

Azure Data Factory is fast due to parallel processing, has a visual drag-and-drop UI, has

SSIS migration to cloud, multiple language support, hybrid data movement, and

transformation. Furthermore, does Data Factory has support, a lot of data source integration

is secure due to AAD, MI, and VNET. Data Factory has MDM due to Data Catalog, is

flexible, has API capabilities, can program in low-code, and is stable, but scratch

configuration could be challenging. So, it needs an understanding of the tool to use it at its

best.

Figure 24: Example of Azure Data factory

The less commonly used ETL tooling are:

SAP BW ETL:

SAP BW ETL provides a collection of objects and tools that allow users to import, export,

and transform heterogeneous data between one or multiple types of data formats, such as

MS Excel, text files, SAP ECC (Lomet & Chaudhuri, 1999, p. 38). This tool was used, but

it is old now and not considered in the method.

SAP BW ETL runs on various third-party RDBMSs, provides open Business Application

Programming Interfaces (BAPIs) for data loading, and provides a pre-configured metadata

repository InfoCube catalog, report catalog, and information source catalog. Furthermore,

shipped with many pre-defined InfoCubes for typical business applications, e.g., market

segment analyses, profitability analyses, stock inventory analyses, and corporate indicator

systems. It has a GUI, sharing functions and Microsoft Office compatibility, data

48

visualization, and analytics applications, extending with SAP BI security for role-based

security and API capabilities. However, this tool has expensive licensing and is not able to

perform on high loads.

Talend:

Talend is a French software vendor specialized in open source integration. The company

democratizes integration through its products and enables IT users and organizations to

deploy complex architectures in more straightforward and comprehensive ways. (Azarmi,

2014, pp. 1–3). Talend is provided for on-premises deployment and the Software as a

Service (SaaS) delivery model. Talend Open Studio is used for integrating operational

systems as well as an ETL tool for Data Warehousing, Business Intelligence, and data

migration. (Katragadda, Sremath Tirumala, & Nandigam, 2015, pp. 1–3). This tool is not

mainly considered an ETL tool and, therefore, not considered in the method.

Talend is easy to use, helps business users graphically design their business processes, has

a high-volume integration, parallelization feature, data source integration, free open source

ETL tool, and secure and API capabilities. However, to use more inside tools like machine

learning add-ons, licenses need to be bought. It is developed as a product for individual use

only, and so it is not possible to have more than one user (not just one user at a time but

just one user per system); the free version does not support automation of tasks like

scheduling, routing data, Lack of any commercial support and not efficient.

Microsoft SQL Server Integrated Services (SSIS):

SQL Server Integration Services (SSIS) is one of the Business Intelligence tools developed

by Microsoft to ease and automate the ETL process (Katragadda, Sremath Tirumala, &

Nandigam, 2015, pp. 1–3). The data integration is much faster as the integration process,

and data transformation is processed in the memory. This tool is not mainly used as an ETL

tool anymore and, therefore, not considered in the mechanism.

SSIS automates the SQL Server Maintenance Plan by creating an SSIS package. SSIS can

handle data from heterogeneous data sources at the same package. Data sources can be

49

diverse, including custom or scripted adapters, deficient in cost compared to the famous

Informatica Power Center and almost offers everything needed to build the ETL solution.

It is easier to maintain with package configuration, better for complex transformations,

multi-step operations, aggregating data from different data sources or types, and structured

exception handling. Furthermore, data can be loaded in parallel to many varied

destinations, build ETL solutions with very minimum background knowledge, very easy

to install and configure, offers comprehensive documentation and support, provides best

practices, debugging capabilities, easy to use, API capabilities and secure due to threat and

vulnerability mitigation. However, to see the package execution report, the Management

Studio is needed rather than being published to reporting services or another way. SSIS

cannot support non-windows operating systems; SSIS is more suitable for enterprise and

may not be cost-efficient for small businesses, no integration with other languages, need

more sources, and sometimes an error is returned without knowing what error it is.

MongoDB:

MongoDB is an open-source NoSQL database developed in C++ (Abramova &

Bernardino, 2013, p. 17). This tool is not an ETL tool and, therefore, not taken into

consideration in the method.

MongoDB is efficient, fast, durable, secure due to authentication, access control, and

encryption. Has API capabilities and integration but uses much internal memory, lacks the

support of join queries, has no MDM.

Cloudera Apache Hive.

Hive is a data warehouse software that facilitates queries and manages an extensive data

set in distributed storage. Hive runs on top of Hadoop (Fuad, Erwin, & Ipung, 2014, p.

298). This tool is like Hadoop Data Lake and, therefore, not taken into consideration in the

method.

Apache Hive can process petabytes of data, integration, scalable, fast, MDM, API

capabilities, but the configuration is a bit tricky, designed for analytical purposes not for

transactional purposes, lack of security, lack of support and runtime errors.

50

2.6 Commonly used visualization tooling

Visualization tooling allows users to create charts, images, diagrams, and dashboards to

communicate a message. It is a graphical representation of data and information. In today’s

world, data visualization tools and technologies are essential to analyze massive amounts

of information and make data-driven decisions.

The commonly used visualization tooling are:

Power BI:

Power BI is a tool that displays interactive dashboards that can be created and updated

from many different data sources (NEGRUT, 2012, pp. 1–3).

Unique Selling point: Live dashboards, trend analysis, sharing capabilities and data source

integration.

Power BI is not expensive, easy to use, receives constant updates, integrates with many

sources, and can handle large amounts of data, sharing and collaboration features, fast,

secure due to RBAC authentication, and RLS. Furthermore, Power BI has API capabilities,

has a GUI, low-code and code capabilities, has an internal MDM if needed, is flexible but

is limited in the free version capabilities, table relationship is a bit lagging, not able to

handle large amounts of data in the free version and the dataset has a max of one GB in the

free version and ten GB in the pro version.

Figure 25: Example of Power BI

51

Tableau:

Tableau is a software that can help users explore and understand their data by creating

interactive visualizations (Ko & Chang, 2017, pp. 1–3)

Unique Selling Points: Perform queries without a single line of code, sharing capabilities.

Tableau connects users with various data sources and enables them to create data

visualizations by making charts, maps, dashboards, and stories through a simple drag and

drop interface. Tableau has a tremendous and reliable speed due to TDE files. Furthermore,

doe Tableau offers API capabilities and is flexible with the MarkLogic feature. Tableau is

secure due to IT controls, which are regularly audited by independent firms. Extra security

is added due to database login with authentication. Finally, does Tableau offer MDM with

VizQL Model, and can be used with low-code and code. However, Tableau is still not

widely used and has basic security with no RLS.

Figure 26: Example of Tableau

52

Google data studio:

Google Data Studio is a new data visualization program designed as a user-friendly tool

for representing complex data sets attractively and clearly (Snipes, 2018, pp. 1–3).

Unique Selling Points: People who are using the Google platform are familiar and easy to

use.

Google Data Studio is recognizable to anyone who works with the Google office suite, free

to anyone with a Google account, has an interactive GUI, sharing and collaboration

features, unlimited amount of data can be used, fast, API capabilities, secure due to

physical security, encryption, incident management, identity, and access management.

Furthermore, does it support code and low code. Nevertheless, it cannot comply with IRB

requirements for protecting personally identifiable data. It cannot modify underlying data,

offers fewer calculation and visualization options, limited data sources, 100MB file size

limit per dataset, not flexible, and no metadata feature.

Figure 27: Example of Google Data studio

53

Oracle Business Intelligence:

This solution was designed to address the entire spectrum of analytical requirements

facing businesses, including information access, analysis, and reporting. (Bozdoc, 2011,

pp. 1–3).

Unique Selling Points: Aggregate content from various sources, including the Internet,

shared file servers, and document repositories.

Oracle Business Intelligence has ad hoc analysis, enterprise reporting, Microsoft Office

and other integration, API capabilities, security due to Authentication and authorization,

and user groups. It has a GUI for low-code and code, but has high prices for large

configurations, not fast due to the number of users, lacks visualization, needs technical

knowledge to use, not flexible, and no MDM available.

Figure 28: Example of Oracle Business Intelligence

54

Amazon Quicksight:

Amazon QuickSight is a fast, cloud-powered BI service that makes it easy to build

visualizations, perform ad-hoc analysis, and quickly get business insights from massive

data (Mathavi, Jeyarubi, Ganesh, Tamilselvi, & Karthi, 2018, pp. 1–3).

Unique Selling Points: Pay only for what you use.

Quicksight is superfast due to parallel and in-memory processing. Furthermore, does it use

a Calculation Engine (SPICE), which uses a combination of columnar storage, in-memory

technologies enabled through hardware, machine code generation, and data compression

to allow users to run interactive queries on large datasets and get rapid responses. It is easy

to use, secure due to RLS, compliance programs, AWS WAF logs, training and awareness,

integration with many sources, has a GUI which allows low code. However, still immature,

sharing to non-AWS users not possible, not available on android, limited APIs and

extensions, the standard edition has a limit of 25GB per dataset, and the enterprise edition

has a limit of 500GB per dataset and is not flexible and no MDM available.

Figure 29: Example of Amazon Quicksight

55

Kibana:

Kibana was designed as a visualization platform for Elasticsearch. It provides a web-based

interface for search, view, and analyzing data stored in the Elasticsearch cluster and is part

of the Elastic stack Elasticsearch, Logstash, and Kibana (Bajer, 2017, p. 67).

Unique Selling Points: Open-source.

Kibana is fast with the Elasticsearch engine, is interactive, efficient, easy to extend to

needs, able to show massive volumes of data, custom visuals, secure data sharing, secure

due to X-Pack RBAC, has API capabilities, is even faster with NGINX, flexible with

Elasticsearch index and is low-code. However, it has no user management available out of

the box, works on top of elastic only, issues with large datasets, less integration and no

MDM available.

Figure 30: Example of Kibana

56

MicroStrategy:

MicroStrategy is a vendor in BI products that supports interactive dashboards, scorecards,

highly formatted reports, ad hoc queries, thresholds and alerts, and automated report

distribution. (Anoshin, Rana, & Ma, 2016, pp. 1–3).

Unique Selling Points: easily integrated into the broader enterprise landscape.

MicroStrategy is easy to use, fast due to in-memory processing, is secure, integration with

different data sources, two TB data size availability, has monitoring features, has a GUI,

is stable, secure due to ACL, and has API capabilities. Nevertheless, with more than two

TB of data, timeout errors are thrown, sharing not available, no support, need more

visualizations, not flexible and no MDM available.

Figure 31: Example of MicroStrategy

57

Redash:

It is an open-source tool used to create, visualize, and share queries and dashboards

(Leibzon & Leibzon, 2018, pp. 1–3).

Unique Selling Points: SQL client makes it easy to browse data in-app.

Redash is easy to use and to setup with a GUI. No installation is needed because Redash is

browser-based and uses SQL templates. Furthermore, many data source integration is

available; it has API capabilities; it is easy to export data to different formats and is fast

due to the delta engine of Databricks. The security is developed due to complete industry

standards and penetration tests. Low-code and code are available, and MDM possible with

Databricks. However, Redash has scalability problems, and technical knowledge is

required and is not flexible.

Figure 32: Example of Redash

The less commonly used visualization tooling is:

58

IBM Cognos:

Cognos provides a unified workspace for business intelligence and analytics that the entire

organization can use to answer critical business questions. (Browne et al., 2010, pp. 1–3).

Deliver timely, accurate, and actionable performance management solutions to users across

the enterprise (Oehler, Gruenes, & Ilacqua, 2012, pp. 1–3). This tool is old and, therefore,

not taken into consideration in the method.

Cognos has an easy view, good collaboration, transparency, and accountability, access data

everywhere (mobile devices), link dashboards to workflows, different data sources

available, flexible, drag and drop feature, secure due to data protection protocol, LDAP

and active directory. Furthermore, it is fast due to performance monitoring and tuning in

the database, application server, web server, IBM Cognos BI, and API capabilities.

Nevertheless, only a few sites and communities exist, most experience has been gained by

intuition and trial, and error, the file size limit of 100MB per user, no predictive analytics,

and reports themselves can become very large.

SAS:

SAS is a software pack with various visualization capabilities implemented in the product

suite, an interface that allows interaction with charts (ARGHIR, DUŞA, & ONUŢĂ, 2019,

p. 87). This tool is not widely used anymore and, therefore, not taken into consideration in

the method.

Various visualization capabilities implemented in the product suite, interactive, allows the

creation of basic queries and reports, handle large databases, debug feature, secure due to

data security feature and has a GUI but has high costs.

Qlik:

Qlik provides a possibility for end-users to use integrated ETL and to construct their data

schema themselves. (Grabova, Darmont, Chauchat, & Zolotaryova, 2010, p. 39). This tool

lacks many features and is therefore not taken into consideration in the method.

Qlik provides a clean interface to analysts, removes the need to pre-aggregate data, can

change analysis axes any moment at any level of query detailing, ability to connect tables,

flexible, integration, API automatically. However, it lacks a unified metadata view, lack of

59

predicting models, lacks advanced visualization features to help them graphically wade

through complex data, no customization, lack of speed, the data security model is

complicated, data greater than ten GB cannot be uploaded and a glitch in user access which

gives access to unauthorized users.

60

2.7 Working example

The chapters before explained the different tooling with advantages and disadvantages. To

illustrate how such an environment could work together, we developed a working example.

It starts with extracting the data from different sources, which is the E step in the ETL

process. Next, the data is processed and, in this case, joined in the T step of the ETL

process. After these steps, the data is loaded into a SQL database to be visualized in Power

BI in the L step of the ETL process.

Figure 33 shows the resources needed for this example. First, a storage account is created

to store any data. Furthermore, a SQL server, SQL database, and a Data Factory are created.

The SQL server is used to host the SQL database, the SQL database is used to store

transformed data, and the Data Factory is used to create the pipeline the user wants.

Figure 33: All resources

61

In the storage account, a container is created to store input. In this case, two files with car

data are stored and named input.

Figure 32: Storage account

Figure 34: Stored files

62

Figure 35 shows the dataflow created in the data factory. This dataflow imports the two car

files and joins them in one. Next, the output is exported to a SQL database.

Figure 35: Dataflow in a data factory

The picture below shows the pipeline created. This pipeline is created to execute the

dataflow created in the previous step.

Figure 36: Pipeline in data factory

63

The picture below shows the resulted database after completion of the pipeline.

Figure 37: SQL server

64

After the data is stored in the SQL server, the next tool is the visualization tool. The picture

below shows the connection made from Power BI to the SQL server.

Figure 38: Power BI import wizard

65

The data can be visualized in the shape or form the user wants. Below, a count of car

models by the origin and car type by make are created.

Figure 39: Power BI visual

66

3. RECOMMENDED SELECTION METHOD

3.1 Decision matrix analysis

A decision matrix analysis, also known as Multi-Attribute Utility Theory, is a useful

technique to make decisions. It is powerful when several good alternatives are available

and many different factors to consider. The matrix below is the first matrix made with the

different query languages, criteria, and points. The criteria can be found in chapter 2.3.

Figure 40: Example of first decision matrix

The next step was to improve this matrix to a dynamic mechanism with reliable criteria,

query language, ETL tooling, visualization tooling and advice. It will show how the

different query languages, ETL tools, and visualization tools are scored based on the pros,

cons, and criteria found through the research.

Then, through a user interaction pane, the user can spend a max of 20 points to distribute

over the different criteria. Based on the distributed 20 points, advice is showed at the

bottom of the method. The formula returns a top 3 of query languages, ETL tools, and

visualization tools based on the points the user has spent. On the next page, a picture of the

method is shown.

Figure 41: Example of method

The method is built out of several things. The criteria are shown on the horizontal axes;

these criteria are explained in more detail in chapter 2.3. The different tools are explained

in more detail in chapter 2.4, 2.5, and 2.6.

At the bottom of the matrix, a factor is added to identify the importance of the criteria. In

this matrix, they are all set to 1, but the user can change the factor to his/her wishes as

shown in chapter 4. Furthermore, a total is shown to visualize the number of points a tool

has received.

Figure 42: Example of the first part of the matrix

69

This pane shows the different criteria available, and the user can use 20 points to distribute

over the criteria, based on his/her situation and wishes.

Figure 43: Example of the second part of the method

Different tooling is advised based on the weight given to a criterion by the user at the

bottom of the matrix.

Figure 44: Example of the third part of the method

These matrixes are a scored overview of the different tooling with a neutral factor 1. They

are sorted from best scorer to worst scorer. When using this matrix for a specific situation,

the factors can be changed to other values. This might result in a different outcome based

on that specific situation. In chapter 4, the method is used for specific situations at different

organizations. Here the outcomes might be different than used in the neutral matrixes.

70

Furthermore, if the user has spent more than the max number of points, an exception is

thrown. This exception is shown below:

Figure 45: Example of the thrown exception

After this exception is thrown, the user can try again by clicking the “Retry” button.

71

3.2 Mechanism formula

The researcher developed a formula to create an automated and dynamic matrix that

responds to the number of points a user has given to a criteria. This formula is shown in

figure 46.

Figure 46: Formula 1

This formula takes the amount of points one criteria has and multiplies it by the factor

(weight) a criteria is given.

When a user has distributed the 20 points over all the criteria, some advice is given. The

formula chosen is a dynamic formula that changes every time the user has changed the

number of points.

Figure 47: Formula 2

Another formula is needed to make a top 3 of tooling. One of the problems faced is that

tied values gave a spill error. This formula solved the problem of ranking the top 3 tools,

including tied values.

The formula connects the list of tools on the left in the matrix with the list of the total

amount of points on the right in the matrix and takes a large amount of the list calculated.

Next, the filter function is used to rank the top 3 of the resulted calculation.

If the formula is just left like this, Excel will return a “spill” error because this formula

cannot handle tied values. This problem is solved by using the “textjoin” function.

The “textjoin” function handles the tied values by recognizing the delimiter, which is a

comma in our case. The formula needs to ignore empty cells by setting the following

formula to TRUE, and finally, the first formula with the filter function is combined in the

“textjoin” function. This formula will show the top 3 values, and if there is one tied value,

it will separate the tied values with a comma and show it in a shared place 1, 2, or 3.

4. VALIDATION RESULTS

4.1 Application of mechanism to KAD

Figure 48: Method for KAD the Netherlands

The KAD team gave some useful advice. Some criteria to add to the method are cloud provider specification, team skills, costs, and

market penetration tools (how is a tool used in the market). Some tools are missing, for example, Spark, Airflow, Kafka, Apache Beam,

and elastic search. The interesting thing is that according to these respondents, it is not essential to have MDM as criteria. It is more

important to structure this information in a process instead of using MDM.

73

4.2 Application of mechanism to Jumbo

Figure 49: Method for Jumbo

This respondent reacted excitedly and said that this is a relevant, exciting method and can be used as an architectural picture. Some

things to add are an extra layer in speed/efficiency, which counts how fast a cluster is started, Databrick, Azure Synapse, and the primary

format in which the data is saved. Furthermore, would it help if there is some explanation of the criteria and the points per tool in a

second tab because it is not useful to have the points in the center of the method; criteria and advice are essential. Finally, add additional

criteria such as one cloud vendor vs multi-cloud vendor but criteria used now are sufficient.

74

4.3 Application of mechanism to Plus

There is no picture for this example because the person for this use case still did not send the filled in method after the interview.

Nevertheless, during the interview, we talked about many aspects of this method.

In practice, there is a real need for a solution that can help better understand the available tools, and he found that this method is a useful

tool that can help gain a better understanding of all those tools available. However, the question raised is if this method is sufficiently

covering the tools available.

The criteria used in this method are sufficient, but there could be more criteria added such as costs, tool maturity, payment method (fixed

vs pay as you go), industry, phase of data lake implementation (start, middle, finishing), and SMB vs Enterprise.

He said that a separate part could be added with more information about the criteria and the method's layout. The current method uses

comments for some criteria to explain the meaning, but it could become chaotic when all the criteria have a red dot as a comment. By

adding a separate part with extra information about the criteria, further interpretation of criteria from different people can be eliminated.

It could help if the input parts of the points light up in a different color to highlight where the user is at that moment.

The covered tools in this method are not sufficient. For instance, PostgreSQL and Qlik are missing. Other tools need to be added to the

method. A link of all the used tools to the magic quadrant could help as well. This way, the user can elaborate more on how the tool is

performing in the market.

Bottom line will this method help with choosing a toolset, but it can be enhanced more.

75

4.4 Application of mechanism to Etos

Figure 50: Method for Etos

This respondent said that there is a lot of tooling available, and it is difficult to understand and select these tooling. This method would

help and is welcome and could be used as a referential architecture. The criteria used in this method are complete, but I could add the

amount of knowledge a company has, which contracts a company already has, and the tooling costs. Furthermore, a comparison between

two tooling helps better understand a specific number of tooling and a list with all the criteria meaning. Last, tools as Plotydash,

Salesforce, MuleSoft and a comparison between master data management and metadata management are missing.

76

4.5 Application of mechanism to Airbus

Figure 51: Method for Airbus

Finally, the Airbus respondents reacted enthusiastically about the method. In their own words, “this is awesome”. It would help gain

structural and basic knowledge about the Data lake ecosystem and help choose the tooling. However, some parts are missing with the

current method, which will make the method more usable. First of all, a necessary explanation about how the method works and how to

use it. Furthermore, should a list with an explanation of all the acronyms be added. Last are the criteria costs, existing vendor support

contracts, the table's customizability, and cloud vs on-premise missing.

4.6 Summary of main survey findings

Survey results

First question:

“How effective is this method in helping you find alternative/replacement components for

your existing toolset (if existing)?”

This question scored an average of 2.8.

Second question:

“Did the method give you a better overview of the tool components required for data lake

information extraction?”

This question scored an average of 4.

Third question:

“Do you think the set of criteria identified cover the complete set of criteria applicable to

data lake extraction tooling (if not, please suggest additional ones in the comment section

below)?”

This question scored an average of 3.4.

Fourth question:

“How effective is this method in helping you selecting a data lake toolset for your

organization?”

This question scored an average of 3.

Fifth question:

“Do you have any other comments or suggestions?”

This was an open question for comments. See chapter 5 and appendix 5 for more

information.

78

Reflection

The respondents were excited and confirmed that it would help them gain extra knowledge

of the tools available in a structured way. Furthermore, could and should the method be

used as a reference architecture.

The first part on why the method scores the points above is that visualizing in Excel is

right, but it could be better with a better layout. The most important thing to consider is

enhancing the less technical criteria such as team knowledge; this part will be explained

more in chapter 5. Furthermore, should the customizability of the method be considered.

For instance, the way how to add new criteria as a column or a new tool as a row.

The data suggest that the method is not effective in finding an alternative or replacing the

existing toolset. Although the method is not effective in finding an alternative in the

existing toolset, it shows a better overview of the tool components needed for data lake

information extraction. The method does not cover all the criteria and tools needed, but the

current criteria and tools are not wrong. However, they should be enhanced more to reach

a more accurate and useful method. The criteria and tools to add will be discussed in

chapter 5. On average, does the method effectively help to select the data lake toolset for

organizations.

Finally, does the data suggest that more research is needed on other parts of this method as

well. The method's effectiveness and overview can increase by adding the missing criteria

and tooling, as discussed in chapter 5.

79

Lessons learned

As the interviews and surveys are an essential part of the study, one should start planning

the interviews on time because it takes much time to respond and plan a date. If someone

does not answer the first mail, do not wait too long to send the reminder because that will

take a while. For this study, the researcher admits that he waited too long before sending a

reminder in some cases.

Use a tool that will help create a stable and transparent form for the survey, such as

Microsoft Forms or Google Forms. Due to such a tool's abilities, the researcher can create

a form and send it to anyone. This research made use of Microsoft Forms, and that worked

out well.

Another lesson is that for this study, most retail organizations were interviewed and filled

in the survey. For other industries, only Airbus was interviewed, but this number of

respondents in the Airbus industry is too small to generalize.

80

5. DISCUSSION

Research-problem

At the beginning of this research, the research problem was a gap in the literature that no

information is available about the combination of tooling in one place to use for Data Lake

purposes. Furthermore, no information is available about commonly used architectures or

frameworks and criteria associated with it. So, while there has been much research on the

different aspects individually, no researchers have considered the combination. The

research questions will be discussed with the help of the interview input and the literature

review.

The main research question is:

“What method is best suitable for selecting the appropriate tools to rapidly and efficiently

extract data from the data lake?”

The sub-questions are:

Which criteria are essential for rapid and efficient data extraction?

Which query language will enable rapid and efficient data extraction?

Which ETL tool will enable rapid and efficient data extraction?

Which visualization tool will enable rapid and efficient data extraction?

What is the process/mechanism for selecting the appropriate tooling?

81

The main findings

In line with the literature review, we found that in practice, the data lakes are hot. All the

respondents have data lakes running or are in the data lake transition and know precisely

what a data lake is. The big v’s found in the literature review are used in practice, and

companies consider the possibilities of different data structures. Apache Hadoop was used

a lot during the literature review because research executed by Khine & Wang(2018, p.

3025) described that many implementations of Data Lake are based initially on Apache

Hadoop. A variety of data from heterogeneous data stores will be extracted to be stored in

the Hadoop Cluster. The results show that the claims of Khine & Wang (2018, p. 3025) are

valid but are decreasing. Many implantations of data lakes are based on new technologies

such as those of Microsoft and AWS.

Research by Madera & Laurent (2016, pp. 1–3) concludes that the volume, the variety, and

the velocity of data is another essential thing. A Data lake is a low-cost storage physical

environment based on Hadoop technology, populated by all data sources available in the

enterprise. When the data is processed and used by users or data scientists, the data

warehouse will save the results. However, the analysis does not support this outcome. Data

lakes can be based on different technology and not only on Hadoop technology.

Furthermore, does the processed data not only be saved to data warehouses, but it could

also be saved back to the data lake. It depends on how scientists or analysts will use the

data. The data warehouses are logic storage if the data needs fast pre-processing or

aggregated data or reporting purposes.

Furthermore, do the results indicate that the criteria used in this study are sufficient. During

the interview and the survey, the respondents found that the number of criteria used is

enough. However, the respondents found that some missing criteria need to be added as

well. Some proposed criteria to add are cloud provider specification, team skills, costs and

market penetration tools, extra layer in speed/efficiency which counts how fast a cluster is

started, amount of knowledge a company has, which contracts a company already has, tool

maturity, fixed price model vs pay as you go, customizability of the method and the costs

of the tooling.

82

The different tools compared are not sufficient; tools such as Spark, Airflow, Kafka,

Apache beam, DataBricks, Azure Synapse, PostgresSQL, Qlik, Plotydash, MuleSoft, and

elastic search should be added to the method to create a better view of the current

landscape. The tools mentioned came from the interviews, but future research could take

more tools into account.

Furthermore, is there no clear answer for the best query language, ETL tooling, and

visualization tooling. It depends on the user and the organization. However, the most

common query language during the interviews was U-SQL, the most common ETL tool

was Hadoop data lake, and the most common visualization tool was Power BI and Tableau.

This method will work like a reference architecture, but the method's tools are not

sufficient. Some essential tools are missing, which needs to be added to represent a better

picture. Finally, should the method explain the different criteria in a separate tab, and

should the unique selling points be added to the method.

What-do-these-results-mean?

In line with the expectations, we found that there is a need for such a method. People are

looking for a reference architectural design which can help them with decision making.

However, the method can be enhanced more. The survey patterns expose that the method

helps identify the right tooling for the data lake ecosystem. However, there is still some

work needed to enhance the number of criteria. Furthermore, should the center part of the

method with all the points given by the researcher be separated with more points or better

elaboration on why a point is given. The change of criteria points by the user gives no real

difference when making choices. This gives the feeling that it is a subjective selection.

Selecting a tool does not only depend on the technical fit within the subject. Existing

contracts, team knowledge, and company resources play a significant role in choosing such

a toolset. This, again, is linked to the criteria which need to be enhanced more.

83

The current method does not take care of a specific combination of tooling. Does a

combination of some specific tooling add extra benefit for choosing linked tools? This

means that further research should take into consideration to check this as well.

Overall, does the results meet the expectations. Beforehand we have not thought that the

criteria are complete or the method would help that good. Nevertheless, the interviews and

the surveys show that such a method is needed in the market. Furthermore, the hypothesis

at the beginning of this research is in line with the research results.

Finally, the respondents did not choose MDM as an essential part of the method. We found

that MDM is a critical subject in choosing and architecting the data lake during the

literature review. However, the respondents did not focus on that at all. It was more about

the knowledge which a company has and how much money a tool cost. It is interesting to

discover MDM's ability in more detail, but for this study, the survey concludes that MDM

is not essential, countering the literature review findings. Another interesting part of MDM

is the abilities of Meta Data Management vs the abilities of Master Data Management and

what they can add to the method.

The results do agree and support previous research and do add extra information to it. The

research provides new insights into the relationship between using a method and the

practical decision-making process. It seems that companies cannot see all the tools

anymore because they come with so much. Although all information needed to get to a

decision is available, it is difficult to get there in a structured way while still keeping the

business criteria in mind. This research added a significant amount of knowledge to the

current information, mainly the created method and its findings.

84

6. CONCLUSION

The objective of building a data lake is to derive value from it. If done correctly, having all

data stored in a single repository and quickly analyzing the raw data will provide

organizations with significant new insights. Mixing different data sources and analyzing

them opens new possibilities, and with a data lake, that process suddenly becomes a lot

easier. Therefore, organizations that have implemented a data lake will reap the benefits

from it in the future if done correctly.

The study shows that large companies often lack a standard when choosing data lake

software. This research aimed to identify the use of a method for enterprise organizations

using or planning to use a data lake. Based on an extensive literature review and fife case

studies, it can be concluded that a method is an essential factor to consider when designing

data lake architectures. The results indicate that organizations are confused with the

availability of tools and need help choosing from everything available.

Referring to the main research question, it can be concluded that the created method is

suitable for selecting tooling to extract data from a data lake. This approach provides new

insight into such a method's usage and urgency. This research clearly illustrates that the

created method can help organizations choose the right tooling, but it also raises the

question of using such a method to help with everything in one method.

Bottom line, even though most of the respondents were optimistic about the research, it

should not be forgotten that choosing tooling is not only about the technical aspects of

tooling; instead, it is also important to consider non-technical aspects.

Based on these conclusions, practitioners should consider the ability of a method to answer

all the questions.

85

Contributions

This research contributes in several ways; first, returning to the problem statement, the

research helps solve and show the importance of a standard for choosing data lake tooling.

Current approaches are lacking to focus on concrete requirements and practices. The

research has focused on the applicability of a method in general. The findings here confirm

and validate previous research; and, they combine the information in one place. This study

extends to show how a method can be built and what factors to consider. This study

assessed the formula to calculate the advice, the criteria, and the used tools. Referring to

the literature review, the study addressed the gap of using a combination of tooling with

the right criteria in the form of a method. Although in-depth research is needed to elaborate

more on some criteria. As discussed in the first chapter, data lakes have common failures,

such as data lakes become data swamps, and therefore the data will never be put into

production and failing to gain added value. The connection to that is that a data lake will

lack business impact, lack data governance, and lack data quality. An important note here

is that a standard or method, plays a significant role in mitigating these problems. An

overall, structured method of building the data lake ecosystem is key to reaping this

technology's benefits.

Limitations

The context where this study was executed was within one industry and one country. Four

of the five participants are from one industry, which means they are familiar with the same

environments and cultures. It does not give a definite viewpoint on how the method will

work in the context of complex IT environments in other industries and countries. The

method has only been validated by a group of people interviewed and filled in the survey,

which means that it possibly will not serve a larger group of people. A group of people

gave their feedback, but there is still a small chance that the feedback is biased. The study

used a group of active companies in enterprise environments while there is still room for

optimizing the method for smaller companies.

86

Recommendations for future research

This study provides some directions for future research. One of the things future research

could cover is the development of a more detailed method. Concrete, it means that more

research is needed on extra tooling, additional criteria such as costs and cloud on-premise,

and a better way to present all this information in one page, such as another platform and

availability to add additional criteria. All the feedback and a starting points can be found

in chapter 5. Furthermore, further research is required to establish whether the method is a

factor in smaller companies and other industries.

To better understand the implications of these results, future studies could also address

several things. First, further research on the difference between metadata management and

master data management and what their connection could be to a method. Second, research

on business criteria to add to the already known technical criteria. Third, research on how

MDM (master data management or metadata management) can help eliminate the data

swamp risk of data lakes or eliminate this risk through another approach. Furthermore,

research on the relationship between tooling. Is a specific set of tooling better to use in

combination rather than separate?

87

7. APPENDICES

Appendix 1: Query language table

 Pros Cons

Embedded SQL: is a method

of combining the computing power of a

programming language and the
database manipulation capabilities of

SQL.

- Easy to understand

- Not performing well

on large data sets

HTSQL: is a schema-driven URI-

to-SQL query language that takes a
request over HTTP, converts it to a

SQL query, executes the query against

a database, and returns the results in a

format best suited for the user agent

- Rapid web

development

- Fast on transactional

data

- Web-friendly syntax

- Authentication, data

caching, and

encryption over

HTTP

- Considered mainly

as a web query

language

OQL: is a query language standard

for object-oriented databases
- Uses entity and

association names

instead of database

table names

- Can use predefined

relations

- Many SQL

keywords also work

in OQL

- Deals with complex

objects

- Integration

- API compatible

- OQL queries do not

take security into

account out-of-the-

box

LINQ: is a Microsoft .NET

Framework component that adds native

data querying capabilities to .NET

languages

- Supports safety

- Easy to deploy

- Easy to learn,

- Compatible with

.NET

- Supports multiple

databases,

- Write queries

uniformly in your

programming

language itself

- Taking full

advantage of strong

- It needs to process

the entire query,

which might have a

negative

performance impact

88

typing and tool

support

- In-memory objects

- SQL data and XML

documents.

GraphQL: is an open-source data

query and manipulation language for
APIs

- Self-documenting,

- Precisely define the

data you want,

- Replacing multiple

REST requests with

a single call

- Adopted by an

increasing number

of users

- efficient,

- integration with

other API and

languages

- Does not support all

entities and

relationships with

API’s

- Does not follow the

HTTP spec for

caching and instead

uses a single

endpoint,

- Fundamental

understanding of the

properties of the

language is missing

T-SQL is Microsoft's and Sybase's

proprietary extension to the SQL
(Structured Query Language) used to

interact with relational databases

- Error checking

- Globally accepted

- Works best with

Microsoft SQL

server

- Not able to use tsql

into SQL

environments

Big SQL: is MapReduce-based

designed for providing native SQL for
querying data managed by Hadoop

- Parallel processing

SQL,

- Low-latency parallel

execution

processing,

- Run on the top of

Hadoop and to

translate all queries

to native MR jobs,

- Supports queries

expressed in native

SQL declarative

language,

- JDBC/ODBC driver

access from Linux

and Windows

platforms

- Uses HCatalog

(metastore) of

Hbase for data

access and the Hive

storage engines to

- It does not benefit

from adding nodes.

As a result, the

running time

performance is

decreased by 43%

from one to ten

nodes.

89

read/write data

U-SQL: is a language that

combines declarative SQL with

imperative C# to let you process data at
any scale

- The syntax is based

on T-SQL while it

uses C# types as

default.

- Process any type of

data,

- Integrates custom

code seamlessly,

- Efficiently scale to

any size of data,

- For massive data

processing,

- Dump whatever you

want in the data lake

and run USQL on

top of it,

- Flexibility and

extensibility, and

ease of development

- A handful of state-

of-the-art tools for

XML processing

- any type of data,

- integration,

- MDM

- Not to substitute the

existing and

emerging service

description

protocols in the

various service

areas (e.g., WSDL,

WSDL-S, OWL-S)

No-SQL: is referred to as

“nonrelational” or “non-SQL” to

highlight the fact that they can handle

vast volumes of rapidly changing,
unstructured data in different ways than

a relational (SQL) database with rows

and tables.

- More freedom,

- Speed

- Flexibility

- Provide compelling

operational

advantages and

savings with the

ability to scale "out"

horizontally—or

add less expensive

servers without

having to upgrade,

- Large volumes of

rapidly changing

structured, semi-

structured, and

unstructured data,

- Geographically

distributed scale-out

- Not mature

- Less support

- The system can

have only two out

of three of the

following

properties:

consistency,

availability, and

partition-tolerance.

The NoSQL

systems generally

give up consistency

- less secure

90

architecture instead

of expensive,

- Monolithic

architecture,

- Integration with c#

and .NET,

- The ability to

horizontally scale

“simple operation”

throughput over

many servers,

- Efficient use of

distributed indexes

and RAM for data

storage.

Google Big Query: a fully

managed cloud service that enables

storage and fast querying of large and

multi-faceted datasets.

- High scalable

- Cost-effective

- No technical

overhead costs for

maintaining

infrastructure,

- Scalability of

processing research

data products across

a growing number

of courses and users

- Fast

- secure

- Only compatible

with specific

extensions such as

JSON, CSV, or

Avro

- File size limits

SQL: Structured query language or

SQL is used as a medium of

communication with the relational

database management systems.

- Fast,

- Data integration

standards,

- Mature

- secure (RBAC)

- Difficult interface,

- Expensive

PL SQL - It is highly

structured

- Readable

- Accessible

- Is right integrated

with Oracle

databases

- Has high

performance

- Has API

capabilities.

- It is not integrated

with other databases

- Not secure due to its

vulnerabilities, such

as SQL injection.

91

Spark SQL - Can call complex

analytics libraries in

Spark

- Is API friendly

- High performance

- Has a variety of data

sources available

- Can process large

amounts of data

- API capabilities

- Has integrations

with Java, Scala,

Python, and R

- But it has problems

with small files and

latency.

Scala - Is easy to get into

- Has java integration

and is mainly for

building large

systems.

- It is scalable

- Secure

- API capabilities

- Immature

- Risk of

abandonment

Python - Easy to work with

- Runs on every

platform

- Integration with

other tools and

languages

- Stable

- API capabilities

- Flexible

- GUI

- Not fast

- Run-time errors

- Lack of multi-

processor support

- Database access

layer problems

- Not secure

R - Open-source

- A lot of packages

available

- Can visualize data

- Highly compatible

with other languages

- API capabilities

- Is compatible with

many sources

- Flexible

- GUI

- Not secure

- Not fast

- Not efficient on

large datasets

- Hard to learn

92

Appendix 2: ETL tooling table

 Pros Cons

SAP BW ETL: provides a

collection of objects and tools that

allow users to import, export, and
transform heterogeneous data

- Runs on a variety of

third-party

RDBMSs

- Provides open

Business

Application

Programming

Interfaces for data

loading

- Provides a pre-

configured metadata

repository consisting

of InfoCube catalog

- Report catalog

- Information source

catalog

- Shipped with many

pre-defined

InfoCubes for

typical business

applications

- Profitability

analyses

- Stock inventory

analyses

- Corporate indicator

systems

- Graphical user

interface

- Sharing functions

and Microsoft

Office compatibility

- Data visualization

and analytics

applications

- API compatible

- Expensive licensing

- Not able to perform

on high loads

- No MDM

integration

Talend: is used for integrating

operational systems as well as an ETL

tool for Data Warehousing, Business
Intelligence, and data migration

- Easy to use

- Helps business users

to design their

business processes

graphically

- To use more inside

tools like machine

learning add-ons,

you need to buy

licenses

93

- High volume

integration

- Parallelization

feature

- Data source

integration

- Free open source

ETL tool

- Secure

- API compatible

- It is developed as a

product for

individual use only,

and so it is not

possible to have

more than one user

- The free version

does not support

automation of tasks

like scheduling,

routing data.

- Lack of any

commercial support.

- Need to add on

Talend MDM

platform for MDM

Microsoft Azure Data

Factory: is a data integration

service that is explicitly designed to

collaborate with existing services for

the movement, transformation, and
processing of raw data

- Visual drag-and-

drop UI

- SSIS migration to

the cloud

- Comprehensive

orchestration

Multiple language

support

- Hybrid data

movement and

transformation

- Support Data source

integration.

- Secure

- API compatible

- Configuration from

scratch could be a

bit hard

- Need understanding

of the tool

- Need to add on data

factory MDM

platform for MDM

IBM – Infosphere

Information Server:
Is a product family that provides a

unified data integration

- It can be integrated

with Oracle, IBM

DB2, and Hadoop

System

- It supports SAP via

various plug-ins

- ETL without coding

- Data source

integration

- Integrated with BI

- Master data

management

- Infrastructure

rationalization and

risk compliance

- Lack of a robust

web development

environment

- Metadata

propagation in Jobs

is somewhat

complex

- Slow configuration

- Expensive

- Need to add on

infosphere

information server

MDM platform for

MDM

94

- Secure (R and C)

- API compatible

Oracle Data Integrator:
Is a graphical environment to build and
manage data integration

- Mature

- High performance

- Data source

integration

- Can perform

complex

transformations

- It automatically

identifies faulty data

and recycles it

before moving into

the target

application

- Supports databases

like IBM DB2,

Teradata, Sybase,

Netezza, Exadata.

- Able to handle

complex

transformations

- ODI security

- API compatible

- Difficult user

interface

- Complex build tool

- Expensive

- Need deep technical

knowledge

- Need to add on to

data integrator

MDM platform for

MDM

Google Dataflow: Google

Dataflow is a unified stream and batch

data processing service

- Reduced

infrastructure

administration

- Automatic scaling

- SDK with native

support for both

batch and streaming

modes

- API compatible

- Needs a new way of

the development

approach

- Need to add on to

dataflow data

catalog for MDM

Microsoft – SQL Server

Integrated Services

(SSIS):
is one of the Business Intelligence tools
(BI) to ease and automate the ETL

process

- Automate the SQL

Server Maintenance

Plan

- Very low in cost

- Easier to maintain

and package

configuration

- Better for complex

transformations,

multi-step

operations,

aggregating data

- To see the package

execution report,

need Management

Studio rather than

being published to

reporting services or

another way

- The lack of ability

to support non-

windows operating

systems

95

from different data

sources or types,

and structured

exception handling

- Data can be loaded

in parallel to many

varied destinations

- Build ETL solutions

with very minimum

background

knowledge

- Very easy to install

and configure

- Offers broad

documentation and

support

- Provides best

practices

- Is more suitable for

enterprise and may

not be cost-efficient

for small businesses

- Need third party

tools for API

integration

- No MDM

Hadoop data lake: The data is

physically moved into one physical

place. Based on Hadoop technology, no
change is made around the origin’s

format at the captured moment. The

Data Lake is more batch processing
oriented as it is based on MapReduce

usage

- Fast

- Less expensive

- Integration

- API compatible

- Less mature

- Not realtime

- No advanced

analytics

- Data not secured by

default

- Need add to

Hadoop, Cloudera

navigator for MDM
AWS Data Pipeline: This is an

ETL platform in a web service

with a control panel.

- Simple to use

- Secure

- Fault-tolerant

- API compatible

- Lacks third-party

integration

- Difficult to use with

on-premises data

sources

- Need the third party

for MDM
MongoDB: MongoDB is an open-

source NoSQL database developed in

C++

- Efficient

- Fast

- Durability

- Flexible

- API compatible

- uses internal

memory

- lacks the support of

join queries

- Need the third party

for MDM
Cloudera Apache Hive - Able to process

petabytes of data

- Integration

- Scalable

- Fast

- MDM

- The configuration is

a bit tricky

- Designed for

analytical purposes,

not for transactional

purposes

96

- API - Security

- Lack of support

- Runtime errors
Informatica PowerCenter - Easy to use

- Support

- Fast

- Data quality

monitoring

- Data migration

- Single point of

- MDM data catalog

- API

- Flexible

- GUI

- Low code

- Lacks integration

with other

languages

- No reporting

functionality

- A lot of settings

interfaces

- No ai capabilities

- Connectors not

working well

97

Appendix 3: Visualization tooling table

 Pros Cons

Power BI: is an online SaaS

service offer (SaaS) from Microsoft

Power BI that
displays interactive dashboards

- Not expensive

- Easy to use

- Receive constant

updates

- Integration with

many sources

- Able to handle large

amounts of data

- Sharing and

collaboration

features

- Limited free version

capabilities

- A table relationship

is a bit lagging

- Not able to handle

large amounts of

data in the free

version

- Simple dashboards

easy to make,

complicated

dashboard

challenging to make

Tableau: is a software that can help

users explore and understand their data

by

creating interactive visualizations

- Connects users with a

variety of data sources

and enables them to

create data

visualizations by

making charts, maps,

dashboards, and stories

through a simple drag

and drop interface

- Help users explore and

understand their data by

creating interactive

visualizations

- Easy to use by dragging

and dropping

- Is still not widely

used

Google data studio: is a new

data visualization program
- Recognizable to anyone

who works with the

Google office suite

- Free to anyone with a

Google account

- Interactive GUI

- Sharing and

collaboration features

- Cannot comply with

IRB requirements

for protecting

personally

identifiable data

- Lacks the ability to

modify underlying

data

- Offers fewer

calculation and

visualization

options

IBM Cognos: provides a unified

workspace for business intelligence and

analytics

- Easy View

- Collaboration

- Transparent and

accountable

- Access data everywhere

(mobile devices)

- Only a few sites and

communities exist

- Most experience has

been gained by

intuition and trial

and error

98

- Link dashboards to

workflows

Oracle Business

Intelligence: This solution was

designed to address the entire spectrum

of analytical requirements

- Ad hoc analysis

- Enterprise reporting

- Microsoft Office

integration

- High prices for

large configurations

SAS: Software pack with various

visualization capabilities
- Various visualization

capabilities

implemented in the

product suite

- Interactive

- Allows the creation of

basic queries and

reports

- High costs

Qlik: Provides a possibility for end-

users to use integrated ETL and to
construct their data schema themselves

- Provides a clean

interface to analysts

- Removes the need to

pre-aggregate data

- Possible to change

analysis axes any

moment at any level of

query detailing

- Ability to automatically

connect tables

- Lack of a unified

metadata view

- Lack of predicting

models

- Lacks advanced

visualization

features to help

them graphically

wade through

complicated data

Amazon Quicksight: is a fast,

cloud-powered BI service that makes it

easy to build visualizations

- Superfast

- Parallel

- In-memory

- Calculation Engine

(SPICE)

- Immature

- Sharing

- Not available on

android

Kibana: Kibana was designed as a

visualization platform for Elasticsearch
- Interactive

- Efficient

- easy to extend to needs,

able to show massive

volumes of data

- No user

management

available

MicroStrategy - Easy to use

- Fast

- Secure

- Integration with

different data

sources

- 2TB data size

- Monitoring

- GUI

- Stable

- Secure

- API

- Timeout errors with

more than 2 TB of

data

- Sharing

- Support

- Need more

visualizations

- Not flexible

- No MDM

Redash - Easy to use and

setup

- Scalability problems

- Technical

knowledge required

- Not flexible

99

- No installation

needed (browser-

based)

- SQL templates

- Many data source

integration

- API

- Easy export to

different formats

- Fast

- Secure

- Low-code and code

- MDM

100

Appendix 4: Interview setup

Hi ….,

Hope you are doing well. I am a CSA intern and team leader at Albert Heijn XL in Leiden, so

for me the customer to interview for my thesis can hopefully be Ahold Delhaize. Can you please

support me in reaching out to possible respondents?

I am currently working on my thesis about the use of data lakes. While data lake adoption is

growing, the complexity and options for technology are growing as well. My research aims to

provide a methodology for architecture design and tool selection based on business

requirements.

The main question of the thesis is: “What method is best suitable for selecting the appropriate

tools to rapidly and efficiently extract data from the data lake?”

It would be great if I can validate or mirror my methodology with people from Ahold Delhaize

as a customer organization. The ideal roles would be a technology lead, architect, and data

scientist.

The initial meeting would take 45 minutes

Of course, I will present my end result and share my thesis with them.

Thanks a lot in advance.

--

Kind Regards,

Ahmed Lachal

Cloud Solution Architect Intern

101

Appendix 5: Survey results

102

8. REFERENCES

Affetti, L., Tommasini, R., Margara, A., Cugola, G., & Della Valle, E. (2017). Defining

 the execution semantics of stream processing engines. Journal of Big Data, 4(1).

 https://doi.org/10.1186/s40537-017-0072-9

Anoshin, D., Rana, H., & Ma, N. (2016). Mastering Business Intelligence with

 Microstrategy. Zaltbommel, Netherlands: Van Haren Publishing.

ARGHIR, D. C., DUŞA, I. G., & ONUŢĂ, M. (2019). Organizational development

 through Business Intelligence and Data Mining. Database Systems Journal, 87–89.

 Retrieved from http://dbjournal.ro/archive/30/30_9.pdf

Armbrust, M., Ghodsi, A., Zaharia, M., Xin, R. S., Lian, C., Huai, Y., … Franklin, M. J.

 (2015). Spark SQL. Proceedings of the 2015 ACM SIGMOD International

 Conference on Management of Data - SIGMOD ’15, 1383–1394.

 https://doi.org/10.1145/2723372.2742797

Azarmi, B. (2014). Talend for Big Data. Birmingham, United Kingdom: Packt Publishing.

Bajer, M. (2017). Building an IoT Data Hub with Elasticsearch, Logstash and Kibana. ABB

 Corporate Research Center, 63–68. https://doi.org/10.1109/W-FiCloud.2017.40

 Abramova, V., & Bernardino, J. (2013). NoSQL databases. Proceedings of the

 International C* Conference on Computer Science and Software Engineering -

 C3S2E ’13, 14–22. https://doi.org/10.1145/2494444.2494447

 Feuerstein, S., & Pribyl, B. (2005). Oracle PL/SQL Programming. Culemborg,

 Netherlands: Van Duuren Media.

Beheshti, A., Benatallah, B., Nouri, R., Chhieng, V. M., Xiong, H., & Zhao, X. (2017).

 CoreDB. Proceedings of the 2017 ACM on Conference on Information and

 Knowledge Management - CIKM ’17. https://doi.org/10.1145/3132847.3133171

https://doi.org/10.1186/s40537-017-0072-9
http://dbjournal.ro/archive/30/30_9.pdf
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1109/W-FiCloud.2017.40
https://doi.org/10.1145/2494444.2494447
https://doi.org/10.1145/3132847.3133171

103

Birjali, M., Beni-Hssane, A., & Erritali, M. (2018). Evaluation of high-level query

 languages based on MapReduce in Big Data. Journal of Big Data, 5(1).

 https://doi.org/10.1186/s40537-018-0146-3

 Madera, C., & Laurent, A. (2016b). The next information architecture evolution.

 Proceedings of the 8th International Conference on Management of Digital

 EcoSystems - MEDES. https://doi.org/10.1145/3012071.3012077

Bozdoc, D. (2011). Oracle BI Publisher 11g: A Practical Guide to Enterprise Reporting.

 Birmingham, United Kingdom: Packt Publishing.

Browne, D., Desmeijter, B., Dumont, R. F., Kamal, A., Leahy, J., Masson, S., … Keen, M.

 (2010). IBM Cognos Business Intelligence (1st ed.). New York, United States: IBM

 Redbooks.

Cattell, R. (2011). Scalable SQL and NoSQL data stores. Acm Sigmod Record, 39(4), 12-

 27.

Evans, C. (2006). HyperText Structured Query Language. Prometheus Research, LLC, 1–

 4. Retrieved from https://querycombinators.org/dist/icomp07_paper.pdf

Fuad, A., Erwin, A., & Ipung, H. P. (2014). Processing performance on Apache Pig,

 Apache Hive and MySQL cluster. Proceedings of International Conference on

 Information, Communication Technology and System (ICTS) 2014, 297–302.

 https://doi.org/10.1109/icts.2014.7010600

Godoe, P. and Johansen, T.S., 2012. Understanding adoption of new technologies:

 Technology readiness and technology acceptance as an integrated concept. Journal

 of European Psychology Students, 3(1), pp.38–52. DOI:

 http://doi.org/10.5334/jeps.aq

https://doi.org/10.1145/3012071.3012077
https://querycombinators.org/dist/icomp07_paper.pdf
https://doi.org/10.1109/icts.2014.7010600
http://doi.org/10.5334/jeps.aq

104

Grabova, O., Darmont, J., Chauchat, J.-H., & Zolotaryova, I. (2010). Business intelligence

 for small and middle-sized entreprises. ACM SIGMOD Record, 39(2), 39.

 https://doi.org/10.1145/1893173.1893180

Hartig, O., & Pérez, J. (2018). Semantics and Complexity of GraphQL. Proceedings of the

 2018 World Wide Web Conference on World Wide Web - WWW ’18.

 https://doi.org/10.1145/3178876.3186014

Informatica Corporation. (2014, June). Informatica PowerCenter. MicroQuill Software

 Publishing, Inc. Retrieved from

 https://kb.informatica.com/proddocs/Product%20Documentation/4/PC_961_Getti

 ngStarted_en.pdf

Katragadda, R., Sremath Tirumala, S. S., & Nandigam, D. (2015). ETL tools for Data

 Warehousing: An empirical study of Open Source Talend Studio versus Microsoft

 SSIS. The 2nd World Congress on Computer Applications and Information

 Systems. Retrieved from

 https://unitec.researchbank.ac.nz/bitstream/handle/10652/3366/ETL%20tools%20

 for%20Data%20Warehousing%20An%20empirical%20study.pdf?sequence=1&is

 Allowed=y

Khalifa, S., Bloor, C., Middelton, W., & Jones, C. (2000). Educational computer software,

 technical, criteria, and Quality. School of Computing Engineering & Technology

 University of Sunderland, 1–8. Retrieved from

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.8180&rep=rep1&t

 ype=pdf

Khine, P. P., & Wang, Z. S. (2018). Data lake: a new ideology in big data era. ITM Web

 of Conferences, 17, 03025. https://doi.org/10.1051/itmconf/20181703025

 Negrut, V. (2018). POWER BI: EFFECTIVE DATA AGGREGATION. Quaestus,

 (13), 146-152.

https://doi.org/10.1145/1893173.1893180
https://doi.org/10.1145/3178876.3186014
https://kb.informatica.com/proddocs/Product%20Documentation/4/PC_961_Getti%09ngStarted_en.pdf
https://kb.informatica.com/proddocs/Product%20Documentation/4/PC_961_Getti%09ngStarted_en.pdf
https://unitec.researchbank.ac.nz/bitstream/handle/10652/3366/ETL%20tools%20%09for%20Data%20Warehousing%20An%20empirical%20study.pdf?sequence=1&is%09Allowed=y
https://unitec.researchbank.ac.nz/bitstream/handle/10652/3366/ETL%20tools%20%09for%20Data%20Warehousing%20An%20empirical%20study.pdf?sequence=1&is%09Allowed=y
https://unitec.researchbank.ac.nz/bitstream/handle/10652/3366/ETL%20tools%20%09for%20Data%20Warehousing%20An%20empirical%20study.pdf?sequence=1&is%09Allowed=y
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.8180&rep=rep1&t%09ype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.8180&rep=rep1&t%09ype=pdf

105

Klein, S. (2017). Azure Data Factory. IoT Solutions in Microsoft’s Azure IoT Suite, 105–

 122. doi:10.1007/978-1-4842-2143-3_7

Klein, S. (2017, b). IoT Solutions in Microsoft’s Azure IoT Suite. Redmond, Washington,

 USA: Apress. https://doi.org/10.1007/978-1-4842-2143-3

Ko I, Chang H. Interactive Visualization of Healthcare Data Using Tableau. Healthc

 Inform Res. 2017 Oct;23(4):349-354. https://doi.org/10.4258/hir.2017.23.4.349

Koskinen, J., Ahonen, J. J., Sivula, H., Tilus, T., Lintinen, H., & Kankaanpaa, I. (2005).

 Software Modernization Decision Criteria: An Empirical Study. Ninth European

 Conference on Software Maintenance and Reengineering.

 https://doi.org/10.1109/csmr.2005.50

Leibzon, Y., & Leibzon, Y. (2018). Redash V5 Quick Start Guide. Zaltbommel,

 Netherlands: Van Haren Publishing.

Li, J. Z., Ozsu, M. T., Szafron, D., & Oria, V. (1997, September). MOQL: A multimedia

 object query language. In Proceedings of the 3rd International Workshop on

 Multimedia Information Systems (pp. 19-28)

 Torgersen, M. (2006). Language Integrated Query. RightsLink, 736. Retrieved

 from https://dl.acm.org/doi/abs/10.1145/1176617.1176700

Lomet, D., & Chaudhuri, S. (1999). Data Engineering. IEEE Computer Society, 22(2), 38.

 Retrieved from

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.4396&rep=rep1&ty

 pe=pdf#page=35

Lopez, G., Seaton, D. T., Ang, A., Tingley, D., & Chuang, I. (2017). Google BigQuery for

 Education. Proceedings of the Fourth (2017) ACM Conference on Learning @

 Scale - L@S ’17. https://doi.org/10.1145/3051457.3053980

https://doi.org/10.1007/978-1-4842-2143-3
https://doi.org/10.4258/hir.2017.23.4.349
https://doi.org/10.1109/csmr.2005.50
https://dl.acm.org/doi/abs/10.1145/1176617.1176700
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.4396&rep=rep1&ty%09pe=pdf#page=35
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.4396&rep=rep1&ty%09pe=pdf#page=35
https://doi.org/10.1145/3051457.3053980

106

Lungu, I. (2015). Data integration approaches using ETL. Database Systems Journal, VI,

 19–21. Retrieved from http://www.dbjournal.ro/archive/21/21.pdf#page=20

Lutz, M., Lewin, L., & Willison, F. (2001). Programming Python. Sebastopol, USA:

 O’Reilly.

M. (2017, October 11). U-SQL Language Reference - U-SQL. Retrieved from

 https://docs.microsoft.com/en-us/u-sql/

Madera, C., & Laurent, A. (2016). The next information architecture evolution.

 Proceedings of the 8th International Conference on Management of Digital

 EcoSystems - MEDES. https://doi.org/10.1145/3012071.3012077

Matloff, N. (2011). The Art of R Programming: A Tour of Statistical Software Design (1st

 ed.). San Francisco, USA: No Starch Press.

Miloslavskaya, N., & Tolstoy, A. (2016). Big Data, Fast Data and Data Lake Concepts.

 Procedia Computer Science, 88, 300–305. Retrieved from

 https://s3.amazonaws.com/academia.edu.documents/60526649/big-data-fast-data-

 and-data-lake-concepts20190908-41709-1pq148w.pdf?

Nikoukaran, J., Hlupic, V., & Paul, R. J. (1998). Criteria for simulation software

 evaluation. 1998 Winter Simulation Conference. Proceedings (Cat.

 No.98CH36274). https://doi.org/10.1109/wsc.1998.745014

Odersky, M., Spoon, L., & Venners, B. (2008). Programming in Scala. California, USA:

 Artima.

http://www.dbjournal.ro/archive/21/21.pdf#page=20
https://docs.microsoft.com/en-us/u-sql/
https://doi.org/10.1145/3012071.3012077
https://s3.amazonaws.com/academia.edu.documents/60526649/big-data-fast-data-%09and-data-lake-concepts20190908-41709-1pq148w.pdf
https://s3.amazonaws.com/academia.edu.documents/60526649/big-data-fast-data-%09and-data-lake-concepts20190908-41709-1pq148w.pdf
https://doi.org/10.1109/wsc.1998.745014

107

Oehler, K., Gruenes, J., & Ilacqua, C. (2012). IBM Cognos TM1 The Official Guide. New

 York, United States: McGraw-Hill Education.

OQL - Studio Pro 8 Guide. (2020, July 5). Retrieved from

 https://docs.mendix.com/refguide/oql

Palmer, N., Sferrazza, S., Just, S., & Najman, A. (2015). Market Reconstruction 2.0: A

 Financial Services Application of Google Cloud Bigtable and Google Cloud

 Dataflow. FIS. Retrieved from

 https://www.academia.edu/28969577/Market_Reconstruction_2.0_A_Financial_S

 ervices_Application_of_Google_Cloud_BigTable_and_Google_Cloud_Dataflow?

 sm=b

Quinto, B. (2018). Big Data Governance and Management. Next-Generation Big Data,

 495–506. https://doi.org/10.1007/978-1-4842-3147-0_11

Snipes, G. (2018). Product Review Google Data Studio. Journal of Librarianship and

 Scholarly Communication, 6(General Issue). https://doi.org/10.7710/2162-

 3309.2214

Tsalgatidou, A., Pantazoglou, M., & Athanasopoulos, G. (2006). Specification of the

 Unified Service Query Language (USQL). Dept. of Informatics & Telecom.

 University of Athens. Retrieved from http://cgi.di.uoa.gr/~s3lab/TR/2006/usql-1.0-

 spec.pdf

Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003), “User acceptance of

 information technology: toward a unified view”, MIS Quarterly, Vol. 27 No. 3, pp.

 425-478

https://docs.mendix.com/refguide/oql
https://www.academia.edu/28969577/Market_Reconstruction_2.0_A_Financial_S%09ervices_Application_of_Google_Cloud_BigTable_and_Google_Cloud_Dataflow?%09sm=b
https://www.academia.edu/28969577/Market_Reconstruction_2.0_A_Financial_S%09ervices_Application_of_Google_Cloud_BigTable_and_Google_Cloud_Dataflow?%09sm=b
https://www.academia.edu/28969577/Market_Reconstruction_2.0_A_Financial_S%09ervices_Application_of_Google_Cloud_BigTable_and_Google_Cloud_Dataflow?%09sm=b
https://doi.org/10.1007/978-1-4842-3147-0_11
https://doi.org/10.7710/2162-%093309.2214
https://doi.org/10.7710/2162-%093309.2214
http://cgi.di.uoa.gr/~s3lab/TR/2006/usql-1.0-%09spec.pdf
http://cgi.di.uoa.gr/~s3lab/TR/2006/usql-1.0-%09spec.pdf

108

Williams, Michael & Rana, Nripendra & Dwivedi, Yogesh. (2015). The unified theory of

 acceptance and use of technology (UTAUT): A literature review. Journal of

 Enterprise Information Management. 28. 443-488. 10.1108/JEIM-09-2014-0088.

Zhu, W. D., Alon, T., Arkus, G., Duran, R., Haber, M., Liebke, R., … Redbooks, I. (2011).

 Metadata Management with IBM InfoSphere Information Server (1st ed.). New

 York, United States: IBM Redbooks.

