
Master Computer Science

Few-Shot Transformers

Name: Oliver König
Student ID: s2423286
Date: 15/07/2021
Specialisation: Data Science: Computer Science
1st supervisor: Dr. J.N. van Rijn
2nd supervisor: Prof.dr. T.H.W. Bäck

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Acknowledgements

The following study in the field of applied machine learning and transformer models has
been an exciting journey for the last nine months. Without the support of many different
people and organizations, it would not have been possible in its final extent and form.
Being extremely grateful for all the assistance, I would like to say a few words.

First of all, my supervisor, Jan N. van Rijn, has been supporting my work on an
extremely high frequency while giving supportive and constructive feedback all time long.
I am still stunned by how much he cares for his students, how much time he allocates, and
how positive his mindset remains in difficult times. Working with him was a very pleasing
experience, and I am looking forward to collaborating with him in future times again.
Furthermore, the feedback of my second supervisor, Thomas Bäck, has been precious as
to keep the report and structure streamlined, by putting his long-term and rich experience
of science and academia into play.

Second, I would like to thank the ICT Shared Service Centre (ISSC) of Leiden University
for their consistent and long-term maintenance of a large-scale cluster of compute machines,
for running my experiments on GPU machines. Having been in close contact, I am grateful
for their kindness and support in keeping all machines alive for such a long period. Besides
the ISSC, I have been using the ALICE High-Performance Computing facility for more
heavy compute tasks such as MiniImageNet or larger architectures of my model. Without
these machines, larger experiments would not have been possible. I would also like to
thank the service of Weights Biases ([Bie20]) for their amazing service of monitoring and
tuning Machine Learning models in an extremely easy and fast manner. Countless hours
of their service have been used, and countless hours of work have been saved due to their
stunning API. Strong recommendations for similar use cases are given out to the fellow
reader.

Furthermore, my family and friends have given me the support I needed to keep up
such a long project, especially during the difficulties we experienced in the last 18 months
of the COVID-19 pandemic. Many calls, and a few in-person meetings, have given me
the help to keep up a positive spirit. With the end of this project and some light at the
end of the tunnel of the pandemic, we are all starting to gaining more positive energy
and optimism towards the future.

i

Abstract

Since the rise of transformer models and the breakthroughs of the attention mechanism,
many researchers have been putting work on understanding and improving those mechan-
ics. While transformer models have been developed in the domain of natural language
processing (NLP), there is now a trend visible of modifying them for other data modalities
such as image or audio data. However, most of these advancements have rather modified
the way the data is fed into the attention mechanism than changing the mechanism itself.
This has led to specialized transformer models applicable for single data modalities only.
In this work, we focus on the attention mechanism itself to make it more applicable to
different types of data modalities.

To test our model on different data modalities, we utilize the domain of few-shot
learning, a subbranch of meta-learning. Besides being inherently data modality agnostic,
we motivate this choice by the close relationship between NLP and few-shot learning.
It has been recognized that not only few-shot learning but also tasks from NLP can
be considered as a sort of task-based learning. From this perspective, we wonder how
effective current transformers perform on such tasks but with different data modalities
and how such transformers can be improved in terms of classification performance.

We thereby propose three novelties around the self-attention mechanism: Opposed
to a feature-wise transformation of the input batch, we propose to stack a sequence of
tasks and to transform them all at once. We propose to replace linear with non-linear
transformations to increase the complexity and to cope with a larger variance of the input
data. Finally, we propose to generate attention weights directly by an MLP as opposed
to the scaled dot-product attention.

Besides the main research around Few-Shot Transformers, the novel type of transformer
we are proposing, we also introduce a dataset that has been created in the early phase
of this study. This dataset is very suitable for the few-shot setting and can be sampled
infinitely large. Both in the experimental chapter, as well as in the appendix we elaborate
on the details.

iii

Contents

Acknowledgements i

Abstract iii

List of Tables vii

List of Figures ix

1. Introduction 1

2. Background 3
2.1. Gated Neural Cells . 3
2.2. Generalized attention . 5
2.3. Self-attention . 6
2.4. Meta- and Few-Shot Learning . 7
2.5. Attention in Few-Shot Learning . 9
2.6. Related Work . 9
2.7. Motivation for the remainder . 11

3. Methods 13
3.1. Model embedding . 13
3.2. Encoders-Decoder Stack . 13
3.3. Deep Attention . 15
3.4. Model complexity . 17
3.5. Model training . 18

4. Experiments 21
4.1. In-depth analysis . 21
4.2. Datasets . 22
4.3. Competing algorithms . 22
4.4. Ablation studies . 25

5. Results 27
5.1. In-depth analysis . 27
5.2. Image tasks . 28
5.3. Tabular tasks . 29
5.4. Ablation studies . 30

v

Contents

6. Discussion and Conclusion. 33

Bibliography 35

A. Appendix 39
A.1. Symbolic Regression dataset . 39

A.1.1. Introduction . 39
A.1.2. Motivation . 39
A.1.3. Methods . 39
A.1.4. Training . 40

vi

List of Tables

4.1. Hyperparameter grid for model exploration: dmodel, n_layers, p_dp, and
lr are defined in a discrete space. 21

vii

List of Figures

2.1. Idea behind LSTM, figure by Tondak (2021) [Ton21]: Information flow is
controlled by logical gates of AND and OR. This is achieved by an input,
forget, and output gate, respectively. 3

2.2. Idea behind Neural-Turing-Machines, figure inspired by [GWD14]: A
recurrent neural controller, often a LSTM unit, accesses a memory vector
by read or write operations to store features. 4

2.3. Idea behind Self-Attention, figure by [Sin20]: Input data is transformed by
three distinct linear transformations which align Q and K in a way such
that optimal correlations between input rows are found. These correlations,
or attention weights, are applied onto V. 7

2.4. Tensor shape of a typical Few-Shot Learning: Tasks T of vector length N
are aranged in a sequence S. Sequences are stacked in batches B. 9

3.1. Architecture of the Few-Shot Transformer. Multiple Encoder-Modules are
stacked, from which each transforms the input of stacked sequences of
tasks by transferring tokens based on Deep Attention. The architecture is
concluded by a single Decoder module. An attention score is computed,
which intuitively expresses the similarity among tasks. Projecting this
score onto the labels broadcasts them in a way such that the N ·K + 1
example will yield the true label. 14

3.2. Examplic depictions of G|S|x|S|(x) and G|S|x|N |(x) for an input X with
X ∈ R(·,2,1). Since visualizations of larger feature vectors become quite
spacious, this example only shows the underlying idea. In real-world
applications, the input X will come frome a space X ∈ R(·,|S|,dmodel). . . . 17

3.3. Noamlr scheduling: The learning rate is linearly accelerated over a period
of warm_up steps, then exponentially decayed over the remaining training
time. 19

4.1. Architecture of TRANSFORMER, from the original paper [VSP+17]. . . . 23
4.2. Architecture of SNAIL, from the original paper [MRCA17]: Wavenet-

connections (orange) and self-attention (green) are alternating being used
to transform the input. 24

5.1. Parallel coordinates grid of hyperparameter configuration vs. Accuracy on
the validation set of Omniglot. 27

5.2. Comparing performances on Omniglot, with 10 runs per model. 28
5.3. Comparing performances on MiniImageNet, with 10 runs per model. . . . 29

ix

List of Figures

5.4. Comparing performances on Symbolic Regression, with 10 runs per model. 30
5.5. Comparison of the ablation studies: A1 and A3, both implementing

feature-wise transforms, perform the worst. All high-performing ablations
implement sequence-wise transforms. There is no significant difference
between A7, A5, A6, and A8. 31

x

1. Introduction

Since the arrival of gated neural networks, such as recurrent neural networks, the idea of
logical data flow within gradient-based estimators has been evolved, namely in the form of
neural-turing-machines [GWD14] and lately in the form of transformers [VSP+17]. The
latter one specifically implements a form of information routing, called self-attention,
which allows a transformation on word-vectors, or tokens, from the setting of natural-
language-processing (NLP). By self-attention, tokens are routed and exchanged between
sequences to learn which parts of a sentence to pay the most attention to. While those
models arose in the field of NLP, successors have been developed to directly work with
different data modalities such as images by vision transformers [DBK+20]. The original
self-attention mechanism is thereby used in a way such that those models can even compete
with traditional convolution-based models. While the self-attention mechanism is kept
in the original implementation, the way of feeding data in and out of it is specifically
designed per application, such as image or text data. While this approach has been
successful in an attempt to replace classical convolutional neural networks, they suffer
from a low sample-efficiency leading to a new of even larger datasets [DBK+20]. Besides
advancements in terms of different data type applicability, other studies have been focusing
on more computationally efficient attention mechanisms by approximating the attention
matrix. This usually trades performance and efficiency.

The domain of NLP, from which transformer models arose, is from a high-level perspect-
ive comparable to the field of few-shot learning. Here, based on a set of tasks presented
to a model at once a novel task has to be solved. Specifically, we call the set of tasks the
support samples and the task to be solved the query sample. While in NLP the tasks
correspond to embeddings of word vectors, they can be of any general form in the context
of few-shot learning. Few-shot learning is a subbranch of the field of meta-learning. Here,
estimators are required to learn abstract rules of learning, which in many cases boils down
to learning how to compare samples in the input space. Since transformer models have
also been described as few-shot learners, we are keen to explore further opportunities
and challenges in this direction. Given that few-shot learning settings are in general data
modality agnostic, meaning that tasks are build from images, audio signal data, or all
other kinds of tabular data, we are interested in a model which reads data in the same
shape and format and regardless of the data type being used. This is quite opposite to
recent advancements like vision transformers [DBK+20], which specifically adapts original
transformers to work on image data, but at the same time on image data only.

We are motivating our research by a modified transformer model which performs on
all kinds of data modalities and the few-shot setting better than original transformers,
in terms of classification accuracy on a validation set. For this, we are interested in
highlighting the attention mechanism itself and to explore opportunities for proposing a

1

1. Introduction

more general and complex attention mechanism, capable of solving a multitude of different
data modalities. In the underlying work, we concern ourselves with three major questions,
all centred around the development of self-attention in the context of transformer models.
First of all, we are interested in the performance of original transformer models in the
few-shot setting. Therefore, we select both standard datasets and propose a novel one by
ourselves. Besides the transformer model, we also compare ourselves against a state-of-
the-art algorithm in the field of few-shot learning. Further, we discuss modifications to
the self-attention mechanism for increasing the computational complexity and to achieve
a larger field of application w.r.t different datasets. Finally, we empirically test our novel
model on the proposed datasets. We summarize our three research questions as follows:

RQ1: What is the performance of original transformers on non-NLP tasks?

RQ2: What modifications increase the performance of transformers on non-NLP tasks?

RQ3: How competitive are those modifications on non-NLP tasks?

Remaining work In the following background chapter, we elaborate on the historical
development which led to the popular self-attention mechanism of transformer models.
We discuss different types of the alignment model used in attention, before introducing
the field of meta- and few-shot learning. Most importantly, we describe the data format
being used in this setting and for all models in the later following experiments. Following,
we discuss modifications to the attention mechanism implemented by our proposed Few-
Shot Transformer in the methods chapter. In the experiments chapter, we explain the
experimental setup and procedure. The results are presented afterwards within the results
chapter. We finalise our study with a discussion and conclusion of the experimental
findings in the last chapter.

2

2. Background

2.1. Gated Neural Cells

Since the developments around neural long short-term memory (LSTM) [HS97] cells, ways
of building neural layers in the perspective of data processing units have been sought.
By combining logic gates such as OR, AND, or NAND, information routing within these
blocks has been constrained in the desired fashion. Figure 2.1 depicts such a long short-
term memory cell, with its parts of an input, output, and forget gate. Here, the input

Figure 2.1.: Idea behind LSTM, figure by Tondak (2021) [Ton21]: Information flow is
controlled by logical gates of AND and OR. This is achieved by an input,
forget, and output gate, respectively.

gate learns which input information to accept, the forget gate controls which information
not to accept, and the output gate toggles which information to propagate to the next
layer. While LSTMs enable sequence-processing, giving rise to many applications such as
NLP or audio-processing, some issues remained unsolved and others were introduced by
their architectures:

1. While LSTMs do allow the modelling of long-term dependencies and attending to
short-term patterns in general, their weaknesses have been spotted in terms of long-
long-term dependency identification. While for smaller sequences LSTMs turned
out to be quite powerful, their performance crucially drops with the increasing
length of the sequence.

3

2. Background

2. They suffer from their recurrent design which hinders effective backpropagation and
parallelization during training time, as found by Pascanu et al. (2013) [PMB13].
Since the sequence needs to be unrolled over time, only a single worker can process
this batch and thus distributed training becomes much harder.

These issues motivated further research since both are particularly hindering large-scale
and complex real-world applications, i.e in the processing of full books rather than short
sequences from social media. Such applications not only require learning long-term
dependencies but also an efficient training mechanism to compute such long sequences.

Yet, the idea of building neural data pipelines which decide when to store, when to
retrieve and how to use this information for processing the input has been followed by
many different scientists. One foundation for the remaining work is the neural turing
machine (NTM) proposed by [GWD14]. The network, consisting of a memory unit and a
controller as depicted in Figure 2.2, can learn general operations and functions like copying,
repeatedly pasting, or attending to associative contents. It follows the idea of gated

Controller

Read Heads Write Heads

Memory

External
Input

External
Output

Figure 2.2.: Idea behind Neural-Turing-Machines, figure inspired by [GWD14]: A recur-
rent neural controller, often a LSTM unit, accesses a memory vector by read
or write operations to store features.

data pipelines but extends LSTMs by a second and dedicated controller deciding which
information to put into the memory and how to use it after retrieving it. While NTMs
empirically work, they are still notoriously difficult to train as shown in the original study.
Thus, as an observation of the authors, NTMs failed to become mainstream. However, a
continuation of the idea has finalized itself on the concept of attending to right pieces of
information in the input, and to transform the input repetitively by this operation as

4

2.2. Generalized attention

long as it has been successfully transformed. Figure 2.2 can be seen as an early attempt
of an attention mechanism since the controller unit decides which information to read
from and write to the memory for inferring new data.

[VSP+17] proposed such an attentive and transforming model by combining scaled
pot-product and feedforward networks in a simultaneous encoder-decoder fashion, naming
it the transformer model. While in this scenario we do not have gates anymore, we
argue these gates are learned by the linear, attention projections inside of each attention
layer. From the high-level perspective, attention works in the following way: Information
is routed by retrieving certain keys by a set of queries and projecting this onto a set
of values, the mechanism itself can also be described as the gated decision of which
information, or on the tongue of NLP, tokens should be exchanged in the vectors of data.
This is comparable to a controller determining which information to read from or to
write into a head. However, instead of having a dedicated LSTM-based controller unit,
attention works by the input data itself and by finding transformations of the input as
queries, keys, and values which then by some alignment determine which information to
keep, exchange, or discard. Thus, each attention layer learns to pay attention to different
parts of the input space and thereby transforms this space such that the deeper layers
become more effective in their task. Remarkable breakthroughs have been achieved by
[DCLT18, RWC+19, BMR+20]. We will cover attention in more detail in the following
section.

2.2. Generalized attention

Generalized attention introduced the idea of handling a query vector q, for which a most
attentive piece of information needs to be retrieved and injected into some data as to
transform q. For this, we imagine a set of key-value pairs (K, V) which we regard as
the internal memory of the attention layer. Given an alignment model e, we normalize
the attention score into a similarity vector over (K, V) given q in the range [0, 1]. By
multiplying this into V, we access the i -th row of V and thus retrieve the attentive piece
of information we were looking for. Put differently, generalized attention is a mechanism
to compute a score given a pre-defined metric over a query and a set of key-value pairs.
Intuitively, it allows the model to retrieve a piece of stored information, by accessing a
memory slot close to K based on q. The closeness is defined by a score, normalized into
a probability distribution by the Softmax function and thus resembles a sort of similarity
metric between samples in the input-sequence space. The piece of information restored
equals the memory value V. This is formally described in Equation 2.1.

A(q,K, V) =

N∑︂
i

exp(eqki)∑︁M
j exp(eqkj)

vi (2.1)

Various forms of the alignment model Given an alignment model, a set of vector scores
e1, . . . , en are computed which then are normalized into a probability density distribution
over E. The alignment scores e1, . . . , en ∈ Rd are computed over a query vector q ∈ Rd2

5

2. Background

and a set of key vectors k1, . . . , kn ∈ Rd1 . In general, there are three popular ways of
computing ei:

• Additive attention: ei = W T
3 tanh(W1ki +W2q) (2.2)

• Multiplicative attention: ei = qTWki (2.3)

• Basic dot-product attention: ei = qTki (2.4)

In the case of additive attention W1,2,3 are defined by W1 ∈ Rd3xd1 , W2 ∈ Rd3xd2 , and
W3 ∈ Rd3 . While additive attention equals basic dot-product attention in theoretical
complexity, the latter can practically be implemented much faster by matrix multiplication
code as shown by [VSP+17].

2.3. Self-attention

Self-attention is the specialized implementation that regards the input as three distinct
and linear projections upon which an alignment model is computed. Instead of handling a
query q and a set of pairs (K, V), self-attention transforms the input into three distinct
vectors Q, K, and V. This allows the model to find high-dimensional representations of
the input allowing to find desired similarities and thus letting information flow to the
values. Since self-attention uses the dot-product alignment model on high dimensional
feature vectors, alignment scores are prone to grow to extremely large values causing
instability during training. This effect of exploding gradients can be mitigated by scaling
the dot-product by the square root of the feature vector dimensionality. The resulting
alignment model is the scaled dot-product attention. We observe the following notation
defined in Equation 2.5:

A(Q,K, V) = SoftMax(
QKT

√
n

)V (2.5)

In Figure 2.3 the self-attention mechanism is illustrated. An input tensor is transformed
three times by linear projections into Q, K, and V. Performing the dot-product on queries
and keys results in the attention matrix, or attention score, which is then projected
onto the values. Put different, by differentiation and backpropagation three distinct
transformations θ, ϕ, g are sought which align two copies of the input in such as way
that the dot product between both reveals the most important pieces of information to
attend to. By transforming this similarity matrix, or attention score, into a probability
density by the Softmax function, a lookup table is generated which allows copying bits
of information, otherwise also called tokes, from one part of the vector V to a different
part. This is achieved by the dot-product of the attention score to V.

Another novelty of the same authors is the proposal of multi-head attention, a mechanism
that also has become more or less standard in the context of Transformer models. Here,
the projected input the form of Q, K, and V are split into sub-sequences of the same
length over which the attention model is computed. The authors argue that such a

6

2.4. Meta- and Few-Shot Learning

mechanism allows each attention head to focus on different sub-spaces, thus increasing
the sample-efficiency while keeping the computational complexity roughly the same. The
final result is concatenated to a vector of the original size and send to the next layer.

Figure 2.3.: Idea behind Self-Attention, figure by [Sin20]: Input data is transformed by
three distinct linear transformations which align Q and K in a way such that
optimal correlations between input rows are found. These correlations, or
attention weights, are applied onto V.

2.4. Meta- and Few-Shot Learning

Meta-learning is a field is concerned with enabling learning models to learn how to learn
a given task or set of tasks. While many studies focus on automatic and differentiable
models such as neural networks, others are model-free as well. The problem space is
broadly discretized into model-based, metric-based, and optimization-based approaches.
In the latter case, typical implementations use a two-model setup where one base-model
focuses on a particular task per episode, whereas a second model learns how to optimize
such a type of base-model over a set of distinct tasks. One of the earliest and famous
approaches, to the best of the authors’ knowledge, is Learning to learn by Gradient
descent by Gradient descent by [ADG+16]. In this early approach, the authors show how
an LSTM can replace a rule-based optimizer such as adam [KB14] by a learned model in
general tasks like image classification. Further developments partially adapted the idea in
the form of LSTM-based meta learners by [RL16] and in novel directions as in [FAL17].
These models were specifically designed to learn how to distinguish and discriminate
tasks in the set of few-shot Learning, by training a meta-network to learn how to learn
these discriminating boundaries. In the second branch of meta-learning, model-based
approaches are pursued. Here, often a memory-controller architecture steers the process
of information storing and retrieval as to learn which generalized features need to be
stored for the task of processing novel features of a close-by distribution. In particular,
[SBB+16] proposed an NTM-like neural network implementing such a memory-controller

7

2. Background

architecture. Networks of this type can store general types of features during their
training time, which are recalled during inference enabling to recognize specific parts
of information and consequently retrieving information from the memory to transform
the input signal in a discriminating way. Finally, there is the branch of metric-based
approaches in which a particular similarity-metric over the input or sequence space is
learned over a set of episodes. Popular discoveries here are [VBL+16, SYZ+18, SSZ17].
While many approaches focus on model parameters, others concern with hyperparameter
optimization. Well-known studies are [VRH18, vRPT+18]. For a deep survey into the
broadness of this field, we highly recommend a study of Huismann, van Rijn and Plaat
from 2020 [HvRP21]. Finally, since the field of meta-learning has gotten raised attention
during the last couple of years, many interesting ways of developing new ideas and
frameworks have been proposed. We would briefly like to mention one of these challenges
[met], which contributed by raising attention to the field of meta-learning by hosting
competitive challenges around meta-learning datasets and algorithms.

Few-Shot Learning is the specialisation of meta-learning which aims at learning under
a high constraint of information density. Whereas in academia, datasets are often well-
prepared to benchmark a particular set of tasks, industrial datasets often come in the form
of sparsity w.r.t to either features or labels. Examples of such sparsity are either a small
dataset size, underrepresented class samples, or a lack of labels at all. Few-Shot Learning
tackles these issues by models which inherently learn to cope with such constrained
environment during training time. We impose such constraints by shifting the training
process from pairs of samples and labels (S,L) to tensors of support and query samples.
Given a set of these labelled support samples, the learner’s task is to determine the
label(s) of the unlabelled query set. While different types of approaches can be used,
many contributions find themselves classified as metric-based approaches. Whereas in
supervised learning, we are handling pairs of labelled examples for which we like to
approximate a discriminating function, the data model in few-shot learning is slightly
more complex. Since in most instances tasks shall be separated from each other, the
tensor model is expanded from R2 to R3. The first dimension yields a batch of sequences,
the second dimension holds a sequence of tasks, and the last dimension describes the
features of a task. Figure 2.4 depicts such a data tensor. The number of tasks inside a
sequence is determined by the exact few-shot setting: N -Way K-Shot Learning defines
the training of N distinct classes populated by each K instances. Therefore, a single
batch consists of N ·K labelled examples, and the N ·K + 1-th example without a label.
An important constraint here is that the unlabelled example belongs to one of the classes
of tasks shown in the same sequence. For this reason, many approaches [SYZ+18] aim
at defining or learning a similarity metric over the sequence-space for finding the closest
distance between two tasks given by their same class belonging.

8

2.5. Attention in Few-Shot Learning

1
2
3
4
5
?

F1 F2 FnF3 F4 F5 F6 F...

Batch of n
sequences

Figure 2.4.: Tensor shape of a typical Few-Shot Learning: Tasks T of vector length N
are aranged in a sequence S. Sequences are stacked in batches B.

2.5. Attention in Few-Shot Learning

Attention rose from the domain of NLP, a type of problem where the data model is
arranged as a tensor of batched sequences of partly labelled words. Such a problem
is on a high-level perspective a meta-learning challenge, where words are called tasks.
Here, the model is not learning a functional dependency between a sample si ∈ S and its
corresponding label li ∈ L but an implicit model-based and metric-like function F which
compares tasks within a single sequence. Such a problem definition seems intuitively close
to the approaches of attention, as the dot-product alignment between two vectors v1 and
v2 can geometrically be interpreted as the similarity of those in their high-dimensional
space. Further, as attention scales these probits into a probability distribution one can
reason about the task similarity within a sequence.

2.6. Related Work

Since the breakthrough of transformer models on NLP tasks, many research activities
have been laid around improving different characteristics of both transformer models,
the attention mechanism, or the combination of both. Without claim of completeness, a
literature review has shown us three major branches in which academia has funnelled their
activities: Performance, scalability, and efficiency. In performance, the main objective is
to solve specific tasks or sets of tasks better than previous models. Here, the efficiency of
the model is of secondary interest or sometimes even out of interest. In the objective of
efficiency, the objectives are turned around compared to performance-based optimization.
Scalability concerns around techniques of making models which parameter counts up to
billions or even trillions stable during training, as well as improving the training process

9

2. Background

in terms of efficiency.

Scalability: In the latter branch of scalability, approaches are sought for increasing the
model complexity to large-scale magnitudes of up to trillions of parameters. These models
have shown surprising effects as to generalize to tasks for which the models never were
meant to be used for, as shown with GPT-3 being able to solve numerical tasks [BMR+20].
Another model being able to scale up to massive numbers of parameters are the switch
transformers by Google Brain [FZS21]. By using sparsity and hard routing they are not
only able to increase the parameters but also able to keep speed and sample-efficiency
within reasonable limits.

Efficiency: Transformer models are known to suffer efficiency in terms of computational
effort since the scaled dot-product attention scales quadratically with the length of the
input feature vector sizes. Many studies have been centred around reducing the complexity
to linear bounds, as with linformers [WLK+20]. The authors recognize that in many
instances the information inside the attention matrix is of lower rank, and thus can be
approximated. The approximation can be computed in linear scale by keeping an almost
comparable performance to traditional transformer models. Based on fast weight memory
systems, another paper proposes new update rules and kernels for computing attention
weights with the aim of not only linearizing but also avoiding problems other approaches
suffered, such as the usage of random features [SIS21].

Performance: In terms of performance, the study [FLG+20] suggests a feedback memory
to stream information between higher and lower layers bidirectionally, thus decreasing the
loss of computational capabilities of the overall model. While they suffer training speed,
they achieve remarkable improvements in long-term dependency tasks. Other studies
are intersecting closer between efficiency and performance, as with the perceiver model
[JGB+21]. They both solve the quadratic bottleneck problem, as well as being agnostic
on the modality of the input data. The latter is achieved by feeding the input data by
cross-attention multiple times. The last paper we would like to highlight is big bird:
transformers for longer sequences [ZGD+20]. Here, the authors address the quadratic
compute issue by a combination of random, window, and global attention, thus allowing
to avoid a full attention mask over the complete input space at once. This allows the
processing of longer sequences with state-of-the-art results.

Although these models are highly interesting and clear advancements in the development
of transformer models and attention, they do not resemble applicable competitors to our
setting since they were not specifically designed for data modality agnostic and few-shot
learning settings. Comparable studies are [LLO+20, LHL+20, JKZF20, MRCA17]. The
first set of authors from [LLO+20] proposes to append a task embedding vector that
represents information about the task of interest to the input sequence of token embeddings.
Besides, they utilize a default transformer model with self-attention. Although their
methods produced competitive results, the experiments are unfortunately only conducted
on artificial tasks in the domains of sequence classification, sequence transduction, and

10

2.7. Motivation for the remainder

pathfinding, making them difficult to compare to different tasks such as computer vision.
The second set of authors from [LHL+20] proposes a novel transformer layer, called
the Universal Representation Transformer layer which leverages universal features for
few-shot classification by dynamically re-weighting and composing the most appropriate
domain-specific representations. In comparison to our ambitions, this study does not
change the self-attention mechanism itself, but rather the exchange of features before
and after the attention transform. Finally, the study of [JKZF20] is very interesting
for the idea of directly generating attention weights by an MLP, as a means to replace
self-attention. The authors propose an attention module that, specifically for image data,
computes attention weights based on a meta-weight generator. Given the domain of
image data, the meta-weight generator is implemented as a single- or two-layer point-wise
non-linear projection with shared weights over the R2 axis. Utilizing a convolutional or
fully-connected network for directly computing attention weights, opposed to the scaled
dot-product attention over multiple linear feature projections opens a new way of thought
of transforming data. However, since the solely works for image data we choose not to
compare it directly with our method. Still, we recommend the study to the fellow reader.

Most similar to our ambitions is SNAIL by [MRCA17], which combines self-attention
with different mechanisms such as wavenet-connection for solving data modality agnostic
tasks in the few-shot setting. While attention allows attending to all previous tasks,
wavenet restricts this to one-way dilated connections forcing the model to learn larger
generalizations between tasks. The authors test their method not only on N-way K-Shot
few-shot settings but also on reinforcement learning problems. For this reason the general
applicability of SNAIL, we choose the algorithm as a competitor to our model.

2.7. Motivation for the remainder

Based on the success of the attention mechanism, we are motivated to explore extensions
and modifications to the attention mechanism. We measure the performance of these
modifications by comparing them against state-of-the-art algorithms on different data
modalities and datasets in the few-shot setting. While developments of transformer
models for i.e computer vision have modified the way data is fed into the self-attention
mechanism, the mechanism itself has often not been modified. For this reason, we are
interested in studying which adaptions of the self-attention mechanism facilitate learning
on data modality agnostic problems. In contrast to recent advancements such as vision
transformers, the data will be fed into the model in an application-agnostic manner i.e.
will not be split up into tiles by rather transformed at once. In the same fashion, all
kinds of problems can directly be fed into our proposed model without the need for
specific adaptions. We propose to solve this by increasing the complexity of the attention
mechanism by methods explained in the next chapter.

11

3. Methods

We motivate our research by the intuitive closeness of the attention mechanism to the
challenges of few-shot learning. On the shoulders of proposals of [VSP+17, MRCA17,
JKZF20] we propose a novel Few-Shot Transformer which aims to be applicable in multiple
fields rather than only NLP or computer vision based models, by providing comparable
performance. Similar to [JKZF20] we propose a parameter-based approach of computing
attention weights, but also to transform feature vectors. Since we kept the feed-forward
networks as proposed by [VSP+17], we will discuss our modifications of the attention
mechanism.

3.1. Model embedding

In order to keep the computational effort per layer constant, the initial tasks or their
embedding t ∈ T are fed through a linear transformation to produce a set of feature
vectors f ∈ F of dimensionality dmodel. We follow [VSP+17] on this idea and recommend
it for further use for many reasons such as hyperparameter choice reduction as well as
simplified computational effort prediction. Further, we use an application-specific encoder,
like a resnet for image data, to create an embedding of the initial tasks, if necessary. This
follows the procedure of similar algorithms such as [MRCA17, SYZ+18].

3.2. Encoders-Decoder Stack

Encoder The encoder-decoder architecture depicted in Figure 3.1 allows, similar to
transformers, multiple successive encoding steps. Each encoder module performs two
operations, each finalized by a skip connection and layer normalization for a smoother
gradient flow. The first operation is the Deep Attention, a novelty proposed by our
findings. This operation allows information routing in the batches of sequenced tasks
as to flow data between the support and query samples. Opposed to transformers, the
alignment score is computed non-linearly and by a parametric approach. Specifically,
a two-layer, position-wise fully-connected and non-linear transformation is used, which
outputs a set of attention weights. These attention weights are applied on a non-linear
transform of the values to produce the transformed feature vector. We call this step
the Deep Attention transform, given the computation of attention weights by a deep
MLP. The second step feeds the transformed sequence, similar to the original proposal of
[VSP+17], through a position-wise fully-connected feed-forward network. The input to
the encoder module corresponds to the typical few-shot learning batch depicted in Figure

13

3. Methods

2.4, where tasks are arranged in a sequence. Multiple stacked sequences resemble a batch
on which gradient descent is performed on the feed-forward and backpropagation step.

Model
embedding

Output
Labels

Deep
Attention

Dot-Product
 Attention

Add & Norm Norm

Add & Norm

Feed Forward

Nx N1

Output
probabilities

Input
Features

Figure 3.1.: Architecture of the Few-Shot Transformer. Multiple Encoder-Modules are
stacked, from which each transforms the input of stacked sequences of tasks by
transferring tokens based on Deep Attention. The architecture is concluded
by a single Decoder module. An attention score is computed, which intuitively
expresses the similarity among tasks. Projecting this score onto the labels
broadcasts them in a way such that the N ·K +1 example will yield the true
label.

Decoder Whereas transformers decode multiple times, usually as often as they encode.
For the setting of few-shot learning these computations do not yield any benefit since the
decoder’s input simply holds class labels for each of the sequence steps of a batch. As a
result, the proposed architecture consists of a single decoder, which expects the feature
vectors to be aligned in their high-dimensional space accordingly to their class affiliation.
Put different, the transformed features shall be placed in a latent space such they are
grouped closely together according to their class label. While this grouping is achieved
by the transformation of the encoder modules, the decoder module exploits the distance
between similar and non-similar tasks by the final step of the scaled dot-product attention.

14

3.3. Deep Attention

Here, an attention matrix is computed which then corresponds to the similarity of tasks
w.r.t their class label. Projecting this similarity matrix onto the labels broadcasts the
label of the most similar support sample to the query sample onto the label position of
the query sample.

3.3. Deep Attention

Self-attention locates local and global dependencies in the sequence-space by minimizing
the error on three distinct linear projects on the input, which after successive alignment
highlight sub-spaces to attend to. In the specialized domains such as NLP or computer
vision, where the distribution of the feature space is strictly controlled by constraining
functions such as vector embeddings or convolutions, these linear projections of the feature
space have empirically proven to be powerful and effective. However, in the case of meta-
and few-shot learning no such assumptions can be drawn around the input space since
the sequences here are examples of features that are not bound to specific domains such
as audio processing or signal analysis. For this reason, we argue that a more complex
transformation on the features is sought. In this sense, we are proposing three novelties:

1. Attending to the full sequence: As original transformers employ self-attention,
they project the input sequence linearly and feature-wise into a set of queries Q, K,
and V. By feature-wise, we are referring to the stacked batch of sequences shown in
Figure 2.4 in which each row resembles one feature vector being projected linearly and
independently of all other feature vectors in the same sequence. Since various kinds of
problems are expected to be fed into the learner, no assumptions about data distribution
and closeness of features within a sequence or batches are given. Thus, we argue that an
artificial increase in data density is needed. Instead of performing feature-wise projections,
our first contribution proposes to perform sequence-wise projections instead. Rather
than attending to dimensions of a single feature, we attend to all positions within a
sequence of features, and thereby not only transform the dimensions of a single feature
but instead to all features of a sequence at once. This enables the model to perceive a
larger field over the few-shot learning task and increases the variance of the data input.
Put different, instead of transforming the support and query samples one by one, all
samples are stacked together and presented at once to the Few-Shot Transformer. Hence,
instead of transforming each row separately of the tensor presented in Figure 2.4, all
examples of the sequence are considered as a single feature and as a whole projected.

2. Non-linear projection: Following on the idea that the data density has to be increased
for enabling the information storage, retrieval and transformation process, we concurrently
argue that the Q, K, and V projector has to be of higher complexity as well. While the
original implementation proposed linear and position-wise transformations, we propose a
two-layer position-wise feed-forward network with a non-linearity in-between. This allows
the approximation of a non-linear dependency between a sequence and the features we

15

3. Methods

need to pay the most attention to. We define a base-network G in the form of equation
3.1:

Gn : max(0, xW1 + b1)W2 · b2 (3.1)

where W1 ∈ Rd1xd2 , W2 ∈ Rd2xdn for an output dimensionality of n. Hence, this type of
network G can be instantiated onto a network G by defining the output dimensionality n.
Such a base function helps us reuse a certain type of architecture multiple times in our
model. Another way of looking at it is a two-layer MLP without a yet defined output
shape. n defines the output shape, and a specific network can be instantiated from G
by passing a shape n into it. We highlight that this non-linear projection can both be
used with self-attention, as well as with our proposal of directly computing the attention
weights. In order to transform feature vectors similar to self-attention, but in a non-linear
way, an instantiation of G in the form of equation 3.2 is proposed:

G1(x) = G|S|x|N |(x) (3.2)

3. Attention weights projection: Since attending to a whole sequence at once scales
the computational effort of the first layer of a network of type G by a factor of s = |S|,
we are discussing a method to mitigate this impact. While original transformers compute
the alignment model e based on the two projected vectors Q and K by self-attention
we propose, similar to [JKZF20], to utilize the type of network G from equation 3.1
as to directly compute attention weights through an instantiated network G2. By this
mechanism we replace the alignment model e of self-attention with a non-linear, parametric
approach to directly generate attention weights. We soft-max these weights accordingly
to equation 2.5 as to receive a similarity mask in the form of probability densities from
features to features. We describe G2 formally as in equation 3.3:

G2(x) = G|S|x|S|(x) (3.3)

By concurrently scaling up the data density and model complexity, we allow more
complex analysis between features w.r.t their closeness and similarity. Further, by applying
these attention weights on stacked and non-linearly transformed values we allow the
model to perform aggregations of features with the target of merging features of the same
class while moving non-similar features further away. The architecture of both weight
projectors is shown in Figure 3.2. We denote our Deep Attention mechanism the following:

A(X) = SoftMax(G2(x))G1(x) (3.4)

Finally, we summarize the key differences of our Deep Attention mechanism to self-
attention as the three novelties discussed:

1. We compute attention weights directly by a parametric approach as opposed to the
scaled dot-product mechanism commonly used.

2. By attending to the full sequence at once, we increase the signal variance read by
the projection. The stacking of features is applied two times: One time to generate
the attention weights, and a second time to compute V.

16

3.4. Model complexity

Input Layer ∈ ℝ² Hidden Layer ∈ ℝ¹⁶ Output Layer ∈ ℝ⁴

F1,1
F2,1

S1,1

S1,2
S2,1

S2,2

Input Layer ∈ ℝ² Hidden Layer ∈ ℝ¹⁶ Output Layer ∈ ℝ²

F1,1
F2,1

F'1,1

F'2,1

Figure 3.2.: Examplic depictions of G|S|x|S|(x) and G|S|x|N |(x) for an input X with X ∈
R(·,2,1). Since visualizations of larger feature vectors become quite spacious,
this example only shows the underlying idea. In real-world applications, the
input X will come frome a space X ∈ R(·,|S|,dmodel).

3. Concurrently we increase the complexity of the projection mechanism from a linear
to a non-linear transformation. The non-linear projection is both used on the
full sequence transform which generates the attention weights, as well as on the
transformation of V.

3.4. Model complexity

In the following we are interested in the model complexity w.r.t to layers and number
of parameters. Since the proposed architecture consists of a stack of encoder layers
concluded by a single step of decoding, there are at most nenc + 1 layers. Each encoder
layer consists of two operations, performed by Deep Attention and the feed-forward
modules, respectively. A Deep Attention module consists of two functions, G1 and G2.
All MLPs used inside the encoder layer have a latent dimension dlatent which scales by its
input, hence by the product |S| ·dmodel. Historically, we have found that many approaches
scale the latent dimension by a constant of the input dimension. We denote the following
equations to comput the number of parameters as a function of the number of tasks |S|
and the model size dmodel:

17

3. Methods

pG1(|S|, dmodel) = (|S| · dmodel) · dlatent + dlatent + dlatent · |S|2 + |S|2

= dlatent · ((|S| · dmodel) + 1) + |S|2 · (dlatent + 1) (3.5)

pG2(|S|, dmodel) = (|S| · dmodel) · dlatent + dlatent + dlatent · (|S| · dmodel) + (|S| · dmodel)

= dlatent · ((|S| · dmodel) + 1) + (|S| · dmodel) · (dlatent + 1)

Finally, we observe a much smaller number of parameters for the second operation, the
feed-forward network. Since the projection is here similarly to the original implementation
w.r.t to single tasks instead of the full sequence, a much smaller number of parameters
will be observed:

pFF (dmodel) = dmodel · dlatent + dlatent + dlatent · dmodel + dmodel

= 2 · (dmodel · dlatent) + dlatent + dmodel (3.6)

Since the decoder layer only performs the scaled-dot product attention on the trans-
formed features, there are not a significant number of weights being added. Precisely, the
only weights in the decoder layer are inside the layer normalization, which normalizes the
probits to a standard normal distribution. We ignore these weights since their contribution
is fairly small.

3.5. Model training

We train our Few-Shot transformer in a step-wise and gradient-based optimization scheme
by utilizing the adam optimizer. For the learning rate, we study the effect of both a
constant as well as an adaptive scheduling system, namely the noamlr from [VSP+17].
We illustrate the noamlr in Figure 3.3. The batch size has been 32 for all settings, and
the constant or maximum learning rate is found by a bayesian optimization search.

Hyperparameter search We determine the set of hyperparameters for our Few-Shot
Transformer by searching over the space of tunable hyperparameters. For this, we consider
the options of grid search, random search, and bayesian optimization search. While grid
search covers the full space precisely, it comes with the highest compute consumption.
Empirical research has shown that instead of sequentially testing out all options, a random
sampling process over the space of hyperparameters often outperforms in terms of compute
and time [BB12]. Since we are, at least in most cases, only interested in the best model
and not the overall dependency between hyperparameters and their induced performance
an even more efficient approach can be taken by utilizing a meta-model. This meta-model
spans a gaussian process over the space of hyperparameters to their observed performance,
and by balancing exploration and exploitation it is theoretically able to converge to an

18

3.5. Model training

Figure 3.3.: Noamlr scheduling: The learning rate is linearly accelerated over a period of
warm_up steps, then exponentially decayed over the remaining training time.

optimum set. This bayesian approach [FSH15] was chosen to find the best architecture
per dataset. To speed this process up, we trained each model for only 50 epochs, of each
10.000 steps. While early stopping techniques were considered in the beginning, they have
not been employed finally since any bias on late-performing models was not preferred by
the author.

Fine-tuning Once the set of best-performing hyperparameters, or put simply the final
architecture, per dataset had been discovered, we trained our models for the fine-tuning
process. Here, we increased the training to in total 100 epochs, each with again 10.000
iterations. For both hyperparameter search and fine-tuning an equal amount of training
and testing steps has been performed.

19

4. Experiments

In the following, we will introduce several experiments for internal and external analysis
of our proposed Few-Shot Transformer. We will thereby start by an internal analysis of
the model performance w.r.t. a pre-defined grid of hyperparameters. For computational
reasons, we will limit these experiments to a single dataset. From the perspective of
external analysis, we will introduce a set of datasets for a wide variety of different tasks,
as well as the benchmark algorithm per dataset. Finally, a list of ablation studies will be
discussed to test the behaviour of isolated contributions of our model.

4.1. In-depth analysis

For the internal analysis we are mainly interested in the performance of our model w.r.t.
model dimensionality dmodel and depth nlayers. Since each attention layer also implements
dropout for countering overfitting, we include the dropout probability pdp into the grid
as well. The learning rate lr will be scheduled either by NoamLR, similar to original
Transformers by [VSP+17]. The grid will be explored randomly on the Omniglot[LST15]
dataset. Besides the evaluation of hyperparameter configurations to the accuracy of the

Hyperparameter

dmodel 16 32 64 -

nlayers 1 3 6 9

pdp 0 0.1 0.3 -

lr 1E-06 5E-06 1E-05 5E-05 1E-04

Table 4.1.: Hyperparameter grid for model exploration: dmodel, n_layers, p_dp, and lr
are defined in a discrete space.

validation set, we will investigate the best performing model w.r.t. the gradient flow. This
serves the purpose to analyse whether all layers and weights are truly used for storing
information, opposed to being invariant pass-through parameters.

21

4. Experiments

4.2. Datasets

Since our goal is to design a Few-Shot Transformer capable to compete on a large variety
of data types, we will experiment on datasets coming from various domains as well.
Specifically, we will utilize image data, audio data, tabular data as well as text data.
All problems will be cast as a classification problem in the N -Way K-Shot fashion.
Specifically, we will be using 5-Way 1-Shot learning and thus handle 5 different tasks at a
time of a single instance each. The query sample originates from one of these 5 classes
but is unequal to the support samples of the same sequence. In the following, we will
briefly the datasets in use:

Omniglot One of most famous few-shot image-classification datasets is the Omniglot
[LST15] dataset. Yielding 1623 different handwritten characters from 50 different alpha-
bets, it is in the light of numclasses-to-numsamples ratio often referred to as the transpose
of MNIST by [LeC98].

MiniImageNet The dataset has been released as part of a novel One-Shot Learner for
image classification by [VBL+16]. Its complexity is high due to the use of ImageNet
images but requires fewer resources and infrastructure than running on the full ImageNet
dataset. In total, there are 100 classes with 600 samples of 84×84 colour images per class.
These 100 classes are divided into 64, 16, and 20 classes respectively for sampling tasks
for meta-training, meta-validation, and meta-test.

Deep Symbolic Regression on Differentiable Models A novel dataset which has been
produced as part of this study as well. The dataset contains weights of neural networks
of a certain architecture together with a label. The weights have been determined by
training the network on a meta-dataset yielding a function f(X) = p0 +X · p1. Thus,
the label presents the tuple (p0, p1). Since the neural networks have been initialized
randomly and since they are massively over parametrized for the meta-dataset, even for
two networks n1, n2 with l1 = l2, we can expect their weights to be different as different
solutions will be found by gradient descent. This provides a nice way to sample massive
amounts of data in the R(nxn) space, with n resembling the number of nodes of the base
architecture. The dataset has not yet been released but will be elaborated on in the
appendix.

4.3. Competing algorithms

In the following, we will discuss the competing algorithms. While all algorithms have
been introduced in chapter 2, we will now discuss the relevant ones in more depth:

Transformer The vanilla Transformer implementation of Vaswani et al. (2017) [VSP+17],
see Figure 4.1, is one of the most important architectures to compare against since it
yields the first attention mechanism leading to significant break-throughs in the domain

22

4.3. Competing algorithms

of Natural Language Processing. It implements self-attention in combination with multi-
head attention by linearly projecting the input feature-wise three different times. The
main difference to our Few-Shot Transformer lies thereby in:

1. The feature-wise instead of sequence-wise transformation of the input data.

2. The non-linear and MLP-based instead of a linear transformation of the queries,
keys, and values.

3. The direct generation of attention weights by an MLP instead of the scaled dot-
product attention.

The only deviation from the original transformers we implemented is in the usage of a
single decoder module, instead of having as many encoder as decoder modules as proposed
by [VSP+17]. We argue that in the case of Few-Shot Learning, where the outputs are
solely vectors of binary labels multiple decoding steps are neither helpful nor necessary.
Thus, after having processed the input multiple times by the encoder module the input
data has been transformed sufficiently to broadcast the true label to the query position
in the vector of labels, as done by the scaled dot-product attention.

Figure 4.1.: Architecture of TRANSFORMER, from the original paper [VSP+17].

SNAIL SNAIL [MRCA17], illustrated in Figure 4.2, implements both attention and
wavenet-like connections and was designed to to specifically solve few-shot problems.
The authors tested SNAIL on Omniglot and MiniImageNet for image classification

23

4. Experiments

problems, but also with different datasets for reinforcement learning problems. Attention
is constructed in the way of self-attention but without multiple heads. We keep the
architecture of SNAIL the same for all experiments, similar to how the authors kept the
same architecture for all of their experiments. As opposed to the original paper of SNAIL,
we use the same vision encoder for all experiments.

Figure 4.2.: Architecture of SNAIL, from the original paper [MRCA17]: Wavenet-
connections (orange) and self-attention (green) are alternating being used to
transform the input.

Statistical significance In order to assure statistical significance over the comparison
of different algorithms over different datasets, we will collect multiple repetitions and
perform statistical tests. Given totally three algorithms to evaluate, we compare three
pairs of algorithms, or groups, against each other. All following tests will be computed
over the validation accuracy after the last training epoch by a set of 10 repetitions per
algorithm and dataset. In order to be able to perform a student’s t-test, equal variances
among groups have to be assured. For this we perform a levene’s test according to
equation 4.1 as follows:

W =
(N − k)

(k − 1)
·

∑︁k
i=1Ni(Zi − Z..)

2∑︁k
i=1

∑︁Ni
j=1(Zij − Zi.)2

(4.1)

Further, Zij , Zi., and Z.. are defined according to equation 4.2, equation 4.3, and equation
4.4, respectively:

Zij =

{︄
|Yij − Yī|, Yi.¯ is a mean of the i-th group
|Yij − Yĩ|, Yi.˜ is a median of the i-th group

(4.2)

24

4.4. Ablation studies

Zi. =
1

Ni

Ni∑︂
j=1

Zij (4.3)

Z.. =
1

N

k∑︂
i=1

Ni∑︂
j=1

Zij (4.4)

Since only two groups are compared at a time, it holds that k = 2, N1 = N2 = 10, and
consequently N = 20. Further, Yij corresponds to the measured validation accuracy of a
single run and a single dataset. For each pair fulfilling the assumption of equal variance,
we will perform a two-sided student’s t-test. The following following equations 4.5 and
4.6 are applied for the student’s t-test:

t =
X̄1 − X̄2

sp ·
√︂

1
n1

+ 1
n2

(4.5)

sp =

√︄
(n1 − 1)s2X1

+ (n2 − 1)s2X2

n1 + n2 − 2
(4.6)

Where X̄ equals the group means, and s2 corresponds to the group standard deviations.
Further it holds that n1 = n2 = 10. For computing the pvalue, we set α = 0.01 and
consider n1 + n2 − 2 degrees of freedom.

4.4. Ablation studies

Finally, we want to analyse isolated contributions for measuring their impact on the final
architecture. For this, we will create several ablation studies implementing different types
of attention. We conduct these ablation studies by measuring the impact of each novelty
compared to the original transformer model initially. Further, we will combine isolated
novelties to explore which interactions of novelties perform the best together. We use
the same hyperparameter settings for all ablation studies, and train for the same amount
of training epochs and steps. Each model is optimized by the same optimizer setting
for 100 epochs with each 10.000 steps. The following hyperparameters have been used:
n_layers= 2, d_model= 64, p_dp= 0.0, lr= 1e − 54, with noamlr scheduling. To our
regret and for computational reasons, we were only able to collect four repetitions per
ablation. We are interested in the following ablation studies:

A1. Feature-wise, linear, and vector-based attention: This ablation corresponds
to the original transformer as proposed by [VSP+17]. As mentioned before, we will
utilize a N − 1 architecture, meaning that N−encoder layers and a single decoder
layer will be used.

A2. Feature-wise, linear, and weight-based attention: Since weight-generation is
based on having not only a single task out of N ·K +1 but all at only, this ablation

25

4. Experiments

is not feasible. Here, a feature-wise transform is used meaning that each task is
transformed without information of the other tasks of the same sequence.

A3. Feature-wise, non-linear, and vector-based attention: The linear projection
of transformers will be replaced by a non-linear MLP-projection. The resulting
vectors Q, K, and V will be processed by the scaled dot-product attention into
attention weights. The non-linear MLP corresponds as with all other cases to a
two-layer MLP with a non-linearity in-between.

A4. Feature-wise, non-linear, and weight-based attention: With the same reas-
oning as in A2., this ablation is not feasible.

A5. Sequence-wise, linear, and vector-based attention: Compared to the original
transformer, the only modification lies in the sequence-wise rather than feature-wise
linear projection. The projected vectors will be translated into attention weights by
the default scaled dot-product attention mechanism.

A6. Sequence-wise, linear, and weight-based attention: Sequences are stacked
and linearly projected. Instead of having projected vectors Q, K, attention weights
will be directly produced in a non-linear way.

A7. Sequence-wise, non-linear, and vector-based attention: Sequences are stacked
and non-linearly projected. Attention weights are produced by the scaled dot-
product attention and applied onto a non-linear projection of V.

A8. Sequence-wise, non-linear, and weight-based attention: This study is equi-
valent to the suggested and discussed Few-Shot Transformer. The feature-wise
transform is being replaced by stacking all tasks together and transforming them
at once by a non-linear MLP. This MLP does not produce feature vectors, but an
attention weight matrix directly.

26

5. Results

In this section, we will present and discuss the experimental results proposed in the
previous section. For this, we start by the in-depth analysis of the hyperparameter
importance and impact on model performance. We will proceed with the performance of
the best Few-Shot Transformer per dataset in comparison to competing algorithms per
dataset or task. Finally, we will present and discuss the ablation studies, showing the
impact of different novelties.

5.1. In-depth analysis

For the in-depth analysis, we evaluate on total 180 unique configurations of hyperpara-
meters. The performance is discussed based on the validation accuracy of the Omniglot
dataset. We present the results in the form of a parallel coordinates chart as shown in
Figure 5.1. The chart the relationship of hyperparameters to the validation accuracy.
Most importantly to the model performance of our suggested Few-Shot Transformer is the

0.4

0.5

0.6

0.7

0.8

0.9

Validation Accuracy

1

2

3

4

5

6

7

8

9

Layers

9

1

40

60

80

100

120

Model size

128

32

0

0.05

0.1

0.15

0.2

0.25

Dropout

0.3

0

20μ

40μ

60μ

80μ

100μ

Learning rate

100μ

1μ

0.4

0.5

0.6

0.7

0.8

0.9

Validation Accuracy

0.97748

0.34132

Figure 5.1.: Parallel coordinates grid of hyperparameter configuration vs. Accuracy on
the validation set of Omniglot.

learning rate lr. We observe weak performances on learning rates below 5e− 05 and best

27

5. Results

performances for all learning rates larger than this threshold. We observe this knowledge
from Figure 5.1. Further, we recognize the model as being agnostic to different sets of
hyperparameters since for each set of hyperparameters there seems to be a countering
hyperparameter leading to a good performance.

5.2. Image tasks

Image tasks are drawn from the Omniglot and MiniImageNet dataset but are trained
and evaluated separately. We compare the run quality and final accuracy after the full
training time.

Omniglot The evaluation of the three models Few-Shot Transformer, Transformer, and
SNAIL is shown in Figure 5.2. Our proposed model of n_layers= 1, d_model= 64,
p_dp= 0.0, lr= 1e− 4, with a constant scheduling and adam optimizer, outperforms a
Transformer model of n_layers= 3, d_model= 32, p_dp= 0.0, lr= 5e− 3 with noamlr
scheduling. SNAIL has been used in the original implementation with lr= 3.3e− 5. All
three models converge after the set amount of training steps and iterations. The Few Shot

1 10 20 30 40 50 60 70 80 90 100
Epoch

0.9700

0.9725

0.9750

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

Ac
cu

ra
cy

FSL_TRANSFORMER
TRANSFORMER
SNAIL

Figure 5.2.: Comparing performances on Omniglot, with 10 runs per model.

Transformer achieves a mean accuracy after the final epoch on the validation set of 98.64%,
followed by Transformer with 98.44% and SNAIL with 98.14%. For all pairs of FSL
Transformer and Transformer, FSL Transformer and SNAIL, Transformer and SNAIL,
the levene test is significant, thus allowing to test the group means by the student’s
t-test. Further, the student’s t-test is significant for all groups by the previously set
significance level of α = 0.01. We report p-values of 4.64E-07, 7.53E-08, 7.73E-05 for the
pairs of (FSL_Transformer, Transformer), (FSL_Transformer, SNAIL) and (Transformer,
SNAIL), respectively.

28

5.3. Tabular tasks

MiniImageNet On MiniImageNet, the Few-Shot Transformel of configuration with
n_layers= 3, d_model= 128, p_dp= 0.1, lr= 1e− 5, with noamlr scheduling outperforms
all other models in our scope. The competing Transformer model has been configured
with n_layers= 1, d_model= 64, p_dp= 0.0, lr= 4e−7 and a constant learning rate with
adam optimization. SNAIL has been used originally with a learning rate lr= 1.186e− 4.
The final results are shown in Figure 5.3. The Few Shot Transformer achieves a mean

1 10 20 30 40 50 60 70 80 90 100
Epoch

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ac
cu

ra
cy

FSL_TRANSFORMER
TRANSFORMER
SNAIL

Figure 5.3.: Comparing performances on MiniImageNet, with 10 runs per model.

accuracy after the final epoch on the validation set of 43.12%, followed by Transformer
with 41.66% and SNAIL with 35.63%. For all pairs of FSL Transformer and Transformer,
FSL Transformer and SNAIL, Transformer and SNAIL, the levene test is significant, thus
allowing to test the group means by the student’s t-test. Further, the student’s t-test is
significant for all groups by the previously set significance level of α = 0.01. We report
p-values of 2.29E-07, 2.83E-18, 1.18E-16 for the pairs of (FSL_Transformer, Transformer),
(FSL_Transformer, SNAIL) and (Transformer, SNAIL), respectively.

5.3. Tabular tasks

Symbolic Regression On the Symbolic Regression task, we see an equal performance
between our Few-Shot Transformer and the original Transformer model. Our model
has been configured with n_layers= 3, d_model= 32, p_dp= 0.1, lr= 3.5e − 7 and a
constant learning rate scheduled by adam. The Transformer model had the following set
of hyperparameters: n_layers= 3, d_model= 64, p_dp= 0.1, lr= 1.0e− 6 and a constant
learning rate scheduled by adam. For SNAIL, the learning rate lr= 2.5e−6 has been used.
The final results are depicted in Figure 5.4. The Few Shot Transformer achieves a mean
accuracy after the final epoch on the validation set of 79.06%, followed by Transformer
with 78.87% and SNAIL with 76.93%. For all pairs of FSL Transformer and Transformer,
FSL Transformer and SNAIL, Transformer and SNAIL, the levene test is significant, thus

29

5. Results

1 10 20 30 40 50 60 70 80 90 100
Epoch

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

FSL_TRANSFORMER
TRANSFORMER
SNAIL

Figure 5.4.: Comparing performances on Symbolic Regression, with 10 runs per model.

allowing to test the group means by the student’s t-test. Further and by the previously
set level of significance at α = 0.01, the pair of FSL Transformer and Transformer are
not different in their group means by the student’s t-test. However, all other group
tests are significantly different. We report p-values of 0.72, 0.0036, 0.0084 for the pairs
of (FSL_Transformer, Transformer), (FSL_Transformer, SNAIL) and (Transformer,
SNAIL), respectively. On a closer look, our proposed Few-Shot Transformer slightly
outperforms the original transformer model in an average of 10 runs. Further, while the
original Transformer seems to be fully converged, the Few-Shot Transformer still has a
positive trend in accuracy versus epoch.

5.4. Ablation studies

The ablations studies investigate the question of which novelty or combination of novelties
leads to the largest impact on model performance. For computational reasons, we were
unfortunately only able to collect four evaluations per ablation. Nevertheless, we highlight
that the same settings in terms of configuration, training time, and dataset have been used
for all studies. The results are presented in Figure 5.5. While the original transformer
(A1) achieves a validation set accuracy of 95.53%, the effect of replacing a linear with
a non-linear transform (A3) actually decreases the performance to 94.43%. All other
ablations, which implement the sequence-wise transform, outperform by a margin of at
least 2.03%. From the group of sequence-wise transform ablations we cannot observe
significant differences between linear and non-linear transformations, or between vector-
and weight-based attention. The levene test for all pairs is significant, verifying that all
variances are equal among groups compared. This allows to test all groups for their mean
by the student’s t-test. The result is of all pairs is equivalent to what Figure 5.5 shows,
namely that (A5, A6, A7, A8) are not significantly differnent to each other. On the

30

5.4. Ablation studies

1 10 20 30 40 50 60 70 80 90 100
Epoch

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Ac

cu
ra

cy
A7: Sequence-wise, non-linear,
 vector-based attention

A5: Sequence-wise, linear,
 vector-based attention

A6: Sequence-wise, linear,
 weight-based attention

A8: Sequence-wise, non-linear,
 weight-based attention

A1: Feature-wise, linear,
 vector-based attention

A3: Feature-wise, non-linear,
 vector-based attention

Figure 5.5.: Comparison of the ablation studies: A1 and A3, both implementing feature-
wise transforms, perform the worst. All high-performing ablations implement
sequence-wise transforms. There is no significant difference between A7, A5,
A6, and A8.

otherside, these groups are different to (A1, A3). Finally, A1 and A3 are significantly
different to each other. We report the following p-values: 4.48E-06, 0.0011, 4.54E-06,
3.36E-06, 3.50E-06, 1.13E-06, 0.8794, 0.8581, 0.5952, 1.14E-06, 9.40E-07, 9.64E-07, 0.9982,
0.4893, 0.4127 for the pairs of (A1, A5), (A1, A3), (A1, A6), (A1, A8), (A1, A7), (A5,
A3), (A5, A6), (A5, A8), (A5, A7), (A3, A6), (A3, A8), (A3, A7), (A6, A8), (A6, A7)
and (A8, A7), respectively.

31

6. Discussion and Conclusion.

In this study, we investigated the performance of transformer models on Few-Shot Learn-
ing settings. For this, we captured the historical development of attention, beginning
from neural-turing-machines up to self-attention as implemented by transformer mod-
els. We highlighted recent advances in transformer-based models and found how many
improvements can be classified into efficiency, performance, or scalability on singular
tasks such as NLP or computer vision. However, for the lack of specifically testing and
improving transformer models in the Few-Shot Learning setting, we were motivated to
research modifications to the self-attention mechanism.

Our novelties are centred around the idea of empowering from the typical data tensor
within Few-Shot Learning, where support and query samples are stacked at showed to the
model as a single instance. While original transformers regard each sample as a different
task and thus transform each task independently of all others, we proposed to stack all
tasks together before their transformation. This significantly increases the variance of a
single instance, and hence leads to a denser data structure and higher sample-efficiency.
Given the higher data density, we further proposed more complex transformations by
shifting from linear to non-linear and deep transformations. Finally, instead of computing
attention weights by the self-attention mechanism, we investigated the effect of directly
computing such weights by an MLP. Our three proposed novelties are summarized as:

N1. Stacking sequences of features.

N2. Replacing linear transforms with non-linear transforms.

N3. Replacing scaled dot-product attention with an MLP-based attention weight gener-
ation.

By an empirical study, we showed how novelty N1 leads to the most significant
improvement compared to original transformer models on the Few-Shot Learning setting,
as tested on the Omniglot dataset. Thus, we see our hypothesis of benefiting from a
higher input data variance to the model performance as confirmed. However and to our
surprise, we were not able to measure significant effects on the dataset for N2 and N3.
Neither replacing the linear with a non-linear transformation nor replacing the scaled
dot-product attention with a direct weight generation accelerated the model performance
on the used datasets. We assume that these datasets may do yield a complexity level
high enough such that a more complex transformation would lead to higher performance.
Yet, to confirm this assumption further experiments on more complex datasets such as

33

6. Discussion and Conclusion.

MiniImagenet are advised to the fellow reader. For computational and time bounds, we
were not able to conduct these studies by ourselves.

Further, our proposed Few-Shot Transformer outperforms not only the original trans-
former but also state-of-the-art algorithms such as SNAIL[MRCA17] on competitive tasks
such as Omniglot and MiniImagenet. On the novel dataset produced by ourselves, the
performance of both our proposed model and SNAIL were competitive on the number of
training steps conducted. In all instances, our model outperformed original transformer
models, giving highlights on how to improve and use such attention-based models in
Few-Shot Learning settings. To our surprise, the transformer model also outperformed
SNAIL in many instances. We remark this since SNAIL was specifically designed for the
few-shot setting. Another way of interpreting this result is also that NLP, the original
domain of transformers, can be regarded as a few-shot learning setting, hence transformer
models also perform outside NLP but in the few-shot learning setting powerfully.

Concerning our research questions, we quickly summarize our findings as follows:

RQ1: Original transformers can outperform models specifically designed for the few-shot
learning setting, but with data modalities outside of NLP. This raises the idea that NLP
can be regarded as a form of few-shot learning, thus making transformer models naturally
powerful even on modalities they were not specifically designed for.

RQ2: Three modifications have been proposed: the stacking of tasks within a sequence,
a non-linear transform, and the direct computation of attention weights.

RQ3: Most importantly, the stacking of tasks of a sequence raises the performance
significantly in comparison to feature-wise transforms only.

For future work, we would like to see more studies shining light on why non-linear
transformations and direct attention weight generation did not lead to distinguishable
results. As mentioned before, we recommend studies on different datasets. Since there is
evidence for the effect of direct attention weight generation by [JKZF20], we would like
to see more studies in this direction. Finally, for reasons of limited time and resources,
we were not able to test out different algorithms such as the perceiver[JGB+21]. Such
competitors are also interesting to compare to, even though we excluded them for not
being designed for the few-shot learning setting.

34

Bibliography

[ADG+16] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman,
David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas.
Learning to learn by gradient descent by gradient descent. arXiv preprint
arXiv:1606.04474, 2016.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of machine learning research, 13(2), 2012.

[Bie20] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software
available from wandb.com.

[BMR+20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[DBK+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In International Conference
on Machine Learning, pages 1126–1135. PMLR, 2017.

[FLG+20] Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar
Sukhbaatar. Addressing some limitations of transformers with feedback
memory. arXiv preprint arXiv:2002.09402, 2020.

[FSH15] Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian
hyperparameter optimization via meta-learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29, 2015.

[FZS21] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity. arXiv preprint
arXiv:2101.03961, 2021.

35

Bibliography

[GWD14] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[HvRP21] Mike Huisman, Jan N van Rijn, and Aske Plaat. A survey of deep meta-
learning. Artificial Intelligence Review, pages 1–59, 2021.

[JGB+21] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol
Vinyals, and Joao Carreira. Perceiver: General perception with iterative
attention. arXiv preprint arXiv:2103.03206, 2021.

[JKZF20] Zihang Jiang, Bingyi Kang, Kuangqi Zhou, and Jiashi Feng. Few-shot
classification via adaptive attention. arXiv preprint arXiv:2008.02465, 2020.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiz-
ation. arXiv preprint arXiv:1412.6980, 2014.

[LeC98] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[LHL+20] Lu Liu, William Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle.
A universal representation transformer layer for few-shot image classification.
arXiv preprint arXiv:2006.11702, 2020.

[LLO+20] Lajanugen Logeswaran, Ann Lee, Myle Ott, Honglak Lee, Marc’Aurelio
Ranzato, and Arthur Szlam. Few-shot sequence learning with transformers.
arXiv preprint arXiv:2012.09543, 2020.

[LST15] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-
level concept learning through probabilistic program induction. Science,
350(6266):1332–1338, 2015.

[met] Meta-learning challenges by chalearn.org: https://metalearning.chalear
n.org/.

[MRCA17] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple
neural attentive meta-learner. arXiv preprint arXiv:1707.03141, 2017.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International conference on machine
learning, pages 1310–1318. PMLR, 2013.

[RL16] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot
learning. 2016.

36

https://metalearning.chalearn.org/
https://metalearning.chalearn.org/

Bibliography

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

[SBB+16] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and
Timothy Lillicrap. Meta-learning with memory-augmented neural networks.
In International conference on machine learning, pages 1842–1850. PMLR,
2016.

[Sin20] Praphul Singh. Multi-head self-attention in nlp. https://blogs.oracle.com/ai-
and-datascience/post/multi-head-self-attention-in-nlp, 2020.

[SIS21] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers
are secretly fast weight memory systems. arXiv preprint arXiv:2102.11174,
2021.

[SSZ17] Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for
few-shot learning. arXiv preprint arXiv:1703.05175, 2017.

[SYZ+18] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and
Timothy M Hospedales. Learning to compare: Relation network for few-shot
learning. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1199–1208, 2018.

[Ton21] Akshay Tondak. Introduction to recurrent neural networks (rnn).
https://k21academy.com/datascience/machine-learning/recurrent-neural-
networks/DisadvantagesOfRNNs, 2021.

[VBL+16] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and
Daan Wierstra. Matching networks for one shot learning. arXiv preprint
arXiv:1606.04080, 2016.

[VRH18] Jan N Van Rijn and Frank Hutter. Hyperparameter importance across
datasets. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2367–2376, 2018.

[vRPT+18] Jan N van Rijn, Florian Pfisterer, Janek Thomas, Andreas Muller, Bernd
Bischl, and Joaquin Vanschoren. Meta learning for defaults: Symbolic defaults.
In Neural Information Processing Workshop on Meta-Learning, 2018.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. arXiv preprint arXiv:1706.03762, 2017.

[WLK+20] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao
Ma. Linformer: Self-attention with linear complexity. arXiv preprint
arXiv:2006.04768, 2020.

37

Bibliography

[ZGD+20] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie,
Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. Big bird: Transformers for longer sequences. In NeurIPS,
2020.

38

A. Appendix

A.1. Symbolic Regression dataset

A.1.1. Introduction

During the thesis, we have been working on various problems and ideas. One of the early
ideas was surrounded by the idea of simplifying the encoded information captured by
differentiable models such as neural networks. We regard a neural network as a function
approximator that, by the number of its parameters, can capture any arbitrary function as
long as the minimum length of two layers has been reached. This allows a user to utilize
a neural network blindly on incoming data since no assumptions on linear or non-linear
relationships have to be fulfilled. The downside of such an approach lies of course in the
difficulty of interpreting such a massively over-parametrized model. Therefore there is a
trade-off in carefully selecting the sleekest model for a specific use case versus selecting a
neural network of sufficient size for any possible task, which then is unfortunately not
interpretable.

A.1.2. Motivation

The dataset generation has been motivated by a Meta-Learning approach, in which we
ask whether a meta-learner may be able to ingest a base neural network and output the
function the base network has learned in a symbolic way.

A.1.3. Methods

For this, we define a set of functions f ∈ F , i.e in the form of f(p) = X · p. Over a
fixed range of X, we compute a dataset by evaluating f at each point x ∈ X. For each
function we result with a dataset we can use to fit a base network. For this, we first
define an architecture of the base network, in terms of layers and learnable parameters
per layer, which we keep fixed for all future steps. For the meta-network, we similarity
define an architecture. This architecture may be larger and more complex than the base
architecture since a more complex dependency has to be captured. Finally, we define
the output format of the meta-learner. Conceptually, the learned function of the base
network shall be outputted, preferably in a symbolic fashion. For the scope of our project,
we handled constant, linear, and quadratic functions. Thus, we settled for a model with
four outputs, in which each output estimated a parameter of the possible function.

39

A. Appendix

A.1.4. Training

Base networks

From the set of datasets per function, we compute a set of base networks. Each base
network is randomly instantiated from the base architecture and then trained on a
dataset, function, respectively, until the loss decreased below a certain threshold. Since
over-parametrized networks are initialized randomly and converged stochastically, a
novel solution with respect to the parameters can be expected on almost every new
instance. This allows to train the same base architecture on the same dataset or function,
respectively, multiple times and still have different solutions with respect to the trained
parameters. Finally, this results in a dataset of trained base networks, for which we
exactly know the function it was trained on.

Meta networks

Having a dataset of 10.000 base networks per function, we can encode those networks in a
way a meta-network can ingest them and learn the desired dependency we are looking for.
Since the base architecture is always a multi-layer perceptron of the same architecture,
we only feed the weights as training data points into the meta-network. The output of
the meta networks is multi-output, where each output corresponds to a parameter p ∈ P
of the original function fP = X · P .

40

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Gated Neural Cells
	Generalized attention
	Self-attention
	Meta- and Few-Shot Learning
	Attention in Few-Shot Learning
	Related Work
	Motivation for the remainder

	Methods
	Model embedding
	Encoders-Decoder Stack
	Deep Attention
	Model complexity
	Model training

	Experiments
	In-depth analysis
	Datasets
	Competing algorithms
	Ablation studies

	Results
	In-depth analysis
	Image tasks
	Tabular tasks
	Ablation studies

	Discussion and Conclusion.
	Bibliography
	Appendix
	Symbolic Regression dataset
	Introduction
	Motivation
	Methods
	Training

