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Abstract

A key characteristic of human intelligence is the ability to learn new tasks quickly.
While deep learning techniques have demonstrated super-human level performance
on some tasks, their ability to learn quickly is limited. Meta-learning is one ap-
proach to bridge this gap between human and deep learning. In this thesis, we
show the theoretical relationship between two state-of-the-art meta-learning tech-
niques. Combining this theoretical insight with recent empirical findings, we con-
struct TURTLE, a new meta-learning algorithm that is more general than MAML
yet simpler than the LSTM meta-learner. We find that TURTLE outperforms both
techniques at sine wave regression and, without additional hyperparameter tuning
or large increase in computational costs, exceeds their performance in challenging
image classification settings by at least 1% accuracy. With further hyperparame-
ter tuning, we expect to see a larger improvement. Our findings highlight the im-
portance of second-order gradients for successfully training TURTLE and open the
door to fruitful future research. All of our code has been made available online at:
https://github.com/mikehuisman/revisiting-learned-optimizers.

1 Introduction

Human intelligence is characterized by the ability to learn quickly. While artificial neural
networks can achieve (super-)human level performance on various tasks (He et al., 2015;
Mnih et al., 2015; Silver et al., 2016), they require far more examples than their biological
counterparts. Bridging this gap between artificial and human intelligence could extend the
applicability of deep neural networks to domains where large data sets and/or sufficient
computational resources are unavailable (Hospedales et al., 2020; Huisman et al., 2020).

Meta-learning is one approach to do that (Thrun, 1998; Schmidhuber, 1987; Naik and
Mammone, 1992). The key idea is to extract a prior from learning experience on previous
tasks to learn new ones from fewer examples (Vanschoren, 2018). This prior can take on
many forms such as the neural architecture (Elsken et al., 2020), the initialization weights
of a given network architecture (Finn et al., 2017; Nichol et al., 2018), or even a learned
optimization procedure (Andrychowicz et al., 2016; Ravi and Larochelle, 2017).

In our work, we focus on two state-of-the-art meta-learning techniques: MAML (Finn
et al., 2017) and the LSTM meta-learner (Ravi and Larochelle, 2017). These two tech-
niques aim to learn a prior of the last two types. More specifically, MAML aims to
find a set of initial parameters for a given neural network architecture from which it can
learn new tasks quickly within few gradient update steps. The LSTM meta-learner also
attempts to find such an initialization but instead of using vanilla gradient descent, it
learns its own optimization procedure using a meta-network that updates the weights of
the base-learner network. Note that there are thus two networks: the base-learner network
which attempts to solve the task and make predictions from inputs, and the meta-network
which updates the weights of the base-learner network in order to increase its performance.
This architectural difference between MAML and the LSTM meta-learner is displayed in
Figure 1.

Recently, there have been two observations in meta-learning that form a direct moti-
vation for our work. The first observation is that Finn et al. (2017) have shown that their
algorithm, MAML, outperforms the LSTM meta-learner (Ravi and Larochelle, 2017) on
image classification. We find this result highly surprising for two reasons. Firstly, one
would expect that the meta-network used by the LSTM meta-learner could learn to per-
form gradient descent and, as a consequence, perform at least as well as MAML (we prove
this in Section 3). Secondly, findings by Andrychowicz et al. (2016) suggest that tech-
niques that learn an optimizer, such as the LSTM meta-learner, can find better learning
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(a) MAML (b) LSTM meta-learner (c) TURTLE

Figure 1: Architectural design of MAML, the LSTM meta-learner, and TURTLE (our
proposed technique). Whereas MAML uses gradient descent to learn new tasks, the
LSTM meta-learner and TURTLE use trainable meta-networks to update the weights
of the base-learner network. The LSTM meta-learner uses a special LSTM module as
meta-network, while TURTLE uses a simple feed-forward neural network (FFNN).

rules than vanilla gradient descent, which is used by MAML. In short, one would ex-
pect that learning an optimizer in addition to good base-learner initialization parameters
would yield a better performance.

The second observation is that commonly used benchmarks for testing meta-learning
algorithms may not have been challenging enough to properly assess their learning ability.
That is, Chen et al. (2019) have shown that four state-of-the-art meta-learning techniques
do not work so well compared with simple transfer learning techniques when presented
with new tasks sampled from a different data set than the one used for training. These
four techniques are: matching networks (Vinyals et al., 2016), prototypical networks
(Snell et al., 2017), relation networks Sung et al. (2018), and MAML (Finn et al., 2017).
Techniques that learn an optimizer such as the LSTM meta-learner, however, were not
studied. We think that such techniques may outperform the four techniques studied by
Chen et al. (2019) when task distribution shifts occur as (i) they can learn from the tasks
coming from the new distribution in contrast to matching, prototypical, and relation
networks which do not make network changes at test time (Huisman et al., 2020), and
(ii) they may learn a learning procedure that can learn new tasks faster than vanilla
gradient descent which is used by MAML.

In short, these two observations and expectations can be captured by the following
single hypothesis, which we will investigate in the rest of this work.

Research hypothesis: Learning an optimizer in addition to the meta-learned initial
parameters should enable faster learning on regular few-shot learning benchmarks as well
as more challenging settings where task distribution shifts occur

2



We start investigating this hypothesis by establishing the theoretical relationship be-
tween MAML and the LSTM meta-learner. More specifically, we prove that the latter is
more expressive than MAML, which means that—in theory—it could achieve the same
performance. Inspired by this theoretical result, we formulate two hypotheses as to why
the LSTM meta-learner fails to find a solution that works at least as well as the one
found by MAML. These hypotheses lead us to construct a new meta-learning algorithm
called TURTLE, which we design to be simpler than the LSTM meta-learner, yet more
expressive than MAML. We empirically investigate and tune TURTLE, and find that it
outperforms both MAML and the LSTM meta-learner on a simple regression problem and,
without additional hyperparameter tuning, on a commonly used few-shot image classifi-
cation benchmark, and a more challenging setup in which a task distribution shift occurs.
The key to TURTLE’s success is the fact that it uses second-order gradients, which are
ignored by the LSTM meta-learner. Additionally, we compare the running time of TUR-
TLE with that of MAML and the LSTM meta-learner and find that TURTLE is not
much slower than the full version of MAML.

In short, our contributions can be summarized as follows:

� We prove the theoretical relationship between MAML and the LSTM meta-learner.

� We propose a new meta-learning algorithm called TURTLE which is more general
than MAML, yet simpler than the LSTM meta-learner.

� We empirically demonstrate that TURTLE outperforms both the LSTM meta-
learner and MAML at sine wave regression and various challenging settings involving
commonly used image classification benchmarks.

The rest of this thesis is structured as follows. Section 2 provides a description of
supervised learning in neural networks, the associated problems, and existing transfer- and
meta-learning approaches to address these issues. In Section 3, we show the theoretical
relationship between the LSTM meta-learner and MAML, relate this to recent empirical
findings, and propose a new meta-learning algorithm called TURTLE. Section 4 covers our
experimental setup and results. Section 5 discusses the obtained findings, and Section 6
concludes.

2 Background

In this section, we give an introduction to supervised learning and indicate its shortcom-
ings. Next, we discuss some popular techniques from the fields of transfer learning and
meta-learning to overcome these limitations. Table 1 contains an overview of the notation
that we will use throughout this work.

2.1 Supervised learning

On a very high level, we wish to have computers that can perform certain tasks. Instead
of manually programming the wanted behavior, we can write a program that learns how
to perform a given task through experience (Goodfellow et al., 2016).

Suppose that we want our program P to learn some task Th. For example, the task
could be to tell whether there are tumors in brain scan images. As input, we would then
feed an image of a brain scan into the program, and we want the output of this program
to be a binary classification decision (tumor or not a tumor).
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Term Meaning

Tj = (Dtr
Tj , D

te
Tj ) A task consisting of a support set Dtr

Tj and query set Dte
Tj

Dtr
Tj Support set of the task which is used for training

Dte
Tj Query set of the task which is used for evaluating the success of

learning on the support set
N The number of classes in the support set of a task in N -way

k-shot classification
k The number of examples per class in the support set of a task in

few-shot learning
θ Initialization weights of the base-learner network
fθ A neural network with parameters θ
gφ A meta-network with parameters φ. This network makes updates

to the weights of the base-learner network f
∇◦ϕ The gradients of ϕ with respect to ◦
Embedding module The module of a neural network neural network without the out-

put layer

Table 1: Notation that we will use throughout this work.

In the context of deep learning, our program corresponds to a neural network f with
parameters θ. For simplicity, we will assume that the architecture of this network is fixed.
Learning the task then corresponds to tweaking the parameters θ of our network such
that it can perform the given task as well as possible.

The learning objective can be formalized if we define a loss function LTh that captures
how well our model performs on the task. That is, we want to minimize the loss on the
task by finding the optimal parameters

θ∗ = arg min
θ

LTh(fθ). (1)

In supervised learning, this learning process is based on some examples. This means
that we show our network various examples of brain scan images and the corresponding
labels (tumor or no tumor). The idea is that by exposing our network to these examples,
it can learn to correctly classify such images. More generally, we have a finite data set
D = {(xi, yi)}Mi=1 of M such examples where the xi are inputs (e.g., brain scan images)
and the yi are the corresponding ground-truth outputs (e.g., tumor classification decision).

Since our model learns from a finite set of examples, the risk exists that the network
memorizes all of the examples that we have given it, while it is not able to make good
predictions on unseen inputs. In other words, our network may not generalize well to
new inputs. To overcome this issue, we can split our entire data set into three disjoint
partitions: (i) a training set Dtr, (ii) a validation set Dval, and (iii) a test set Dte. The
training set is then used for learning (updating the network parameters to improve its
performance), the validation set to measure the generalization ability of the network and
to do hyperparameter tuning, and the test set for obtaining a final performance estimate
of how good our model is at the given task (Goodfellow et al., 2016). Alternatively, one
could use special techniques such as cross-validation.

There are various ways to leverage these data set splits for learning. For example, we
could train our network on the examples in the training set and evaluate its performance
on the validation set after every update of the network parameters in order to see whether
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the performance on the validation set (unseen examples) improves. Then, we can stop
learning as soon as the validation performance no longer improves, or starts to worsen.
In this way, we aim to prevent the problems associated with memorization, and maximize
the generalization performance of the network.

In practice, finding the optimal parameters θ∗ from Equation 1 is often unfeasible.
However, it is still possible to approximate these optimal parameters by, e.g., iterative
gradient-based procedures such as Adam (Kingma and Ba, 2015). A generic training
procedure is displayed in Algorithm 1. As one can see, a series of T updates (possibly
until convergence) are made to the model parameters. At every time step t, a batch of
data B from the training set Dtr (line 3) is used to compute the loss value (line 4). The
gradients of this loss can then be used by an optimization procedure to update θt (line
5).

Algorithm 1 Generic training procedure

1: Randomly initialize weights θ0
2: for t = 1, ..., T do . Or until convergence
3: Sample batch B of examples (xi, yi) from Dtr

4: Compute Lt−1 = LB(fθt−1)
5: Compute θt using ∇θt−1(Lt−1)
6: end for

As mentioned in Section 1, great successes have been achieved with these iterative
procedures. However, these successes heavily rely on the presence of abundant data, and
the availability of sufficient computational resources. In other words, these techniques
require many examples in order to achieve good performance. This makes deep learning
techniques inapplicable to many real-world domains where data is not abundant, and
computational resources are limited (Hospedales et al., 2020). Consequently, researchers
have focused on the design of techniques that allow neural networks to learn more quickly,
that is, from fewer data and with less computational resources.

This goal has given rise to two highly similar fields of study, namely transfer learning
and meta-learning. We discuss both fields and some associated techniques which we will
use in our work, in turn.

2.2 Transfer learning

The goal of transfer learning is to transfer knowledge from a source domain to a (different)
target domain (Pan and Yang, 2009; Taylor and Stone, 2009). For example, suppose we
have a neural network fθ which we trained on data set D. Now, suppose we wish to learn
a program for a new data set D′. While many transfer learning techniques exist to do
this, we limit ourselves to two transfer learning techniques1 that we use as baselines in
our work.

2.2.1 Finetuning (FT)

The finetuning approach that we use, attempts to transfer previously acquired knowledge
from data set D to the new data set D′. This technique leverages the insight that
layers of a neural networks follow a hierarchical representation pattern. That is, input
representations become more abstract deeper down the network (closer to the output

1Chen et al. (2019) have shown that these techniques should not be underestimated as some of them
are able to perform better than state-of-the-art meta-learning techniques in challenging scenarios.
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layer) (Simonyan et al., 2014; Li et al., 2014; Mahendran and Vedaldi, 2016). Thus, the
most abstract input representation is obtained in the final hidden layer, which is one layer
before the output layer.

The finetuning technique works in two phases. In the pre-training phase, we train the
network fθ to minimize the loss on data set D using Algorithm 1. Then, in the finetuning
phase, we freeze the input representation module (the hidden layers) and re-train the
output layer on new data set D′ (also using Algorithm 1). The intuition is that learning
data set D′ may be quicker as we have already learned all weights in the hidden layers.

2.2.2 Centroid-based finetuning (CFT)

A slight variation of the finetuning strategy, which is specific to classification problems,
is called centroid-based finetuning (CFT) which uses a special output layer. This output
layer learns class centroid vectors wc, which capture characteristics of classes c ∈ C in the
data. These centroid vectors can be interpreted as latent representations of class concepts
in high-dimensional space. The technique makes class predictions as follows: given an
input xi, we compute its embedding in this high-dimensional space, and compare the
similarity between this input representation and all centroid vectors. The class of the
centroid vector which yields the greatest similarity is then predicted.

To put this more precisely, class predictions ŷi are made by comparing the abstract
representation fθ(1:L−1)(xi) of input xi with every centroid wc and to predict the class
c of which the centroid is most similar to fθ(1:L−1)(xi), given a similarity measure s :
Rd × Rd → R. Here, L is the number of layers in our network and d the dimensionality
of the abstract input representations and class centroids. Equation 2 formalizes this
prediction mechanism.

ŷi = arg max
c∈C

s(fθ(1:L−1)(xi),wc) (2)

Following Chen et al. (2019), we will use the cosine similarity as measure s, which is
given by

s(xi,xj) =
xTi xj

||xi|| · ||xj ||
, (3)

where ||x|| =
√∑

m x
2
m denotes the 2-norm, or length, of vector x.

Importantly, note that this technique is not applicable to regression problems, where
outputs yi are real-valued numbers. Also, the number of classes seen during training on
data set D may greatly vary from the number of classes in the new data set D′. This is
not a problem since all hidden layers will be frozen and an entirely new output layer will
be initialized once data set D′ is presented. This new output layer can then be fine-tuned
for a number of update steps on the new data set D′.

Centroid-based finetuning is closely related to prototypical networks (Snell et al.,
2017), which also learns class prototypes/centroids. We refer interested readers in this
kind of distance-based classification to Gidaris and Komodakis (2018) and Qi et al. (2018).

2.3 Meta-learning

In its broadest sense, transfer learning techniques aim to leverage previously obtained
knowledge to learn new tasks quicker. Under this interpretation, meta-learning can be
seen as a subset of transfer learning (Huisman et al., 2020), as meta-learning techniques
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attempt to leverage previous learning experience to learn new tasks quicker. However,
instead of training in regular fashion (on a single data set D) as done by non-meta-
learning, transfer learning techniques, contemporary meta-learning techniques train on
tasks Tj (special subsets of data). This special training procedure allows neural networks
to explicitly train for fast adaptation to new tasks. This explicit goal is called a meta-
objective.

Whereas the regular supervised learning objective is to minimize the loss on a single
data set D (Equation 1), the meta-objective is to minimize the loss on a distribution of
tasks p(T ), i.e.,

Lp(T ) = ETjvp(T )LTj (fθ′j ), (4)

where θ′j represent the task-specific network weights obtained by training on task Tj .

2.3.1 N-way k-shot classification

The most commonly used method to train and evaluate meta-learning algorithms is called
N -way k-shot classification. This method consists of three phases: the i) meta-training,
ii) meta-validation, and iii) meta-test stages. As their names suggest, the meta-training
phase is used for training the meta-learning algorithm, the meta-validation stage for
tuning hyperparameters of the meta-learner to maximize generalization performance, and
the meta-test phase for obtaining a final performance estimate. Every phase is associated
with a disjoint set of classes, meaning that tasks from two distinct phases cannot contain
examples with the same class.

Thus, suppose all classes from data set D are given by C = {c1, ..., c`}. After random
shuffling, we can split this set of labels into three partitions: one for each phase, giving
us Ctr, Cval, and Cte. Afterwards, we can create three data sets Dsplit = {(xi, yi) | yi ∈
Csplit} for split ∈ {tr, val, te}. These data sets Dsplit contain all examples from D with
classes chosen from their respective class partition Csplit .

Then, in a given stage with corresponding partition split , tasks are constructed fol-
lowing the N -way k-shot principle. Every task Tj = (Dtr

Tj , D
te
Tj ) consists of a support set

Dtr
Tj and a query set Dte

Tj . The N -way k-shot principle states that every support set must
contain exactly N classes and k examples per class. Furthermore, the principle requires
that the every input in the query set Dte

Tj has a class that was present in the support set

Dtr
Tj . This is visualized in Figure 2. In this figure, every task Tj consists of a support set

Dtr
Tj and query set Dte

Tj . As we can see, every support set Dtr
Tj contains exactly 5 classes,

implying that N = 5. Furthermore, there is precisely one example per class, which means
that k = 1. Lastly, note that the query set Dte

Tj contains inputs with classes that are

present in the support set Dte
Tj .

The question remains how the task is presented to the model. In an episode with
corresponding task Tj , the model is presented with the support set Dtr

Tj . It can use these
examples to make updates to compute task-specific weights θj from its initialization
parameters θ. If it has learned well from the examples in Dtr

Tj , we expect the performance

to be good on the query set Dte
Tj of the same task since, by construction, it contains the

same classes that were present in the support set which was used for training.
In short, for a given task, the objective is to maximize the performance on the query

set, conditioned on the support set. Intuitively, the model is given a set of data to
learn from (support set), and the goal is to learn from it in such a way that facilitates
generalization (measured on the query set). Note that this is precisely what we want: we
are after techniques that can learn well.
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Figure 2: The N -way k-shot classification setup. Every box corresponds to a task con-
sisting of a support set (left split) and query set (right split). There are N = 5 classes
in every support set and k = 1 example per class. Note that the meta-validation stage is
not displayed. Adapted from Ravi and Larochelle (2017)

.

When k is small, this N -way k-shot classification is also called few-shot learning, as
the network is supposed to learn from only few examples. We now discuss two popular
meta-learning techniques that can exploit these task structures to learn new tasks quicker.

2.3.2 Model-agnostic meta-learning (MAML)

Model-agnostic meta-learning (Finn et al., 2017), or MAML, is arguably the most popular
technique for meta-learning. Its objective is to find good initialization parameters θ for
the base-learner, from which we can quickly learn new tasks Tj using vanilla, or regular,
gradient descent (see Equation 7).

To clarify the intuition behind MAML, suppose that we have a regression problem
where every task corresponds to a function f(x) = ax+b. Let us assume there are four of
such tasks: A, B, C, and D. The optimal parameters for these tasks are displayed as blue
dots in Figure 3. From here, it is easy to see that some initializations allow us to learn
these tasks more quickly than others. In this case, the red dot corresponds to the best
initialization point, since it allows us to quickly move towards the optimal parameters for
all tasks (assuming we can move equally fast in every direction). Such a central point is
precisely what MAML tries to find.

More generally, suppose we have a distribution of tasks p(T ) and wish to learn a good
initialization θ that can be adapted quickly by one step of gradient descent on the support
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Figure 3: Intuition behind MAML (Finn et al., 2017). The red dot denotes such initial-
ization point, and the arrows represent gradient update steps specific to the tasks A, B,
C, and D. Source: Huisman et al. (2020).

set (see Equation 7). Thus, we wish to find an optimal initialization

θ∗ = arg min
θ

ETjvp(T )
[
LDte
Tj

(fθ−α∇θLDtr
Tj

(fθ))

]
= arg min

θ
ETjvp(T )

[
LDte
Tj

(fθ′j )

]
, (5)

where θ′j denote the task-specific parameters (θ−α∇θLDtr
Tj

(fθ)), also called fast weights.

This theoretical loss takes the expectation over a distribution of all tasks. In practice, this
expectation over tasks can be approximated by computing the loss on a randomly sampled
batch of tasks Tj . Gradients of this loss can then be used to update the initialization
parameters θ.

Pseudocode for MAML is displayed in Algorithm 2. We start with a random initializa-
tion point θ (line 1), and iteratively adapt this to facilitate quick task-specific adaptation.
In every outer loop iteration, we sample a batch of task B (line 3) in order to approximate
the expectation value in Equation 5. Then, for ever task, we initialize fast (task-specific)
weights θ′j = θ (line 5). These fast weights are iteratively updated for T time steps on
the support set (lines 6–9). The final fast weights θ′j are then used to compute the loss on
the query set (line 10), which is propagated backwards to update the initialization point
θ (line 12).

A disadvantage of MAML is that updating the initialization weights according to
Equation 5 requires one to perform back-propagation through the optimization trajecto-
ries. To see this, we can unpack the gradient term in line 12 of the algorithm

∇θLDte
Tj

(fθ′j ) = L′Dte
Tj

(fθ′j )∇θ(θ′j)

= L′Dte
Tj

(fθ′j )∇θ(θ − α∇θLDtr
Tj

(fθ)− ...− α∇
θ
(T−1)
j

LDtr
Tj

(fθ(T−1))). (6)

Since the gradient of a sum is equal to the sum of the gradients of its parts, we obtain
an expression that contains gradients of gradients in the second factor. These so-called
second-order derivatives are computationally expensive to compute: quadratic in the
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Algorithm 2 MAML, adapted from Finn et al. (2017)

1: Start with random initialization parameters θ
2: repeat
3: Sample batch of m tasks B = {(Dtr

Tj , D
te
Tj )}

m
j=1

4: for Tj = (Dtr
Tj , D

te
Tj ) ∈ B do

5: Fast weights θ′j = θ
6: for t = 1, ..., T do
7: Compute LDtr

Tj
(fθ′j ) and ∇θ′jLDtr

Tj
(fθ′j )

8: Update θ′j = θ′j − α∇θ′jLDtr
Tj

(fθ′j )

9: end for
10: Compute LDte

Tj
(fθ′j ) and ∇θLDte

Tj
(fθ′j )

11: end for
12: Update initialization weights θ = θ − β

∑
Tj∈B∇θLDte

Tj
(fθ′j )

13: until convergence

number of base-learner parameters. Fortunately, it is possible to approximate the per-
formance of second-order MAML (so-MAML) by ignoring the optimization trajectory,
which is equivalent to stating that ∇θθ′j = I. This variant of MAML uses only first-order
gradients (fo-MAML) and yields similar performance to so-MAML.

The intuition as to why the first-order approximation works just as well as the second-
order variant is displayed in Figure 4. That is, first-order updates to the base-learner
initialization correspond to moving the initialization into the opposite direction of the

query loss gradient with respect to the fast weights θ
(T )
j , i.e., L′

Dte
Tj

(f
θ
(T )
j

). In this figure,

T = 4 updates are made to the initial parameters on the support set Dtr
Tj of task Tj (red

arrows). After adjusting the initial parameters to θ
(T )
j , the gradient descent direction

of the fast weights θ
(4)
j on the query set Dte

Tj is computed. If the error landscape is
reasonably smooth, this blue vector—which is used to update the initialization parameters
θ—presumably points towards the optimal parameters θ∗j for task Tj . It is thus not hard
to believe that the first-order MAML approximation will work just as well as the second-
order variant. When multiple tasks are used, this blue update vector is constructed by
averaging the negative query loss directions across the tasks, which presumably moves
the initialization to a more central position from which it can learn these tasks quicker
(see Figure 3).

2.3.3 LSTM meta-learner

On top of learning an initialization, the LSTM meta-learner (Ravi and Larochelle, 2017)
attempts to learn the learning procedure, building upon findings by Andrychowicz et al.
(2016). Thus, Ravi and Larochelle (2017) propose to replace gradient descent, which
is used by MAML, by a trainable LSTM module gφ which makes updates to the base-
learner parameters. More specifically, the base-learner parameters θ are placed into the
cell state of the LSTM meta-learner. As a consequence, cell state updates correspond to
base-learner weight updates.

This one-to-one correspondence between base-learner parameters and cell states is
visually depicted in Figure 5. That is, the base-learner parameters θ are literally inside
the LSTM meta-learner. In a given episode with corresponding task Tj , the LSTM meta-
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Figure 4: Demonstration of first-order MAML that makes 4 inner updates (red arrows)
on the support set of a given task Tj . By the first-order assumption, the initialization θ is
moved in the direction proposed by gradient descent on the query set (blue arrow)—which
presumably points towards the optimal parameters θ∗j for task Tj . No backpropagation
through the inner optimization trajectory takes place. This image is inspired by Ra-
jeswaran et al. (2019).

learner randomly samples batches (X,Y ) from the support set Dtr
Tj to update its cell state

(and thus base-learner parameters). Then, after a fixed number of updates T , the loss
of the final parameters is evaluated on the query set Dte

Tj , on which we wish to maximize
performance. The gradients of the observed loss can be then used to update the LSTM
parameters φ correspondingly.

This idea was inspired by the popular gradient descent update rule, given in Equa-
tion 7.

θt+1 = θt − α∇θtLDtr
Tj

(fθt). (7)

Ravi and Larochelle (2017) note that this update rule looks very similar to that of the
cell state (long-term memory component) of an LSTM, given by

ct+1 = pt � ct + it � c̄t. (8)

Here, ct is the cell state, pt the forget gate, it the learning rate, c̄t the candidate cell
state, and � the element-wise product. When pt = 1, ct = θt, it = α, and c̄t =
−∇θtLDtr

Tj
(fθt), this cell state update rule is equivalent to gradient descent applied to

base-learner parameters θt.
For this reason, the LSTM meta-learner sets the initial base-learner parameters and

cell state to be equal, i.e., θ0 = c0, and maintains this one-to-one correspondence over
time, as depicted in Figure 5. Also, c̄t is set to −∇θtLDtr

Tt
(fθt). For increased expressivity

in the meta-learner, Ravi and Larochelle (2017) define the learning rate it and forget gate
pt in a parametric way. More specifically, they make the learning rate vector it dependent
on the loss gradient, loss value, previous parameter value, and previous learning rate, i.e.,

it = σ(wI � [∇θt−1LDtr
Tt

(fθt−1),LDtr
Tt

(fθt−1),θt−1, it−1] + bI). (9)
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Figure 5: The operation of an LSTM meta-learner in a single episode associated with task
Tj . Lt and ∇t are shorthand for L(Xt,Y t)(fθt−1) and ∇θt−1L(Xt,Y t)(fθt−1) respectively.
The meta-learner network makes T updates to the base-learner parameters using the
support set. The resulting parameters θT are then evaluated on the query set. The
meta-learner network can be updated by propagating the query loss backwards through
this computational graph. To avoid the computation of second-order derivatives, Ravi
and Larochelle (2017) disallow gradients to flow backwards through dashed arrows. The
image was slightly adjusted from Ravi and Larochelle (2017).

Here, wI and bI correspond to the trainable weight matrix and bias vector for the learning
rate. A similar parameterization is performed for the forget gate, i.e.,

pt = σ(wF � [∇θt−1LDtr
Tt

(fθt−1),LDtr
Tt

(fθt−1),θt−1,pt−1] + bF ), (10)

where wF and bF are a weight matrix and bias vector, respectively.
Pseudocode for the LSTM meta-learner is displayed in Algorithm 3. After randomly

initializing the parameters φ of the LSTM gφ (line 1), several training iterations are
performed (lines 3–16). In every episode, a task Tj is sampled (line 4), and the base-
learner parameters θ0 are initialized to the cell state c0 (line 5).

Then, the LSTM proposes T updates to the base-learner parameters. For every up-
date, a batch of training examples Dtr

Tj is sampled (line 7), on which the loss of the

base-learner is computed (line 8). The gradients of this loss are used to update the
cell state (line 9), and thus the base-learner parameters (line 10; due to the one-to-one
correspondence between the base-learner parameters and cell state).

At the end of an optimization trajectory of size T , the loss of the final parameters θT
is evaluated on the test set Dte

Tj (line 12). The gradients of this loss with respect to the

LSTM parameters are used to update φe−1 (line 13).
Ravi and Larochelle (2017) follow Andrychowicz et al. (2016) by assuming that the

base-learner loss gradients are independent of the LSTM parameters φ, to prevent the
computation of higher-order derivatives. Furthermore, Ravi and Larochelle (2017) also
preprocess the base-learner loss gradients using Equation 11. That is, given a gradient or
loss x, it transform it into

p(x)→

{
( log |x|p , sign(x)) if |x| ≥ e−p,
(−1, epx) else

, (11)
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where p is the constant 10. Intuitively, this formula sqeezes values together, such that
they are closer to each other. This is done to reduce the difference in magnitudes of
losses and gradients, which can be a cause of training instability (Andrychowicz et al.,
2016). On top of these technical tricks, the LSTM meta-learner use batch normalization
to stabilize and speed up learning.

Algorithm 3 LSTM meta-learner, adapted from Ravi and Larochelle (2017)

1: Randomly initialize LSTM parameters φ0

2: Initialize counter e = 1
3: repeat
4: Sample Tj = (Dtr

Tj , D
te
Tj )

5: θ0 = c0
6: for t = 1, .., T do
7: Sample batch Xt,Y t from Dtr

Tj
8: Compute loss of base-learner L(Xt,Y t)(fθt−1)
9: Compute ct using Equation 8

10: θt = ct
11: end for
12: Compute test loss LDte

Tj
(fθT )

13: Compute φe using ∇φe−1
LDte
Tj

(fθT )

14: c0 = cT
15: e = e+ 1
16: until convergence

Note that while the LSTM meta-learner (Ravi and Larochelle, 2017) and MAML (Finn
et al., 2017) are two well-known techniques in the field of meta-learning, they are no longer
the best performing algorithms in few-shot learning settings. That is, many other meta-
learning techniques have been proposed, such as latent embedding optimization (Rusu
et al., 2018) and MetaOptNet (Lee et al., 2019), which outperform MAML and the LSTM
meta-learner on few-shot image classification benchmarks. For a comprehensive overview
of the current state-of-the-art in few-shot learning, we refer the reader to Lu et al. (2020).
In contrast to the best performing techniques in these few-shot settings, MAML is also
applicable to reinforcement learning settings, which is why it can still be considered a
state-of-the-art technique.

3 TURTLE

In this section, we construct a small theoretical framework to capture the relationship
between the LSTM meta-learner and MAML. Combining this theoretical knowledge with
recent empirical findings, we construct a new meta-learning algorithm which we call sTate-
less neURal meTa-LEarning, or TURTLE. We prove that this technique is a generalized
form of MAML, and thus has the theoretical capability of outperforming it.

3.1 Theoretical subsumption

There is a striking relationship between the LSTM meta-learner (Ravi and Larochelle,
2017) and MAML (Finn et al., 2017). Both seek to find a good set of initialization
parameters θ0 for the base-learner, which facilitates quick learning of new tasks. The two
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techniques differ, however, in their task-specific adaptation procedure. That is, MAML
uses vanilla gradient descent updates, while the LSTM meta-learner uses a special LSTM
module to update these initialization parameters (see Figure 1 in Section 1). Intuitively,
one would say that because of this, the LSTM meta-learner is more expressive than
MAML as the LSTM module could learn to perform gradient descent.

This leads us to formulate Theorem 1. Note that “technique X subsumes technique
Y” means that technique X has enough expressive power to model the same solution as
technique Y. The proof of this theorem is given below.

Theorem 1. The LSTM meta-learner subsumes MAML

Proof. Assume that the LSTM meta-learner gθ and MAML start with the same base-
learner initialization parameters c0 = θ0, settings of the meta-optimizers (e.g., Adam),
and optimization horizons, i.e., T = TLSTM = TMAML. Furthermore, assume that MAML
uses a base-learning rate of αMAML.

In order to prove that LSTM meta-learner subsumes MAML, we simply have to show
that the theoretical possibility exists that the parameters of the LSTM meta-learner
encode the same learning strategy as MAML (gradient descent).

More formally, we have to show that there exists a parameterization such that for
an arbitrary task Tj v p(T ), the update sequence [c0, c1, ..., cT ] produced by the LSTM
meta-learner is equivalent to the sequence [θ0,θ1, ...,θT ] produced by MAML.

By assumption, we have that c0 = θ0. Thus, it remains to be shown that there exists a
fixed set of LSTM meta-learner parameters, such that at every time step t ∈ {0, ..., T−1},
ct+1 = θt+1 holds, or equivalently,

pt � ct + it � c̄t = θt − αMAML∇θtLDtr
Tj

(fθt),

due to Equations 7 and 8. As discussed in Section 2.3.3, this equation is satisfied when
pt = 1, ct = θt, it = αMAML, and c̄t = −∇θtLDtr

Tj
(fθt). The requirements that c0 = θ0

and c̄t = −∇θtLDtr
Tj

(fθt) can be satisfied by design. However, we still have to show that

the remaining requirements can indeed be satisfied with the chosen parametric forms of
pt and it.

Thus, we have to show it is possible for a meta-learner that pt = 1 = [1 ... 1], and
it = αMAML = [αMAML ... αMAML]. We start with the former. From Equation 9, we know
that

pt = σ(wF � [∇θt−1LDtr
Tt

(fθt−1),LDtr
Tt

(fθt−1),θt−1,pt−1] + bF ).

If we set wF = [0 ... 0], we get

pt = σ(bF )

= σ([b
(1)
F ... b

(n)
F ])

=

([
1

1 + e−b
(1)
F

...
1

1 + e−b
(n)
F

])
, (12)

where n is the number of base-learner parameters. From here, it is easy to see that

pt = [1 ... 1] if all b
(i)
F are chosen to be sufficiently large, which yields e−b

(i)
F ≈ 0.

Finally, we have to show that it is possible to have it = [αMAML ... αMAML], or equiv-
alently,

σ(wI � [∇θt−1LDtr
Tt

(fθt−1),LDtr
Tt

(fθt−1),θt−1, it−1] + bI) = [αMAML ... αMAML],
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due to Equation 9. Again, if we pick the weight vector wI = [0 ... 0], we get

σ(bI) = [αMAML ... αMAML]

≡ σ([b
(1)
I ... b

(n)
I ]) = [αMAML ... αMAML]

≡

([
1

1 + e−b
(1)
I

...
1

1 + e−b
(n)
I

])
= [αMAML ... αMAML]. (13)

We can then solve for

αMAML =
1

1 + e−b
(i)
I

⇒ αMAML

(
1 + e−b

(i)
I

)
= 1

⇒ e−b
(i)
I =

1− αMAML

αMAML

⇒ b
(i)
I = − ln

(
1− αMAML

αMAML

)
.

Since 0 < αMAML < 1, it is thus indeed possible to have a parameterization of
the LSTM meta-learner which yields exactly the same task-specific learning behavior
as MAML. Hence, the proof is complete.

3.2 Observations and empirical findings

This existence of a parameterization of the LSTM meta-learner that yields the same
behavior as MAML means that in theory, the LSTM meta-learner could perform at least
as well as MAML, or even better, as the learned update rule may be better than regular
gradient descent (Andrychowicz et al., 2016). However, as mentioned in Section 2, neural
networks, and thus the LSTM meta-learner, are trained by iterative procedures that
navigate the error landscape. An example error landscape is displayed in Figure 6. If this
landscape contains many local minima, or the input information is insufficient to compute
the direction of the steepest descent, it may be possible that the meta-optimizer is unable
to bring the LSTM meta-learner parameters towards the point where the behavior and
thus performance is the same as that of MAML.

In fact, the findings of Finn et al. (2017) seem to indicate this. More specifically, they
have found that MAML outperforms the LSTM meta-learner on 5-way, 1- and 5-shot
image classification. This implies that the LSTM meta-learner was unable to arrive at
the same point as MAML in its error landscape.

As we have seen before, the only difference between MAML and the LSTM meta-
learner is that the latter learns an LSTM optimization network that can make updates to
the base-learner weights. Consequently, the inability of the LSTM meta-learner to suc-
cessfully navigate the error landscape must come from the additional complexity induced
by learning an optimization procedure at the meta-level.

One hypothesis is that this is caused by the fact that the LSTM meta-learner learns
a stateful optimization procedure in the form of an LSTM module, which needs to learn
how to maintain and interact with a state, which requires additional trainable parameters.
As a result, it may be that the complexity of the error landscape increases.

Another hypothesis as to why the LSTM meta-learner fails to find a good solution in
the error landscape has to do with the first-order assumption that the algorithm makes in
order to reduce the running time. That is, it ignores second-order derivatives by assuming

15



Figure 6: Example error landscape of a neural network. Lower points correspond to better
solutions. Source: Li et al. (2018)

that inputs of the meta-network at time steps t′ > t do not depend on the meta-learner
parameters of previous time steps. Ravi and Larochelle (2017) do not prove that this
is a correct assumption to make and do not show any experiments that investigate the
influence of this assumption on the performance of the LSTM meta-learner.

To understand why this assumption makes the meta-network unaware of the influence
of its parameters on future inputs, one first has to develop an understanding of compu-
tation graphs that show the dependencies between variables over time. Figure 7 shows
an example of such a graph for a meta-learning algorithm that learns the base-learner
initialization parameters θ and parameters φ for the meta-network gφ. This graph shows
how the initial parameters are adjusted for T = 2 steps when presented with a new task
Tj . Black arrows from node a to node b indicate that node a influences node b. For exam-
ple, we can see that the meta-network parameters φ influence all updates gφ(∇◦) made
by this network, where ◦ = ∇θ,∇θ(1)j

. Red arrows, on the other hand, display backward

connections and indicate how gradients bubble up the graph in order to compute how the
base-learner initialization θ and meta-network parameters φ should be adjusted.

Let us consider how the weights θ
(1)
j are produced. We start at the root node of the

base-learner, which corresponds to the weight initialization θ. The first step is then to
compute the loss on the support set of a task, and the corresponding gradients ∇θ. Since
these gradients depend on θ, there is a forward connection from this weight initialization
θ to the gradients ∇θ. These gradients ∇θ can then be used as input to the meta-
network gφ which, in turn, computes weight updates gφ(∇θ). This weight update is
of course dependent on the inputs ∇θ that the meta-network receives and the meta-
network parameters φ, hence the forward connections between these nodes. Once we
have computed the update step, we can simply add it to the previous parameters (in

this case θ) and produce our first set of updated parameters θ
(1)
j . This same procedure

is applied another time to compute the second set of updated parameters θ
(2)
j . After T

updates are made (2 in this case), the loss on the query set is computed and propagated
backwards through the red arrows in the graph to update the root nodes θ and φ.

The graph thus works in two phases: (i) the forward phase (black arrows) and (ii) the
backward phase (red arrows). In the forward pass, the base-learner weights are adjusted
on the support set of the given task by the meta-network in order to learn the task. At
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Legend

Blocked backward
connection (only if first-order)

Forward connection

Backward connection (for
gradient flow)

Base-learner Meta-network

Figure 7: An example of a computation graph when T = 2 updates are made per task.
In this example, the meta-network gφ updates the base-learner parameters based on

their gradients with respect to the loss on the support set ∇
θ
(t)
j

= ∇
θ
(t)
j

LDtr
Tj

(θ
(t)
j ). The

initialization parameters θ and meta-network parameters φ are updated by propagating
the loss on the query set (red node) backwards through the graph.

the end of this forward pass, we determine the loss of the resulting parameters on the
query set of the task to assess how successful the learning process has been. Then, in the
backward pass, gradients of this error signal are propagated backwards through the red
arrows in the graph. In this way, we can compute the gradient of the query set loss with
respect to our base-learner initialization and meta-network parameters, which can then
be used to update them to increase the learning ability of our algorithm.

As shown in the graph, the first-order assumption blocks gradients from flowing
through the red arrows with black cuts. If we look closely at the figure, we see that
these blocked arrows always enter gradient nodes, meaning that gradients do not flow

through gradients. Mathematically speaking, this means that we assume that ∇θθ
(t)
j = I

and ∇φ∇θ(t)j

= I for all values of t. As a consequence, approximated gradient expressions

can be different from the full (second-order) expressions. This means that the base-learner
initialization and meta-network parameters are adjusted with incomplete gradient signals.

While Finn et al. (2017) have shown that first-order MAML performs just as well as
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second-order MAML, this does not mean that first-order approximations are not hurtful
when also learning the parameters of a meta-network as done by the LSTM meta-learner.
In fact, we think that first-order approximations are hurtful when learning an optimizer.
The reason for this is that the first-order assumption disconnects the backward graph (see
the blocked red arrows in Figure 7), meaning that the optimizer will become unaware that
updates at time step t affect gradient inputs at time steps t′ > t. In short, the learned
optimizer is navigating the meta-landscape with incomplete information.

3.3 Design of TURTLE

These theoretical and empirical insights motivate the construction of a new meta-learning
algorithm (TURTLE) that, in theory, subsumes MAML, but makes fewer assumptions
and has a less complex design such that the error landscape may be easier to navigate.

Learning objective and gradients The idea is simple. That is, we combine the LSTM
meta-learner and MAML but replace the LSTM module with a stateless feed-forward
neural network, which also has the task of optimizing the weights of the base-learner
network. We call this technique sTateless neURal meTa LEarning, or TURTLE.

Figure 1 in Section 1 visually depicts the architectural differences between MAML,
the LSTM meta-learner, and TURTLE. As we can see, all techniques learn initialization
weights (top box). The differences become evident, however, when looking at how they
learn a task by producing task-specific weights or, equivalently, fast weights. That is,
MAML uses regular gradient descent to learn the new task. The LSTM meta-learner, on
the other hand, replaces the gradient descent procedure by a trainable and stateful LSTM
module. Lastly, TURTLE uses a simple feed-forward neural network (FFNN) as trainable
optimizer, which does not maintain a state. Besides these architectural differences, there
are also algorithmic differences between the three techniques, which will become clear
further on in this subsection.

We now leverage the mathematical machinery that was used to develop MAML and
the LSTM meta-learner in order to formalize TURTLE. Let fθ denote the base-learner
neural network, and gφ our meta-feed-forward neural network, which takes input infor-
mation Ij and outputs weight updates gφ(Ij) for the base-learner parameters. This input
information can include, e.g., (processed) gradients of the base-learner parameters and
the loss value. On a high level, our goal is to minimize the expected base-learner loss
over a distribution of tasks p(T ). Suppose we are given initial base-learner parameters θ.
Furthermore, assume that our meta-network gφ only makes a single update to these base-
learner parameters θ. Then, we wish to find optimal parameters for our meta-network

φ∗ = arg min
φ

ETjvp(T )
[
LDte
Tj

(θ + gφ(Ij))

]
, (14)

where Ij is meta-information specific to task Tj , for example, a combination of the loss
Lj = LDtr

Tj
(θ), and gradients ∇j = ∇θLDtr

Tj
(θ).

Note that this goal formulation assumes that some initial base-learner parameters θ
are given. Instead, we also include these in our learning objective, as a good initialization
is a warm-start for quick learning, as shown by Finn et al. (2017). Consequently, we wish
to obtain

φ∗,θ∗ = arg min
φ,θ

ETjvp(T )
[
LDte
Tj

(θ + gφ(Ij))

]
. (15)
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Finding the optimal parameters φ∗ and θ∗ is infeasible. Hence, we resort to hand-
crafted gradient-based optimizers, such as Adam. We now derive gradients of the loss
function in Equation 15.

We start with the gradients with respect to base-learner parameters θ.

∇θLDte
Tj

(θ + gφ(Ij)) = L′Dte
Tj

(θ + gφ(Ij))∇θ (θ + gφ(Ij))

= L′Dte
Tj

(θ + gφ(Ij)) (I +∇θgφ(Ij))

= L′Dte
Tj

(θ + gφ(Ij))
(
I + g′φ(Ij)∇θ(Ij)

)
(16)

As one can see, this gradient expression follows the same pattern as in Equation 6.
For the meta-network parameters φ, the gradient is given by

∇φLDte
Tj

(θ + gφ(Ij)) = L′Dte
Tj

(θ + gφ(Ij))∇φ (θ + gφ(Ij))

= L′Dte
Tj

(θ + gφ(Ij)) (∇φθ +∇φgφ(Ij))

= L′Dte
Tj

(θ + gφ(Ij))
(
g′φ(Ij)∇φIj

)
. (17)

To compute these gradient expressions, we have to propagate backwards through
the optimization trajectory—just like second-order MAML—which is computationally
expensive as it requires the computation of second-order derivatives. Finn et al. (2017)
found that these second-order can be discarded without sacrificing performance. The
LSTM meta-learner (Ravi and Larochelle, 2017) also makes an assumption which allows
it to side-step the computation of second-order derivatives. We do not build in such an
assumption for TURTLE as it may be that second-order gradients are crucial for learning
a good optimizer (see Section 3.2).

The algorithm The training algorithm for TURTLE is displayed in Algorithm 4. First,
we initialize all involved parameters, namely the initialization point θ for the base-learner,
and weights φ of the meta-learner network (lines 1–2). Then, for every task in the batch
B, sampled in line 4, we make T updates to our base-learner initialization θ (lines 7–
11) to obtain fast (task-specific) weights θ′j . To start this process, we initialize the fast
weights to be equal to our initialization θ (line 6). At every time step t, we compute meta-
information with our current fast weights on the support set (line 8). This information
is fed into the meta-learner network gφ, which then proposes weight updates uj (line 9),
which are added to our fast weights (line 10).

With the final task-specific weights θ′j , we compute the loss on the query set Dte
Tj (line

12), which is then propagated backwards to update both our initialization θ and meta-
learner network parameters φ (line 14). Importantly, our meta-learner network works on
a per-parameter basis, in similar fashion to the LSTM meta-learner. This means that the
same meta-network is used to update every base-learner parameter.

Relationship with MAML We now show that TURTLE can be seen as a generalized
form of MAML, i.e., TURTLE subsumes MAML. For this, we assume without loss of
generality that TURTLE and MAML both start with the same base-learner initialization
θ. Then, all we need to show is that the meta-network used by TURTLE can, in principle,
perform regular gradient descent in similar fashion to MAML.

For this, assume task Tj = (Dtr
Tj , D

te
Tj ) is presented to the models, leading to the

observed loss Lj = LDtr
Tj

(fθ) and corresponding gradients ∇j = ∇θLDtr
Tj

(fθ). Now,
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Algorithm 4 TURTLE

1: Randomly initialize base-learner weights θ
2: Randomly initialize meta-learner weights φ
3: repeat
4: Sample batch of m tasks B = {(Dtr

Tj , D
te
Tj )}

m
j=1

5: for Tj = (Dtr
Tj , D

te
Tj ) ∈ B do

6: Initialize fast weights θ′j = θ
7: for t = 1, ..., T do
8: Compute information Ij by applying fθ′j to the support set

9: Compute one-step update uj = gφ(Ij)
10: Update fast weights θ′j = θ′j + uj
11: end for
12: Compute LDte

Tj
(fθ′j )

13: end for
14: Update Θ = {θ,φ} by propagating

∑
Tj∈B LDte

Tj
(fθ′j ) backwards

15: until convergence

MAML updates the base-learner parameters at a given time step using standard gradient
descent: θj = θ−α∇j . In contrast, TURTLE updates the base-learner parameters using
the meta-network gφ, i.e., θ′j = θ + gφ(Ij). When the update terms are equivalent, i.e.,
−α∇j = gφ[Ij ], TURTLE learns a new task exactly like MAML.

In order to prove that TURTLE subsumes MAML, we must show that there exists a
configuration of weights for meta-network gφ such that the proposed updates are equiva-
lent to those made by gradient descent. Figure 8 contains example weights φ for a fairly
simple meta-network architecture that results in updates equivalent to those made by
gradient descent. That is, given the gradient ∇j of a base-learner parameter and loss
value Lj , the meta-network outputs the proposed update −α∇j , which is equivalent to
the update made by gradient descent.

The same result holds for any other meta-network architecture, assuming that the
gradients ∇j are provided as input and that the meta-network uses linear or ReLU acti-
vation functions. To see this, one can imagine a meta-network in which all weights are
set to zero except for a single path from the gradient input to the output node. Weights
along this path to the final hidden layer would have a value of one, and the weight from
the hidden layer to the output node a value of −α. We can thus conclude that TURTLE
is indeed a generalized form of MAML.

Figure 8: Example network configuration for gφ that proposes updates equivalent to
regular gradient descent.
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Figure 9: The influence of the β parameter on the decay of previous information.

Meta-information In the above reasoning, we assumed that the meta-information Ij
was given by the loss Lj and the gradients ∇j . However, besides the loss and gradients,
we think that it may be useful to add the gradient, or update history information, which is
also done in hand-crafted optimization procedures, such as momentum (Rumelhart et al.,
1986). For this, we maintain a running average of the previous updates or gradients for
every parameter θ(i) in the base-learner network. By placing this state in the inputs of
meta-network, we mitigate the absence of an explicit state in the meta-learner network.
When presented with a new task Tj , we initialize empty history buffers, which is main-
tained over the optimization trajectory of length T . Note that when only a single update
is made per task, i.e., T = 1, there is no point in keeping track of a history.

The historical information can be integrated in TURTLE by concatenating an addi-
tional column to the input matrix It at every time step. This column ht ∈ Rn×1 represents
the historical information for every of the n base-learner parameters. Suppose we use pre-
vious updates as historical information. Then, we can maintain an exponentially moving
average given by

ht+1 =

{
0 if t = 0,

βht + (1− β)gφ(It) else
, (18)

where β ∈ [0, 1] is a parameter that influences the how long previous inputs will influence
the updates. The influence of this parameter is demonstrated in Figure 9. As one can
see, previous values exert more influence on the current value when beta is larger. In
other words, a larger beta value slows down the decay of previous information. When
using previous gradients instead of updates, one can simply replace the terms gφ(It) in
the equation above by the gradients with respect to base-learner parameters at time step
t. Also, one would not have to first initialize the history with a vector of zeros. Instead,
one could initialize the history buffer with the first observed gradients on the support set.
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4 Experiments

In this section, we empirically investigate the discussed techniques. First, we describe our
experimental setup to test the algorithms. Second, we present the obtained results by
following this setup.

4.1 Experimental setup

Our experimental setup consists of a regression problem and image classification prob-
lems. In the former case, the goal is to learn a real-valued function fθ : X → R, while in
the latter case, the goal is to learn a classifier fθ : X → C, where C is a set of classes. An
overview of the techniques that we will experiment with in both settings are shown in Ta-
ble 2. Note that the centroid-based finetuning model can only be applied in classification
settings due to its design. Next, we discuss the two problem setups in more detail.

Technique Key idea

TrainFromScratch (TFS) Learn every task from a random initialization θ
Finetuning (FT) Re-use the pre-trained embedding module and only

learn a new output layer for every new task
Centroid-based finetuning (CFT) Re-use the pre-trained embedding module and

learn a special new output layer for every task
based on cosine similarity

MAML Learn good initialization parameters from which
new tasks can be learned quickly using gradient
descent

LSTM meta-learner (LSTM) Learn good initialization parameters and an LSTM
module that updates the base-learner weights

TURTLE Learn good initialization parameters and a feed-
forward neural network that updates the base-
learner weights

Table 2: Brief summary of all techniques that we will experiment with.

4.1.1 Sine wave regression

Finn et al. (2017) proposed a simple sine regression problem, where the goal is to quickly
learn a sine function that has generated the few examples in the support set that we are
given access to.

Task setup Every task Tj is associated with a different sine wave function sj(x) =
a · sin(x − p), where a ∈ [0.1, 5.0] is the amplitude, and p ∈ [0, π] the phase, which are
both selected uniformly at random from their corresponding ranges. Then, given a task
Tj = (Dtr

Tj , D
te
Tj ), the goal is to infer the sine wave that gives rise to observations (xi, yi) in

the support set of a task. Note that the model receives no additional information about
the shape or characteristics of the sine function other than these training examples. The
quality of the inference is then determined based on the prediction error (MSE) on the
observations from the query set Dte

Tj .
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Figure 10: Example of a sine wave regression task.

An example of a task is given in Figure 10. In this case, the model has to infer the
correct sine wave using k = 5 examples (shown in blue) from the support set. The degree
to which the model succeeded, is evaluated on the 10 (red) examples in the query set.

This problem lends itself nicely for studying the behavior of meta-learning systems,
and allows for a good comparison to transfer learning models. That is, the nature of
the problem makes it very hard to succeed by training on flat batches of data which are
sampled from all meta-training data Dtr = (Dtr

T1∪D
te
T1)∪...∪(Dtr

TJ , D
te
TJ ). Transfer learning

techniques, which train in this way, are thus unlikely to succeed (Finn et al., 2017) as
the training examples do not come from the same sine function and, consequently, may
contradict each other.

Base-learner In this problem setup, we have a base-learner neural network fθ—with
parameters θ—that attempts to learn the sine functions from few observations in Dtr

Tj .

We use the same network as used by Finn et al. (2017): a fully-connected feed-forward
neural network of three layers. The input to the network is a single real-valued number
xi ∈ [−5.0, 5.0]. The first two hidden layers each have 40 nodes, which are followed by
ReLU nonlinearities. The output layer maps the hidden state to a single real-valued
output fθ(xi).

Training details We generate 70 000 meta-training tasks and use the few-shot learning
setup. Each task consists of a support set Dtr

Tj which contains k examples, and query set
of size 50. In order to test well which system can learn the quickest from few data points,
we choose k to be small. The number of data points in the query set is larger to ensure
proper evaluation of generalization performance.

We train both the transfer learning baselines and meta-learning techniques for 70K
episodes. The baselines do, however, not train on tasks, but on randomly sampled batches
of data from all meta-training data Dtr = (Dtr

T1 ∪D
te
T1) ∪ ... ∪ (Dtr

T70 000
, Dte
T70 000)

. In accor-

dance with Chen et al. (2019), the size of these flat batches is set to be 16. When the
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baselines are exposed to tasks during meta-validation or meta-test time, they train on
mini-batches of size 4 sampled from the support set. Meta-learning algorithms, in con-
trast, train on every task in sequential fashion. They do not sample mini-batches from
the support and query sets, and thus these sets are presented to the meta-learning models
as a whole.

We validate the performance after every 2 500 episodes on a fixed set of 1 000 validation
tasks. Note that this was not done by Finn et al. (2017) as they argue that meta-validation
is unnecessary. We agree with this, as the models see every task only once which means
that there is no risk of overfitting. However, meta-validation does allow us to perform
hyperparameter tuning of TURTLE.

Evaluation details After a single run of meta-training, the final performance of the
models is measured on a fixed set of 2 000 sine wave tasks. For this, we compute the mean
squared error (MSE) between the models’ predictions and the ground-truth outputs on
the query sets of the meta-test tasks (after training on the support set). As a result, we
get 2 000 MSE scores. We take the mean and median of these scores as final performance
estimates of a model in a given run.

We perform 30 runs of every model with different initializations to investigate their
robustness. Thus, every model performs is trained and evaluated 30 times on the same
training and test data. We summarize the 30 evaluation scores using the mean, median,
and 95% confidence intervals. Importantly, we ignore outliers as they can have a large
impact on the mean and size of the confidence intervals. An observation x is said to be
an outlier iff x 6∈ [Q1− 1.5 · (Q3−Q1), Q3 + 1.5 · (Q3−Q1)], where Q1 and Q3 denote the
first and third quartiles of all the performance estimates across runs, respectively.

4.1.2 Image classification

For image classification, we re-implement a challenging setup proposed by Chen et al.
(2019), which also allows us to evaluate the performance of the algorithms when task
distribution shifts occur. This in in contrast to frequently used benchmarks which test
the performance of algorithms on tasks from the same data set that was used for training.

Task setup The challenging setting of Chen et al. (2019) that we use, consists of two
data sets:

� miniImageNet: As its name suggests, miniImageNet is a smaller version of the
large ILSVRC data set (Russakovsky et al., 2015), originally proposed by Vinyals
et al. (2016) to reduce the required computational costs and engineering efforts to
run experiments with this data. The miniImageNet data set contains 100 classes
and 60 000 RGB images. The examples are divided uniformly across the classes,
which means that every class is accorded by 600 examples.

� CUB: The CUB data set (Wah et al., 2011) consists of roughly 12 000 colored bird
images from 200 species (classes).

Both data sets are split into meta-training, meta-validation, and meta-test partitions.
For miniImageNet, we use the splits proposed by Ravi and Larochelle (2017). For CUB,
we randomly create our own splits with a 70/15/15 class ratio. All images are resized to
84× 84 pixels.

A single task is then constructed following the N -way k-shot classification setup as
described in Section 2.3.1. An example task is shown in Figure 2, where N = 5 and k = 1.
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In contrast to this example, our query sets will contain 16 examples for each of the N
classes, regardless of the value of k or N , following Chen et al. (2019).

Base-learner We use a convolutional neural network (CNN) consisting of four blocks as
our base-learner, following Chen et al. (2019) and Snell et al. (2017). Every block consists
of 64 convolutions of size (3, 3), followed by a batch normalization layer, ReLU activation
nonlinearity, and a 2D max-pooling layer with a kernel size of 2. The extracted features
are then flattened and fed into a dense layer, with the exception of the centroid-based
finetuning model, which uses its own special prototype output layer.

Training details All models are trained using the meta-training data from a single
data set: either miniImageNet or CUB. Transfer learning baselines have an output layer
with a size corresponding to the number of classes in the meta-training data, and are
trained on flat batches of size 16 from Dtr = (Dtr

T1 ∪ D
te
T1) ∪ ... ∪ (Dtr

TJ , D
te
TJ ). Here J

is the number of meta-training tasks. For k = 1 (1-shot setting), we randomly sample
J = 60 000 tasks to construct the meta-training set. For k = 5, we sample J = 40 000
meta-training tasks.

In similar fashion to the sine regression case, we will use the hyperparameters reported
by the original authors for all algorithms, unless explicitly stated otherwise. Additionally,
we validate the performance of meta-learning algorithms every 2 500 episodes on 600
meta-validation tasks. The parameters that gave rise to the best validation performance
will be evaluated on the meta-test tasks.

Evaluation details We evaluate the trained models on (i) the meta-validation and
meta-test tasks of the same data set that was used for training, and (ii) on the meta-test
tasks of the data set that was not used for training. Evaluation method (i) allows us to
evaluate how well the models work within the same task distribution, whereas method
(ii) also shows how well these models perform when a task distribution shift occurs.

Both meta-validation and meta-testing are performed using 600 randomly sampled
tasks from the meta-validation and meta-test data respectively, following Chen et al.
(2019). After a single run—consisting of meta-training, meta-validation, and meta-
testing—we thus obtain 600 meta-test accuracy scores. We take the mean of these scores
as representative performance. The mean, median, and 95% confidence intervals are then
computed over a total of 5 runs as final performance estimate. For evaluation on the
data set that was not used for training, we randomly sample 600 tasks from the meta-test
tasks.

Table 3 contains a summary of our experimental setup.

4.2 Experimental results

In this subsection, we report on the experiments that we have conducted and the corre-
sponding results.

4.2.1 Architecture of TURTLE

First, we study the behavior of 1-step TURTLE with different meta-learner architectures.
More specifically, we perform an exhaustive grid search over three different activation
functions (ReLU, sigmoid, tanh), three network architectures (0, 1, or 2 hidden layers with
20 nodes per layer), and three input types: raw gradients, raw gradients and loss, and
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Regression Image classification

Training data Sine waves miniImageNet, CUB
Validation data Sine waves miniImageNet, CUB
Test data Sine waves miniImageNet, CUB
Meta-training tasks 70K 40K/60K for k = 1/k = 5
Meta-validation tasks 1K 600
Meta-test tasks 2K 600
Validate after 2.5K tasks 2.5K tasks
Base-learner network Fully-connected feed-forward

neural network with two hid-
den layers of 40 ReLU nodes
followed by an output layer
with a single node

Four stacked convolutional
blocks (2D convolutions of 64
filters with kernel size 3, batch
normalization, ReLU activa-
tion, 2D max-pooling) fol-
lowed by a dense layer with
N (number of classes) output
nodes

Table 3: Summary of our experimental setup.

processed gradients and loss. We measure the performance of these models on validation
tasks of the 5-shot sine wave regression problem because of its challenging nature: there
are very few examples per task, which makes meta-learning important for achieving good
performance.

The results are displayed in Table 4. Note that the confidence intervals are the same
for the mean and median scores due to the fact that these statistics are computed over
the maximum validation scores per run, which do not change, regardless of the statistic
that is being computed.

Looking at this table, we see firstly that the raw gradient input type gives rise to good
models compared with the other input types. This indicates that neither adding loss
information nor processing gradients is helpful for achieving good performance. Secondly,
we see that there seems to be a monotonically decreasing relationship between the MSE
loss and the number of layers in the raw gradient meta-learners. This implies that we
should investigate raw gradient meta-learner networks with more than two hidden layers.

Overall, we see that TURTLE with raw gradient information, two hidden layers, and
the ReLU activation function performs best. For this reason, TURTLE will use the ReLU
function in further experiments.

We also tested whether processed gradients without loss information could improve the
performance of our best performing TURTLE so far. For this, we only include TURTLE
models with the ReLU function, as it is clear that it outperforms the sigmoid and tanh
functions. Table 5 shows the results of these experiments. As we can see, processing
the gradients does not have a positive effect on the performance. Therefore, we omit all
gradient preprocessing in the TURTLE models.

4.2.2 Layers and order of TURTLE

Here, we further investigate the influence of the number of layers on the performance of
TURTLE, for different number of inner-optimization steps T . Moreover, we compare the
performance of first-order TURTLE (fo-TURTLE), which ignores second-order gradients,
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Input HL Activation Mean MSE Median MSE

0 NA 1.04 ± 0.32 0.75 ± 0.32
1 ReLU 0.67 ± 0.02 0.65 ± 0.02
1 Sigmoid 0.83 ± 0.22 0.69 ± 0.22

Raw gradients 1 Tanh 0.71 ± 0.03 0.68 ± 0.03
2 ReLU 0.63 ± 0.02 0.62 ± 0.02
2 Sigmoid 0.69 ± 0.05 0.64 ± 0.05
2 Tanh 0.65 ± 0.01 0.64 ± 0.01

0 NA E ± E 2.74 ± E
1 ReLU 2.90 ± 0.57 4.12 ± 0.57
1 Sigmoid 1.43 ± 0.46 0.66 ± 0.46

Raw gradients and loss 1 Tanh 0.93 ± 0.25 0.66 ± 0.25
2 ReLU 1.48 ± 0.47 0.63 ± 0.47
2 Sigmoid 1.12 ± 0.37 0.65 ± 0.37
2 Tanh 1.37 ± 0.47 0.66 ± 0.47

0 NA 2.95 ± 0.27 2.85 ± 0.27
1 ReLU 1.80 ± 0.31 1.43 ± 0.31
1 Sigmoid 2.75 ± 0.32 2.53 ± 0.32

Processed gradients and loss 1 Tanh 2.95 ± 0.41 2.86 ± 0.41
2 ReLU 1.14 ± 0.20 0.97 ± 0.20
2 Sigmoid 2.01 ± 0.41 1.35 ± 0.41
2 Tanh 2.33 ± 0.45 2.43 ± 0.45

Table 4: MSE scores of various second-order TURTLE models on the validation tasks of
the 5-shot sine wave regression problem. Column HL indicates the number of hidden layers
of the meta-network used by TURTLE. The ± indicates the 95% confidence interval over
30 runs. “E” means that the value exceeds 100. The best mean and median performances
are displayed in bold font.

and second-order TURTLE (so-TURTLE), which does not. In addition, we compare
the performance with that of first-order MAML (fo-MAML; which ignores second-order
gradients) and second-order MAML (so-MAML).

The results for optimization trajectories of size T = 1, 5, and 10 are shown in Figure 11.
As we can see, fo-MAML is a good approximation to so-MAML for all tested trajectory
sizes, as the difference between their performances is very small, which was also found
by Finn et al. (2017). In contrast, the difference between fo- and so-TURTLE is much
larger. This is a clear indication that second-order information is crucial for successful
navigation of the meta-landscape.

For T = 10, we find something surprising. That is, both fo- and so-TURTLE seem
very sensitive to the initialization point, as the variance is very large. This indicates that
the meta-landscape has grown more complex, with higher local minima than for smaller
values of T . This could be explained by the fact that TURTLE makes more updates on
a single task, whilst neglecting information from other tasks. Since single tasks may be
noisy due to their small sizes (k = 5), it is clear that this may guide the meta-network
parameters in the wrong direction.

Overall, we see that TURTLE with five or six hidden layers seems to yield the most
robust performance across the various optimization trajectory sizes. Since the difference
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Type HL Mean MSE Median MSE

Raw gradients 2 0.63 ± 0.02 0.62 ± 0.02

0 2.89 ± 0.08 2.91 ± 0.08
Processed gradients 1 1.39 ± 0.28 1.39 ± 0.28

2 0.90 ± 0.00 0.90 ± 0.00

Table 5: Meta-validation performance of TURTLE with processed gradients as input.
The best mean and median performances are displayed in bold font.
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Figure 11: Influence of the gradient order and number of layers on the meta-validation
performance on 5-shot sine wave regression. Integers on the x-axis denote the number of
hidden layers in TURTLE’s meta-network.

between the number of hidden layers is small, we pick five for future experiments. With
this new setup for TURTLE, we experimented again with various input types to see
which one yields the best performance, but again we found that raw gradients gave rise
to the most robust performance (see Figure 19 in the appendix). For this reason, future
experiments will be conducted with this input type.

4.2.3 Influence of task size

Next, we investigate whether the observed instability of TURTLE is caused by noise
in update directions due to the small sizes of tasks (k = 5) examples. Therefore, we
investigate how the performances of so-MAML and so-TURTLE are affected by increasing
k: the number of examples in the support sets of tasks. We also compare them with the
LSTM meta-learner.

The results are depicted in Figure 12. Firstly, we note that the LSTM meta-learner,
while sometimes unstable, is able to achieve the best performance for k = 5. For larger
values of k, however, it performs poorly and becomes highly unstable. We do not know
what causes this, but it may indicate that the chosen architecture is not optimal for sine
wave regression. In contrast, TURTLE and MAML grow more stable as k increases, which
could be explained by the fact that task-level noise decreases.

Secondly, we note that the LSTM meta-learner outperforms TURTLE when making
only a single update step while it cannot leverage its memory component. This could be
explained by the fact that the LSTM meta-learner learns a learning rate for every base-
learner parameter. Below, we also investigate whether TURTLE benefits from learning a
learning rate per parameter.
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Figure 12: Influence of the number of data points per support set (k) on the meta-
validation performance of so-MAML, the LSTM meta-learner, and so-TURTLE on 5-shot
sine wave regression with various values of T .

Overall, we observe that the meta-learning process becomes less stable as T increases,
for both TURTLE and the LSTM meta-learner, although TURTLE is more robust for
T = 5. While increasing the task size k improves TURTLE’s training stability, we think
that the gain is too small to attribute to the task size. For this reason, we will aim to
improve the stability of TURTLE by making architectural changes.

4.2.4 Stabilizing TURTLE

Inclusion of historical information A potential cause of instability is the fact that
regular TURTLE does not take previous updates or gradients into account, while this
could provide useful information, for without such information, the meta-network can
abruptly shift directions in which it moves the base-learner parameters. Including his-
torical information could prevent this from happening, as the update of a base-learner
parameter at time step t would be influenced by previous gradients or updates.
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Figure 13: Influence of historical information on the meta-validation performance of 5-HL
so-TURTLE on 5-shot sine wave regression.

Figure 13 displays the results from including historical information as input (see Sec-
tion 3.3). For 5-step TURTLE, we can clearly see that the inclusion of historical informa-
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tion is beneficial. Overall, we see that gradient history information is more helpful than
previous updates. Moreover, larger beta values give rise to better performance, indicating
that gradients from the distant past can be helpful for deciding the next update.

For T = 10, the results are not so clear. Nonetheless, the inclusion of historical
information also has a slight beneficial effect here, albeit for small values of beta.

Aggregating gradients Another cause of instability could be the fact that TURTLE
has so far only been tested with meta-batch sizes of 1. This means that it updates its
meta-network parameters after every task it encounters. Therefore, TURTLE suffers from
tunnel-vision which may be detrimental to stability, especially when T becomes larger.
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Figure 14: Influence of meta-batch size on the meta-validation performance of MAML
and 5-HL so-TURTLE on 5-shot sine wave regression.

For this reason, we experiment with larger meta-batch sizes, such that meta-network
updates are based upon multiple tasks instead of a single one. The results are shown
in Figure 14. Looking at the results for T = 1, we see that both TURTLE and MAML
do not benefit from larger meta-batch sizes than one. In fact, the performance decreases
as the meta-batch size increases. A similar pattern can be seen for T = 5, although a
meta-batch size of two is slightly beneficial for MAML. For T = 10, we see a dramatic
increase in stability for TURTLE when using a meta-batch size of four compared with one
and two. MAML, on the other hand, does not gain in performance when the meta-batch
size is increased.

Overall, there seems to be a trade-off. Whenever possible, it seems like both MAML
and TURTLE perform best for small meta-batch sizes while the performance drops quickly
when larger meta-batches are used. This may be caused by the fact that the norm of
the meta-update increases as the meta-batch size increases. Since we use a fixed learning
rate and gradient clipping, this can indeed result in training instability. Additionally,
smaller batch sizes introduce some small random noise which may actually be helpful for
generalization performance.

However, as T grows larger, it is clear that learning rule updates should not be based
upon a single task, as learning rules should be general. We expect that this is the reason
for which increasing the meta-batch size to 4 for TURTLE greatly stabilizes the training
process.

Including the update step as input It may be the case that the inclusion of the
current update step allows TURTLE to learn a useful learning rate schedule that can
stabilize the optimization process. More specifically, this means that TURTLE would
receive an additional non-negative integer indicating the current step t ∈ {0, ..., T − 1}.
The results of this experiment is shown in Figure 15. As we can see, time as an additional
input worsens the performance of TURTLE when T = 10, while it increases performance
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Figure 15: Influence of time input on the meta-validation performance of 10-step so-
TURTLE with 5 hidden layers on 5-shot sine wave regression.

for T = 5.

4.2.5 Putting it all together

Figure 16: Comparison of the validation performance of 1-, 5-, and 10-step so-TURTLE,
the LSTM meta-learner, and so-MAML on 5-shot sine wave regression.

Now it is time to combine all findings to produce the best performing TURTLE.
Regardless of the number of steps, all TURTLE meta-networks are fully-connected and
will use five hidden layers with 20 ReLU nodes per layer. For 1-step TURTLE, we
simply use raw gradients as input, and no historical information as there is no historical
information (we only make one step). The 5-step TURTLE will receive raw gradients, the
time step t, and an exponentially weighted average of previous gradients (with β = 0.9)
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as input. Furthermore, it will use meta-batch sizes of 2 to further stabilize the training.
For 10-step TURTLE, we will use meta-batch sizes of 4 and previous gradient information
with a beta-value of 0.3 (see Figure 18 in the appendix). The time step t is not included,
as we found that it decreased performance (also after fixing meta-batch size at 4).

Inspired by the good 1-step results obtained by the LSTM meta-learner, we also
experiment whether it is useful to learn a learning rate per parameter of the base-learner
network. The final performances of all TURTLE models are shown in Figure 16.

As we can see in the figure, having a learning rate per base-learner parameter provides
a boost to the performance of TURTLE, regardless of the value of T . This indicates that
some parts of the base-network benefit from larger updates while other parts should stay
relatively stable. This is intuitive, as some features may be important across various
tasks (e.g., general concept of a sine curve), while some features are very task-specific
(e.g., amplitude and phase). Furthermore, we see that TURTLE performs best when five
steps are made per task, perhaps indicating that slight overfitting occurs when making 10
updates per task. Lastly, we observe that the enhanced TURTLE models (with learning
rate per parameter) all outperform the MAML and LSTM meta-learner models.

4.2.6 Evaluating test performance on sine-wave regression

Next, we evaluate the TURTLE models that were found to perform best against the
transfer baselines, MAML, and the LSTM meta-learner on the test tasks, which were not
used for selecting hyperparameters. This allows us to get a more unbiased perspective on
the performance of TURTLE. The results are shown in Table 6.

Model 5-shot 10-shot 15-shot 20-shot

TrainFromScratch 7.38 ± 0.12 4.61 ± 0.03 4.24 ± 0.01 3.85 ± 0.01
Finetuning 3.16 ± 0.01 2.96 ± 0.01 3.00 ± 0.01 2.89 ± 0.01

LSTM 0.98 ± 0.14 0.76 ± 0.05 0.94 ± 0.14 1.06 ± 0.12
1-step so-MAML 0.68 ± 0.01 0.39 ± 0.01 0.31 ± 0.01 0.24 ± 0.00

so-TURTLE 0.47 ± 0.01 0.26 ± 0.00 0.20 ± 0.00 0.15 ± 0.00

LSTM 0.37 ± 0.03 0.21 ± 0.03 0.21 ± 0.04 0.18 ± 0.04
5-step so-MAML 0.39 ± 0.01 0.10 ± 0.00 0.05 ± 0.00 0.03 ± 0.00

so-TURTLE 0.08 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00

LSTM 0.30 ± 0.02 0.22 ± 0.03 0.25 ± 0.07 0.40 ± 0.22
10-step so-MAML 0.30 ± 0.04 0.07 ± 0.00 0.03 ± 0.00 0.02 ± 0.00

so-TURTLE 0.10 ± 0.02 0.08 ± 0.02 0.07 ± 0.02 0.34 ± 0.24

Table 6: Average MSE scores and 95% confidence intervals on 2, 000 sine-wave test tasks
across 30 runs. The best performances for every task size and optimization length com-
bination are underlined. The best performances for a specific task size are made bold.

We see that training from scratch on every new task is not a good strategy, indicating
that a good prior is necessary for learning new tasks from very little data. The transfer
learning baseline (finetuning) also fails to find a good prior by training on joint data
from all training tasks. In contrast, the meta-learning techniques all outperform these
baselines, showing that they are able to find a more useful prior (and learning strategies).

Looking at the 1- and 5-step models, we see that TURTLE outperforms the LSTM
meta-learner and MAML in every setting in terms of robustness and average performance.
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This shows that it is beneficial to learn priors both on the base-level and the meta-level.
For the 10-step models, we observe that MAML outperforms both TURTLE and the
LSTM meta-learner for k ∈ {10, 15, 20}. Moreover, MAML is the only algorithm that
performs better when allowed to make 10 updates per task instead of 5. This could mean
that the LSTM and TURTLE start to overfit their optimization strategy to these small
tasks, while MAML does not have this issue as it uses a universal, hand-crafted optimizer
that does not change based on the tasks.

Overall, we see that 5-step TURTLE achieves the best performance for all settings.

4.2.7 Image classification

Next, we investigate the performance of all techniques on image classification problems.
In this setup, we perform 5 runs with different random initializations due to the compu-
tational costs and the fact that results are more consistent across runs.

To begin with, we compare our results to those reported in other works. Other works
do not report the results over various runs. Instead, they only report the best found mean
classification performance and a confidence interval over all test tasks. Since the tasks
that they used may differ from the ones we use, we only compare the best accuracy scores
from 5 runs. The results are shown in Table 7.

1-shot 5-shot

Reported Our impl. Reported Our impl.

TrainFromScratch - 0.29 - 0.41
Finetuning 0.36 0.39 0.54 0.56
Centroid finetuning - 0.45 - 0.58
LSTM 0.43 0.38 0.61 0.60
MAML 0.49 0.48 0.63 0.63
TURTLE - 0.49 - 0.64

Table 7: Difference between our meta-test accuracy scores and those reported in other
works for 5-way image classification on miniImageNet. Our re-implemtations are shown
in the column “our impl.”. Note that higher accuracy indicates better performance.
Reported results from finetuning, LSTM, and MAML come from Chen et al. (2019), Ravi
and Larochelle (2017), and Finn et al. (2017) respectively. While Chen et al. (2019)
did use the centroid finetuning model, they did not perform experiments without data
augmentation on miniImageNet (hence the blank).

As one can see, our results are close to those reported by other authors. This sug-
gests that our re-implementations are working properly. The only notable difference in
performance is observed for the LSTM meta-learner on 1-shot classification. However,
we have observed that the LSTM meta-learner suffers from training instability, causing
the results between runs to vary by large amounts. Thus, it is possible that Ravi and
Larochelle (2017) performed more runs to find a model with better performance. Also,
since our 5-shot performance is very close to that reported by Ravi and Larochelle (2017),
we think that our implementation is working correctly.

Moreover, we see that TURTLE (slightly) outperforms all other tested algorithms.
To ensure that the difference between MAML and TURTLE is valid, we reported the
best performance of MAML over 15 runs instead of 5 as done for the other algorithms.
Although the difference between MAML and TURTLE is small, it has to be noted that
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(a) 1-shot (b) 5-shot

Figure 17: Meta-test accuracy scores on 1- and 5-shot miniImageNet. Used abbreviations
are “TFS”: TrainFromScratch, “FT”: Finetuning, “CFT”: Centroid finetuning. The
dots represent outliers.

we did not perform additional hyperparameter tuning on miniImageNet for TURTLE,
whereas Finn et al. (2017) did do this for MAML. Moreover, TURTLE only makes five
updates whereas MAML makes ten per task.

Figure 17 shows the distribution of accuracy scores across five runs on 1- and 5-shot
miniImageNet tasks. This figure clearly shows the instability of the LSTM meta-learner
in the 1-shot setting. This problem is largely resolved by moving to the 5-shot setting,
indicating that the gradient signals in the 1-shot setting may be too noisy and lead to
non-generalizable learned update rules. Note, however, that there is still an outlier with
poor performance. Looking at TURTLE, we see that its performance is stable and slightly
better than that of MAML. In the 5-shot setting, TURTLE seems a bit more unstable,
but still outperforms MAML in 50% of the runs.

1-shot 5-shot

TrainFromScratch 0.30 ± 0.00 0.46 ± 0.00
Finetuning 0.33 ± 0.00 0.53 ± 0.00
Centroid finetuning 0.36 ± 0.01 0.53 ± 0.02
LSTM 0.47 ± 0.01 0.64 ± 0.01
MAML 0.52 ± 0.00 0.73 ± 0.01
TURTLE 0.53 ± 0.01 0.71 ± 0.01

Table 8: Comparison of the average meta-test accuracy scores and 95% confidence inter-
vals on 5-way CUB image classification.

We also compare the performances of the models on tasks from the CUB data set. The
result are displayed in Table 8. First, we note that the accuracy scores are higher than
on miniImageNet, indicating that the CUB tasks are easier to learn. This may be caused
by the fact that all inputs are bird images, which narrows down the required features to
correctly classify inputs. Second, we see that TURTLE (slightly) outperforms all other
tested techniques in the challenging 1-shot setting but not in the 5-shot setting, where
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MAML performs best.

miniImageNet → CUB CUB → miniImageNet

1-shot 5-shot 1-shot 5-shot

TrainFromScratch 0.31 ± 0.00 0.47 ± 0.00 0.29 ± 0.00 0.40 ± 0.00
Finetuning 0.33 ± 0.00 0.52 ± 0.01 0.29 ± 0.00 0.41 ± 0.00
Centroid finetuning 0.35 ± 0.01 0.52 ± 0.01 0.26 ± 0.00 0.31 ± 0.01
LSTM 0.27 ± 0.01 0.57 ± 0.01 0.29 ± 0.01 0.37 ± 0.00
MAML 0.39 ± 0.00 0.58 ± 0.00 0.32 ± 0.00 0.47 ± 0.00
TURTLE 0.42 ± 0.01 0.59 ± 0.01 0.31 ± 0.00 0.44 ± 0.00

Table 9: Average meta-test accuracy scores with 95% confidence intervals over 5 runs in
task distribution shift settings.

Additionally, we investigate the performance of the algorithms when a shift in task
distribution occurs. To achieve this, all models are trained on tasks from one data set and
evaluated on tasks from another data set. More specifically, we investigate the scenarios
(miniImageNet → CUB) and (CUB → miniImageNet), where (x → y) means that we
train on tasks from data set x and evaluate its performance on data set y. The results
are shown in Table 9. As we can see, TURTLE outperforms the other tested techniques
when trained on miniImageNet and evaluated on CUB tasks in both the 1- and 5-shot
settings. When trained on CUB tasks, however, TURTLE is outperformed by MAML in
both the 1- and 5-shot settings.

4.2.8 Running time

Lastly, we compare the running times of 5-step MAML, the LSTM meta-learner, and
TURTLE across 5 runs. Each run includes meta-training, meta-validation, and meta-
testing on miniImageNet, and evaluation on the CUB data set. The average runtimes are
displayed in Table 10. In this table, we see a clear grouping of running times by the order
of gradients that the algorithms use. That is, fo-MAML and the LSTM meta-learner
both use first-order gradients and are equally fast. On the other hand, TURTLE and
so-MAML both use second-order gradients and are slower than the first-order algorithms.
TURTLE is slower than MAML due to the meta-network that has to be trained, but
differences are small due to the fact that the complexity is dominated by the base-learner
gradients.

Algorithm 1-shot 5-shot

fo-MAML 3h 3.7h
LSTM 3h 3.7h
so-MAML 5.8h 7.9h
TURTLE 6h 8.1h

Table 10: Average running times (hours) across 5 runs of 5-step MAML, the LSTM
meta-learner, and TURTLE on miniImageNet and CUB.
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5 Discussion

In this section, we interpret and discuss our results and their significance. Additionally,
we describe promising directions for future research.

To begin with, we have shown the theoretical relationship between two state-of-the-
art meta-learning algorithms: the LSTM meta-learner (Ravi and Larochelle, 2017) and
MAML (Finn et al., 2017). More specifically, we have shown that the LSTM meta-learner
is—in theory—more expressive than the latter as it can learn to perform gradient descent,
which is also used by MAML to learn tasks. However, MAML was shown to outperform
the LSTM meta-learner by Finn et al. (2017), which gave rise to our hypothesis that the
meta-landscape, in which the LSTM meta-learner operates, is too complex to find a good
solution (such as gradient descent).

As a result, we formulated a new algorithm named TURTLE, which is simpler than
the LSTM meta-learner as it is stateless, yet more expressive than MAML because it
can learn gradient descent as the weight update rule. TURTLE indeed outperforms both
MAML and the LSTM meta-learner on the frequently used miniImageNet benchmark,
which is in line with our theoretical expectations. This shows that the meta-landscape
in which the LSTM meta-learner attempts to find a learning procedure is too complex
to successfully navigate. Our hyperparameter analysis of TURTLE shows, however, that
this complexity may not be an intrinsical property of the meta-landscape. Instead, the
assumption made by LSTM meta-learner which effectively neglects second-order gradients
may hurt its navigation ability.

In contrast, first-order MAML is a good approximation to second-order MAML as
it yields similar performance (Finn et al., 2017). This finding highlights the distinction
between the base- and meta-level goals. On the base-level, we wish to find an initial-
ization that is close to the optimal parameters for tasks Tj v p(T ). Assuming reason-
able smoothness of the base-level landscape, we could ignore our optimization trajectory

θ → θ
(1)
j → ...→ θ

(T )
j as the gradient at θ

(T )
j will presumably point towards the direction

of the optimal parameters for task Tj , and hence we can move the initialization θ in that
direction. This smoothness assumption seems validated by the fact that fo-MAML is a
good approximation to so-MAML. On the meta-level, in contrast, we wish to learn an op-
timization strategy, something which is sequential in nature. This means that an update
at time step t influences the gradient inputs that the meta-network will receive at time
steps t′ > t. The consequence of ignoring second-order gradients is that the computation
graph becomes disconnected (see Section 3.2), which makes the meta-network unaware of
this simple fact.

A promising direction for future work is thus to alter the LSTM meta-learner by
including second-order gradient information. Moreover, it would be interesting to see
whether using meta-batches of size larger than one also increase its training stability as
was the case for TURTLE. We expect that with these enhancements, the performance of
the LSTM meta-learner will be even better than that of TURTLE as it can learn stateful
update rules in a more flexible manner. As a side note, we think that the performance of
TURTLE could also be improved on miniImageNet by performing hyperparameter tuning
on that specific data set.

On the CUB data set, we found that TURTLE outperforms MAML in the challenging
1-shot setting, while the reverse is true in the 5-shot setting. This last observation shows
that TURTLE was unable to find a similar solution as MAML, indicating that the chosen
hyperparameters may not be optimal, which may be the consequence of the fact that we
did not perform any additional hyperparameter tuning for any of the tested algorithms
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on the CUB data set. This means that further investigation is required before we can
draw conclusions from this result. We leave this for future work.

In contrast to Chen et al. (2019), we have not found that simple transfer learning
baselines outperform meta-learning algorithms when a task distribution shift (from mini-
ImageNet to CUB or vice versa) occurs. This may be caused by the difference in ex-
perimental setup: they used a higher capacity base-learner network than us, which was
shown to reduce the gap between meta-learning and transfer learning approaches. This is
an indication that meta-learning approaches succeed in finding a more informative prior
in constrained capacity settings, while transfer learning methods fail to do so. In other
words, meta-learning techniques may have a better information compression rate which
allows them to find a dense, informative prior. In settings where large capacity networks
are used, the need for finding a such a dense prior may decrease as the models can store
more information. Nonetheless, further investigating the difference between transfer and
meta-learning techniques under various circumstances seems like another useful pursuit.

Interestingly, our results show that TURTLE outperforms MAML when trained on
miniImageNet tasks and evaluated on CUB tasks, while the reverse was found to be true
in the opposite scenario. We think that this is caused by the fact that miniImageNet
has a broader input spectrum than CUB as the latter only contains bird images. Thus,
TURTLE outperforms MAML when moving from a broader to a more narrow set of
tasks, while it performs worse when trained on the narrow tasks and evaluated on the
more diverse tasks. This can be explained by the no free lunch theorem for optimization
(Wolpert and Macready, 1997), which suggests that domain specialization is important
for achieving better performance (Andrychowicz et al., 2016). As a consequence, it is
logical that TURTLE does not perform well on the diverse miniImageNet tasks when it
has specialized to the more narrow CUB tasks. The fact that TURTLE does outper-
form MAML when applied to more narrow tasks than the ones used for training is then
explained by the fact that it has specialized to a more general domain, which is more
transferable to other domains.

Successfully using meta-learning techniques in settings where task distribution shifts
occur, remains an important challenge within the field of meta-learning (Hospedales et al.,
2020; Huisman et al., 2020). Our results indicate that in some of these challenging settings,
it is beneficial to learn an optimizer. This is in line with the expectations of Chen et al.
(2019) who argue that fast adaptation is crucial when task distribution shifts occur. In
short, further investigating learned optimizers in these scenarios is another promising
direction for future research.

Lastly, while our proposed technique TURTLE outperforms the LSTM meta-learner
(and MAML) in some cases, it has to be noted that this technique does not yield state-of-
the-art performance on the frequently used miniImageNet benchmark (Lu et al., 2020).
Moreover, TURTLE requires propagating backwards through the entire optimization tra-
jectory which requires storing intermediate updates and the computation of second-order
gradients. While this is also the case for MAML, it has been shown that first-order
MAML achieves similar performance whilst avoiding this expensive back-propagation pro-
cess. Our results clearly indicate that this cannot be done for TURTLE, which means
that other approaches should be investigated in order to reduce the computational costs.
Future research along these lines may draw inspiration from Rajeswaran et al. (2019) who
approximated second-order gradients in order to increase the speed.
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6 Conclusions

In our work, we investigated a recent empirical result showing that MAML (Finn et al.,
2017) outperforms the LSTM meta-learner (Ravi and Larochelle, 2017) on few-shot image
classification. We find this result surprising as we can show that the latter is more
expressive than the former (see Section 3.1). As a consequence, our research hypothesis
was that it should be beneficial to learn an optimizer in addition to the initial parameters
of the base-learner, both in regular few-shot settings as well as more challenging scenarios
where task distribution shifts occur.

We formulated two possible hypotheses as to why the LSTM meta-learner failed to
find a solution at least as good as that of MAML: (i) the fact that the LSTM meta-learner
maintains a state increases the complexity of the meta-landscape which makes its harder
to successfully navigate, and (ii) by ignoring second-order gradients, the meta-learner
LSTM is navigating the error landscape with incomplete information, which makes it
unable to find a good solution.

To investigate these hypotheses, we created and investigated the performance of TUR-
TLE: a combination of MAML and the LSTM meta-learner, where we replace the stateful
LSTM module by a stateless feed-forward meta-network and omit the default first-order
assumption. We found that first-order TURTLE fails to achieve the same good results
as the second-order variant, highlighting the importance of second-order gradients for
learning an optimizer in few-shot settings, showing that hypothesis (ii) is likely to be
correct.

Moreover, second-order TURTLE was found to outperform MAML on sine wave re-
gression, the frequently used benchmark miniImageNet, and on CUB after training only
on miniImageNet. However, because TURTLE was outperformed by MAML when trained
on CUB and evaluated on miniImageNet tasks, we cannot conclude that a learned op-
timizer is always beneficial. Instead, we conclude that, in some cases, it is beneficial to
learn the optimization procedure on top of the weight initialization.

Our work opens the door to fruitful future research which is likely to result in better
performing meta-learning techniques.
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A Additional experimental information

Here we report on some additional experiments that we have done.

A.1 Additional details of techniques

For all techniques mentioned below, we performed meta-validation after every 2500 train-
ing tasks. The best resulting configuration was evaluated at meta-test time.

Transfer baselines Note that these models (TrainFromScratch, finetuning, centroid
finetuning) pre-trained on minibatches of size 16 sampled from the joint data obtained by
merging all meta-training tasks. At test time, they were trained for 100 steps on mini-
batches of size 4 sampled from new tasks following Chen et al. (2019). Every 25 steps,
we evaluated their performance on the entire support set to select the best configuration
to test on the query set.

LSTM meta-learner For selecting the hyperparameters of the LSTM meta-learner2,
we followed Ravi and Larochelle (2017). That is, we use a 2-layer architecture, and Adam
as meta-optimizer with a learning rate of 0.001. The batch size was set equal to the
size of the task. Meta-gradients were clipped to have a norm of at most 0.25, following.
The meta-network receives four inputs obtained by preprocessing the loss and gradients
using Equation 11. On miniImageNet and CUB, the LSTM optimizer is set to perform
12 updates per task when the number of examples per class is k = 1 and 5 updates when
k = 5.

MAML Again, we follow Finn et al. (2017) for selecting the hyperparameters, except
for the meta-batch size on sine wave regression as we found it not to help performance.
This means that the inner learning rate was set to 0.01 and the outer learning rate to
0.001, with Adam as meta-optimizer. These settings hold for both sine wave regression
and image classification. When T > 1, we use gradient value clipping with a threshold of
10. On image classification, MAML was set to optimize the initial parameters based on
T = 5 update steps, but an additional 5 steps were made afterwards to further increase
the performance. Moreover, we used a meta-batch size of 4 and 2 for 1- and 5-shot image
classification respectively.

TURTLE We performed many experiments with the hyperparameters of TURTLE.
Here, we only report the settings that were found to give the best performance on sine
wave regression, which were also used on the image classification problems. That is, the
meta-network consists of 5 hidden layers of 20 nodes each. Every hidden node is followed
by a ReLU nonlinearity. The input consists of a raw gradient, a historical real-valued
number indicating the moving average of the previous input gradients with a (with a beta
decay of 0.9), and a time step integer t ∈ {0, ..., T − 1}. The output layer consists of
a single node which corresponds to the proposed weight update. For training, we used
meta-batches of size 2. Additionally, TURTLE maintains a separate learning rate for all
weights in the base-learner network. Lastly, TURTLE uses second-order gradients and
Adam as meta-optimizer with a learning rate of 0.001.

2We used code from https://github.com/twitter/meta-learning-lstm.
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A.2 Reducing the number of layers

In an attempt to reduce the number of layers of the meta-network, we experiment with
2-hidden layer meta-network architectures with various numbers of nodes per layer.

The results are shown in Table 11. As we can see, two hidden layers are not sufficient
to achieve the same performance as the 5-HL so-TURTLE model, regardless of the number
of update steps per task.

Steps Nodes Mean MSE Median MSE

Base 0.60 ± 0.01 0.61 ± 0.01
5 Nodes 0.63 ± 0.02 0.63 ± 0.02

1 40 Nodes 0.64 ± 0.02 0.62 ± 0.02
60 Nodes 0.65 ± 0.02 0.65 ± 0.02
80 Nodes 0.65 ± 0.03 0.63 ± 0.03
100 Nodes 0.73 ± 0.13 0.65 ± 0.13

Base 0.50 ± 0.23 0.38 ± 0.23
5 Nodes 0.59 ± 0.27 0.37 ± 0.27

5 40 Nodes 2.53 ± 0.55 2.54 ± 0.55
60 Nodes 3.14 ± 0.45 3.65 ± 0.45
80 Nodes 3.14 ± 0.43 3.64 ± 0.43
100 Nodes 1.04 ± 0.47 0.41 ± 0.47

Base 1.94 ± 0.19 0.69 ± 0.19
5 Nodes 1.57 ± 0.53 0.92 ± 0.53

10 40 Nodes 3.57 ± 0.42 4.13 ± 0.42
60 Nodes 3.57 ± 0.43 4.04 ± 0.43
80 Nodes 3.71 ± 0.32 3.73 ± 0.32
100 Nodes 4.17 ± 0.34 4.25 ± 0.34

Table 11: The meta-validation performance of so-TURTLE with two hidden layers com-
pared to the best performing 5-hidden layer model (base).

A.3 Historical information

Figure 18 displays the effect of historical input information on the performance of 10-step
TURTLE which uses meta-batches of size 4. As we can see, using previous gradients with
a beta value of 0.3 yields the best performance.

A.4 Effect of input type on 5-HL TURTLE

Figure 19 shows the influence of input types on the performance of 1-step, 5-HL so-
TURTLE. Again, we find that raw gradients yields the most robust performance across
the various runs. However, the best performance is achieved by the combination of raw
gradients and loss information. This may be the result of chance, as inclusion of loss
information does not seem helpful when the gradients are processed (“Ploss and Pgrads”
performs worse than “Pgrads”).
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Figure 18: Influence of historical information on the meta-validation performance of 10-
step, 5-HL so-TURTLE on 5-shot sine wave regression using a meta-batch size of 4.
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Figure 19: Influence of input information on the meta-validation performance of so-
TURTLE with 5 hidden layers on 5-shot sine wave regression for T = 1. Here, “Ploss”
and “Pgrads” refer to processed loss and processed gradients respectively.
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Figure 20: Example of a base-learner network with weight w and a meta-learner network
with a single parameter φ = m.

B Example of TURTLE

In this section, we show an example of how TURTLE works on a single task. Suppose we
have base- and meta-learner networks as shown in Figure 20. Furthermore, suppose that
TURTLE takes makes two update to the base-learner parameters per task, i.e., T = 2.

Assume that we have a single task. A task consists of a support set and query set.
The support set can be seen as training data, and the query set as validation data. For
simplicity, we assume that our task looks as follows:

� Support set: Input xtr ∈ R with output ytr ∈ R

� Query set: Input xte ∈ R with output yte ∈ R

Lastly, assume that we want our base-learner network to minimize the MSE loss
function L(y, ŷ) = (y − ŷ(w))2.

Normally, we would perform the following steps:

1. Randomly initialize base-learner weights w0

2. For t = 0, . . . , T − 1:

3. a) Compute loss on train set L(ytr, ŷtr(wt))

b) Update the base-learner parameters (compute wt+1) with SGD or Adam using
∇wtL(ytr, ŷtr(wt))

In our meta-learning context, however, we replace SGD or Adam in step b) by our
meta-learning network. Also, since we introduce a trainable network, we will have to
add a few steps to update our meta-learner network. Thus, the final procedure looks as
follows.

1. Randomly initialize base- and meta-learner weights w0 and m0

2. For t = 0, . . . , T − 1:

3. a) Compute loss on train set L(ytr, ŷtr(wt))

b) Compute weight update by feeding the loss gradient ∇wL(ytr, ŷtr(wt)) into our
meta-learner network. Update the weights using wt+1 := wt+m∇wtL(ytr, ŷtr(wt))
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c) Update the meta-learner parameters with SGD or Adam using ∇mL(yte −
ŷte(wT ))2

Thus, instead of updating our base-learner with hand-crafted rules (as SGD or Adam),
we feed the gradient into our meta-learning network, which then computes weight updates
for our base-learner. After updating the base-learner for a fixed number of steps T , we
compute the loss on the validation/test set (xte, yte) in order to update our meta-learner
network. Note that the latter is performed with hand-crafted rules such as SGD or Adam.

B.1 Numerical demonstration

Suppose our support and query sets are generated by a true function f : R → R, where
f(x) = 2x + 1. Furthermore, we assume that we make two updates to our base-learner
per task, i.e., T = 2.

Lastly, suppose our task looks as follows:

� Support set: xtr = 2 with ytr = 2× 2 + 1 = 5

� Query set: xte = 4 with yte = 2× 4 + 1 = 9

We now work through the entire procedure for 2 updates, under the assumption that
we initialize w0 = 1 and m0 = −0.01.

Step t = 0

1. Loss on the train set is L(ytr, ŷtr(w0)) = (ytr−ŷtr(w0))
2 = (ytr−w0xtr)

2 = (5−2)2 =
9.

2. The partial derivative with respect to w0 is given by ∂
∂w0

(ytr − w0xtr)
2 = −2(ytr −

w0xtr) · xtr = −4(5− 2) = −12.

3. We feed this partial derivative into meta-learner network, to get update u0 =
m ∂
∂w0

(ytr − w0xtr)
2 = −0.01 · −12 = 0.12

4. We compute new base-learner weights w1 = w0 + u0 = 1 + 0.12 = 1.12

Step t = 1

1. Compute L(ytr, ŷtr(w1)) = (ytr − ŷtr(w1))
2 = (ytr − w1xtr)

2 = (5 − 1.12 · 2)2 =
2.762 = 7.6176

2. Compute the derivative w.r.t. w1, i.e., ∂
∂w1

(ytr−w1xtr)
2 = −2(ytr−w1xtr)

∂
∂w1

w1xtr =
−2(ytr − w1xtr)xtr = −4(5− 1.12 · 2) = −4× 2.76 = −11.04

3. Feed thid derivative as input to the meta-learner network to get update u1 =
m ∂
∂w1

(ytr − w1xtr)
2 = −11.04m = −11.04×−0.01 = 0.1104

4. Compute new base-learner weights w2 = w1 + u1 = 1.12 + 0.1104 = 1.2304

B.1.1 Second-order TURTLE

We now show how the base-learner initialization w0 and meta-learner parameter m are
updated when using second-order TURTLE.
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1. Compute the derivative of the loss with respect to the base-learner initialization w0,
i.e.,

∂

∂w0
L(yte − ŷte(w2)) = −2(yte − ŷte(w2))

∂

∂w0
ŷte(w2)

= −2(yte − ŷte(w2))
∂

∂w0
w2xte

= −2xte(yte − ŷte(w2))
∂w2

∂w1

∂w1

∂w0
(19)

Here, we can make use of the fact that

∂wt+1

∂wt
=

∂

∂wt

[
wt +m

∂

∂wt
(ytr − ŷtr(wt))2

]
=

∂

∂wt
wt +m

∂2

∂2wt
(ytr − ŷtr(wt))2

=
∂

∂wt
wt − 2m

∂

∂wt
[(ytr − ŷtr(wt))xtr]

= 1− 2m
∂

∂wt
[ytrxtr − ŷtr(wt)xtr]

= 1 + 2m
∂

∂wt
ŷtr(wt)xtr

= 1 + 2m
∂

∂wt
wtx

2
tr

= 1 + 2mx2tr

Filling this in in Equation 19, we get

−2xte(yte − ŷte(w2))
∂w2

∂w1

∂w1

∂w0
= −2xte(yte − ŷte(w2))(1 + 2mx2tr)(1 + 2mxtr)

2

= −2xte(yte − ŷte(w2))
[
1 + 4mx2tr + 4m2x4tr

]
= −8(9− 4 · 1.2304)

[
1 + 4(−0.01)22 + 4(−0.01)224

]
= −8(4.0784)(0.8464)

≈ −27.616
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2. Compute the derivative of this loss w.r.t. the meta-learner parameter m, i.e.,

∂

∂m
(yte − ŷte(w2))

2 = −2(yte − ŷte(w2))
∂

∂m
ŷte(w2)

= −2(yte − ŷte(w2))
∂

∂m
w2xte

= −2xte(yte − ŷte(w2))
∂

∂m
(w0 + u0 + u1)

= −2xte(yte − ŷte(w2))
∂

∂m
(w0 +m

∂

∂w0
(ytr − w0xtr)

2 +m
∂

∂w1
(ytr − w1xtr)

2)

= −2xte(yte − ŷte(w2))
∂

∂m
(−2m(ytr − w0xtr)xtr − 2m(ytr − w1xtr)xtr)

= −2xte(yte − ŷte(w2))
∂

∂m
(−2mxtrytr + 2mx2trw0 − 2mxtrytr+

2mx2tr(w0 +m
∂

∂w0
(ytr − ŷtr(w0))

2))

= −2xte(yte − ŷte(w2))
∂

∂m
(−4mxtrytr + 4mx2trw0 + 2m2x2tr

∂

∂w0
(ytr − ŷtr(w0))

2)

= −2xte(yte − ŷte(w2))
∂

∂m
(−4mxtrytr + 4mx2trw0 − 4m2x3tr(ytr − w0xtr))

= −2xte(yte − ŷte(w2))
∂

∂m
(−4mxtrytr + 4mx2trw0 − 4m2x3trytr + 4m2x4trw0)

= −2xte(yte − ŷte(w2))(−4xtrytr + 4x2trw0 − 8mx3trytr + 8mx4trw0)

= −2 · 4(9− 1.2304 · 4)(−4 · 2 · 5 + 4 · 22 + 0.08 · 23 · 5− 0.08 · 24)
= −32.6272(−40 + 16 + 3.2− 1.28)

= −32.6272 · −22.08

≈ 720.409

B.1.2 First-order TURTLE

In first-order TURTLE, we ignore second-order derivatives. In mathematical terms, we
assume for example that b = ∂w2

w0
, which occurred in the gradient of the initialization of

the second-order variant, is set to 1. This can be seen in the computations below.

1. Compute the derivative of the loss with respect to the base-learner initialization w0,
i.e.,

∂

∂w0
L(yte − ŷte(w2)) = −2(yte − ŷte(w2))

∂

∂w0
ŷte(w2)

= −2(yte − ŷte(w2))
∂

∂w0
w2xte

= −2xte(yte − ŷte(w2))
∂w2

∂w1

∂w1

∂w0

≈ −2xte(yte − ŷte(w2))

≈ −8(9− 1.2304 · 4)

≈ −32.627

2. Compute the derivative of this loss w.r.t. the meta-learner parameter m, i.e.,
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∂

∂m
(yte − ŷte(w2))

2 = −2(yte − ŷte(w2))
∂

∂m
ŷte(w2)

= −2(yte − ŷte(w2))
∂

∂m
w2xte

= −2(yte − ŷte(w2))
∂

∂m
(w0 + u0 + u1)xte

= −2(yte − ŷte(w2))
∂

∂m
(w0 +m

∂

∂w0
(ytr − w0xtr)

2

+m
∂

∂w1
(ytr − w1xtr)

2)xte

= −2(yte − ŷte(w2))(
∂

∂w0
(ytr − w0xtr)

2

+
∂

∂w1
(ytr − w1xtr)

2)xte

= −8(9− 1.2304 · 4)(−12− 11.04)

= −8× 4.0784×−23.04 ≈ 751.730688
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