&%) Universiteit
4] Leiden

Master Computer Science

Graph pattern mining for blockchain networks

Name: Atish Kulkarni
Student ID: S2483122
Date: 27/07/2021

Specialisation: Data science

1st supervisor: lIris Yocarini
2nd supervisor: Matthijs van Leeuwen

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Contents

1 Introduction

7 Discussion

8 Conclusion

2 Background and related work
2.1 Blockchain
2.1.1 Blockchain basics
2.1.2 Properties of Blockchain transactions
2.1.3 Importance of investigating cryptocurrencies
2.2 Locality Sensitive hashing
221 LSHworkflow
2.3 Related work
3 Data
3.1 Bitcoin
32 FEthereum
3.3 Challenges and assumptions Lo
4 Problem Statement
4.1 Problem statement: circular patternso
4.2 Example: circular patterno
4.3 Problem statement: diamond patterns L.
4.4 Example: diamond patterns
5 Methods
5.1 Algorithm Circle track
5.1.1 Node selection
5.1.2 Data subset selection
5.1.3 Datacleaning
5.2 Algorithm Diamond track
5.2.1 Get diamond location
52.2 Minediamond
523 Cleandiamond
5.3 Relevance evaluation
5.3.1 Workflow
5.3.2 Proofof concept
6 Results
6.1 Patterns Discovered
6.1.1 Results of circular pattern
6.1.2 Results of diamond pattern
6.1.3 Quantitative evaluation
6.2 Relevance evaluation
6.2.1 Quantitative evaluation,

15
15
16
17

19
20
21
22
23

24
25
25
26
27
28
28
29
30
30
32
33

38
39
39
43
45
48
52

53
55

9 Appendix

9.1 Terminology and definitions

9.2 Additional results

Abstract

Addressing the growth of the field of Blockchain and cryptocurrencies, this study
aims to analyse datasets of two cryptocurrencies, Bitcoin and Ethereum, for suspicious
transaction activities. We represent the Blockchain data as a graph network and execute
graph pattern mining methods to search for suspicious transaction patterns. We devel-
oped two graph pattern mining algorithms to discover suspicious transaction patterns
following a circular or diamond-shaped structure. This research also conducts a quan-
titative evaluation of patterns observed and investigates their relation with Blockchain
metrics. To assess the observed patterns, we propose a novel locality sensitive hashing-
based method named relevance evaluation. The relevance evaluation is a statistical
evaluation method for graph patterns. The relevance evaluation conducts various statis-
tical tests and helps to classify graph patterns as usual or unusual observations. Results
of this study unveil the relation between suspicious transaction activities such as money
laundering and cryptocurrencies.

1 Introduction

In the 21st century, the impact created by the new emerging technologies has changed the
structure of everyday services. The nature of financial services is on the verge of change due to
the introduction of the new Blockchain technology. Digital currencies created on Blockchain
technology, also known as cryptocurrencies, are becoming part of everyday finance. Similar to
fiat currencies like the US dollar and Euro, cryptocurrencies can store value and are trans-
ferable across users. Such transfers create a graph network of transactions between users of
cryptocurrencies. This research aims to find graph network patterns that are candidates for
suspicious activities like money laundering and test their relevance. Candidate patterns are
discovered by applying graph pattern mining techniques on graph networks created by trans-
actions of Blockchain-based cryptocurrencies.

A graph network is a data structure that explains the relationship between all of its data
points. The graphs discussed in this study are created using transaction data; hence, they are
weighted directed graphs. A directed edge connects a pair of nodes in a weighted directed
graph network. Each such edge has a timestamp and a weight associated with it. Explanation
of a graph can be simplified with an example of a transaction where person A transfers x
amount of money to person B on date y. If a graph represents this information, person A and
B are the nodes, the transaction from A to B is a directed edge, the amount transferred x is the
weight, and date y of transfer is the timestamp. This example shows a single directed weighted
edge existing between two nodes, representing a single transaction. Various such transactions
between unique users create a graph network. The study conducted in [1] shows an example
to create a graph network for transaction data of cryptocurrencies. Node, edge, weight, and
timestamp are the components of the graph network that are relevant in this study to design
graph pattern mining algorithms.

Graph pattern mining is defined as the process of finding relevant sub-graph structures in
a graph. Existing methods such as machine learning classifiers like SVM, neural network clas-
sifiers like multi-layer perceptrons, probabilistic neural networks and graph-based data mining
methods like frequent pattern mining are compared in [2]. Comparison in [2] shows that graph
pattern mining is the most preferred method for discovering suspicious patterns. In graph pat-
tern mining conditions for the structure of the pattern, weight and timestamps are defined.
These conditions limit the number of patterns discovered and also preserve the quality of the
patterns discovered. Graph pattern mining can be roughly divided into two types, frequent
pattern mining and fixed structural pattern mining. In the case of frequent pattern mining,
the aimed structure of the pattern is not predefined. Frequent pattern mining algorithms dis-
cover the patterns based on the frequency of the patterns in the dataset. However, in fixed
structural pattern mining, algorithms discover patterns based on the predefined structure. Pre-
vious research [3] [4] has shown the involvement of suspicious activities like money laundering
is associated with patterns having structural similarity with circular and diamond shape. In
circular patterns, an amount is transferred among different cryptocurrency users with the con-
dition that the source of this transaction gets a similar amount back. In diamond patterns,
the source of the transaction distributes the amount in n-parts to n-addresses. Later, all of
these n-addresses contribute these amounts to a single address. Figure 1, (a) illustrates an
example of a circular pattern and (b) shows a diamond pattern, respectively. To find circular
and diamond patterns, we designed two fixed structural pattern mining algorithms. Algorithms

circle track in Chapter 5.1 and diamond track in Chapter 5.2 are designed for finding circular
and diamond patterns in cryptocurrency transaction data.

Address 1

‘ :AddreSS3

Address 5

Incoming transactions Outgoing Transactions

Address 1
Address 3

(a) (b)

Figure 1: An example of a circular pattern is shown in (a) and (b) shows a diamond
pattern.

Graph structures of circular patterns, diamond patterns and the basic terminology used in
this study can be understood based on example patterns in the Figure 1. In the Figure 1 (a)
nodes are Address 1, Address 2, Address 3, Address 4. Each directed arrow between a pair of
nodes is a directed edge. A node that initiates the first transaction in a pattern as a sender is
termed the source node. Figure 1 (a) demonstrates a circular pattern where Address 1 is the
source node. The node that is the receiver for the last transaction in a pattern is termed the
sink node. For a circular pattern, the source node and sink node are always the same. Nodes
separated by a single edge are first degree neighbours, and nodes separated by two edges are
second degree neighbours. For example, for node Address 1 in Figure 1 (a), nodes Address
2 and Address 4 are first degree neighbours, and Address 3 is the second degree neighbour.
Based on the direction of an edge, for node Address 1 in Figure 1 (a), node Address 2 is the
outgoing neighbour, and node Address 4 is the incoming neighbour. Another term used in this
study is a support node, which is defined as the second degree neighbour of a source node.
For Source node Address 1 in Figure 1 (a), Address 3 is the support node. Following the same
description, for Figure 1 (b), Address 1 is the source node, Address 5 is the sink node. For
Source node Address 1, Address 5 is the support node. The circular and diamond pattern can
be divided into three layers where the source node is in layer 1, the support node is in layer 3
and all other nodes are in layer 2. In Figure 1 (a) Address 1 is in layer 1, Address 2, Address 4
are in layer 2 and Address 3 is in layer 3. Figure 1 (b) can be divided into three layers, where
Address 1 is in layer 1, Address 2, Address 3, Address 4 are in layer 2, and Address 5 is in layer
3. This research aims to investigate circular and diamond pattern formations in two real-world
datasets, the Bitcoin and Ethereum Blockchain networks, that might be linked with suspicious
behaviours.

Our algorithms circle track and diamond track are inspired by the pattern mining approaches

discussed in [5]. Comparison of approaches in [5] analyses algorithms that find frequent patterns
without any user-specific structural input. Approaches discussed in [5] use different methods
for traversing datasets and find frequent occurring patterns above the user-defined frequency
threshold. In contrast to this, algorithms designed in this study have a structural target for the
patterns. In this study, we did not integrate the Apriori-based approach [6] that was the earliest
in the field of graph pattern mining. Apriori approach is not suitable, as weight assumptions
in Apriori based algorithms are incompatible with our dataset. Each edge in cryptocurrency
transaction data most probably has a unique weight associated with it. However, Algorithms
based on the Apriori approach such as Apriori, AprioriTid, and AprioriHybrid assume equal
weight on every edge observed in the dataset. Along with this, Apriori-based algorithms use
a breadth-first search approach to traverse the graph. Such traversing requires multiple scans
of the dataset. Multiple scans result in higher time and memory complexity. The problem of
having high time complexity was also observed in the early versions of the diamond track al-
gorithm. We split the data into n smaller chunks in the diamond track algorithm to solve time
and memory complexity issues. The concept of splitting the data in multiple smaller chunks is
inspired by partition-based algorithms discussed in [5]. Partition-based algorithms require only
a few scans compared to Apriori-based algorithms to find out frequent patterns. Results in [5]
show that the partition-based approach addresses time and memory complexities and reduces
them substantially. We also took a hybrid approach of combining breadth-first search (BFS)
and depth-first search (DFS) and intersection counting. The hybrid approach yields multiple
circular patterns for a pair of the source node and support node in a single search of the
dataset. The study [7] shows the benefits of a hybrid approach that combines BFS, DFS, and
intersection counting. Results of [7] show that intersection counting is a simple operation, and
as no complex data structure is required and time and memory complexity is low. Compared
to patterns discussed in studies [8], [4], [1] in our study we do not define a fixed geometrical
structure for the patterns to be discovered. Algorithms are designed to find patterns similar
to circular and diamond shapes based on structure, weight, and timestamp conditions. All the
patterns that follow conditions are considered candidate patterns. Such flexible approach al-
lows us to explore patterns discussed in [8], [4], [1] and as well as some more complex patterns
as shown in Figure 28.

Once potential suspicious patterns are discovered, there is a need to classify them as ma-
licious transaction activities or routine transactions. Even if we assume all discovered patterns
are suspicious, there is a necessity to evaluate the risk associated with patterns, as each trans-
action pattern has a different monetary value. Graph pattern mining is often combined with
other supporting methods such as significance testing and neural network classifiers to evaluate
the discovered patterns. Following the same concept, we aim to combine the graph pattern
mining method with the relevance evaluation. The term usual patterns refer to patterns cre-
ated in a Blockchain network due to common transactions. Opposite to this, the term unusual
pattern refers to patterns that might result from suspicious transaction activities. Evaluation
of discovered patterns under the relevance evaluation helps to classify them as usual or un-
usual observations based on the risk associated with them. In [8] under significance testing,
Chrysanthi Kosyfaki et al. have classified patterns as usual or unusual based on randomiza-
tion test of weights involved in the pattern but keeping the structure of the patterns same.
As the structure of patterns was kept the same, significance testing in [8] only evaluates the
probability of observing weights in a particular order. However, in any suspicious activity, the
pattern’s structure is the primary problem rather than its weights. Hence, we present the rel-

evance evaluation; a novel Locality sensitive hashing (LSH) based approach to evaluate the
risk associated with patterns and to classify them as usual or unusual observations. Relevance
evaluation evaluates patterns based on the structure as well as weights. The results of the
relevance evaluation help to identify patterns with high monetary and structural risk.

The selection of Bitcoin and Ethereum data for searching suspicious patterns was made based
on their total market capitalisation. These two cryptocurrencies hold the largest market capital
share; hence, analysis of their transaction data can reveal important insights of their networks.
Although cryptocurrencies have seen an exponential rise, data of cryptocurrencies has not been
studied to full potential. Studies like [9] [8] have explored some patterns in transaction dataset
of Bitcoin. However, patterns studied on fiat currencies discussed in [4] [3] such as large circu-
lar graphs, and k-partite graphs are not searched in data sets of Bitcoin and Ethereum. Hence,
in this study, we analyse Bitcoin and Ethereum transaction data for circular and diamond
patterns. Studying Bitcoin and Ethereum can help explore whether money laundering patterns
are evident in Blockchain transactions. This research also aims to study the patterns observed
for their frequency, size, co-relation with other Blockchain metrics, and relevance. Results of
this study can help to address the concerns of governing authorities. This study should also
help to fact-check a common belief about cryptocurrencies having many suspicious activities.
The results of this study help to answer the following questions.

1. Are money laundering patterns evident in Blockchains of Bitcoin and Ethereum?
2. How many patterns are observed within a time constraint of 7 days?

3. What is the size of patterns observed?

4. What kind of monetary fluctuations are observed in suspicious patterns?

5. How to evaluate transaction patterns based on amount and structure?

In the rest of the paper, we first introduce the background of Blockchain, Bitcoin, Ethereum,
and LSH in Chapter 2. Literature review in the Chapter 2.3 gives brief information on studies
referred and inspiration for the algorithms. Information about data of Bitcoin and Ethereum
and other statistics associated with data are discussed in the Chapter 3. Problem statements
in the Chapter 4 shows the formal representation of the patterns aimed in this study. Steps
involved in algorithms and their working is explained in the Chapter 5. The chapter 5.3 explains
the novel approach of LSH for relevance testing. Results for algorithms and relevance test are
shown in Chapter 6. Finally, in Chapter 7, we discuss the results and conclude the paper in
Chapter 8. The Table 15 in the Chapter 9.1 explains graph network related terms used in this
study and as well as some Blockchain concepts.

2 Background and related work

This chapter presents information about the structure of Blockchain, its properties, and factors
to be considered while representing it as a graph. This chapter also briefly explains the working
of LSH and the framework used to implement LSH in this study. In this chapter, we also discuss
existing studies related to graph pattern mining, money laundering tracking and Blockchain.
We briefly explain the approach and methods of existing studies and their motivation for our
study.

2.1 Blockchain
2.1.1 Blockchain basics

Blockchain is one of the new emerging technologies in the field of database storage. The pri-
mary difference between traditional data storage and Blockchain is evident when Blockchain
structure is considered. Traditional data storage has four types of operations create, read,
update, and delete (together known as CRUD operations). In contrast to this, Blockchain has
only two types of operation, read and write. Data in the Blockchain cannot be modified or
deleted after being created. Moreover, depending on the time and memory threshold, data is
grouped and put together in a single block. Each such block has a header known as the hash
of that block. In every block, a hash of the previous block is stored. This storage of the hash
of the previous block helps to keep track of all previous transactions. Hence, as the name
implies and shown in the Figure 2, the chain of blocks is held together by hashes of different
blocks. In the Figure 2, Each square represents a block and bi-directional arrows represent the
link created between the blocks. Each block of Blockchain has a memory limit. Every block
stores all transactions within memory limits and time threshold limits. Exceeding memory or
time thresholds results in the creation of new blocks. Such multiple blocks are combined to
create a weighted directed graph network.

2.1.2 Properties of Blockchain transactions

« Transaction structure: In this study, we focus on the transaction data of Blockchain. Sim-
ilar to traditional transactions, Blockchain transactions always have senders, receivers,
amounts, and timestamps. Cryptocurrencies are stored in a wallet represented by an
alphanumeric string holding a certain amount of a cryptocurrency. This alphanumeric
string is also known as a wallet address. Each unique wallet address acts as a node when
the Blockchain is represented as a graph. Unlike most network graphs, each unique node
in a Blockchain does not represent a unique user or identity. Two or more nodes may
represent the same user having multiple wallet addresses. Therefore, unlike fiat currency
accounts, ownership of any cryptocurrency wallet cannot be associated with a particular
identity easily. The study conducted in [10] has tried to group wallet addresses of cryp-
tocurrencies and identify their owners. We do not consider such grouping as grouping
nodes together may result in a reduced number of patterns.

o Transaction speed: The transactions in a Blockchain are faster than some traditional
bank transactions. The average transaction time for Bitcoin is about 2 hours, and for
Ethereum, it is less than 10 minutes. The transaction time depends on network difficulty,
the number of miners, and the total hash rate on the Blockchain.

o Monetary value: The trading of cryptocurrencies also influences their prices and makes
them highly volatile when compared to fiat currencies. The volatile nature of cryptocur-
rencies influences the monetary value represented by a pattern.

Anonymity, varying transaction time, and volatile value of cryptocurrency are the unique prop-
erties to be considered while representing the Blockchain data as a graph. These factors can
also influence the pattern formation in the Blockchain network as they are co-related (as
shown in Figures: 26, 24, 25, 27). Due to unique properties, transaction data of Blockchain is

processed on a weekly basis in this study. If any money laundering occurs using these cryptocur-
rencies, then the time frame of all the transactions involved in a money-laundering pattern
should be ideally narrow. If the time frame is wide for the transactions involved in a pattern,
it will not go along with the volatility associated with an asset. In 2017, the price of Bitcoin
was changing more than 10% a week. If a pattern takes a long time to occur, then the value
sent and the value received would be substantially different. The study conducted in [8] shows
a similar concept where transactions of Bitcoin were searched for patterns for a sliding time
window.

2.1.3 Importance of investigating cryptocurrencies

Study of cryptocurrency transactions is essential as the field of Blockchain and cryptocurrencies
has seen exponential growth in the past few years. Compared to fiat currencies, transactions
of cryptocurrencies are faster, secure, and have no limit on the amount. Such advantages over
fiat currencies have helped to catch the attention of different industries and have spiked the
adoption of Blockchain and digital currencies [11] [12]. Digital fiat currencies like Tether and
USDC are created on top of Ethereum, providing users stable value digital currencies. These
stable value digital currencies replicate the government-issued currencies like the dollar on the
Blockchain. At the time of this study, the total market capitalization of all digital currencies
together exceeds 1 trillion dollars. The growing adoption and market capitalization of digital
currencies have created a need to study them in the same way as fiat currency.

Although the adoption of Blockchain and digital currencies has many advantages, it comes
with its challenges too. The anonymity associated with the users of cryptocurrencies has al-
ways been a topic of debate. Studies like [13] have discussed these issues in detail and have
tried to identify users based on their transaction behaviour. While many developed European
and western countries have allowed the possession of Bitcoin, some developing countries such
as India and China have been trying to ban or heavily regulate Bitcoin. Concerns of large
financial entities and countries about cryptocurrencies are associated with the anonymity of
cryptocurrencies, their use in the grey or black market, and their possible use in tax evasion
and money laundering.

Block header Block header Block header
= = =
[GJ [
nel nel nel
o © ©
0) CU CU
~ < <
4 - -
g ™1 Transaction 1 3 ™I Transaction 1 g ™I Transaction 1
o a o
5 ; E i E i
_g 2 Transaction 2 _g ™2 Transaction 2 _g ™2 Transaction 2
Q @ @
bt bt et
ﬁ“ X ,f‘ Transaction n ,f‘ Transaction n
s} Tx3 Transaction n s} 3 s} 3
- 5 5
© © ©
ey N <

Block 1 Block 2 Block n

Figure 2: Example of Blockchain structure. Bi-directional arrows represent link created
by block header connections.

10

2.2 Locality Sensitive hashing

Locality sensitive hashing is one of the most prominent methods of comparing individual
elements in the data set [14]. Comparing elements, LSH calculates similarity based on either
the cosine distance or the Euclidean distance. LSH uses a family of hash functions [15], which
groups the elements from the dataset based on the similarity between them. Hash functions
of LSH are tunable and can be adjusted according to the purpose of the similarity calculation.
Comparing an element with all other elements of a dataset in a usual iterative way has a time
complexity of O(n?). Using LSH, this time complexity of comparing elements can be reduced
to O(n). LSH does not compute exact cosine or Euclidean distance, but performs approximate
computation. The use of LSH has the best results when each element in the dataset has many
features, and the total number of elements is also high. Similarity obtained using LSH has been
previously used to find and filter duplicates or to get the closest match to a small data sample.
Popular music recognition apps like Shazam are based on LSH. Although LSH is widely used
in image search and text mining, it is not very well explored on graph network datasets. Our
evaluation method in Chapter 5.3 uses LSH for similarity calculation.

2.2.1 LSH workflow

LSH workflow is described in [16] in detail and is broken down into three main sub-steps as
follows

1. Shingling: In this step, each item in the data set is represented as a set of elements.
In randomly generated graphs, each graph will be converted into a vector using the
total number of possible overall edges and the amounts observed in the pattern. This
vectorization method ensures that the length of each randomly generated graph vector
will be the same, making the calculation of Euclidean distance easier.

2. Min-Hashing: Min hashing helps to convert shingle sets into hashes or signatures. The
fundamental idea behind min-hashing is that every column is hashed in such a way that
similarity is preserved. Thus, if the similarity is high for two columns, then there is a
high probability that both columns should fall into the same sub-set. Moreover, if the
similarity of two columns is low, then there is a high probability that both columns should
not fall into the same sub-set.

3. hashing: Using the signatures, the vector similarity of the discovered pattern with all the
random patterns is calculated. The query vector is compared with the stored vectors in
the data set for this computation. If the pair has the same hash or falls in the same sub-
set more than n number of times, such pair is saved as a candidate for similarity match.
Euclidean distances are calculated between vectors of n such matches, and results are
ranked according to the Euclidean distance.

2.3 Related work

In this subsection, we briefly discuss existing pattern mining studies conducted on Bitcoin
Blockchain. We discuss similarities and differences between our study and previous studies.
Studies discussed in this subsection help to understand our choices regarding pattern selec-
tion, representation of Blockchain, algorithm approach and evaluation approach. Selection of

11

diamond and circular patterns is based on patterns discussed in studies [17], [3], [8]. Repre-
sentation of Blockchain as weighted directed network graph is inspired from [1]. The approach
taken while designing algorithms circle track and the diamond track is based on a comparison
of approaches in [5]. The evaluation approach in the relevance evaluation is a combination of
randomization test in [8] and weighted similarity calculation in [18]. The selection of LSH to
compare a pattern with random patterns is based on [14]. Details of each of these studies and
their relation to our study are explained below.

The study conducted in [1] shows how data from blocks of Bitcoin Blockchain is processed as
graphs. The study [1] also discusses the different types of transactions. Similar to this study, C.
Cachin et al. [1] have also conducted their study on the Blockchain of Bitcoin and Ethereum.
The terminology used in this study and their study is similar, and hence [1] can be referred to
explore the components of Blockchain in detail. Some core concepts such as Bitcoin mining,
Unspent Bitcoin transactions outputs are not discussed in this study due to the primary focus
on pattern mining. These concepts and their relation with graph construction are explained in
[1]. Their study showed how the structure and components of Blockchain contribute and affect
graph creation. In our study, we have taken inspiration from their methods while constructing
graphs of Blockchain transactions.

In [17] along with transaction pattern mining, Bitcoin network statistics about the network
of Bitcoin and overall wallet balance are discussed. Their research found that more than 70%
of Bitcoin wallet addresses are associated with the biggest exchange of that time, known as
Mt. Gox. As the Bitcoin Blockchain has grown exponentially over the decade, data Statis-
tics discussed in [17] differ from current Bitcoin data. In their study, an investigation about
long-chain transaction patterns was conducted. A long-chain transaction pattern is where a
large amount of Bitcoin is forwarded numerous times with tiny decay in amount every time
it is forwarded. Such types of transactions were also a point of interest for malicious activity
tracking. Although, over the period, long-chain transactions can grow exponentially with many
branches. Such chains extend beyond the one-week time frame and hence are not considered
in this study. Tracking such chains is informative in the case of small networks. Study [17]
was conducted in 2012; hence, limited data was available for Bitcoin. Observations such as
addresses are majorly associated with a single exchange are not valid due to the exponential
growth of the Blockchain field. Hence, it is not possible to analyse transactions while keeping
an exchange as a central point. Concepts such as Fork-Merge patterns and self-loops are dis-
cussed in [17]. Fork-Merge patterns are patterns similar to diamond patterns and have splitting
of amount into multiple addresses and self loops are similar to circularpatterns, but sender and
receiver is the same. Based on the similarity of patterns in [17] and our study, we studied
pattern structures and made the selection of circular and diamond patterns.

In [3] authors Chen Zhao and Yong Gu, have processed Bitcoin transaction networks as graphs.
In this study, the basic concepts of transactions and their nature is studied. The study discusses
two possible patterns involved in money laundering activities. The first one being a cyclic pat-
tern as shown in 1 (a) and the second one being not a very structure-specific pattern. As
demonstrated earlier in Figure 1(a), in circular patterns the source node is also the sink node;
thus the amount is forwarded back to the first node of the pattern. The forwarded amount
has little or no decay while being transferred to the next node. Study [3] discusses an idea
where a suspicious transaction may have an amount splitting in smaller chunks and then sent

12

to multiple nodes. This is very similar to the structure illustrated in Figure 1 (b). As observed
in the results of [3] in suspicious patterns, a large amount is often split into a large number
of smaller chunks. Based on this observation, we decided not to limit circular and diamond
patterns structurally.

Study [19] has similar research which tries to identify money laundering patterns and ad-
dresses involved in them. For this identification, machine learning models are used along with
a labelled data set. In this study, a specific 2-motif pattern referenced as “short thick bands”
(STB) is considered a potential candidate for the money laundering activity. The structure of
STB can be defined as a hybrid of circular and diamond patterns. STB pattern merges circular
pattern and diamond pattern to create a complex sub-graph termed as directed hypergraph in
[19]. Although the research theme is similar to this study, the primary focus of authors Stephen
Ranshous et al. is classifying suspicious addresses and not on suspicious transactions. Studying
the structure of the STB pattern directed our study to consider circular and diamond patterns.
Studying STB patterns also helped in formulating conditions for circle track and diamond track
algorithms.

Apart from Bitcoin, traditional bank data sets have been similarly studied for pattern min-
ing. Research done in [4] tries to extract k-partite graphs. A k-partite structure is a graph
structure where the source distributes the amount into k candidates. The number k, in this
case, can be any number more than a certain threshold number of nodes required. Taking a
similar approach in our study, we designed an algorithm that can extract patterns having a
diamond shape as shown in Figure 1 with a minimum of 2 nodes in the second layer. In [20]
authors Andrea Fronzetti Colladon and Elisa Remondi have analysed an ltalian factoring com-
pany's data for money laundering activities. Their study uses network analysis metrics such as
centrality, in-degree, out-degree to construct graphs of transactions. Further, clustering graph,
they classify transactions as suspicious and non-suspicious. In our study, the concept of layers
in a pattern and the idea of not putting any limit on the number of nodes in layer 2 are inspired
from [4].

Authors Wegberg et al. [9], have studied Bitcoin's involvement in money laundering activ-
ities. In their study, authors have monitored the types of services used. Some mixing services
are available in the Bitcoin network, which helps merge multiple small transactions into one
transaction. Mixing makes the flow computation hard as the exact transferred amount is not
precise. If there is the involvement of any mixer service, then it signals a possible malicious
activity alert. Along with this, the internet remains an essential need for any cryptocurrency
transaction. Authors have tried to monitor different aspects such as type of browser, popularity,
or reviews of the mixing services, and availability of personal details. Hence, authors have tried
to use details available outside of Blockchain data to find malicious activity in their study.
Although the research theme is different, the fundamental idea of money laundering and how
it is executed was studied using [9].

The study conducted in [8] is similar to this study, as it also considers data from Bitcoin
Blockchain to find pattern formations. Authors Kosyfaki et al. have created an algorithm to
find different types of small sub-graphs in a graph network. For this search of the patterns, the
authors consider a flow threshold for every edge present. Following the same idea, in this study,
we have used a fluctuating threshold. As the prices of cryptocurrencies are volatile, we choose

13

a threshold based on the weekly price of the cryptocurrency. Using this fluctuating threshold,
all the transactions above 3000 dollars are searched for the patterns. Patterns mined in [8] do
not have a fixed geometrical structure. In contrast to this, we focus on patterns with either
circular or geometric structures in this study. Significance testing conducted in [8] randomizes
the flow observed while keeping the structure of the pattern the same. Keeping the structure
the same helps test the significance of the flow observed, however, not the structure observed
in the pattern. Taking inspiration from this method, we designed a method that conducts
tests of relevance. Relevance evaluation uses methods like LSH along with the similarity test,
skewness test and kurtosis test. Unlike significance testing, the relevance evaluation helps to
classify patterns as usual or unusual observations based not only on flow but also on the pat-
tern’s structure. Study in [8] uses sliding time windows for tracking patterns. The maximum
time window considered in [8] is of 900 seconds or 15 minutes. Such a small-time window
may serve best for patterns described in [8]. However, considering patterns like Figure 1 and
average transaction time of 1 hour for Bitcoin in 2016-2017, we consider larger time windows
of 7 days. Studying [8] helped in selecting a time window for a data split and inspired the
creation of the relevance evaluation.

To study various pattern mining approaches, we referred to the study conducted in [5]. Total
five types of approaches are discussed in [5] i.e., Apriori based Algorithms, Partition-based
Algorithms, hybrid DFS, Pattern Growth Algorithms and SQL-based algorithms. Out of these
four approaches, Partition-based Algorithms, SQL-based algorithms, and hybrid DFS are rel-
evant for our study as our algorithms are based on similar concepts. Based on hybrid DFS,
we created algorithms that find neighbours of a pair of source nodes and support nodes in
parallel. Similar to Partition-based Algorithms, in the diamond track algorithm of this study,
we process data in a graph by dividing it into n parts. Dividing data helps to confirm the
discovery of a pattern in the early stages of the algorithm. Taking a subset of the data and
cleaning step discussed in both algorithms of this study is based on SQL-based algorithms in
[5]. Although [5] provides an in-depth comparison of different approaches, most of the algo-
rithms based on these approaches are designed for frequent pattern mining. Similarly, python
packages like Stanford Network Analysis Platform (SNAP) and networkx are highly scalable
and efficient but do not take custom input for pattern mining. Hence, in this study, we created
our algorithms to find patterns shown similar to Figure 1 independent of these packages. The
primary aim of these algorithms is to find patterns in the datasets of Bitcoin and Ethereum.
Hence, we do not focus on metrics such as efficiency and scalability discussed in [5], [8]. The
complexity of patterns discovered in [5], [8] is also less as they have a limit on maximum nodes.

Although graph pattern mining is the primary focus of this paper, relevance testing of dis-
covered patterns is also an essential aspect of this study. To test relevance, we focus on the
structural information of patterns and the weights involved. To apply this, we permute random
edges to create random graphs. To compare and find out the similarity between discovered pat-
terns and randomly created graphs, we propose using Locality Sensitive Hashing (LSH). LSH
is a well-proven method for retrieving similar items for a query item. LSH has been previously
proven effective in different domains having similarity search problems in high dimensional
data sets. This advantage of reduced time and accuracy helps in the case of this study as well.
Weighted vectorization of random graphs can result in high-dimensional data sets. In [21] LSH
has been tested for retrieving similar images in an extensive database. Authors Ramiro Camino
et al. of [21] conduct a similarity search for images in a distributed way. In [14] The authors

14

Ting Liu et al. have compared different neighbourhood approximation methods for graphs.
Methods like LSH, Quantization, and Tree search were compared [14]. From the results, the
authors claim LSH is superior compared to the other two methods. We selected LSH to com-
pute the similarity between a pattern and random patterns quickly and accurately based on
this comparison.

Sub-graph similarity and node similarity is a well-explored topic in the field of graph pattern
mining. In [18] authors Tariq et al. have conducted a study that calculates node similarities
for weighted graph networks. For calculating similarity, the method proposed in [18] converts
graphs into a weighted adjacency matrix. Following a similar concept in this study, we convert
discovered patterns into weighted vectors before performing relevance tests. Such a weighted
vector structure allows comparing flow observed in the pattern and the structure of the pattern.

3 Data

In this chapter, we elaborate on the data of Bitcoin and Ethereum. Time frame, source of data,
and weight thresholds are discussed in this chapter. As previously described, the transaction
data of both cryptocurrencies is divided based on a time window of seven days. This chapter
also mentions graph network statistics for each window of seven days and the entire dataset
of both cryptocurrencies. As the Blockchain has some unique transaction aspects, we also
present challenges and assumptions related to data.

3.1 Bitcoin

We used Bitcoin Blockchain data from January 2016 — February 2018. The selection of this
time frame was made based on the price fluctuation for Bitcoin. The time frame from January
2016 — February 2018 provides us with the consolidating price of 2016, the exponential rise
of 2017, and the downfall of early 2018. Different market sentiments affect the Blockchain
transaction metrics such as number of users, number of transactions, average amount as shown
in Figures 25, 26, 27. Blockchain metrics also show correlation with number of patterns, as
shown in Figure 27.

The Bitcoin Blockchain is open-source data and can be downloaded through Bitcoin core.
However, Bitcoin core downloads data from the first block of Bitcoin, and it takes a large
amount of time and memory to complete the download. Hence, in this study, we downloaded
data from MIT data library. Data from MIT data library is split into four parts transaction
input, transaction output, transaction history, and block history. Transaction input describes
transaction ID, senders in a transaction, and the amount sent by each one. Transaction output
describes transaction ID, receivers, and the amount received. Transaction history mentions
timestamps and block numbers for each of the transaction IDs. Block history has all rest
of the information, such as block number, its position in Blockchain, and other details. We
preprocessed these four files and combined information in them to generate graphs. Based on
timestamps in the transaction history, all four files are split at a time interval of 7 days. After
splitting the files into small chunks of data, each of them was searched for patterns. We also
downloaded Bitcoin price data to set the varying edge weight thresholds. Based on the price
of Bitcoin for a week, we calculated the edge weight threshold for each split that helps to
monitor all transactions above 3000 dollars.

15

https://bitcoin.org/en/bitcoin-core/
https://bitcoin.org/en/bitcoin-core/
 https://senseable2015-6.mit.edu/bitcoin/
https://senseable2015-6.mit.edu/bitcoin/

Figure 3 shows the distribution of the number of transactions in Bitcoin blocks. Each split of
the Bitcoin data contains about 1100 blocks. Table 1 below shows graph network statistics for
each split of the data as well as the entire dataset. The number of transactions in a Bitcoin
block is highly co-related with price (shown in Figure 25). Hence, data described for a split in
Table 1 is shown using a range of values.

Number of Number of Average flow
Name
nodes Edges per edge
Bitcoin 237 Million 196 Million 4.46 Bitcoin
Bitcoin .data for 1 Million to 3.3 Million | 650k to 1.5 Million | 2.23 Bitcoin to 4.46 Bitcoin
each split

Table 1: Statistics mentioned for Bitcoin data are for the entire Bitcoin dataset, and
statistics mentioned for each split are for each division in the dataset.

Distribution of transactions in blocks

103 4

102 4

Number of blocks

101 4

100 .

0 1000 2000 3000 4000
Number of transactions

Figure 3: Bitcoin: Figure shows distribution of transactions for Bitcoin. Average transac-
tions per block are approximately 1700. Only limited number of blocks show transactions
more than 3000 in one single block. However, large number of blocks have less than 5
transactions.

3.2 Ethereum

Ethereum Blockchain data from January 2016 — February 2017 was used in this study. Similar
to Bitcoin, the entire Ethereum Blockchain download takes approximately 4 TB of space and
a large amount of time. However, API's of some websites allow downloading small portions
of Ethereum transaction data. In this study, data was collected from mainnet infura via API.
The use of API has the advantage of having data preprocessed to some extent. However, the
disadvantage of having a limited time frame. Data exported from API source contains a lot of
information for each transaction in Blockchain, out of which block ID, transaction ID, sender,
receiver, amount, and timestamp is the relevant information for construction of graph network.

16

https://infura.io/product/ethereum

Wallet addresses, i.e., senders and receivers, are mapped to unique integers to simplify the
process of pattern mining. Similar to Bitcoin data, Ethereum data is split at a time interval of 7
days and using Ethereum price data, an edge weight threshold is assigned to each week. Figure
4 shows distribution of transactions for Ethereum blocks. On average, a block contains 150
transactions. Each split of Ethereum data contains about 25000 blocks. Table 2 Shows data
statistics for the entire Ethereum dataset as well as each split. Ethereum is under development
compared to Bitcoin, and its Blockchain is expanding based on projects under Ethereum. The
growth of Blockchain influences the transactions, and hence statistics shown for the split of
Ethereum data have a wider range than Bitcoin data split.

Number of Number of Average flow
Name

nodes Edges per edge
Ethereum 17.8 Million 143.6 Million 500 Ethereum to 1000 Ethereum
Approximate
Ethereum data for | 250 k to 2 Million | 3 Million to 7.1 Million | 500 Ethereum to 1000 Ethereum
each split

Table 2: Statistics for entire Ethereum dataset and each of its split.

Distribution of transactions in blocks

106 4

105 4

104 .

Number of blocks

103 4

0 50 100 150 200 250 300 350 400
Number of transactions

Figure 4: Ethereum: Figure shows distribution of transactions for Ethereum. Average
number of transactions in an Ethereum block is approximately 150. Similar to Bitcoin
distribution in Figure 3 many blocks have less than 5 transactions.

3.3 Challenges and assumptions

The graph structure in Figure 1 shows that each edge representing a single transaction in
a directed weighted graph has one sender, one receiver, one amount, and one timestamp.
However, Bitcoin transactions have one unique possibility of multi-input and multi-output
functions. Multi-input and multi-output features create the possibility of one single transac-
tion having more than one input and more than one output. Having the ability to send Bitcoins
to multiple people in one transaction serves as an advantage in saving time and memory in a

17

block. However, this also reduces the transparency of the amounts involved. As the amount is
collected from n-input addresses and then distributed to n-output addresses, there is no clarity
about the individual amount send and received. Mixer services use this ability of multi-input
and multi-output transactions of Bitcoin Blockchain to merge transactions and create confu-
sion regarding the amount [9]. This unclarity about amounts involved in transactions creates
a challenge of handling such transactions and pre-processing them in one input and output
format.

Assumption 1: This study creates pairs of multi-input multi-output transactions based on
the number of inputs and outputs. The total weight observed is divided equally between all
the pairs created, assuming that they contribute equally. In every block, there are typically
less than 5% transactions having a multi-input, multi-output structure. In this study, we pre-
process them to create equally weighted single input-output type of transactions.

Figure 5 shows an example of Multi-input and multi-output transactions and the unclarity
about amounts associated with it. Senders A, B, C send amount 20 each in a single trans-
action. A total amount of 60 is first collected and then distributed to 2 users, D and E. As
shown in Figure 5, we create pairs of senders and receivers. Hence, if multi-input multi-output
m senders and n receivers, it creates mXn additional transactions.

Source Target Flow

A 20 > Amount N A D 10
B 20— collected - 533(()) A £ 10
C 20 > =60 - 5 5 1
B E 10

Multi input - output transaction example c D 10

C E 10

Figure 5: Example of a multi-input and multi-output transaction. A, B, C are the senders
contributing amount of 20 each which is distributed as 30 for each receiver, i.e., D, E.
Hence this transaction is simplified into 6 one-to-one transactions. But it assumes that
all inputs contributed equally towards all receivers.

Due to multi-input, multi-output transactions, another challenge introduced is with coin trea-
sury transactions. The total number of Bitcoins ever to be issued is 21 million, stored in
the coin treasury of the Bitcoin Blockchain. Bitcoin and Ethereum miners get the reward for
maintaining the Blockchain [22]. The transaction which pays this kind of reward is known as a
coin-base or coin treasury transaction. Such transaction is not part of the input chunk of the
data. Such coin-base transactions create missing entries when input and output chunks of the
Blockchain data are compared. Coin-base transactions further make it challenging to merge
the input and outputs of the transaction as an adjacency list.

Assumption 2:Coin treasury transactions are not considered in this study with the assumption
that they are not suspicious. Coin treasury transactions are initiated through an algorithm
of cryptocurrencies. Their involvement in any suspicious activity is highly unlikely. Hence, we
removed such transactions in this study.

18

Transactions having more than 1 input in one week Transactions having more than 1 output in one week

160 140

140 120 1

- % 100 -
= 100 =1

5 S @

T 80 o
=] L
E E
2 60 2

40 407

20 20 4

0- 0-

200 400 B00 800 1000 120 500 1000 1500 2000 2500 3000
Mumber of transactions NMumber of transactions
(a) (b)

Figure 6: Figure (a) shows the distribution of the transactions having more than 1 input
in weekly data. And Figure (b) shows the distribution of more than 1 outputs. These
two figures show that transactions with more than 1 input and output cannot be
omitted from the data set.

4 Problem Statement

In this chapter, we define the problem of finding patterns in a formal way. Notations shown
in Table 3 are used while defining this problem. Notations used in Table 3 are similar to [8].
While defining problems, we use terms such as source node, support node and layers previously
defined in Chapter 1.

We denote a graph for each split in the data using notation G(V, E,T, F'). Each split of
the data is always within duration constraint 6. In G(V, E, T, F') V is the set of nodes, E is
the set of edges, T is the set of timestamps and F is the set of weights or flow. In such a graph
two nodes u, v € V can be connected by edge e and e € E. Edges between u, v, are denoted by
using e(u,v). f(e) represents one or more weights observed on edge e. Using f;(e), we denote
flow observed on an edge e at timestamp ¢. v;, represents incoming edges of a node v and
Uout Tepresents outgoing edges of a node v. f(v;,) and f(veu) represent total incoming flow
and outgoing flow for a node v, respectively. With f;(v;,) and f;(v,u:) we denote incoming
and outgoing flow for a node v at a timestamp t. N is the number of unique nodes and M is
the number of unique edges in a graph. o(a, b, ¢) calculates standard deviation between data
points a, b, c. The degree of a node is the count of the number of nodes connected to it. For
a node, in-degree measures the number of nodes connected by incoming edges. Out-degree
measures nodes connected by outgoing edges. For each such split, the aim is to find circular
patterns G.(V,, E., T, F,) or diamond patterns G4(Vy, Ey, Ty, F;). When notations are ap-
plied to layers, they act for all the elements in that layer. Notations f(layer2;,), f(layer2qu)
show combined inflow and outflow of all nodes in layer 2. Both circular and diamond patterns
always have a source node, a support node and at lest two layer 2 nodes.

19

Notation Definition
G(\V,E,T,F) Directed weighted input graph
Ga(Vy, Eq, Ty, Fy) | Diamond pattern
Go(V., E., Ty, Fy) | Circular pattern
) Duration constraint for pattern
e(u,v) Set of edges from u to v
fle) Flow on edge e
fi(e) Flow on edge e at timestamp t
Vin Incoming edges of node v
Vout Incoming edges of node v
t(e) Timestamp of edge e
f(vin) Incoming flow of node v
f(Wout) Outgoing flow of node v
N Number of unique nodes
M Number of unique edges
o(a,b,c) Standard deviation of

” (a, b)

Table 3: Notations used in problem defining and their definitions

4.1 Problem statement: circular patterns

Source Target Amount Timestamp
A B 10 1
B C 10 2
C D 10 3
D A 10 4

Figure 7: Example of a circular pattern along with the table explaining the edges of the
pattern.

« Definition: A circular graph pattern G.(V,, E., T., F.) is a sub-graph of G(V, E, T, F),
where N > 4, M > 4. For the source node and support node in V,, in-degree > 1 and
out-degree > 1. For each of layer 2 nodes in V. in-degree = 1 and out-degree = 1.

In a circular pattern, E(source node, support node) cannot exist but E(source node,
layer 2 nodes) and E(layer 2 nodes, support node) always exists.

» Problem statement: Given a graph G(V, E, T, F), find G.(V., E., Ty, F;) where each
of the following condition is true.

o Condition 1

U(f(layerlin)> f(layerlout)’ f(layeTQin)v f(layerzout)7 f(lay6r3in)’ f(la'yergOut)) < ¢
(1)

20

Where

PR S @)

and ¢ is the deviation threshold. For Equation 2, n is the number of data points used
for standard deviation calculation, p is the mean for the data points and f; represents a
flow.

Condition 1 in Equation 1 ensures the amount transferred between different nodes of a
circular pattern is similar and under deviation threshold ¢.

« Condition 2
t(layerlon) < t(layerl;,) (3)

Condition 2 in Equation 3 ensures the source node first sends the amount before receiving
it back. Timestamp conditions are implemented only on source node, as there can be
multiple transactions between source node and layer 2 nodes.

We do not set any upper limit on N or M for circular patterns. Only flow and structural
conditions are defined to find circular patterns in the dataset. This helps to explore complex
pattern as shown in Figure 28.

4.2 Example: circular pattern

The structure of circular pattern and conditions can be better understood with the circular
pattern G.(V,, E., T, F.) shown in Figure 7. For the circular pattern shown in Figure 7 graph
network components nodes, edges, timestamps, and flow are defined as

V.={A,B,C, D}, (4)
Equation 4 shows the nodes involved in a circular pattern
E.={(A,B,1),(B,C,2),(C,D,3),(D,A,4)} (5)
Equation 5 illustrates edges that define the relationship between nodes.

T, ={1,2,3,4} (6)

F, = {10,10, 10, 10} (7)

Equation 6 shows the timestamps and Equation 7 shows the weights on the edges. referencing
to Figure 7, Conditions in Equations 1, 3 can be explained as follows.
Condition 1

O-(f<A0ut)7 f(Bout)v f(007Lt>’ f(Dout>a f(Am)) < ¢ (8)

Equation 8 implements f(Aout) = f(Bow) = f(Cowt) = f(Dous) =~ f(As). Equation 8
ensures flow observed for each node remains similar.
Condition 2

t(Aout) < t(Ain). (9)

Equation 9 Ensures source node A, first sends the amount before receiving any of it back.

21

4.3

Problem statement: diamond patterns

Source Target Amount Timestamp
A B 2 1
A C 5 2
A D 1 3
A E 2 4
B F 2 3
C F 5 5
D F 1 4
E F 1 6

Figure 8: Example of a diamond patterns along with the table explaining the edges of the
pattern.

Definition: A diamond graph G4(Vy, Eq, Ty, Fy) is a sub-graph of G(V, E, T, F'), where
N > 4 and M > 4. For the source node in Vj, in-degree = 0 and out-degree > 2. For
the support node in V,; in-degree > 2 and out-degree = 0. For each of layer 2 nodes in
Vy in-degree = 1 and out-degree = 1.

In a diamond pattern, E(source node, support node) cannot exist but E(source node,
layer 2 nodes) and E(layer 2 nodes, support node) always exists.

Problem statement: Given a graph G(V, E, T, F), find G4(Vy, E4, Ty, F,;) where each
of the following condition is true.

Condition 1

o(f(layerloy), f(layer2,,), f(layer3;,)) < ¢ (10)
Where
N 2
n

and ¢ is the deviation threshold. For Equation 11, n is the number of data points used
for standard deviation calculation, p is the mean for the data points and f; represents a
flow.

Condition 1 in Equation 10 ensures the amount sent out by source node is the same
amount received by sink node. If there is any change in the amount, then it should be
under the deviation threshold ¢.

Condition 2
t(Layerly,) < t(Layer3;,) (12)

t(Layer2;,) < t(Layer2,u;) (13)

22

The condition in Equation 12 ensures that sink node does not receive any amount before
being sent by source node. With Equation 13, a condition is set for layer 2 nodes that
ensures layer 2 nodes receive an amount before sending it to the sink node.

Similar to circular patterns, we do not put any structural limit on diamond patterns. Upper
bound N and M is not defined which helps in discovering complex patterns.

Graph components of a diamond pattern G4(Vy, E4, T4, Fy) shown in Figure 8 are defined as
follows

‘/CII{A>B7C>D7E7F}7 (14>

E,={(A,B,1),(A,C,2),(A,D,3),(A E,4),(B,F3),(C,Fb5),(D,F,4),(E,F,6)}

(15)
Ty ={1,2,3,4,3,5,4,6} (16)
Fy=1{2,51,2,2,5,1,1} (17)

4.4 Example: diamond patterns

Referring to Figure 8 the conditions for diamond pattern can be defined as follows
Condlition 1

J(f(Aout)v f(Bm)a f(cm)> f(Dm)v f(Ez)f(Bout)a f(Cout)> f(Dout)7 f(Eout)v f(Fm)) < Qb

(18)
Equation 18 ensures the flow observed in all three layers is similar as shown below.
f(Aout) ~ Z {f(Bm>7 f(Cm)7 f(Dm)v f(Em)} (19>
f(Fin) ~ Z {1 (Bout)s f(Cout)s f(Dout)s f(Eout) } (20)
Condition 2
H(Aout) < t(Fin) (21)
t(Bin) < t(Bout), t(Cin) < t(Cout), t(Din) < t(Dout), t(Ein) < t(Fout) (22)

Equation 21 ensures sink node F does not receive any amount before being sent by source
node A. Using Equation 22 a condition is set for layer 2 nodes that ensures each node in layer
2 first receives an amount from source node before sending it to sink node.

23

5 Methods

In this study, we designed two algorithms to find circular and diamond patterns. Given the
input of a data split G(V, E, T, F'), algorithm diamond track finds G4(Vy, Eq, T4, Fy), and cir-
cle track finds G.(V,, E., T, F..) that fulfil the conditions in Chapter 4. For the search of the
patterns, algorithms take a hybrid approach of combining BFS and DFS. The hybrid approach
is executed by searching for all patterns for a source node, but parallelly finding all patterns
for a combination of a source node and a support node. Figure 9 (a) shows an example input
received by the algorithm. For the given input data, algorithms first find a subset of data
containing a pattern as shown in Figure 9 (b). An unclean pattern shown in Figure 9 (b) is
a sub-graph that holds structural information about all the node interactions of interesting
nodes, but can also have some non-interesting edges and nodes. Secondly, algorithms get rid of
unnecessary part of the subset, resulting in the pattern shown in Figure 9 (c). A clean pattern
graph in Figure 9 (c) is a sub-graph of only interesting nodes and does not have the noise of
other non-interesting nodes and edges. All the edges that are part of a clean pattern satisfy
the time and flow threshold conditions. In the final step, the algorithm checks the patterns
for conditions in Chapter 4 and saves or discards them. Although Figure 9 (c) shows a circu-
lar pattern as a product of clean stage. Steps involved in finding diamond patterns are identical.

Pseudo-code of the circle track in Algorithms 1, 2, 3 and diamond track in Algorithms 4,
5 explains all the steps, using an iterative loop, as the process is the same for the multiple
elements of the data set. However, the implementation of the algorithm, should use least
possible iterative loops until a short subset of the data is taken. Furthermore, not having a
dependency on multiple iterative loops ensures the algorithm's speed remains competitive and
enables fast discovery of patterns.

In terms of time, our algorithms do not scale very well. When compared to frequent min-
ing algorithm in [8] our algorithms take more time to find patterns. Inefficiency of algorithms
is due to not having a structural limit for both circular and diamond patterns and low edge
weight threshold. Primary purpose of creating these algorithms is to find patterns previously ex-
plored and also to explore some more similar but complex patterns. Unlike [8], we do not aim to
create scalable and efficient algorithms. Empirical run time is illustrated in Chapter 6 Table 11.

In this chapter, we present detailed working of circle track algorithm in chapter 5.1 and dia-

mond track algorithm in Chapter 5.2. We also present our novel evaluation method, relevance
evaluation, in Chapter 5.3

24

) Overall) Unclean) Clean

Figure 9: In this image summarized idea of algorithms is seen. The workflow of the
algorithm goes from left to right. Figure (a) example of the overall graph of weeks
transactions is seen. In Figure (b) An unclean pattern is shown, and in Figure (c) a
clean pattern having only interesting nodes and edges is shown.

5.1 Algorithm Circle track

In this algorithm, we search for the circular patterns G.(V,, E., T., F.) for a source node.
Source nodes are selected from the candidate list. A candidate list is created based on the
interaction of a sender node with receiver nodes in G(V, E, T, F'). For every source node, a
support node is selected in an iterative way. For a pair of source nodes and support nodes, all
circular patterns are searched in a single scan. Algorithms workflow is broken down in three
steps. In the first step, algorithms generates a candidate list and a support list. In the second
step, the algorithm takes a subset of data with probable circular pattern in it. In the last step,
the subset is cleaned to find the circular pattern.

5.1.1 Node selection

The first step of the algorithm aims to find candidate nodes that possibly create circular pat-
terns. In this first step, we also generate a list of support nodes. Each node from candidate
nodes is a potential node for Address 1, and each node from support nodes is a potential node
for Address 3 shown in Figure 1 (a).

To find candidate nodes that may create circular patterns, we use parts transaction input and
transaction output of the data. As displayed in Algorithm 1 line 4 using transaction input
and transaction output, an intersection is taken for senders and receivers of transactions. The
result of this intersection is further filtered by setting a condition that a node should be first
a sender and then a receiver later in time. This condition fulfils the first goal of finding can-
didate nodes. In the next step shown on line 5 a node Addressl is selected sequentially. The
selected node acts as a source node and sink node for the circular pattern. The next step is
to find incoming neighbours (degree_1_in) and outgoing neighbours (degree_1_out) for the
selected node. In Algorithm 1 these two neighbour finding steps are executed in line 7 and line 8.
Further, for each node in (degree_1_in) incoming neighbours are calculated marked as (degree_2_in)
and for (degree_1_out) outgoing neighbours are calculated marked as (degree_2_out). Taking
the intersection of (degree 2_in) and (degree_2_out) generates the list of support nodes. The

25

generation of support nodes is a crucial step as it helps to establish a circular structure of
a pattern. Steps for finding (degree_2_in), (degree_2_out) and support nodes are executed
from line 9 to line 16. List of support nodes is marked as (degree_2_commons) in Algorithm
1. Another important step is to save nodes in the order of their discovery. Saving nodes in
order of their discovery helps later in the cleaning step of the algorithm. In Algorithm 1 line 6
initiates a list that helps to save nodes.

Algorithm 1 Circle_track (Node selection)
1: Input — Block-chain data consisting of Sender, receiver, weight, timestamp, i.e.,
G(V,E,T,F)
2: Output — List of support nodes
3: while nodes in-degree_2_commons < 2 do

4: Potential candidates = Source N Target

5: Address 1 = Potential candidateli]

6: Node_track += Address 1

7 degree_1_in = in_neighbours(Address 1)

8: degree_1_out = out_neighbours(Address 1)

9: for node in degree_1_in do

10: degree_2_in = in_neighbors(degree_1_in[node])
11: end for

12: for node in degree_1_out do

13: degree_2_out = out_neighbors(degree_1_out[node])
14: end for

15:

16: degree_2_commons = degree_2_in N degree_2_out
17: end while

18:

5.1.2 Data subset selection

The second step aims to create a subset of the data that has a circular pattern. To create
this subset, the algorithm takes the input of support nodes generated in the first step. From
the input, a node is sequentially selected which is marked as Address3 in Algorithm 2 line
3. Similar to Address1 in the first step, we calculate incoming and outgoing neighbours for
Address3. This step is illustrated in Algorithm 2 line 4 and 5 in which incoming neighbours
are saved as in_circle and outgoing neighbours are saved as out_circle. Compared to Figure
1 (a), Address3 in line 3 is the same as Address 3. Calculation of in_circle and out_circle
finds nodes that are potential candidates for Address 2 and Address 4 in Figure 1 (a).

Same as Algorithm 1 Node_track saves nodes and neighbours in order of in_circle, Address3
and then out_circle. The structure of Figure 1 (a) demonstrates that all the nodes that are part
of the circular pattern are both senders and receivers. Hence, using nodes saved in Node_track
and a condition that states nodes should be senders and receivers, a subset of data is taken.
Based on the interaction of nodes, there is a chance of this subset having noisy nodes. A
subset taken from G(V, E, T, F) reduces pattern search time but requires the additional step
of cleaning the subset.

26

Algorithm 2 Circle_track (Data subset selection)

Input Blockchain data, support nodes.
Output Subset of data having only nodes of interest.
Address 3 = degree_2_commonsi|
in_circle = in_neighbours(Address 3)
out_circle = out_neighbours(Address 3)
Node_track += in_circle
Node_track += Address 3
Node_track += out_circle
for Node in node track list do
for Row in Blockchain data do
if node in "source” or node in "Target” then
save the Row in data subset
end if
end for
: end for

[S S T T
SRR R S ral =

5.1.3 Data cleaning

The subset contains a circular pattern, but it also has noisy edges and nodes not contributing
to a circular pattern. The primary purpose of this step is to get rid of noisy nodes and edges.
The secondary purpose of this step is to apply conditions stated in Chapter 4.

Going back to the Node_track list, as we have saved the visited nodes in order, the algorithm
creates pairs of nodes. Based on these pairs, the data set is filtered. This filtering yields us
the circular pattern without any noisy edges. The step executed in Algorithm 3 from line
3 to line 7 removes transactions that are not part of pairs created. As a result of removing
transactions, the primary idea of all the nodes in the circular pattern being senders and receivers
gets compromised. Hence, steps conducted in algorithm 3 from line 12 to line 20 help further
remove noisy nodes. The combination of these three cleaning steps yields a clean circular
pattern which is further checked for conditions discussed in Chapter 4.

After filtering step, if a pattern does not have a circular shape or does not satisfy the conditions
from Chapter 4, the algorithm goes back to Algorithm 2 line 3 and changes the selected node
for Address3 from degree_2_commons, and the rest of the steps remain the same.

27

Algorithm 3 Circle_track(Data cleaning)

1: Input — Noisy Circle Dataframe

2: Output — G.(V., E., T, F,)

3: for node in data subset do

4: Create permutation of node and next node.
5: for Row in Data do

6: if permutation not in Row then

7 Remove Row

8: end if

9: end for

10: end for

11:

12: for Row in subset do

13: if node is in "target” and not in "Source” then
14: Remove row

15: end if

16: end for

17:

18: for Row in subset do

19: if node is in "Source” and not in "target” then
20: Remove row (Step 6)

21: end if

22: end for

5.2 Algorithm Diamond track

Steps involved in diamond track are identical to circle track, but with few changes in the
traversing direction for the graph G(V, E, T, F'). The aim of diamond track algorithm is to
find G4(Vy, Eq, Ty, Fy) in G(V, E, T, F'). In the first step, a candidate list a created based on
in-degree and out-degree of nodes in G(V, E, T, F'). To preserve the diamond structure, all
the nodes above out degree of 2 are candidate nodes. Also in this first step, the algorithm
creates a list of support nodes. In the second step, a subset of data is taken that contains a
diamond pattern. Using a cleaning step, all unnecessary parts of a subset such as noisy nodes
and edges are removed.

5.2.1 Get diamond location

The aim of the first step in the algorithm is to generate a list of candidate nodes that may
create a diamond pattern. Also, this first step generates a list of support nodes.

For creating a list of candidate nodes for diamond shape, we drop all the nodes that have
less than 2 outgoing neighbours. As Figure 1 (b) shows, to qualify as a diamond shape, a
pattern should have two more or more splits. Dropping all the nodes with out-degree less than
2 creates the list of candidate nodes. In Algorithm 4 candidate set is generated on line 4. Each
node from C'andidate_list acts as a source node.

To create the list of support node, we first find outgoing neighbours of Addressl. The list
of outgoing neighbours is sorted and split into 2 parts, marked as out_neighbours_pt_1 and
out_neighbours_pt_2. Sorting this list rearranges the outgoing neighbours and makes finding
the diamond pattern easier in later steps. Steps of finding outgoing neighbours, sorting, and

28

splitting are executed on lines 7, 8 and 9 respectively. For each split created, we find outgoing
neighbours for each element in the split. Finding neighbours for each element in the split
generates two more lists marked as out_deg2_splitl and out_deg2_split2 in Algorithm 4. Steps
of finding outgoing neighbours for each split are shown on lines 11 to 17. Taking intersections
of out_deg2_splitl and out_deg2_split2 generates list of support nodes. Each node from the
list of support nodes is a candidate node for sink node, i.e., Address 5 shown in Figure 1 (b).
Having a non-empty list of support nodes shows that there is a chance that a diamond pattern
might occur for selected Addressl. Each node from out_neighbours acts as a probable layer
2 node.

Algorithm 4 Diamond_track(Get diamond location)
1: Input Blockchain data consisting of sender, receiver, weight, and timestamp, i.e.
G(V,E,T,F)
2: Output List of support nodes.
3: while nodes in-degree_2_commons < 2 do

4: Candidate_list = Nodes[out_degree(Nodes) > 2]

5: Address 1 = Select(candidate_list).

6: node scanned += Address 1.

7 out_neighbours = out_neighbours(Address 1)

8: out_neighbours = sort(out_neighbours).

9: out_neighbours_pt_1, out_neighbours_pt_2 = Split(out_neighbours)
10: parts = list(out_neighbours_pt_1, out_neighbours pt_2)
11: for part in parts do
12: for node in part do
13: out_deg2_split = out_neighbours(part).

14: end for
15: Save neighbours
16: end for

17: (Returns 2 lists out_deg2_split1, out_deg2_split2)

18: degree_2_commons = out_deg2_splitl N out_deg2_split2
19: end while

20:

5.2.2 Mine diamond

From the first step executed by Algorithm 4, we have a source node Addressl, probable
layer two nodes in two lists out_deg2_splitl, out_deg2_split2 and a possible sink node list
degree_2_commons. Given the input of these three, the second step executes similar steps as
Algorithm 4. The output of this step is a subset of G(V, E, T, F') that may contain a noisy
diamond pattern.

To generate this noisy diamond, the main task of this step is to filter out nodes from
out_deg2_splitl and out_deg2_split2 that contribute to diamond formation. To execute this
filtering, Algorithm 5 selects a node from degree_2_commons. For this selected node incoming
neighbours in_diamond are calculated as shown in Algorithm 5 line 5. Following the same
steps as Algorithm 4, the list in_diamond is sorted and split in two parts in_diamond_pt1
and in_diamond_pt2. As we have previously sorted and split out_neighbours in Algorithm
5 in this step we can take intersection of in_diamond_ptl with out_neighbours_pt_1 and

29

in_diamond_pt2 with out_neighbours_pt_ 2. These two intersections create lists of layer 2
nodes for the diamond, as shown in lines 7 and 8. As long as one of side_1 or side_2 are not
empty, we can continue further to save nodes and fetch a subset of data from G(V, E, T, F).
As observed in Figure 1 in a diamond pattern, all the nodes are senders in at least one trans-
action except for the sink node. Moreover, except for the source node, all the other nodes are
receivers in at least one transaction. Based on this information, a transaction subset is selected
from the primary dataset G(V, E, T, F).

Algorithm 5 Diamond_track(mine diamond)

Input Block chain Data, source node, sink node, degree_2_commons
Output Noisy subset of Data containing Diamond

node_track = Save(source node)

Address 5 = degree_2_commonsi|

in_diamond = in_neighbours(Address 5)

in_diamond _pt_1, in_diamond_pt_2 = Sort & split (in_diamond)
side_1 = in_diamond_pt_1 N out_neighbours_pt_1

side_2 = in_diamond_pt_2 N out_neighbours_pt_2

node_track = Save side_1 and side_2

node_track = Save Address 5

: for node in node_track do

get and save transactions of node

. end for(Returns data noisy data subset having only nodes contributing to diamond)

— = =
w2

5.2.3 Clean diamond

In the cleaning step, the primary goal is to remove noisy edges and nodes and generate a
clean pattern using the subset created in Algorithm 5. The cleaning process is simplified by
the nodes saved in order of discovery. As the nodes are saved in sequential order of their
discovery, it is possible to create permutations of two nodes. The subset can now be filtered,
having only specific permutations created. This filtering creates an exact diamond pattern
Ga(Vy, Eg, Ty, Fy) as required. The cleaning algorithm for diamond pattern is similar to the
Algorithm 3. Following the same steps as Algorithm 3 diamond patterns are tested in this step
for the conditions defined in Chapter 4. Failing to find a diamond pattern at this stage, the
algorithm goes back to Algorithm 5 and selects a new node for Address5.

5.3 Relevance evaluation

In this chapter, we explain our evaluation method, relevance evaluation. We first explain the
general idea, the problem with existing methods, approach and important part of LSH. Later
in Chapter 5.3.1, we elaborate on steps involved in relevance evaluation. Using two examples
in Chapter 5.3.2, we explain the effectiveness of this method.

o General idea: Once patterns are discovered, there is a challenge of classifying them as
usual or unusual observations. As stated earlier, usual patterns might be the result of
common transactions, and unusual patterns result from malicious activity. Even if we
assume all patterns are unusual observations, there is still a need to evaluate the risk
associated with the discovered patterns. Given that numerous graph patterns are found

30

in a data split, we want to evaluate their risk based on their structure and weights.
Relevance evaluation is an evaluation method for the discovered patterns. The primary
idea behind this implementation is that if nodes of a pattern have transactions with a
limited or low number of nodes, then the circular or diamond pattern created by them is
more likely to happen. However, if nodes of a pattern are involved in multiple transactions
or have transacted with many nodes in the overall graph, then the chances of creating
an exact circular or diamond patterns are low.

Existing methods and problems: The existing randomization tests evaluate the chance
of observing a pattern in a randomized dataset. Moreover, some randomization tests
only permute weights in a pattern and do not consider the structure of the pattern
while calculating significance [8]. The approach in the existing randomization test is well
suited for patterns with small sizes. However, in this study, we have not limited the
maximum number of nodes in patterns. Hence, some patterns can be large and have
numerous unique nodes and edges. The chance of observing such large patterns in the
existing randomized test is very low. With relevance evaluation, we created a method
that evaluates the chance of observing similar structure like the discovered pattern
and observing weights in the order of the same as the discovered pattern. Relevance
evaluation implements a weighted randomization test that combines the approach of
randomization test in [8] and weighted adjacency matrix in [18].

Implementation approach: For the randomization, we use nodes from the unclean pattern
saved by algorithms. Non-interesting nodes in the unclean pattern are the nodes that are
not part of a clean pattern. For example, nodes £/ and F' are non-interesting nodes in
an unclean pattern, as shown in Figure 9 (b). Non-interesting nodes are the real wallet
addresses from the data connected with nodes in a clean pattern. Nodes in the clean
pattern have transacted with non-interesting nodes; however, those transactions are not
part of the clean pattern. Random graphs patterns created with non-interesting nodes
give an idea about all possible transaction patterns that could have happened for nodes
in a clean pattern. If a pattern does not differ between the unclean and clean stages,
relevance evaluation still has some effectiveness due to randomization of edges and
weights. We keep the number of transactions, i.e., number of edges, in random graphs
the same as the clean pattern. Moreover, each edge in a random graph is assigned with a
weight observed in the clean pattern. Weights are selected randomly for every edge in a
non-repetitive way. With this approach of implementation, relevance evaluation answers
the following question

Given the nodes in the unclean pattern create random graphs and random graph nodes
are connected with the same number of weighted edges as the clean pattern, how similar
are the random graphs compared to the clean pattern

To answer this, the relevance evaluation conducts three tests; similarity test, skew test,
and kurtosis test. Each of these tests assigns an evaluation score to a pattern. Results
of the relevance evaluation are based on similarity comparison of a pattern with 1000
random patterns.

LSH aspect: LSH computes similarity by calculating the Euclidean distance between a
discovered pattern and each random pattern. We selected LSH due to its fast compu-
tation speed and accuracy. A higher number of nodes in an unclean pattern can create
many candidate pairs for the random graph generation. When represented as weighted

31

vectors, patterns can result in high dimensional vectors. The total number of possible
pairs is given by the formula, n", where n is the number of nodes in an unclean pat-
tern and r is always 2. For example, if the unclean stage of a pattern has a noise of
100 nodes, then there will be 10k possible pairs. As the relevance evaluation uses 1000
random graphs, the matrix representing random graphs as weighted vectors would be
of size 1k X 10k. Hence, we use LSH for faster and accurate calculation of similarity.
The output of LSH similarity calculation is a list of Euclidean distances between discov-
ered patterns and random patterns. The relevance evaluation uses the list of Euclidean
distances to conduct various statistical tests.

5.3.1 Workflow

Relevance evaluation can be divided into 3 steps, creating random graphs, calculating similarity
scores and conducting statistical tests.

1. Generation of random graphs: For creating random graphs, we use unclean patterns.
Based on the number of unique nodes in an unclean pattern, we create all possible pairs
of two nodes. While creating pairs, we do allow repetition of the node in the same pair.
This repetition allows an address to be a sender and a receiver in the same transaction.
As we have observed in Bitcoin data, some transactions have the same address as sender
and receiver; hence, we consider the same while creating random pairs. However, we do
not allow such repetition in case of Ethereum data as no transactions with same sender
and receiver are observed in Ethereum network. The pairs created; represent all possible
transactions that could have happened for all the nodes present in a clean graph. As
patterns are directed graphs, pairs are also created in a directed way. For example: (b, a)
is not the same as (a, b), and both should be in possible combinations. we create 1000
random graphs using the pairs generated. These random graphs have the same number
of transactions as the clean pattern. The high number of random graphs prevent results
from being a random observation.

2. Similarity score calculation: To calculate similarity scores, the first step is to con-
vert clean pattern and randomly generated patterns into weighted vectors. Randomly
generated Patterns are converted into weighted vectors using the weights observed in
a clean pattern and a pair of nodes present in them. In the second step, from the ob-
served weights, we assign a random weight to each edge in randomly generated patterns
[18] [8]. Similarly, the clean pattern is also converted to a weighted vector. In the final
step, each such vector is stored in the nearpy engine. Using clean pattern as query, the
vector Euclidean distance between each randomly generated vector is calculated. These
Euclidean distances are the similarity scores.

3. Statistical test: Based on these similarity scores, similarity test, kurtosis test and skew
test are conducted.

e similarity test computes the mean of similarity scores. Observing a higher mean
illustrates low structural similarity between the clean pattern and all random pat-
terns. Low structural similarity shows that, based on the overall transactions of
the nodes in the unclean pattern, the occurrence of the observed clean pattern is
unlikely to be random. The similarity test computes the mean of n similarity scores
observed for n randomly generated patterns.

32

e The skew test measures the skewness of the similarity scores. Results of skew test
can be positive or negative. A negative skew value shows that similarity scores
are skewed to the left, i.e. most of the similarity scores show low similarity. In
contrast, a positive skew value shows most of the observations from similarity scores
have higher similarity. Using skew test helps in quantifying whether components of
similarity score show overall high similarity or overall low similarity.

e The kurtosis test is the tail test and measures if the data is heavy tailed or lightly
tailed. Value observed for kurtosis test can be positive or negative, where positive
value shows heavy tailed distribution and negative value shows lightly tailed distri-
bution. If the observed distribution is light-tailed, it illustrates that the similarity
scores are concentrated in a particular range.

Observing results of similarity test, kurtosis test and skew test patterns can be sorted
from usual observations to unusual observations. Results of kurtosis test and skew test
can be interpreted together to assess the patterns in a better way. The following Table
4 shows the possible combinations and their interpretations for kurtosis test and skew
test.

Observation Interpretation

Pattern is the most likely candidate for usual transfer as it has high

similarity with most random patterns and as it is lightly tailed it does not show

low similarity with many patterns.

Positive Skew The pattern is a potential candidate for usual transfer as has high similarity with some
Positive kurtosis | patterns. As it is heavy tailed, it has some similarity with most patterns.

Negative skew The pattern is the potential candidate for unusual transfer as it has the low similarity with
Positive kurtosis | many of the random graphs created but also has some similarity with few patterns.
Negative skew The pattern is a most potential candidate for unusual as it has the least similarity
Negative kurtosis | with most random patterns.

Positive skew
Negative kurtosis

Table 4: Observed combination of skewness test and kurtosis test and their interpretation

5.3.2 Proof of concept

Using the following examples, we demonstrate the working of relevance evaluation. In this
example, we consider two cases, one with low noise and one with high noise. This example
also shows the structure of the structure of clean, unclean, and random patterns in Table 5
and Table 7. Along with this example of weighted vectors and similarity score distribution is
illustrated in Table 6, Table 8 and Figure 12 respectively.

1. Case 1 : — Unclean graph considered in this example has moderate noise, which means
it has few uninteresting nodes. This example has three noisy transactions. In Table 5
the transactions marked in italics format, i.e., edge number 2,4,7 are the noisy edges.
Removing these edges results in a clean pattern as shown in Table 5. A total of 1000
random graphs are created by using all the unique nodes from the unclean pattern. Based
on the edges, all the random graphs are converted into weighted vectors as illustrated
in Table 6. The number of edges in each random graph is equal to the number of edges

33

in the clean pattern. Figure 12 (a) shows the results of calculating vector similarity for
this noisy pattern. A visual example of unclean pattern, clean pattern and randomly
generated patterns for this case is demonstrated in Figure 10. In Figure 10, (a) nodes in
blue are the non-interesting nodes and (c), (d), (e) are randomly generated graphs.

Edge 1 | Edge 2 | Edge 3 | Edge 4 | Edge 5 | Edge 6 | Edge 7
Unclean pattern (3,4) (3,8) (4,1) (4,6) (1,2) (2,3) (2,7)
Clean pattern (3,4) (4,1) (1,2) (2,3) - - -
Random graph 1 (4,2) (3,7) (2,3) (4,7) - - -
Random graph 2 (1,3) (2,7) (4,7) (3,4) - - -
Random graph 1000 | (7,2) (4,7) (1,7) (2,1) - - -

Table 5: Example pattern and random permutations for a pattern with high noise

(1,2) | (1,3) | (1,4) | (1,7) | (2,1) | (2,3) | n such columns ->
Random graph 1 13 12,0,0,11,0,9
Random graph 2 | 0 13 0 0 0 0 0,0,0,11,0,13

Table 6: vectors created for the Case 1

34

(a) Unclean pattern (b) Clean pattern

I
v
N

©
o

(c) Random graph 1

@ 1

1
S
‘—.
N

L

(d) Random graph 2

O

5 L
HON
omod

(e) Random graph 1000

Figure 10: Unclean pattern, clean pattern and random patterns from Case 1. Edges of
all these patterns are shown in Table 5.

2. Case 2 : — The unclean graph considered in this example has low noise, which means
it has very few non-interesting nodes. This example has only one noisy node marked in
italics in Table 7. Vectors generated for the random graphs are sparser when compared
to case 1. When we calculate vector similarity for this pattern, the result is shown in
Figure 12 (b). Visualisation of patterns for this case is demonstrated in Figure 11. In
Figure 11, (a) is the unclean pattern and (c), (d), (e) are the random patterns generated.

Edge 1 | Edge 2 | Edge 3 | Edge 4 | Edge 5 | Edge 6 | Edge 7
Unclean pattern (3,4) (4,1) (1,2) (2,3) (2,7) - -
Clean pattern (3,4) (4,1) (1,2 (2,3) - - -
Random graph 1 (4,2) (3,7) (2,3 (4,7) - - -
Random graph 2 (1,3) (2,7) (4,7 (3,4) - - -
Random graph 1000 | (7,2) (4,7) (1,7 (2,1) - - -

Table 7: Example pattern and random permutations for a pattern with low noise

(1,2) | (1,3) | (1,4) | (1,7) | (2,1) | (2,3) | n such columns ->
Random graph 1 | 0 0 0 0 0 13 12,0,0,11,0,9
Random graph 2 | 0 13 0 0 0 0 0,0,0,11,0,13

Table 8: vectors created for the Case 2

36

(27)

(a) Unclean pattern (b) Clean pattern

(e) Randoﬂ(;i?graph 1000

Figure 11: Unclean pattern, clean pattern and random patterns from Case 2. Edges of
all these patterns are shown in Table 7.

Pattern with high noise Pattern with low noise

300
70
50
a0
£ 200 E
£ £ 0
m m
[=% [=%
%5 150 w40
P 5,
£ w0 5
0
- 10
o T T - T o -
D3 04 05 06 07 0B 03 10 0.0 02 0.4 056 08 10
Euclidean distance Euclidean distance
(a) The vector similarity score is high on (b) Vector similarity score is low for a low
average for a pattern with high noise noise pattern when compared to the high

noise example.

Figure 12: These two figures show the comparison of results for a pattern with high noise
and low noise. It is seen in Figure (a) that the pattern with high noise has less vector
similarity with randomly generated graphs when compared to a pattern with low noise.

The vector similarity scores are the Euclidean distances between the query vector and the
randomly generated vector set. The lower the Euclidean distance, the higher is the similarity.
Mean observed for distribution in Figure 12 (a) is 0.93 and for distribution in Figure 12 (b) is
0.71. Using mean value, patterns can be ranked or by setting a threshold value they can be
classified for being usual or unusual. The threshold value for mean value is selected based on
the network being studied. For example, threshold value of mean in case of Bitcoin network
should be lower than Ethereum network as it has denser structure than Ethereum. Setting
lower threshold can result in increase in false positive rate. In this study, false positive rate is
acceptable as in case of money laundering it will be better than having higher false negative
rate. All the patterns having mean value more than threshold are termed as potential money
laundering candidates.

Negative skew is observed if most of the Euclidean distances in the observed data are more
than 0.5. The more the negative skew, the more is the chance of the pattern being unusual.
On the other side, if the skew is positive, there is a high chance of the observed pattern being a
usual pattern. Skew observed for the high noise pattern is -0.76, and for the low noise pattern,
it is -0.26. Values of kurtosis test are -0.54 and -0.76 for high noise pattern and low pattern
respectively. Negative values show that both of the patterns in this case are lightly tailed.

6 Results

In this chapter, we present results of both algorithms on Bitcoin and Ethereum datasets. Using
Figures 14, 15, 17, 18 we demonstrate examples of the patterns found by algorithms. With
Figure 16, We also show the effect of cleaning step executed in the algorithms. Figure 1
shows the ideal expected results. However, some pattern formations apart from ideal targeted
patterns are observed. These patterns other than ideal structure are observed, as some patterns
satisfy time and flow threshold conditions mentioned in Chapter 4 while not having the exact
expected ideal structure as Figure 1. Nodes in patterns are displayed as numbers, however,
in the Blockchain data of both cryptocurrencies, nodes are alphanumeric strings as previously

38

described. For simplicity of calculation and representation, all the nodes are mapped to unique
numbers. Hence, each unique number represents a unique Bitcoin or Ethereum wallet. Each
directed arrow shows the direction of transaction and the flow. Flow of a particular edge is
mentioned in each figure in red font on the respective edge.

6.1 Patterns Discovered

Ideal patterns show and describe pattern structures similar to Figure 1. Complex patterns show
pattern structure for which N, M exceed when compared to patterns in Figure 1. For circular
and diamond patterns, we show example of ideal patterns and complex pattern using Figures
14, 15, 17, 18.

6.1.1 Results of circular pattern

o ldeal patterns: Figure 14 shows an ideal pattern the algorithm yields. Patterns in
Figures 14 (a), (b) are structurally similar to the circular pattern defined in Figure 1.
The source node mentioned above each pattern in the figure is the address that initiates
the pattern. As the Figure 14 is illustrating, circular patterns the source node is also
the final receiver for the pattern. When compared to the example structure shown in
Figure 1, source node is referenced as node Address 1 in example structure Figure 1 and
as node A in the Figure 7. Arrows show the direction of the flow for both patterns in
Figure 14. These patterns have four unique nodes involved, and only a single edge exists
between a pair of two unique nodes. The amount sent by each address is shown in red
font on the outgoing edge from that node. Amounts involved in the Figures 14 (a), (b)
show a slight deviation, and adjustments made in amount are visible for both patterns.
It can be observed that adjustments made in the amount of Figure 14 (a) do not show
gradual increase or decay.

39

Source node = 5467798

8392667
L,
QQQ\ >
&
7748313
1399650
S
/999/ /
\&67 98
(a)
Source node = 1640501
13614489—— [103] — 1640501

[103;
g —

344250
[99]
T 33858155

(b)
Figure 13

Figure 14: Ideal circular patterns observed in data with 4 nodes. Both patterns show
expected circular structure where similar amounts being forwarded and received. The
amounts are mentioned in red on respective edges.

o Complex patterns: Apart from ideal patterns shown in Figure 1, Some complex circular
patterns are also discovered in both datasets. In a complex circular pattern, nodes are
more than four, with a higher number of incoming and outgoing edges than an ideal
pattern. The number of edges increases as there can be multiple transactions between
two nodes. If a circular pattern is considered a single loop, then for a complex pattern,
multiple such loops can exist. Figure 14 shows the simple structure where an amount
is forwarded via single transactions between pairs of nodes. Although sending a large
amount in a single transaction would help save transaction fees, a large amount can also

40

be sent using multiple individual transactions. The algorithm can track such patterns,
and an example of one such complex pattern is shown in Figure 15. Figure 15 illustrates a
pattern with 9 nodes. Multiple amounts are written on the edges for multiple transactions
done between a pair of nodes.

Node 5467798 is the source and final receiver for all the transactions. Node 344250 is
the support node in this pattern. If this pattern is compared with Figure 1 (a), node
5467798 would be Address 1 and node 344250 would be Address 3. All the other
nodes would be similar to nodes Address 2 and Address 4. For this complex pattern,
the flow involved is observed as follows.

> f(Node 5467798,,:) =~ 3 f(Node_344250,,) =~ > f(Node_344250,,;) == X f(Node_5467798;,)
(23)
This equation takes in account summation of inflow amounts and outflow amounts to
put deviation threshold conditions. Time threshold with flow conditions in such a case
is defined as follows.

fi(Node 5467798,y > fi(Node_344250,y,). (24)

Such condition ensures the flow at a timestamp t for outgoing transactions of node
5467798 is greater than the flow of outgoing transactions of node 344250. As all trans-
actions are going to be passed through node 344250, this conditioning ensures the source
node first sends the amount before receiving any of it back. These conditions of time
and flow ensure a meaningful structure for observed patterns.

In case of Figure 15 amount sent out is
962 + 96 + 934 + 544 4+ 73 + 50 + 41 4+ 99 + 39 + 460 = 3298. (25)

Total of 10 outgoing transactions take place in between node 5467798 and node 344250
via 5 nodes in between. Amount received back at the node 5467798 is

1499 + 248 4 525 + 449 = 2721. (26)

The difference between the amount sent and amount received is 577 Ethereum tokens,
and the deviation is 288 Ethereum tokens. Based on the price average price of Ethereum
at the time of this pattern, the difference would be =~ 500 dollars in terms of fiat currency.

41

Source node = 5467798

7766(27/

1711024

13190095 11406578

(pe6 'wYS ‘96 '296)

e

\11749659

Figure 15: Example of a complex circular pattern having more than 1 loop and multiple
transactions for the pair of source node and support node. The source node is 5467798
and the support node is 344250.

« Effect of cleaning step: Figure 16 demonstrates the effect of the cleaning step in the
algorithm. Figure 16 (a) demonstrates the unclean pattern and (b) is the same pattern
in clean stage. The unclean pattern in this Figure 16 is similar to the unclean pattern
shown previously in Figure 9 (b). Compared with the clean pattern 16 (b), noisy nodes
and edges are observed in Figure 16 (a). Nodes, such as node 9974, which do not forward
any amount to any other nodes are removed. Node 116910974 has a circular pattern
in unclean pattern with nodes 116910974, 94487381, 8524191. Selected source node
8524191 is also a part of this circular pattern occurring for node 116910974. However,
as the source node selected is node 85424191, all other circular patterns are removed.
This circular pattern will be tracked when the selected source node is 116910974. For
the pattern in Figure 16, the search deviation threshold set was high enough to accept
the flow 15, 10, 6, 15. Putting a low deviation threshold algorithm would discard the
pattern and does not save it.

42

Source node = 85424191

116700190
86124593
\ 116038902

& 99745632

osag7asT— A\t

S 85424101

()

Source node = 85424191

85424!9.1/ \
\ 116912620

llﬁQlK

(b)

Figure 16: Example of a pattern in the unclean stage (a) and in the clean stage (b). In
the clean pattern, the algorithm gets rid of all the unnecessary and noisy edges and
nodes.

6.1.2 Results of diamond pattern

» ldeal patterns: Figure 17 shows the diamond patterns mined for the Ethereum data.
The source node mentioned in Figure 17 is shown as node Address 1 in Figure 1 and as
node A in Figure 8. The source node mentioned in the Figure initiates the pattern and
divides a certain amount of Ethereum tokens in multiple layer 2 nodes. Layer 2 nodes for
both Figures 17 (a), (b) are all the nodes except for the source node and sink node. As
mentioned in the methods chapter, there is no maximum limit on the number of nodes
in layer 2. Figure 17 (a) has 4 nodes in layer 2 while for Figure 17 (b) there are 8 nodes
in layer 2. In the Figure 17 only a single outgoing transaction takes place in between the
source node and each node in layer 2 and also each node in layer 2 and sink node. A
minimal deviation is observed in the Figure 17 for the amounts being transferred. The
amount received by a layer 2 nodes and the amount sent by a layer 2 nodes is almost
equal in the case of both patterns shown in Figure 17. For Figure 17 (a) flow is observed

43

f(Source_nodeyy,) ~ Z f(Layer2_nodes, jout) = f(Sink_node;,) (27)

Where
Node_8392667 € Source_node (28)

Node 274621, Node 2972611, Node_ 13154488, Node_11152345 € Layer2_nodes
(29)

Node_3848470 € Sink_node (30)

Equations 27,28,29,30 demonstrate cryptocurrency tokens first being split into equal
or unequal amounts among multiple addresses and then received at a common address
later in time. Hence, From the patterns shown and flows involved in these patterns, it
is observed that the algorithm yields expected diamond patterns.

Source node = 8392667 Sink node = 3848470 Source node = 6499054 Sink node = 13903059

/8392667 12236648

Gﬂ/\@g“\ \ 2723751 5726072
5247 ~ /
>
& \ 3339908 -
2 =
13154 \ 2 g £5195275

{009}

“q
&
[
=7 >
[

1689}

2972611

Figure 17: Example of diamond patterns. These two examples of patterns show the ideal
expected diamond patterns discovered for Ethereum dataset.

o Complex patterns: Similar to the circular patterns, some complex patterns are also
observed during the search for diamond patterns. Unlike complex circular patterns, the
structure of complex diamond patterns is identical to the ideal structure in Figure 1 (b).
The number of layer 2 nodes is high in complex diamond patterns, along with multiple
edges between a pair of nodes. Figure 18 shows an example of such a complex diamond
pattern occurring in the Ethereum network. This complex pattern is one of the largest
patterns discovered in the Ethereum dataset. It consists of 181 unique nodes, 358 unique
edges and a total of 1530 transactions. The size of the nodes is set as per their degree,
and the size of edges is set as per their weight. All the green edges are the outgoing
transactions from node 5467798. All the black edges are the incoming transactions for
node 8590805. Weight is mentioned on every edge, and the font size is as per the amount
of weight involved. Some large transactions, such as transactions with 8088 Ethereum
tokens, is observed in Figure 18.

44

Node 5467798

Node 8590805

Figure 18: Ethereum: Example of complex diamond pattern having 181 nodes and 358
unique edges and total of 1530 transactions.

6.1.3 Quantitative evaluation

This subsection shows the number of patterns observed based on two metrics, the number of
unique nodes N in patterns and deviation observed in patterns. Table 9 shows the number of
circular and diamond patterns in both datasets.

e Unique nodes in patterns: Based on Table 9 it is observed that the total number

of circular patterns is significantly less than diamond patterns in the Bitcoin dataset.
Most of the circular patterns observed in the Bitcoin dataset have four unique nodes.
Although some circular patterns have more than four unique nodes, there are no pat-
terns with more than 64 unique nodes. The total number of circular patterns observed
in the Ethereum dataset is slightly less than the Bitcoin dataset. More than 90% of
circular patterns in Ethereum dataset have four or fewer unique nodes. However, very
few circular patterns are of substantial size in Ethereum data.
General observation for diamond patterns in Table 9 states that the occurrence of dia-
mond patterns is frequent in the Bitcoin dataset but not in Ethereum dataset. Diamond
patterns with N < 4 are less than patterns with 4 < N < 8 for both datasets. Large
diamond patterns such as 8 < N < 64 and N > 64 also have a significant percentage
compared to total patterns.

45

Number of Total Number of Total

circular patterns circular diamond patterns diamond
patterns patterns
Dataset |N<4[4<N<8 [8<N<64|N<64 N<4]4<N<8|8<N<LB4| N> 64
Bitcoin |10k | 1.2k 822 0 12.5k 84.5k | 93.8k 44.1k 134k | 236.1k
Ethereum | 10.1k | 205 219 18 10.5k 304 | 1.3k 1.3k 74 3k

Table 9: Table demonstrates the number of patterns and unique nodes in pattern for both
datasets. IV is the number of unique nodes.

e Flow deviation in patterns: Table 10 shows the number of patterns based on the
deviation observed. For circular patterns in the Bitcoin dataset, the deviation observed
for almost 40% of patterns is less than 10. Rest 60% patterns are divided in deviation
range of 10 < ¢ < 50, 50 < ¢ < 100 and ¢ > 100. Deviation for circular patterns in
Ethereum Dataset is high on average when compared to Bitcoin dataset. About 50%
circular patterns show deviation ¢ > 100.

Deviation observed for diamond pattern in Table 10 illustrates that both datasets show
high deviation for diamond patterns. There are very few diamond patterns in both
datasets that have deviation ¢ < 10.

Number of Number of

circular patterns diamond patterns
Dataset |[¢<10[10<¢<50|50<¢<100|¢>100|¢<10|10>¢<50|50>¢<100|¢> 100
Bitcoin |49k | 3.6k 1.6k 2.2k 523 6.1k 1.4k 227.9k
Ethereum | 1.2k | 3.1k 1.2k 4.8k 49 7 29 3k

Table 10: Number of patterns and deviation observed for the patterns. Patterns are split
based on deviation of the flow, where ¢ is the deviation.

46

5 & 3
= =} =

=1
=}

number of patterns

100 A

number of pattarns

200

200 A

800 A

600

400 4

Number of circular patterns in Bitcoin dataset

wi
=]
=
o

number of patt:

100

(a)

Number of circular patterns in Ethereum dataset

Number of diamond patterns in Bitcoin dataset

17500

15000

12500 1

5]
[=]
(=]
[=]

&
=
=

5000 4

2500 1

20 100

(b)

Number of diamond patterns in Ethereum dataset

number of patterns

175 A

150 A

125

100 A

25

(d)

Figure 19: Number of pattern in every data split, i.e. every week. The Bitcoin dataset
shows gradual rise for both patterns. There is a sharp drop in Ethereum dataset for
circular patterns after week 27. However, no such drop is observed for diamond patterns

in Ethereum dataset.

o Time complexity analysis: Table 11 shows the time taken by algorithms and nodes
and edges processed in that time. Compared to Bitcoin, splits of Ethereum data have less
number of unique nodes. However, the combination of fewer nodes and a high number
of edges creates dense graph structures in Ethereum data. Hence, the time complexity
for both datasets is different. To find all the complex patterns, algorithms iteratively
search the dataset. A high number of support nodes in the case of Ethereum make the
algorithms slow. Regarding edges, we can observe quadratic time complexity for both
datasets in Figure 20. The time complexity of both algorithms is similar as they are built

on a similar approach.

Bitcoin Ethereum
Unique nodes 19k | 46k | 90k | 133k | 175k | 1.8k | 2.9k | 4.1k | 4.9k | 5.7k
Number of edges | 26k | 65k | 130k | 196k | 260k | 11k | 27k | 55k | 82k | 111k
Time in seconds | 49 | 310 | 1639 | 4721 | 7922 | 1.4 |79 |44 | 111 | 200

Table 11: Time complexity of algorithms for both datasets. Table shows time taken in
seconds and nodes and edges processed in that time.

47

Time complexity for Bitcoin dataset Time complexity curve for Ethereum dataset

800D Number of Nodes processed

200
7000 Number of edges processed

6000

=
(%2
=

5000

3000

Time taken in seconds
Time taken in seconds
o
(=]
[=]

2000

50
1000 — MNumber of nodes processed
0 0 MNumber of edges processed
50000 100000 150000 200000 250000 0 20000 40000 60000 80000 100000
Number of nodes or edges Number of nodes or edges
(a) (b)

Figure 20: Time complexity curves for both datasets.

6.2 Relevance evaluation

In this subsection, we present the result of the relevance evaluation. The relevance evaluation
is conducted for every pattern observed. For a set of patterns observed for a data split, the
relevance evaluation ranks them from most unusual to most usual by evaluating the risk as-
sociated with them. In this chapter, we present results for one example split. As mentioned
earlier, the relevance evaluation consists of three different tests. All three tests assign their
rankings to patterns. In most cases, all three tests commonly term a pattern as most unusual.
One such example of an unusual diamond pattern is shown in Figure 21. The pattern in Figure
21 shows an exceptionally high number of nodes within a week's time frame. In some cases,
multiple transactions have taken place between two nodes. Amounts being sent and received
are almost identical with little or no deviation.

Figure 22 (a) shows the distribution of Euclidean distances for this most unusual pattern.
The mean observed for this pattern is 0.991. The high mean value shows that most randomly
generated patterns do not show similarity in structure or weights observed. The kurtosis value
is 11.5, and the skewness test value is -3.07. A high positive kurtosis value and a negative skew
value show that most random patterns are not similar. This observation of positive kurtosis
and negative skew goes well along with the very high mean value observed. Figure 23 demon-
strates possible usual patterns. All three tests select different patterns as potential candidates
for usual patterns. Compared to pattern in Figure 21, patterns in Figure 23 are less complex
and have low weights.

Example of usual patterns is demonstrated in Figure 23. Unlike unusual patterns, for usual
patterns choices of the tests are different. Similarity distribution for Figure 23 is illustrated in
Figure 22 (b). Compared to Figure 22 (a) it can be seen that this distribution has lower mean,
Although the skew is negative, the kurtosis value is positive as it is a heavy tail distribution.
Comparing Figure 22 (a) and (b) difference between similarity distributions of possible usual
pattern and unusual pattern is evident. Figure 23 (b) and (c) are usual patterns for skew test
and kurtosis test respectively. Compared to unusual pattern, both Figure 23 (b) and (c) have
low weights and simple structure.

48

Maximum likely Unusual pattern : Similarity test, skew test, kurtosis test

394

S/
> 7
SN 2%,

A,
@\

VTS =
“%‘:‘:‘p r’fff%”/]ﬂ
i

)

)
~

474

104659

36031 10031
53333 90718

104143 43978

Figure 21: Most unusual pattern for a week. It is observed that it has diamond structure
and amounts being sent and received between node 30023 and node 69946. Very little
deviation is observed in the amounts.

49

Distribution plot for week 0 pattern number 3 Distribution plot for week 0 pattern number 15

500 400 1

400 4
300

300 -
200

200 4
100 4

100 4
gl . . ; ‘ ; 0

093 0854 085 096 057 098 09% 100 0.5 0.6 0.7 0.8 0.9 10

(a) (b)

Figure 22: Distribution of Euclidean distances seen for most unusual pattern (a) and a
probable usual pattern (b).

20

Maximum likely usual pattern - similarity test

2646
12589127
(a)
Maximum likely usual pattern - skewness test Maximum likely usual pattern - kurtosis test

333

- \

875

613

(b) (c)

Figure 23: Patterns termed as usual by three tests, (a) usual patterns as per similarity
test, (b) as per skew test and (c) as per kurtosis test. Unlike unusual pattern, results for
usual pattern vary for all three tests.

o1

6.2.1 Quantitative evaluation

In this subsection, we present a number of patterns observed for each threshold value of simi-
larity test, skew test, and kurtosis test. Tables 12, 13, 14 show results for similarity test, skew

test and kurtosis test respectively.

o Similarity test:

Number of Number of

circular patterns diamond patterns

a<06|a>06|a>07]a>095|a>099|a<06|a>06|a>075|«a>0.95|«a>0.99
Bitcoin 1 12.4k 12.4k 1.6k 295 20.8k 18.8k 79.3k 7.4k 412
Ethereum | 0 10.5k 10.4k 663 209 1 3k 3k 1.4k 312

Table 12: Similarity test results: Table shows number of patterns for different thresholds
for similarity test. « is the threshold for mean of similarity scores.

Table 12 shows for circular patterns in Bitcoin dataset almost no pattern show mean
less than 0.6. The mean of most of the circular patterns in Bitcoin dataset is in the
range 0.6 to 0.75. A significant number of patterns have mean more than 0.95 and a
few patterns show mean value more than 0.99. Circular patterns in Ethereum dataset
have similar structure for results compared to Bitcoin dataset. No patterns show mean
less than 0.6 in case of Ethereum dataset. Most of the patterns fall in the range of 0.6
to 0.95. Compared to total circular patterns observed in the Ethereum dataset, small
percentage of patterns shoe mean more than 0.99.

Large number of diamond patterns in Bitcoin dataset show mean less than 0.6. Similar
to circular patterns, most of the patterns are in the range of 0.6 to 0.95. Compared to
total number of diamond patterns, less than 1% patterns show mean more than 0.99.

o Skew test:

Number of Number of
circular patterns diamond patterns

B<-10|68<b|8<0|B>0|8>5|8<-10|8<-5|8<0|B>0]p3>5

Bitcoin

10

93

12.1k | 302

207

29

156k

53k

33

Ethereum

115

4

10.4k | 118

85

1

3k

10

0

Table 13: Skew test results: Number

of patterns observed for different threshold of skew

test. It can be observed that most patterns have skew in the range -5 to 5. 8 is the

threshold used for the skew test.

Table 13 shows results of skew test for circular and diamond patterns on both datasets.
In case of the skew test, results are identical for both patterns in both datasets. Most
of the patterns show negative skew and only few patterns have positive skew. Only in
diamond patterns for Bitcoin data, few patterns showed a positive skew.

52

o Kurtosis test:

Number of Number of

circular patterns diamond patterns

Y10 |y <5 | v<0 | y>0[y>5|v>10 | vy<-10 | v<H|v<0|~v>0]|~v>5]|~v>10
Bitcoin 0 10 5055 | 7.4k | 794 258 0 0 167k | 41k 13k 719
Ethereum | 0 0 4.01k | 6.5k | 676 | 253 0 0 939 | 2.1k | 504 | 261

Table 14: Kurtosis test results: Results of kurtosis test for different thresholds. Almost no
patterns have high negative kurtosis value. v is the threshold used for kurtosis test.

Results of the kurtosis test in Table 14 having high negative value are identical for cir-
cular patterns and diamond patterns in both datasets. None of both patterns show high
number of patterns, high negative value of kurtosis associated with them. For circular
patterns, about 40% of total patterns have kurtosis value in between -5 to 0. Rest of the
circular patterns are divided in the range of 0 to 10. A significant number of patterns
show kurtosis value higher than 10 for circular patterns.

For diamond patterns, no patterns show a high negative kurtosis value. Large number of
diamond patterns in Bitcoin dataset have values between -5 to 0. In contrast, diamond
patterns in Bitcoin dataset mostly have values more than O.

7 Discussion

This chapter presents an interpretation of the results observed for the circular and diamond
patterns in both datasets. We also discuss the link of the results with multiple aspects of
Blockchain and cryptocurrencies.

Based on Figure 14 it is observed that the circle track algorithm yields the expected results
of circular patterns. Conditions formulated in Chapter 4 for flow and timestamps find ex-
pected circular patterns. Figure 14 illustrates that the flow in the patterns is adjusted in every
transaction. Adjustments for flow in Figure 14 do not show gradual increase or decay. These
adjustments can be due to the price volatility of cryptocurrencies. Hence, calculating deviation
based on layers and not using < as a condition for amounts works well. As described in the
subsection 5.1 in the algorithm chapter, a pair of source nodes and support nodes are pro-
cessed in parallel while finding their neighbours. This parallel search serves as an advantage
as it assists the algorithm to track all the patterns occurring for a pair in a single search.
This advantage of parallel search helps in searching for patterns slightly more complex than
patterns shown in Figure 14. Multiple circular patterns observed in Figure 15 are results of a
hybrid approach of BFS and DFS in circle track algorithm.

Searching diamond patterns while following the conditions from Chapter 4 is slightly complex,
as there is no limit on layer 2 nodes in a diamond pattern. Figure 17 shows algorithm diamond
track can find targeted diamond patterns while obeying flow and timestamp conditions. Based
on flows involved in Figure 17 it is observed that putting conditions based on flow and times-
tamp works well and yields expected diamond patterns. Not having a limit on layer 2 nodes
helps to track large diamond patterns as shown in Figure 18. Such large diamond patterns are
only observed after using a high ¢ value. As the number of transactions is high, the deviation
observed in such patterns is also high.

93

In Table 9 number of unique nodes N are described for each pattern type in both datasets.
Based on Table 9 it can be seen that average N in circular patterns in 4. However, the average
N in the diamond patterns exceeds 4. These results about the average size of N are relevant
as any suspicious activity would try to be hidden as much as possible. Having numerous layer
2 nodes in diamond patterns helps to split the amount in tiny chunks that are prone to unno-
ticed. Hence, most diamond patterns in both datasets consider splitting data in more than four
but less than 64 layer 2 nodes. Figure 19 shows the number of patterns observed every week.
In the Bitcoin dataset, both diamond and circular patterns are on a linear rise. Few weeks
show a sudden rise for both patterns. The sudden rise in patterns is likely to be correlated with
the price of Bitcoin, as shown in Figures 27, 26, 25, 24. Patterns in Ethereum dataset do not
show any trend. The sudden drop for circular patterns in the Ethereum dataset is unexplained.
Such drop also does not show any correlation with Ethereum Blockchain metrics like number
of transactions, number of users, network hash rate (Refer to Ethereum Blockchain metrics).
About 50% of total circular patterns in the Bitcoin dataset observed in Table 10 show a very
low deviation. This observation is also linked with the price of Bitcoin. Due to the exponential
rise in the price of Bitcoin, adjustments of flow in a transaction are reducing. For example,
when the Bitcoin price was 1000 dollars, an adjustment of 10,000 dollars in a transaction
would show a change of 10 Bitcoins. However, when the Bitcoin price was 10,000 dollars,
an adjustment would show a difference of only 1 Bitcoin. However, In the case of diamond
patterns, the deviation observed is very high. Both Bitcoin and Ethereum datasets show that
most of the diamond patterns have significant deviation. Hence, based on these results, it can
generally be claimed that diamond patterns show high deviation than circular patterns. High
deviation in diamond patterns could most likely correlate with the number of nodes in layer 2
or the number of transactions in a pattern.

Results of relevance test in Figure 21 show that all three tests, i.e., similarity test, skew
test and kurtosis test, point towards the same pattern for being unusual. Figure 22 (a) shows
most of the Euclidean distances have high dissimilarity for the pattern shown in Figure 21.
Further, the distribution is also seen to be lightly tailed. Hence, based on Figures 22, 21 it
observed that statistical tests can mark correct patterns as unusual. Opposite to this, in Figure
23 it can be observed that patterns marked as safe usually have less complex structure com-
pared to Figure 21. While classifying patterns, all three tests point towards different patterns
as usual patterns. As each test evaluates separate metrics, the choice of their classification
for usual patterns differs. Based on Figure 23 (a) it can be observed that there are numerous
transactions between Node_ 12589127 and Node_12589127. Along with this, weights involved
in Figure 23 (a) are significantly high. Still, the relevance evaluation terms the pattern as safe;
hence it is observed that results of the relevance evaluation are not biased towards any factor of
a pattern like the number of unique nodes, the number of transactions or total flow. Relevance
evaluation can successfully find the most unusual pattern in a set of results. The combination
of weighted vectors with randomisation works better than only randomising weights for circular
and diamond patterns.

Based on the results of this study in Chapter 6 it was observed that circular patterns and
diamond patterns are evident in transaction networks of Bitcoin and Ethereum. Based on the
total number of patterns and size of patterns, it is hard to deny that money laundering is hap-
pening in Bitcoin and Ethereum. The linear rise in the number of patterns and total patterns
for Bitcoin shows that Bitcoin is more prone to be associated with suspicious activities than
Ethereum. Observing network, exponential rise, and users’ total number, preference to Bitcoin

o4

for laundering money is likely. Observation of large size of patterns and number of patterns for
both Bitcoin and Ethereum dataset, signal towards some algorithmic service being involved in
assisting suspicious transaction activities.

For future work, some changes in approach and methods can be done to find more rele-
vant results. Only one time constraint of 1 week was considered in this study. Rather than
considering a large overall size of data, a small portion of the data can be analysed for multiple
time windows. Results of such analysis are most likely to yield larger patterns. Although both
algorithms can find exact targetted patterns, scalability and efficiency were not considered as a
priority in this study. Both scalability and efficiency can be improved by parallelising the execu-
tion of code. As both algorithms were implemented without having any significant dependency
on supporting packages, PySpark could be a solution for parallelising the algorithms. Graph
network metrics such as centralities were not considered in this study. Integrating such metrics
can help improve the performance of the algorithms. Relevance evaluation can be assisted with
a more statistical test such as KS test and t-tests. Also, the number of random patterns in
the relevance evaluation can be optimised. This optimisation should help observe ideal normal
distribution for Euclidean distances of usual patterns and make classification easier.

8 Conclusion

Using graph pattern mining, we analysed Blockchain transaction data of two cryptocurrencies,
Bitcoin and Ethereum. We created two algorithms that can find money laundering patterns,
such as circular and diamond patterns. We tried to combine multiple existing approaches avail-
able in graph pattern mining to create our algorithms. Based on results of this study, it can be
confirmed that money laundering patterns such as circular patterns and diamond patterns are
evident in both Bitcoin and Ethereum Blockchains. Numerous suspicious patterns of different
sizes and monetary value were observed for multiple short time windows in both datasets.
We also used LSH to create a novel approach for testing relevance of the discovered patterns.
Relevance evaluation conducted in this study shows it has effectiveness in classifying or rank-
ing patterns as usual or unusual observation. Results of the relevance evaluation show that
combined randomization of weights and edges is an effective way to assess the quality of the
patterns.

Compared to total number of transactions, there is only a small portion of total transactions
that is associated with suspicious activities. However, the size of both circular and diamond
patterns is significant and often involves complex pattern structures. We found linear growth
in Bitcoin patterns, but no such trend was observed for Ethereum patterns. To summarise
this study, we analysed datasets of Bitcoin and Ethereum transactions for money laundering
patterns previously tested on fiat currencies like USD and Euro. Creating 2 algorithms and
a novel concept of relevance evaluation, we contributed a framework to find and evaluate
suspicious graph patterns in Blockchain networks.

95

References

[10]

[11]

[12]

[13]

C. Cachin et al. “The Transaction Graph for Modeling Blockchain Semantics”. In:
TACR Cryptol. ePrint Arch. 2017 (2017), p. 1070.

Priyanka Sain and Shalini Puri. “Detection of money laundering accounts using
data mining techniques”. In: Mar. 2018.

Chen Zhao and Yong Guan. “A GRAPH-BASED INVESTIGATION OF BITCOIN
TRANSACTIONS”. In: Advances in Digital Forensics XI. Ed. by Gilbert Peterson
and Sujeet Shenoi. Cham: Springer International Publishing, 2015, pp. 79-95. 1SBN:
978-3-319-24123-4.

Xiangfeng Li et al. “FlowScope: Spotting Money Laundering Based on Graphs”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 34 (Apr. 2020),
pp- 4731-4738. DOI: 10.1609/aaai.v34i04.5906.

Deepak Garg and Hemant Sharma. “Comparative Analysis of Various Approaches
Used in Frequent Pattern Mining”. In: International Journal of Advanced Computer
Science and Applications 1 (Sept. 2011). DOIL: 10 . 14569/ Speciallssue . 2011 .
010323.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. “Mining Association Rules
between Sets of Items in Large Databases”. In: IN: PROCEEDINGS OF THE
1993 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT
OF DATA, WASHINGTON DC (USA. 1993, pp. 207-216.

Stanley Oliveira and Osmar Zaiane. “Privacy Preserving Frequent [temset Mining”.
In: Proceedings of the IEEE ICDM Workshop on Privacy, Security and Data Mining
(June 2003).

Chrysanthi Kosyfaki et al. Flow Motifs in Interaction Networks. 2018. arXiv: 1810.
08408 [cs.SI].

Rolf Wegberg, Jan-Jaap Oerlemans, and Oskar Deventer. “Bitcoin money laun-
dering: mixed results? An explorative study on money laundering of cybercrime
proceeds using bitcoin”. In: Journal of Financial Crime 25 (Mar. 2018), pp. 00-00.
DOI: 10.1108/JFC-11-2016-0067.

Cazabet Remy, Baccour Rym, and Latapy Matthieu. “Tracking Bitcoin Users Ac-
tivity Using Community Detection on a Network of Weak Signals”. In: Complex
Networks € Their Applications VI (Nov. 2017), pp. 166-177. 1sSN: 1860-9503. DOTI:
10.1007/978-3-319-72150-7_14. URL: http://dx.doi.org/10.1007/978-3-
319-72150-7_14.

R. Beck. “Beyond Bitcoin: The Rise of Blockchain World”. In: Computer 51.02 (Feb.
2018), pp. 54-58. 1sSN: 1558-0814. DOI: 10.1109/MC.2018.1451660.

Nikhil Vadgama and Paolo Tasca. “An Analysis of Blockchain Adoption in Supply
Chains Between 2010 and 2020”. In: Frontiers in Blockchain 4 (2021), p. 8. ISSN:
2624-7852. DOI: 10.3389/fbloc.2021.610476. URL: https://www.frontiersin.
org/article/10.3389/fbloc.2021.610476.

Jie Shen et al. “Identity Inference on Blockchain using Graph Neural Network”. In:
CoRR abs/2104.06559 (2021). arXiv: 2104.06559. URL: https://arxiv.org/abs/
2104.06559.

26

https://doi.org/10.1609/aaai.v34i04.5906
https://doi.org/10.14569/SpecialIssue.2011.010323
https://doi.org/10.14569/SpecialIssue.2011.010323
https://arxiv.org/abs/1810.08408
https://arxiv.org/abs/1810.08408
https://doi.org/10.1108/JFC-11-2016-0067
https://doi.org/10.1007/978-3-319-72150-7_14
http://dx.doi.org/10.1007/978-3-319-72150-7_14
http://dx.doi.org/10.1007/978-3-319-72150-7_14
https://doi.org/10.1109/MC.2018.1451660
https://doi.org/10.3389/fbloc.2021.610476
https://www.frontiersin.org/article/10.3389/fbloc.2021.610476
https://www.frontiersin.org/article/10.3389/fbloc.2021.610476
https://arxiv.org/abs/2104.06559
https://arxiv.org/abs/2104.06559
https://arxiv.org/abs/2104.06559

[14]

[18]

[19]

[20]

[21]

[22]

Ting Liu et al. “An Investigation of Practical Approximate Nearest Neighbor Al-
gorithms”. In: Proceedings of the 17th International Conference on Neural Infor-
mation Processing Systems. NIPS’04. Vancouver, British Columbia, Canada: MIT
Press, 2004, pp. 825-832.

Alexandr Andoni and Ilya Razenshteyn. Optimal Data-Dependent Hashing for Ap-
prozimate Near Neighbors. 2015. arXiv: 1501.01062 [cs.DS].

Shikhar Gupta. Locality Sensitive Hashing. Apr. 2019. URL: https://towardsdatascience.

com/understanding-locality-sensitive-hashing-49f6d41f6134.

Dorit Ron and Adi Shamir. “Quantitative Analysis of the Full Bitcoin Transac-
tion Graph”. In: Financial Cryptography and Data Security. Ed. by Ahmad-Reza
Sadeghi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 6-24. 1SBN: 978-
3-642-39884-1.

Sadia Tariq, Muhammad Saleem, and Muhammad Shahbaz. “User Similarity De-
termination in Social Networks”. In: Technologies 7.2 (2019). 1SSN: 2227-7080. DOL:
10.3390/technologies7020036. URL: https://www.mdpi.com/2227-7080/7/2/
36.

Stephen Ranshous et al. “Exchange Pattern Mining in the Bitcoin Transaction Di-
rected Hypergraph”. In: Financial Cryptography and Data Security. Ed. by Michael
Brenner et al. Cham: Springer International Publishing, 2017, pp. 248-263. I1SBN:
978-3-319-70278-0.

Andrea Fronzetti Colladon and Elisa Remondi. “Using social network analysis to
prevent money laundering”. In: Ezxpert Systems with Applications 67 (2017), pp. 49—
58. ISSN: 0957-4174. DOIL: https://doi.org/10.1016/j.eswa.2016.09.029. URL:
https://www.sciencedirect.com/science/article/pii/S0957417416305139.

Ramiro Camino et al. “Finding Suspicious Activities in Financial Transactions and
Distributed Ledgers”. In: Nov. 2017, pp. 787-796. pDo1: 10.1109/ICDMW.2017.109.

Ahmad Aljabr, Avinash Sharma, and Kailash Kumar. “Mining Process in Cryp-
tocurrency Using Blockchain Technology: Bitcoin as a Case Study”. In: Journal of
Computational and Theoretical Nanoscience 16 (Oct. 2019), pp. 4293-4298. DOI:
10.1166/jctn.2019.8515.

57

https://arxiv.org/abs/1501.01062
https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134
https://towardsdatascience.com/understanding-locality-sensitive-hashing-49f6d1f6134
https://doi.org/10.3390/technologies7020036
https://www.mdpi.com/2227-7080/7/2/36
https://www.mdpi.com/2227-7080/7/2/36
https://doi.org/https://doi.org/10.1016/j.eswa.2016.09.029
https://www.sciencedirect.com/science/article/pii/S0957417416305139
https://doi.org/10.1109/ICDMW.2017.109
https://doi.org/10.1166/jctn.2019.8515

9 Appendix

9.1 Terminology and definitions

Term

Explanation

Address

Alphanumeric string which acts as an account number
for receiving and sending cryptocurrencies

Clean pattern

Pattern with only selected nodes

Coin treasury

A transaction in which cryptocurrency miners are rewarded

transaction
Edge A link between two addresses created by transaction
Flow Amount of cryptocurrency tokens transferred

Master node

A server where Blockchain data is stored

Miners

Computers that validate the transactions and add them in the
Blockchain

Node

A wallet address represented in a graph.

Unclean pattern

Pattern with selected nodes as well as some noisy nodes

Table 15: Terms and their meaning

9.2 Additional results

Bitcoin price Vs Number of unique addresses 1.5

R
] 0 -
—I-I'\-"- -I

15000 1

10000 -

Bitcoin Price

-

5000 1

-

L AL

[

- 2.0

Weelk

Figure 24: Number of unique addresses vs price.

o8

-
L1

Mumber of unique ad

Bitcoin Price

Bitcoin Price

Bitcoin price Vs Total number of transactions 1.5

20000 -

17500 - -6.0
=
15000 - L 55 S
=
=)
12500 A £
| =]
5.0 B
10000 A s
| e
7500 452
=
=
5000 4.0 8
=

2500 A
35
o ! ! ! ! ! !
0 20 40 B0 80 100
Week

Figure 25: Number of transactions vs price.

Bitcoin price Vs Average amount of bitcoins in a transaction

20000 -
=
=

17500 A -30 G
L5
=

15000 - [5 5

12500 - =

- 20 £
=

10000 =

15
7500 o
=
|
5000 - -10 £
m
)
2500 - -5 o©
1' z
o4 T - <L
I I I] I I
0 20 40 B0 80 100

Figure 26: Average amount of transactions vs price.

29

Price - 0] LI, 3 0.42 PIESES 045 0.058

Vol SR 0.03% 01 018 025 0017 026

Change % JUEraEiREL -| 087 0.11 019 0026 021
unique_nodes T8 01 008 -JI L'E-me 49 00097
GUSET I 0,42 018 011 0 |"|=.-J,- 0.0950.068 0.14
number transaction 748 125 mu |:-E|E- 44 012
number of patterns FLL8 0.068 044 -

MITEG CRL N sk 0058 026 021 00097 0.14 012 0.055

Price

Vol
Change %
unigque_nodes

average amount
number_transaction
number of patterns

unique nodes in pattemns - —

=14

-0.8

Figure 27: Pearson correlation between different Blockchain metrics and patterns.

Source
node

Support
node

Figure 28: Example of a complex circular pattern having more than 4 unique nodes.

60

Source node =4050421Sink node13903059

&
772

bl OO

2 i’ﬂ“‘&" ’/J\’/

i L7 'f*"\’
}

‘ ‘ \ “ '&Q \ N \) AN 2!?63?5
RO O
1220'300,; T, t\e \ Q" ‘i \ \‘e 3912

6842958579
v 701044861

2d
8584517y j PEEVETANS

441856876 \ \ p ‘_‘“- | .I
694:&‘8}'5 P048R} é}éf e : :'

7

6 3AJE0e 4
5149455‘,‘?
11583

IR P8
8795445 e lrH0T PS !
13728948

Figure 29: Complex diamond pattern.

61

Maximum likely unusual pattern - similarity test

1077033671838173

390205
30
1 A4 A

1011054708051

30715 7b44g26) 2
1 1?48?§ 2% ,\:_. \

'\ 5 Ok

.\

Z1Y

s Gl

A

IR ety
i

,'[/ ’ d526
L _3041
;,'!;;,%‘L, 550

115412:P58360
=T .‘QS%

Figure 30: Unsafe pattern according to similarity test

62

OO (2)

O ()

O4Ne OO
(a) (b)

Figure 31: Figure (a) shows centralised network structure and (b) shows decentralised
network structure. Transactions in (a) have to pass through centralised entities A, B. In
contrast, in (b) transactions can happen peer to peer. Blockchain is a decentralised
network structure, hence probability of transaction patterns is more.

63

	Introduction
	Background and related work
	Blockchain
	Blockchain basics
	Properties of Blockchain transactions
	Importance of investigating cryptocurrencies

	Locality Sensitive hashing
	LSH workflow

	Related work

	Data
	Bitcoin
	Ethereum
	Challenges and assumptions

	Problem Statement
	Problem statement: circular patterns
	Example: circular pattern
	Problem statement: diamond patterns
	Example: diamond patterns

	Methods
	Algorithm Circle track
	Node selection
	Data subset selection
	Data cleaning

	Algorithm Diamond track
	Get diamond location
	Mine diamond
	Clean diamond

	Relevance evaluation
	Workflow
	Proof of concept

	Results
	Patterns Discovered
	Results of circular pattern
	Results of diamond pattern
	Quantitative evaluation

	Relevance evaluation
	Quantitative evaluation

	Discussion
	Conclusion
	Appendix
	Terminology and definitions
	Additional results

