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Abstract

For the widespread use of speaker verification models, evaluation is important on out-of-
domain datasets, meaning that the source of the utterances for the verification phase is significantly
different than the training dataset. The technical limitations of smartphone microphones and many
other environmental obstacles (e.g., background noise) creates a demand of robust smartphone-
based speaker verification systems. Using an Android application, human speech is collected by
researchers to induce changes in vocal biomarkers. The use of speaker verification could support
this application by automatically detecting a speaker of interest from the recordings to deepen the
scope of analysis and circumvent handling potentially sensitive data. The goal of this study is to
find optimal machine learning model for a future deployment of the speaker verification system on
smartphone recordings We compare three state-of-the-art speaker verification systems and evaluate
the performance on a new dataset recorded with smartphones. We verify 16 female and 16 male
speakers in different environmental conditions, identify the optimal sampling rate and compare
varying enrolment and test input lengths. The results show that the models underperform in
scenarios that are considered challenging but show promise in less noisy conditions. We observed
the effects of different input lengths, gender, and recording conditions but not the speech-content
on the performance. From the investigated models, overall, the best performing model is a
ResNet34-based meta-learner system which achieved the lowest equal error rate. However, a
computational efficiency analysis showed a SincNet X-vector model yielding fastest results.
Additional necessary research is defined in experimenting in less standardised conditions with
increased session variability for each speaker. We found the ResNet34 based Meta-Learning model
trained specifically to process both short and long utterances to be the optimal model for

smartphone recordings in a clinical trial setting.
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LINTRODUCTION

Smartphone devices are becoming a popular tool in many medical industries where mass data
collection is carried out on human subjects. Clinical trials are one of those areas where smartphone
devices are used to collect information on patients remotely, unobtrusively, and effectively. The
built-in microphone of modern smartphone devices can be used to collect human speech data from
the participants to measure intervention induced changes in vocal biomarkers such as tone or pitch
[70]. Centre for Human Drug Research (CHDR) is a Netherlands- based institute specializing in early-
phase clinical drug research. The CHDR Trial@home® program enables clinical trials to be
conducted remotely. The technology supporting Trial@home® is the CHDR MORE® application
that can be integrated into digital devices, including Android smartphones. The application can
collect, store, transform and transfer data originating from various smartphone sensors, such as
accelerometers, gyroscopes, camera, and microphone. It has been used for analysis in validated
studies in areas like neurology, psychiatry, and dermatology [1]. The application has an integrated
Voice Activity Detection (VAD) module that detects human speech within a certain vicinity of the
smartphone. However, VADs have limited capabilities in identifying individual speakers, and
therefore cannot distinguish between the speaker of interest and their peers. The scope of possible
analysis is limited to only approximating the quantity of social interactions of a subject but not
accurately measuring his/her engagement. Extra burden is placed on the researchers by having to
manually listen to the recordings to verify and distinguish the subject from the environment. The
motivation of our study is to improve the capabilities of the platform by integrating a speaker
recognition model that could verify and detect the identities of the users based on their voices. Since
capturing the exact spoken words is not the intention nor is it necessary to recognize changes in
speech, the automatic process would circumvent the need to gather sensitive data. Speaker
recognition could assist the application by verifying the exact identity of the user (trial subjects/
patients) recordings and would enable the automatic processing of the data without manual
annotation, and without the invasion of the subject’s privacy.

Speaker recognition (SR) is a broad research field that focuses on speaker modelling from voice
features that relate to unique speaker characteristics [2]. SR is separate from automatic speech
recognition (ASR) which focuses more on the content of the speech or the features related to the
audio signal. Recent academic studies agree on differentiating three sub-fields for SR: Speaker
Verification (SV), Speaker Identification (SI) and Speaker Diarization (SD) [3]. An overview of the
hierarchical composition of SR can be seen in Figure 1. SV is the task of deciding whether two voice
samples originate from the same speaker or not [4]. In other words, it must verify if the spoken
words, statement, or vocal sound, called utterances belongs to our speaker of interest or to a
potential intruder. The matching is based on the speaker’s already known utterances [5]. SV is
conducted in an open-set fashion, meaning that the number of speakers it encounters is not fixed
in advance (it must be able to successfully compare previously unseen speakers). There is a growing
interest in researching SV mainly due to the popularity of voice assistant applications that partly
apply reliable SV systems (e.g., Apple Siri or Amazon Alexa) [6]. SI is very similar to SV, in which
multiple reference utterances are compared to the voice signal in a closed-set environment [3]. The
main difference is that SI is considered a classification problem while SV is a decision problem at
its core. Finally, SD is the task of answering the question “who spoke when?” [7] by labelling a
longer audio stream into homogeneous speaker segments [8].



SR can be text-dependent or text-independent. In the text-independent setting, no lexical
constraints for the utterances to match (e.g., “OK Google”) are set [5]. The speakers are allowed
free-form voice input; thus, these types of systems are most common in forensic and cyber-security
applications. This task is considered more challenging than the text-dependent scenario [9]. The
text-independent SV approach was chosen to model and verify speakers for clinical trials due to the
open-set, generalisation property and the ability of free speech input.

Automatic Speech Recognition

Language
detection

Speaker recognition

Voice detection

Speaker Speaker Speaker
Verification Identification

Speech-to-Text

Fig. 1. Overview of automatic speaker recognition, which is part of a larger field called
automatic speech recognition.

Before describing the SV process in more detail, we introduce human voice production and the
subsequent digital coding of sound. The vocal tract system is responsible for generating speech,
which consists of phonemes that represent the sounds of a language. The opening and closing of the
vocal cords generate periodic pulses of air pressure that energizes the vocal tract tube. Different
types of phonemes are the consequence of different ways the air flows and resonates through the
vocal tract shapes. The frequency response of the vocal cords and tract gives phonemes a certain
resonance frequency which makes up a sound [56]. It must be noted that the lengths of the vocal
tract differ for males and females, which affects the sound production. The analogue sound signal
reaches a capturing device, e.g., a smartphone microphone. It is converted to a digital signal by
repeatedly measuring the energy level of the signal at certain points in time. These short time
intervals are defined by the sampling rate, the number of samples captured per second (measured
in Hz or kHz). The quantization of the sampled analogue signal is done by a method called Pulse-
code modulation (PCM).

SV systems are required to represent each speaker uniquely, independent of the conditions. It
must recognise the same speaker across different timeframes and environments. The model also
must be discriminative: if the input samples originate from different speakers, we expect the
representations to be dissimilar. These two properties are achieved by training a so-called universal
background model (UBM) using a large set of diverse speaker database. UBM is a framework which
allows the representation of general speaker characteristics, independent of a specific person. The
background model is then used as a feature extractor during the verification process for the
enrolment and test utterances. Due to UBMs being universal, they can be fitted to any speaker
without retraining the model which is advantageous. Creating a large training set carefully catered
for the future application is not feasible in most cases because it needs multiple samples from
thousands of speakers. The basic components of building SV models are development, enrolment,
and testing. During the development phase, an algorithm is trained during a classification task of
known speakers to create discriminative speaker representations. The final speaker embeddings are
dependent on the used method (e.g., Gaussian mixtures or Deep Neural Networks), the level of



aggregation (frame or utterance) and are directed by the loss function: cross-entropy or metric
learning [53]. In essence, speaker embeddings are vectors coding voice characteristic of speakers.
The background model is used as a feature extractor for the verification phase which consists of
enrolment and testing.

The enrolment and testing phases are different only when applying SV in a real-life application
but are technically the same process. Enrolment is the process when new, previously unseen voice
samples from a speaker or multiple speakers are fed to the trained model. The resulting speaker
embeddings are stored to serve as references when unknown samples are captured. This happens
during testing when both embeddings of the enrolled speaker(s) and unknown/ impostor speaker(s)
are extracted. The distance of these embedding vectors compares the likeliness of the original voice
samples and the new voice samples. This distance metric is used as a scoring function, most
commonly the cosine similarity [3]. Finally, a decision whether to accept two samples as belonging
to the same speaker or not is based on a threshold value . The false rejection rate and the false
acceptance rate is taken into consideration when choosing the threshold value and is always
dependent on the actual application [68]. A high-level overview of the verification process is shown
in Figure 3.

Known speaker’s voice

Fixed-dimension vectors
embedding Score >= threshold
) e~ BT, gy
Unknown voice Vi ion model @
~ .
erance EHbEdding Score <= threshold

Fig. 3. High-level overview of the verification process.

The usual SV pipeline requires two different datasets, a development dataset, and a verification
dataset. SV models are trained using a development dataset, a large, labelled corpus of many
speakers (1000+) of many different characteristics to adequately capture intra-and inter-speaker
variations. The verification dataset is an ’'in-domain’ dataset meaning that it is recorded in the
same or very similar conditions as the future application. It is usually much smaller making it
ineffective to use for training (or for fine-tuning). Usually, SV models are trained and evaluated
using datasets from the same domain. Out-of-domain dataset means that a substantial mismatch
exists between the development and the verification set in terms of recordings conditions, types of
speakers, language. Performance of an SV model drops when feeding it data from a different domain
[69]. In most cases, the literature focuses on building new feature extractor models to achieve better
performance on a few popular publicly available speaker datasets extracted from voice recordings
(TV/film production, audiobooks) [12]. No thorough research has been done on the performance of
these models on smartphone recordings. We define smartphone recordings as being lower quality
data due to the limited technological capacity of their built-in microphones and showing variable
distance between the microphone and the speaker. We assume that models optimised for non-
smartphone recordings would perform subpar and thorough research is necessary for this novel
domain. Existing studies have only focused on the adaption of SV system to mobile devices by
increasing algorithmic efficiency [13,14].



The contribution of this study is an adequate comparison of modern SV models, with respect
to their performance on a smartphone-based dataset. Specifically, we investigate the ability of SV
models trained on public datasets to perform SV on smartphone recordings for different scenarios.
Data collection for clinical trials are not always standardised so the models should be robust to
different acoustical environments, speakers, and context. We investigate the models’ performances
when the recording device is located relatively close-up to the speakers, far away from him/her, or
is inside the pocket of said subject. We also add 'media’ speakers, speech that could originate from
third-party devices (TV, loudspeakers). We apply different sampling rates to the recordings to
investigate the performance-storage requirement trade-off. We also analyse the models by their
effectiveness, the speed with which they operate. The evaluation process is carefully constructed so
that is resembles a future real-life usage. The rest of the paper is organized as follows. In Section 2,
traditional methods are discussed followed by an in-depth overview of the deep learning-based
models. Section 3 explains the datasets, the features, the architecture of the specific models used
for this study, and the evaluation strategy. In Section 4, we show the results of all corresponding
experiments. Different pre-processing scenarios are analysed (sampling rate, enrolment length, noise
levels) on three different recording conditions. Further experiments are made with respect to the
performance of the models of diverse types of speakers (directly speaking to the microphone vs
voices played through a loudspeaker), gender and the type of speech. Finally, an analysis is made
of the computational efficiency of the models with a recommendation on a future use for clinical
trials and remote patient tracking applications. Sections 5 and 6 of the thesis conclude the study
and discuss limitations and future work.

2. BACKGROUND AND RELATED WORK

In this section an overview of machine learning and deep learning models used in SV is
provided. We also give a comprehensive outline of different deep learning models from various
aspects such as architecture, objective function, input features, and training dataset. Before 2010,
Gaussian Mixture Models (GMM) were considered state-of-the-art for modelling speakers [15]. A
fixed number of multivariate Gaussians form the GMM and the expectation—maximization
algorithm used to train the (UBM) from a large set of speakers [4]. The likelihood of an unknown
speaker matching a known speaker is the difference between the speaker specific GMM and the
UBM [67]. The first problem arises with these traditional approaches is intra-speaker variability
attributed to the changing phonetic content and coarticulation. The second problem is channel
variability due to environmental circumstances like background noise [66]. Maximum a Posteriori
(MAP) adapted GMMs were used to mitigate speaker and channel variability using latent factor
analysis where the means of the mixture components are stacked to create a supervector [16].
Further developments based on the GMM-UBM method were the integration of SVMs (Support
Vector Machine) and Joint Factor Analysis for estimation [17,18]. Later, a new modelling technique
called ’i-vector’ (identity vector) was presented to represent each utterance in a low-dimensional
space instead of a high-dimensional GMM mean supervector space [19]. Text-independent
verification especially benefited from this property because information related to text is simply
scrapped from the more concise representation of i-vectors [20]. This new feature extraction front-
end technique was combined with Probabilistic Linear Discriminant Analysis (PLDA) verification
back-end creating the new state-of-the-art [21]. Although these traditional methods achieved
reasonable performance, encoding irrelevant information related to noise and channel remained a



problem which forced researchers to keep exploring more representative and discriminate features.

21Deep neural architectures

The recent success of deep learning in ASR motivated researchers of SR to replace i-vectors
with speaker embeddings extracted from hidden layers of a neural network. The obtained frame-
level features are called ’d-vectors’ [22]. Improving on this approach, 'x-vectors’ are segment-level
speaker embeddings extracted from one of the deeper layers of the neural network [23]. Many deep
learning architectures have been proposed for text-independent SV, the two most popular being
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). Examples for SV
models incorporating CNNs include a Siamese architecture to separate same-speaker and different-
speaker pairs [24], a 3D-CNN architecture with stacked input features [9] and VGGNet [25]. The
first convolutional layer is often replaced by parametrized Sinc functions which improve capturing
narrow-band speaker characteristics [26]. By far the most popular CNN architecture is ResNet [27]
which was successfully applied to this task as well with variations of the network [28-30]. A Long
Short-Term Memory (LSTM) network, an RNN-based network, with generalized end-to-end loss
has been proposed by Google [31]. Effective Time Delay Neural Networks (TDNN) were shown to
model long term temporal dependencies. It captures wider context inputs to create better
representations [32]. Many hybrids and alternative models exist, like Wav2Vec, which is a self-
supervised framework based on the recent success of transformers [33] or Wav2Spk [34]. RawNet
extracts frame-level embeddings using residual blocks with CNNs, then aggregates features into
utterance level using LSTM [35]. There are two main advantages for using deep learning over
traditional methods (GMMs and i-vectors). First, the complex neural network can model more
discriminative speaker representations because they are able to leverage information at both frame-
and utterance level. This is usually achieved by a special deep layer which is responsible for the
transformation. Second, the varying speech features between males and females do not affect
performance if trained properly. Thus, it is not necessary to build separate models anymore for
both genders [36]. In the past, the spoken language also played a role in the effectiveness of SV
systems as the performance declined for foreign speakers [10]. Today’s state-of-the-are SV systems
are more robust in terms of language variance [11].

22Development datasets

We introduce some of the large open datasets that were used by researchers in the past to
train robust feature extractors and evaluate models on various challenges. The growing interest in
SV research originated partly because some newer successful effort by researchers to create such
public speaker database. LibriSpeech [48] is a corpus of 1000-hour English speech extracted from
2484 speakers reading audiobooks. It is originally intended for speech recognition because of the
attached transcript, but it was used for text-independent SV tasks as well [49,50]. A variation of
this dataset is called VOICES for which samples were played through a loudspeaker with
background noise in a room to create more real-life conditions [51]. Speakers in the wild dataset
was created in uncontrolled conditions and it contains hard-annotated speech samples from 299
speakers across eight sessions on average [52]. By far the most comprehensive and diverse dataset
for SV is the VoxCelebl and the larger set VoxCeleb2. It is an audio-visual dataset used for face
recognition as well as many fields in ASR. The two sets contain more than 7000 speakers and



1,000,000 utterances from different speakers of age, nationality, ethnicity, and language. It contains

both clean and noisier recordings extracted from YouTube [28].

23DNN inputs

Another interesting aspect of the deep-learning modes is the type of input. Cepstrum-based
features were used extensively for SV just like in any other areas of speech processing. These features
can represent the envelope, the shape of the vocal tract when pronouncing certain phonemes, and
thus can represent unique speech and speaker characteristics. Cepstrum-based features are the mel-
frequency cepstral coefficients (MFCC) [42,43] and filter-bank energies [44,45]. When extracting
these features, the speech spectrum is smoothed which is a disadvantage because narrow-band
speaker characteristics (pitch and formants) are harder to capture [26]. End-to-end DNN models
can replace hand-crafted features all together and encode raw audio signals [26,47].

2.4Loss functions

In deep learning models, the loss function directs the training and the quality of representations
consequently, so it is important to summarize the literature from this aspect. Since SV is a
classification problem, classification-based objective functions were widely used when creating the
first neural network-based models [3] [23]. The minimum cross entropy objective function combined
with a Softmax output layer is called the Softmax loss (Eq. 1).
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where W; and b; are the weight vector and bias term before the Softmax layer corresponding to
class y, x denotes the input vector, and ¢ denotes the number of classes. Such simplistic objective
function helped minimizing the between-speaker distance but not the intra-speaker variance.
Improving on this objective function, a margin was introduced between classes to learn more
discriminative features [37]. One of these margin-based objective functions is the Additive angular
margin loss (AAM) [38]. By discarding the bias term and only considering the directions of the
columns of Win Eq. 1, the expression can be rewritten as:
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where 6, 7 is the angle between weight and input. If W; and z; are normalized, then the angle is

calculated by:

6 = arccos(W/ x) (3)

Given a scaling factor s and the margin m we end up with the definition of the Additive angular



margin loss [39]:
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The previous two objective functions were classification-based losses: each class of the training
set is known. Since SV is an open set problem, the actual classification accuracy is not the interest,
rather its ability to discriminate between two speakers [40]. A set of objective functions rely only
on binary annotation of pairs of training samples: whether they originate from the same speaker or
not. These are called contrast-based losses and they provide alternative losses for SV. Triplet loss
was introduced to pull samples closer from the same class and push samples away from the different
classes. It is achieved by using three training samples: a reference utterance (u,), a positive utterance
(up) and a negative utterance (u,) and the loss is calculated by:

v

Triplet loss = — ):max([),Sw ~Sut() (9)

where S, is the similarity score between the reference and positive utterance (same speaker) and
S is the similarity score between the reference and negative utterance (different speaker) while ¢

is the margin between the positive and negative pairs [41].

3METHODS

31Data

As mentioned in Section 1, SV models utilise two types of datasets: a development set and a
verification set. Traditionally, the two datasets are chosen from the same domain, e.g., a simple
train/test split of a coherent dataset. In contrast, this study focuses on applying SV models to a
new domain where the environmental conditions, recording device, and language are different. Next,
we describe these two sets, the publicly available development dataset, and the newly created

verification dataset.

32Development dataset

The models compared in this study were trained on the VoxCeleb2 dataset [28]. It contains
short clips of human speech extracted from interview videos on YouTube sampled at 16kHz. It
consists of a total 6,112 different speakers and 1,128,246 utterances. An official train-test split is
given by the creators of the dataset: 5994 speakers belong to the training set and the remaining 118
speakers belong to the test set. The average number of utterances per speaker is 185 and the average
length of an utterance is 7.8 seconds. Furthermore, the dataset contains speech in multiple
languages, although U.S. speakers take up most of the data (29%). The exact number of Dutch
speakers is not known, but it is less than 6%. The gender ratio of the speakers is 39% to 61% for
females and males respectively.



33Verification dataset

We created our own dataset to evaluate models recording speakers using smartphones. The
data collection pipeline was designed to resemble a realistic future use, to monitor subjects in a
naturalistic environment.

Participants: Speech from 8 male and 8 female Dutch speakers have been collected with three
phones recording simultaneously from different positions. The participants were volunteers recruited
by CHDR and had to be fluent Dutch speakers who could read above an A2 reading level. All
participants gave consent to use their voice recordings for this study. No personal information was
collected from the participants other than gender, age (in years) and their voice samples. The age
range of the participants was between 20 and 35. Another set of voice sample were collected from
speakers we call 'media-speakers’ (while the previous group is named ’subject-speakers’). Speech
was extracted from YouTube videos and corresponding to 8 male and 8 female Dutch speakers in
the context of public speeches, podcasts, audiobooks interviews and lectures. The identities of these
speakers together with the YouTube links can be found in Appendix 9.4. The purpose of this second
group of speakers were to imitate a scenario when speech is captured from a device around the
patient which might be captured by the microphone.

Equipment: Three Motorola g6 smartphones running on Android operating system were used
to collect the speech data. For all sessions the same three devices were used in a randomized order.
The recordings were made using a free Android application called Easy Voice Recorder. The original
sample rate of the recordings was 44.1 kHz and noise cancellation was turned-off.

Tasks: Each participant was asked to read three texts for 5 minutes each for a total of 15
minutes. The texts were chosen from different domains to capture as much phonetic difference as
possible. The source of the first text is the opening of a short child story called “De drie beren”. It
involved conversation between characters which could influence pitch. The second text was different
sections blended from the Wikipedia page of The Netherlands and the city of Leiden. Finally, the
third text was taken from a news article by NRC on climate change. The full corpus can be found
in the Appendix (9.1-9.3). The order in which the participants read the text was rotated from
session to session. Some participant finished reading a text before the 5-minute mark, in which cases
they were asked to repeat the text from the beginning to ensure equal amount of data for each
speaker. For the media-speakers, the audio was played through a JBL loudspeaker in the same room
and was re-recorded with the same phones under the same conditions. Each media-speaker had 5
minutes of voice samples. The content of speech varied from speaker-to-speaker, so this could be
considered free speech.

Design: The external conditions for each recording were identical: they were recorded in the
same room with as little background noise as possible. One of the phones was placed on a desk
close-up to the speaker to collect clean, less noisy samples. The distance corresponded to about 0.5
meters. The second phone was placed at the other end of the room, about 3 meters from the speaker
on another desk. Finally, the third phone was placed inside the pocket of the speaker with the
microphone facing the bottom of the pocket. The placement of the three smartphones had the
purpose of capturing different conditions that can occur during real-life usage. This setup is
visualized in Figure 2.
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Processing: The recordings were converted into 16-bit .wav files, and all audio recordings
have been down-sampled into 8, 16 and 32 kHz streams. 8 kHz is the lowest adequate frequency to
represent human speech (with some disruptions to sibilants), 16 kHz is frequently used for modern
Voice-Over-IP telephone systems and 32 kHz is standard for high-quality digital microphones. As
mentioned in Section 3.1.2, the development set is sampled at 16 kHz, so the input data for the
verification also needs to be sampled with the same rate. Thus, the resolution of the already down
sampled 32 kHz dataset is lowered once more to 16 kHz. An opposite action is taken with the 8
kHz recordings which is up sampled to 16 kHz before using them for the verification. Besides these
re-sampling processes, no volume normalisation, or any other adjustments to the original recordings
were done. Due to the nature of the reading-task, the recordings contain almost exclusively speech
segments, with some pauses between sentences. The ratio of speech to silence is » 85% for the whole
dataset. We also calculated the average signal-to-noise ratio for the three different conditions. The
values in decibel are shown in Table 1.

Condition 1:
0.5-meter distance

'|I|||'|' Condltic?n P
3-meter distance
Condition 3:
In speaker’s trouser pocket

Standardised environment, no added noise

Fig. 2. Outline of the data collection setup.

Condition 1 (close-up) | Condition 2 (far away) | Condition 3 (pocket)
58.63 dB 56.49 dB 61.86 dB

Table 1. The mean Signal-to-Nosie ratio of the three conditions across all speakers shown in Decibel.

34Feature extraction

As addressed in Section 2, the type of input depends on the chosen model architecture, so the
feature extraction slightly differs from model to model. The models described in this work utilize
two types of features: raw waveforms and 40-dimensional log mel-filterbanks (which we call MFBs).
MFBs are almost equivalent to MFCCs except for the lack of the final discrete cosine transform
operation to decorrelate the features. Thus, the MFCC coefficients correlate much less with each
other which reduce the effectiveness of convolutional operations on them [9]. For SV based on



GMM-UBM/ i-vectors, delta and double-delta features were concatenated to MFCCs to create
better acoustic features. For neural networks these features are not widely used anymore due to
their ability to recognize time dependency between frames inherently [3].

Raw waveforms: From the 16bit PCM recordings, the audio is loaded using Python’s librosa
library. Voice Activity Detection (a separate algorithm to detect speech segments of an audio) is
not applied to the recordings because the ratio of speech to non-speech was high (as mentioned in
Section 3.1.2) The down sampling and up sampling processes explained in the previous section were
also carried out using the librosa package. A waveform plot from a 2-second-long example recording
is shown in the top part of Figure 7.

Log mel-filterbanks: We used the python speech features package to extract the MFB
features [57]. The process consists of the following: First, the audio is segmented into shorter frames
with overlap during which time the frequencies are said to be statistically stationary (meaning they
do not change much during a short intervals). Next, the power spectrum of each frame is calculated
with Short-Time Fourier Transform. To condense information, we sum the energies in different
regions using filterbanks. The banks are set by the Mel scale, which is linear for low frequencies but
logarithmic for high frequencies to better resemble the human hearing. Finally, we take the
logarithm of the total energies for each band to get log mel-filterbanks [58]. A visualization of mel-
filterbank features extracted from the same a 2-second-long example recording is shown in the
bottom part of Figure 7.
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Fig. 7. Visualising the features extracted from a 3-second-long audio recording. Top: raw amplitude values.

Bottom: normalised log-energy values.

35Speaker Verification models

In this work we explore three different models chosen from recent literature called: RawNet2,
SincNet X-Vector and Meta-Learning model. Besides their favourable performance on VoxCelebl
trials [12], we selected a wide range of model architectures and feature input types. The
implementation of all these models is openly accessible and they have been trained on the same
VoxCeleb 2 dataset, so a valid comparison is possible. There were slight differences in the
configurations, which will be discussed in the respective sections for the three models. A summary



detailing the most important properties of the three models can be found in Table 2.

Input type Raw waveform Raw waveform Log-energies
Input dim. 59049 (3.65) 48000 (3s) 25ms x 40
Base CNN+TDNN
architecture CNN+GRU (X-vector) DY (el e
Emb(::ddlng 1024 512 256
dim.
Loss function ) . categorical +
categorical categorical .
type metric

Table 2. Summary of the most important characteristics of the three models compared in this paper.
351 RawNet2

RawNet is an end-to-end deep neural network with a front-end utterance-level speaker
embedding extractor and a back-end classification module. The model was proposed to improve
direct modelling of raw waveforms [35]. The RawNet architecture consist of CNN layers extracting
frame-level representations followed by a Gated Recurrent Unit (GRU) layer which aggregates them
into utterance level representations. The first layer is a Sinc-convolution which are band-pass filters
constructed to only learn low and high cut-off frequencies from the data [26]. This is not only a more
efficient way to discover filters but the learned filters themselves are shown to be more meaningful.
The Sinc layer is followed by two residual blocks containing regular convolutional and max pooling
layers with sizes 128 and 256 respectively. After each convolutional layer, Leaky ReLU activation
functions are used. The following GRU initiates a self-attention mechanism which assigns weights
to each frame before the aggregation process. Finally, a fully connected layer (FC) creates the 1024-
dimensional speaker embeddings before the final output layer. The simplified architecture of RawNet
can be seen on Figure 4. The base model achieved competitive performance with a simplified process
pipeline and RawNet2 improved on it by scaling feature maps [54]. A scale vector with equal
dimensions to the number of filters is used to scale the feature map both additively and
multiplicatively. The resulting feature maps focus on more important features in the frame-level
feature map. Compared to its predecessor, RawNet2 simplified the loss function to categorical cross-
entropy which is responsible for training the contrastive representations. At runtime (both training
and testing) the varying-sized input is processed-in mini-batches of 59049 samples corresponding to
~ 3.6 second long 16 kHz audio. Input utterances shorter than 59049 samples are cloned to fill the
remaining window. For the training of RawNet2 all 6112 speakers of VoxCeleb2 have been used by
merging the training and the testing set. Pre-emphasis was not applied. We utilise the weights of
the pre-trained version of RawNet2 to conduct the verification [54]. During the verification phase,
the test utterances are processed with a technique called time augmentation which crops the fixed-
sized input samples into multiple overlapping windows to extract multiple representations for a
single input. These embeddings are then averaged to obtain one final embedding.
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Fig. 4. Simplified architecture of the RawNet model.
35.2 SincNet + X-vector

The second end-to-end neural network consists of convolutional layers combined with a TDNN.
More specifically, this architecture is the mixture of the standard SincNet feature extractor [26] and
x-vector embeddings [23]. Again, the Sinc-convolution is placed as the crucial first layer to process
the high-dimensional waveform input. Band-pass filters are implemented by parametrized Sinc
functions that learn more meaningful filters compared to standard CNNs. Sinc-convolutions
converge faster, have fewer parameters and are more interpretable than regular convolutions. It is
followed by two regular 1D convolutional layers with kernel size 5 and max pooling layers sized 3.
Then, the network connects to the X-vector architecture [23]. It consists of 5 TDNN layers followed
by a statistical pooling layer before connecting to a fully connected layer. The resulting speaker
embedding is 512-dimensional. In contrast to RawNet2, the model is trained using the AAM loss.
For both training and evaluating the waveform input is processed with a 3s sliding window with
100ms step for which an embedding is calculated. The final speaker representation is the average of
the embeddings of these frames. We utilise the pyannote implementation of the model with the
weights pre-trained on 5994 speakers of the VoxCeleb2 training set [40].
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Fig. 5. Architecture of the SincNet X-vector model [40].
353 Meta-Learning

The third model utilizes a meta-learning framework and is based on the popular ResNet34
architecture [27] [30]. Meta-learning models can adapt quickly to new environments while being
exposed to relatively few learning examples which is highly advantageous for SV. The added value
of the residual layers with skip connections is that very deep networks can be trained. The full
ResNet34 architecture is shown in Figure 6. The model uses a metric-based learning scheme which
was specifically designed to perform well for short utterances of varying lengths. This is a real
problem for SV where the enrolment utterances are longer than the test samples and models tend
to overfit for either the short or long scenarios [55]. The length-robust model is built by simulating
the enrolment/testing utterance length mismatch during training by sampling a support and a
query set (a batch of training examples) from each class, where the query set have shorter variable
length than the support set. Class prototypes are created by averaging the support set and enforce
the query set to approximate it. Also, support and query set are classified against the whole training
set. Thus, the loss function embodies both classification and metric types. The result is the reduction
of class variance while embeddings are discriminate over all other classes. The model is used with



40-dimensional log mel-filterbank features calculated every 25ms with 15ms overlap. The same 5994
speakers were used for training as for the SincNet model, without applying VAD or data

augmentation. Again, we utilise pre-trained weights made publicly available by the creators [30].
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Fig. 6. Architecture of ResNet34 (on which Meta-Learning model is based) [27].

36 Evaluation process

The standard evaluation process for SV contains a trial which specifies which samples from the
verification set are compared against one another. The baseline performance of the three models
have been calculated using the VoxCelebl original trial [12]. For our new verification dataset, we
create the trial the following way: The enrolment samples are chosen from the subject speakers’
recordings of the first text and the first condition (child story, close-up scenario). The rest of the
recordings (including the media-speakers) are eligible for inclusion in the test set (Table 3). To
construct a trial, an equal amount of positive and negative test examples is randomly sampled for
each enrolment utterance. Thus, a trial is balanced but only a small subset from the available test
examples is included. To avoid reporting biased performance scores, we repeat the trial building
process multiple times (each time randomly sampling from the test set) and report the average
error over all the different trials. The error measure used is the Equal Error Rate, which is a
standard metric for SV models.

36.1 Equal Error Rate

After extracting speaker embeddings in the front-end, the back-end of the model calculates the
similarity score between two embeddings (enrolment vs test). The similarity score is the inverse of
the cosine distance, which is the normalized dot product of the enrolment speaker embedding vector
(e) and the test embedding vector (t) [59]:

-l
) =— 6
o) = el ®

The Equal Error Rate is the value which determines the threshold for which the False
Acceptance Rate (FAR) and the False Rejection Rate (FRR) is equal:

FAR+FRR

EER =
2 b

if FAR = FRR (7)
As a rule, FRRs rise with increased sensitivity while FARs drop. The advantage of the EER
metric is that it gives a measure of the overall accuracy for biometric systems without the need to
manually choose the sensitivity value. In a real-life application, the enrolment speaker is already
saved in the model and is compared to each candidate sample that is fed to the system outputting



a similarity score. For the scientific evaluation of models, an evaluation protocol called a trial is
defined which includes candidate pairs to be compared against each other. As the test samples
outnumber the enrolment samples, a trial where each sample is compared to each sample is

unbalanced by default.

EAR FRR

Errors

Sensitivity
Fig. 8. The equal error rate - also known as the crossover error rate (CER) - is the intersection of the false
acceptance rate (FAR) and false rejection rate (FRR) lines [60].

The number of positive and negative examples were chosen to be 100 each, and the number of
trials to be 10. We selected this configuration based on multiple experiments with different values.
We analysed the conversion of the standard deviation of the average error scores for each value
between 1 and 200 for the number of negative/positive examples. Next, we analysed the conversion
of the same measure for each value between 1 and 50 for the number of repetitions. Figure 9 shows
the outcome of these experiments and the values chosen for the final configuration. As the trial size
can exponentially increase with higher iterations and samples, the time of evaluation has also been
taken into consideration when picking these values. Furthermore, the enrolment and test lengths
were cropped to 5,10,15,30,60 and 1,2,5,10,15 seconds respectively. These lengths were chosen to

provide challenging trial scenarios which appear in real life.



subject speakers

Text 1 (child story)

Text 2 (Wikipedia)

Text 3 (article)

Condition 1 (close-up) ENROL TEST TEST
Condition 2 (far away) TEST TEST TEST
Condition 3 (pocket) TEST TEST TEST

media speakers Free speech

Condition 1 (close-up) TEST
Condition 2 (far away) TEST
Condition 3 (pocket) TEST

Table 3. Table showing the verification split of the recordings for the two speaker groups. During
evaluation, only the subject speakers’ samples from 'Condition 1" and Text 1 were enrolled.
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Fig. 9. Standard deviation of the average EER scores calculated for different runs using different values for
the number of iterations (left) and the number of test samples(right). The red lines represent the chosen

values of 10 and 100 respectively. We argue that the errors converge from these values onwards.

4. RESULTS

410verall performance

We extract embeddings for all speakers, sampling rates, and lengths (discussed in Section 3.4).
For each sampling rate, the average performance is reported across all conditions. We enrol speakers
according to Table 3 and apply the evaluation process discussed in Section 3.4. The average EER
for the three models across the three examined sampling rates can be observed from Table 4 where
the best EER scores are shown in bold for each model.

First, we observe that at 8 kHz all three models perform worse than at 16 and 32 kHz which
is not surprising due to the lower original resolution of the inputs. Much improvement is not seen
for two of the models (RawNet2 and Meta- Learning) when increasing the sampling rate to 32 kHz.
We see that the difference between 16 kHz and 32 kHz recordings are negligible. We can relate
these errors to the respective performance reported for each model in their reference papers (Table



5). Not surprisingly, the model which performed best on the VoxCelebl trial (Meta-Learning)
performed best for our custom trial on the smartphone recordings. A discrepancy is noticeable
between the performances of RawNet and SincNet: the former performed worse on our trial while
SincNet showed higher errors on the VoxCelebl trials.

RawNet2 | SincNet X-vector | Meta-Learning

8 kHz 12.78 14.52 9.79
16 kHz 7.59 7.97 4.28
32 kHz 7.6 7.96 4.28

Table 4. Overall performance of the three models with different original sampling frequencies. Meta-
Learning at 16 kHz and 32kHz yields the lowest EER with 4.28 followed by SincNet at 32 kHz with 7.96.

RawNet2 [54] | SincNet X-vector [40] | Meta-Learning [30]
2.48 35 2.08

Table 5. Performance of the three models reported in their original papers by the authors. The best
reported EER is shown.

42Performance per utterance length

We compare the models’ average performances when using enrolment and test samples cropped
to sizes defined in Section 3.4. From now on, only the 16 kHz performances is reported for each
model. As seen in the left side of Figure 10, the EER drops when increasing both enrolment and
test utterance lengths. Increasing enrolment lengths from 5 seconds to 60 seconds decreases EER
on average by 3.5 for RawNet2 and SincNet. The decrease in EER for the Meta-Learning model in
the same range is only about 1. RawNet2 and SincNet perform almost the same for enrolment
lengths 5 and 10 seconds. For longer utterances, RawNet2 outperforms SincNet by about 0.5 EER.
Meta-Learning model outperforms both for all lengths. It is also observed that the decrease in EER
is not linear, the largest relative drop of EER was seen jumping from 5 seconds to 10 seconds for
all three models.

On the right side of Figure 10, test length increase causes larger drops in EER. The error is
almost 6 times higher at 1 second test utterances than at 15 second ones for Meta-Learning model
and around 4 times higher for the other two. Again, Meta-Learning performs best overall, SincNet
outperforms RawNet2 for all but one setting. Also, the steepest drop in EER is seen at the jump
from 1- to 2-second-long utterances, while the decrease of the errors slows at longer utterances.
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Fig. 10. EER of the models for different enrolment utterance lengths (left) and test utterance lengths
(right). The performance is reported at 16 kHz original sampling rate.

43Effect of recording condition on the performance

We compare the performances for the three-phone set-up to explore the effects of the different
environmental conditions. We are reporting performance of the 16 kHz recordings for each model.
For all the following experiments, we apply some special constraints for the reported results to reflect
a more realistic setting. In the following tables the EER calculated for comparing 30-second-long
enrolment utterances against the average performance for 1,2 and 5 second test utterances are
reported.

Table 6 shows the results comparing the usual enrolment utterances to condition specific test
utterances. Reading the EER scores from the table we see that ’Condition 1’ has the lower errors.
It is followed by ‘Condition 3’ with an increase between 1 and 2 EER. The EER for ‘Condition 3’
is the highest for all the models. The EER is lowest when testing only close-up recordings with
Meta-Learning model (5.67) and highest when testing far-away recordings with the SincNet model
(15.22).

Next, we report the results of an altered trial when enrolling pocket utterances only. The
results are shown in Table 7. We only evaluated the trial ‘Condition 3’ vs ‘Condition 3’. So, the
row in Table 7 corresponds to the first row of Table 6. The errors are lower than the corresponding
best scores for the previous experiment (Table 6, first row).

RawNet2 (16 SincNet X-vector Meta-Learning (16 kHz)
kHz) (16 kHz)
Condition 1 (close-up) 8.69 8.85 5.67
Condition 2 (far away) 13.62 16.47 9.42
Condition 3 (pocket) 9.83 10.51 6.79

Table 6. EER for the different recording conditions (best sampling rate scenario is reported).



RawNet2 (16 kHz) | SincNet X-vector (16 kHz) | Meta-Learning (16 kHz)

Condition 3 (pocket) 6.27 7.65 2.37

Table 7. EER when enrolling ’Condition 3’ utterances and testing against other ’Condition 3’ samples.

44Performance per gender

As mentioned in Section 1, SR systems can be affected by whether the speaker is a male or a
female, so we investigated if the EER performance was influenced by the speakers’ gender. In the
first trial we only compare females to females and in the second trial only males to males. For this
trial we only enrolled and tested the CHDR subject speakers. As we observe from Table 8 the
performance drops for the female only trial. The best performing model for both the only-female and
only male trial is the Meta-Learning system with 7.72 and 3.9 EER respectively. For the other two
models, the difference is more than 10 EER between the male and female trial. These models

also underperform Meta-Learning model in this challenging scenario.

In Table 9 we show the performance of the models on the original VoxCelebl trial when
conducting separate trials for the two genders. Compared to our findings (Table 8), we do not
observe difference between the two genders at all. We also cannot see a large performance difference
between the Meta-Learning model and the other two models.

RawNet2 (16 kHz) SincNet X-vector Meta-Learning (16
(16 kHz) kHz)
females vs females 22.45 22.95 7.72
males vs males 10.91 12.19 3.9

Table 8. EER when comparing the two genders separately.

RawNet2 (16 kHz) | SincNet X-vector | Meta-Learning (16 kHz)
(16 kHz)
females vs females 2.49 5.24 2.88
males vs males 3.0 5.41 3.5

Table 9. EER of the two gender trials on the VoxCeleb 1 trial.

To interpret the previous two experiments better we can visualise the embedding vectors that
are extracted from the last hidden layer of the SincNet model. The 512-dimensional representations
can be projected to a 2D space by running dimensionality reduction using the t-SNE algorithm. We
extract 30-second-long enrolment embeddings and 5-second-long test embeddings from one of the
worse performing models in this domain (SincNet) for females and males separately. Figures 11 and
12 illustrate the extracted embeddings in a 2D space for males and females respectively.

The female clusters are less separated from each other compared to males meaning that the
cosine distance calculated by the models are lower causing more ambiguity. We also observe the
closeness of the 'far away’ condition representations (depicted with the diamond shape) meaning




that from a distance the female voice features become to merge (this phenomenon occurs for males
as well with less negative effect on the overall performance). We see an emerging pattern of the ’far
away’ embeddings. They break away from the main cluster and approach another drifting cluster
of another speaker (subjects 8, 12, 15, 16 for males and subjects 1, 9 for females).
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Fig. 11. 2D projections of the speaker embedding vectors of male speakers. Fach colour represents 1
speaker, and the shapes represent the source phone condition.
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Fig. 12. 2D projections of the speaker embedding vectors of female speakers. Each colour represents 1
speaker, and the shapes represent the source phone condition.



45Performance per text

Finally, we create trials containing test utterances related to a specific text. In Table 10, the
three row corresponds to trials ‘Text 1’ vs ‘Text 1’, ‘Text 1’ vs ‘Text 2’ and ‘Text 1’ vs ‘Text 3’
respectively. The EER is lowest for the Meta-Learning model, ~ 7.9 for all three texts. The EER
scores for the RawNet2 is ~ 11.7. For SincNet we observe a 1.3 EER increase from Text 3
to Text 1.

RawNet2 (16 SincNet X-vector Meta-Learning (16 kHz)
kHz) (16 kHz)
Text 1 (child story) 11.71 13.44 7.86
Text 2 (Wikipedia 11.88 12.56 7.9
article)
Text 3 (news article) 11.6 12.17 7.94

Table 10. Performance for the different scripts read by the participants.

46 Computational efficiency analysis

We examined the averaged runtime of the three models on the same hardware configuration.
We randomly selected one voice sample from the verification dataset and repeatedly extracted the
corresponding speaker embedding 1000 times. We explored the performance for the different testing
utterance lengths (1,2,5,10, and 15 seconds). Each run was timed, and the density of the timings
are shown in Figures 13 and 14. For each experiment, one specific graphics processing unit (GPU)
was used (GTX 970 Ti). Figure 13 shows a specific set of runs carried out with 5s long, 16 kHz
utterances. The average time to create speaker representation took ~9/10 milliseconds (ms) for
RawNet2, ~5 ms for SincNet and ~8/9 s for Meta-Learning. The extraction time varied relatively
little for the first two models with standard deviation measured lower than 1ms. Meta-Learning
had a much more varying runtime with a long tail towards both quicker and slower executions.
The average extraction time fell between those of the other two models. Judging from Figure 14,
RawNet2 embeddings were created with the same rate independently of the input length. The speed
of SincNet drops when the utterance length increases but achieves similar speed for longer
utterances than Meta-Learning for short utterances. This phenomenon is observed for Meta-
Learning model as well but the relative decrease in speed has a much larger magnitude (from ~8/9

ms to ~20 ms).
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Fig. 13. Computation times of a 16kHz, 5-second-long utterance per model. Calculated by inputting and
extracting the same speaker representation 1000 times.

(a) RawNet2 (b) SincNet (c) Meta-Learning

Fig. 14. Computation times of each model for different utterance lengths (1,2,5,10,15 seconds).



5. DISCUSSION

For this study, we investigated the optimal configuration and SV model for smartphone-based
recordings. We consider the feasibility of this set-up successful for all three models, as they were able
to extract speaker embeddings that were unique to each speaker. This statement is supported by
the 2D visualisations of the embeddings in Figures 11 & 12 where speaker clusters are clearly visible
even when the corresponding trial has a relatively high EER. The overall performances (Table 4)
could be considered good when compared with their baseline errors (Table 5), taking into
consideration that we have used three different conditions and utterance/test pair lengths as small
as 5s/1s.

The performance of the models was dependent on the original sampling rate of the data. Since
all three models have been trained using VoxCeleb2 sampled at 16 kHz, it was necessary to resample
the original sampling rates of 8 and 32 kHz to 16 kHz when applying them in the verification. Down
sampling from 32 kHz to 16 kHz had no effect whatsoever on the performance when compared with
the 16 kHz trials (Table 4, first two rows). A trivial explanation is that we ended up with the same
resolution when down-sampling it once from 44.1 kHz to 16 kHz and twice: first to 32 kHz and then
to 16 kHz. However, a reverse operation was needed when dealing with the 8 kHz samples. Instead
of down sampling, we applied up sampling on the data which added additional artificial datapoints.
This had a visible effect on the performance with ERR scores dropping by 5 for RawNet and Meta-
Learning and 7 for SincNet. The fixed training sampling rate affects some of the model parameters
(e.g., for RawNet2 we specifically process 59049 samples as inputs) which determines the optimal
input size for the models. The assessment of different sampling rates has been limited by the
constraint of the fixed parameters of the pre-trained models. This could be considered an advantage
since all three models performed well for 16 kHz which is the most widespread sampling rate. The
models should be retrained on the same dataset down sampled to 8 kHz or up sampled to 32 kHz
to assess performance. An alternative solution to manual up and down sampling would have been
to use multiple phones configured to record with these sampling rates by default.

Different enrolment and testing utterance lengths have been analysed and the lowest errors
were obtained for the longer utterances. This is an expected behaviour because the models simply
have more data to create better representations. The problems with both the enrolment-test sample
mismatch and the training-verification dataset mismatch must be taken into consideration when
generalizing from these results. Previous studies showed that models tend to overfit for either long
or short utterances with decreased generalizing ability for mixed-length input [61] [30]. In our
experiments we have not experienced these issues, the scenario [enrolment length: 60s, test length:
15s] yielded the best results for these trials for all models. Previous research of SV models addresses
the question of the effects of input sample length on model performance [59][9]. Enrolment length
can also be interpreted by the volume of enrolment samples in the case of averaging enrolment
representations into one embedding. In real-life SV, the enrolment process is only limited by the
speaker’s willingness of providing enough samples while the length of test samples encountered is
boundless. For test samples the steepest drop in performance was seen from 2 seconds to 5 seconds
(» -4 EER). The small magnitude of performance drop between 30 and 60 second enrolment

utterances shows that longer enrolment samples are redundant.



As noted earlier (Section 2) we expected these models to perform gender- independently.
Instead, we had seen a large drop in performance for the female speakers (Table 8) for which we
identified two potential causes. First, the low subject variability (only 8 female participants) in
terms of age could have simply limited the reliability of the results. A more plausible reason could
be the lower speech energies (volume level) of the verification dataset for the female group. This
phenomenon could be explained by the different signal-to-noise ratio calculated for the female
recordings (57 dB) versus the male recordings (61 dB). This is significant considering the 3dB rule:
Every 3dB change represents a doubling or halving of sound energy [62]. It is possible that due to
the lower overall volume level of female voices (and the higher noise level therefore) the models
failed to create representative embeddings. We also justify this explanation by evaluating the
performance for the two genders separately for the VoxCelebl official trial (Table 9). Performance
on that trial is similar for females and males. Previously we were conducting more general, cross-
gender trials where we included the media speakers as well. We mark that for this more challenging
task, two models (RawNet2 and SincNet) struggled to yield low error rates.

One of the crucial issues with real-life remote trials is the variability of the phone location in
relation to the speaker. We found that the performance of the ’close-up’ condition and the 'pocket’
condition is relatively small and after further investigation we found that the ’pocket’ recordings
provided the “cleanest” audio and the best performance (Tables 6 and 7). This is not surprising
when recognizing the Signal-to-Noise ratio for each condition (Section 3.2). ’Condition 3’
corresponds to a different environment that distorts the acoustic properties of speech (inside the
pocket). Thus, it is surprising to see that the performance is not much worse than for ’Condition
1’. We must address the bias that is introduced into these findings by the specific verification split
that was used (see Table3). All the utterances in the enrolment set were recordings corresponding
to ’Condition 1’ so we expect the trial ("Condition 1’ vs ’Condition 1’) to perform better than
(’Condition 1’ vs ’Condition 2’) or ("Condition 1’ vs ’Condition 3’). As we observed, the EER scores
of ’Condition 3’ had not fall behind the scores for ’Condition 1’ (which was used as enrolment).
Thus, we investigated this scenario further by replacing ’Condition 1’ recordings in the enrolment
set by ’Condition 3’ recordings. We recalculated the errors for the new trials (’Condition 3’ vs
"Condition 3’) and the results were better than the previous trial as reported in Table 7.

We verified the ’text-independent’ quality of the models by comparing performance when
restricting the testing set to only include utterances for a specific text. We saw very similar
performances across each text meaning that the content was not a factor for the models. Note that
due to the nature of the reading- task, the performance for free-speech containing certain emotions
or serious variability in pitch cannot be assessed. The same bias discussed in Section 5.4 also applies
to this trial, but the performances observed for this scenario were not interesting to demand further
investigation.

In terms of speed, SincNet model proved to be the fastest overall for 16 kHz, but performance
drops significantly for other sampling rates. It can be argued that a few milliseconds difference
between the average runtime would not be noticeable in real-life application where samples are
seconds long. I recommend the use and further investigation of two models, Meta-Learning and
SincNet. The former performs better while being slower while the latter compensates higher errors
with speed.



5.1Limitations

There were two main aspects where constraints had to be set to make the study feasible: the
smartphone verification dataset and the SV models used. A critical aspect of speaker recognition is
the intra-speaker variability, meaning that in different environmental and temporal conditions the
voice characteristics might change. This session variability could not be assessed during this study
due to the limited availability of the subjects. It can be presumed that some of the performances
were overrated due to the short timeframe to record voice samples from a speaker (one session of
15 minutes). There were no efforts made to select subjects (both CHDR and media speakers) from
all age groups, the variability for the CHDR subjects (especially the female group) was low (between
20 and 30 years old). Although the data collection protocol was created to resemble one at a future
application, the standardised nature of the sessions omits some of the challenges that would occur
in real-life. Due to the nature of the standardised data collection protocol, the participants were
stationary during the reading activity. Thus, the pocket of their trousers created a protecting bubble
that filtered noise and the models could exploit these signals to create better speaker
representations. In real-life the recordings would be more prone to noise due to unpredictable
movements of the body part. Due to the nature of the reading task, a limited range of emotions
and pitch difference have been captured. Recent studies showed that both the emotional state of a
speaker and the intentional disguise of voice (an actor playing another character) have significant
effect in speech production [63,64]. The recordings contain very little background noise, and the
silent parts are only taking up » 15% of the audio. Therefore, some pre-processing steps then were
not necessary for this study might be crucial when deploying the verification model in real-life.
These include volume synchronisation, noise reduction or voice activity detection. Data
augmentation techniques were also applied to the training and/or verification dataset in past studies
against inadequate in-domain data [65]. We also mention the lack of overlapped speakers in the
recordings, which is standard for SV but still could be considered a limitation.

We selected networks that were already pre-trained so they could be considered “off the shelf”
type models. The advantage of SV models is that they generalize to unknown speakers, so the
computationally expensive training only needs to happen once. There are disadvantages of this
property namely that the parameters are fixed, and we have limited options when processing the
verification dataset. Not only is the sampling rate set during training, but the input dimension too
which is tied to certain hyper-parameters. We also noted that RawNet2 model utilised more
speakers during training then the other two. The model still underperformed so we could argue that
adding more speakers at this magnitude has less effect on the performance. Attempts to re-train
models with custom settings were made but failed due to the huge computational expenses required
to train on the VoxCeleb2 dataset. We also could not estimate the language-effect of verifying
Dutch speech on models trained with predominantly English speech data. Based on all the results
shown in Section 4, we suspect the influence to be marginal. Finally, all three models were tested
in an offline fashion and the computational efficiency analysis did not take into consideration a
potential online use-case. The speed was analysed on the same hardware, but different hardware
settings or network latency were not considered.

52Future work

To further improve our SV models, the goal of a future study could be to assess the intra-



speaker variability better by collecting samples across multiple days or weeks from speakers.
Creating a dataset of free speech samples would benefit the evaluation for different emotions and
less predictable input. To further investigate the performance of SV models, a more realistic data
collection protocol must be constructed with incorporating environments of actual usage. To
evaluate the pocket recordings more realistically, the speakers could be asked to be physically active
during recording so that the consequent noise affects would be captured. Furthermore, the models
could be trained on VoxCeleb2 down sampled to 8kHz to assess the performance of a lower sampling
rate better. The computational expenses of the smaller dataset could be more feasible with limited
hardware. Finally, the CHDR MORE application could be incorporated in a future study to conduct
online verification, by collecting recordings with the smartphone, processing the data, and running
the evaluation on the smartphone in real-time.

6. CONCLUSION

In this study, we investigated three, recent deep learning-based speaker verification models
(RawNet2, SincNet X-vector and ResNet34-based Meta-Learning) trained on a large set of diverse
speakers (VoxCeleb2) and verified on a new dataset tailored to clinical trial application. This is
part of an attempt to improve the capabilities of the CHDR MORE® application to not only
recognise the presence of human speech but to be able to distinguish between the speaker of interest
and others. The deep-learning models were used as feature extractors and classifiers for the subject
speakers across different recording conditions (which includes the phone placed inside the pocket),
gender, utterance length and sampling rate. We also created custom evaluation trials that resemble
real-life scenarios better than previous trials. The overall equal error rates of the models compared
with their respective baselines (RawNet: 2.48, SincNet: 3.5, Meta-learning: 2.08) were higher
(RawNet: 7.58, SincNet: 7.96, Meta-learning: 4.28) but we have evaluated on more challenging
scenarios. We found that the ResNet34-based Meta-Learning model with an original sampling rate
of 16 kHz inputs performed best for all scenarios. It overperformed the other two models especially
on the gender-trials. In terms of speed, SincNet model provided the fastest and most consistent
embeddings. However, we found the Meta-learning model to be more suitable for clinical trials due

to its robust performance on challenging scenarios.

The optimal SV model could be applied in many ways for remote clinical trials in the
Trial@HOME® program. First, as a security layer to ensure the integrity of the voice samples by
verifying if the subject using the device is the genuine subject of interest. In this use-case, both
enrolment and testing conditions can be controlled and customised. Based on our findings, placing
the phone inside a pocket increases the signal to noise ratio and the performance of the model. The
second, more general application is the continuous recording of a subject without constraints on
phone position. Applying SV in such wild, uncontrolled conditions is challenging and requires careful
model-tuning and manual data cleaning. However, for this study, we were only experimenting with
three standard conditions, while in real-life the phone might be placed in other different positions.
As such, this study can be considered the first of many in this topic.

7. ACKNOWLEDGEMENTS



I would like a special thank you to Ahnjili ZhuParris from CHDR for her daily guidance and
feedback on all aspects of the study. I acknowledge my second supervisor Robert-Jan Doll from
CHDR for his input and evaluation. I would also thank all members of the Method Development
team at CHDR who showed interest and provided valuable feedback during my internship at the
company. Thank you to the kind staff members of CHDR who helped recruit the 16 participants
to conduct the data collection. I also thank the participants for giving me their time and effort.
Thank you to prof. dr. ir. David van Leeuwen for the helpful professional discussion.

8. REFERENCES

[1] Trial@home, https://chdr.nl/trialhome/ Accessed: 2021-06-25.

[21 Huang, Zili & Wang, Shuai & Yu, Kai. (2018). Angular Softmax for Short-Duration Text-independent
Speaker Verification. 3623-3627. 10.21437/Interspeech.2018-1545.

381 Bai Z, Zhang XL (2021) Speaker recognition based on deep learning: An overview. arXiv:2012.00931.

[4] Bimbot, F., Bonastre, JF., Fredouille, C. et al. A Tutorial on Text-Independent Speaker Verification.
EURASIP J. Adv. Signal Process. 2004, 101962 (2004).

5] L. Wan, Q. Wang, A. Papir and 1. L. Moreno, "Generalized End-to-End Loss for Speaker Verification," 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 4879-4883, doi:
10.1109/ICASSP.2018.8462665.

[6] Balian, J., Tavarone, R., Poumeyrol, M., & Coucke, A. (2021). Small footprint Text-Independent Speaker
Verification for Embedded Systems. ICASSP.

[71 X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland and O. Vinyals, "Speaker Diarization: A
Review of Recent Research," in IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,
no. 2, pp. 356-370, Feb. 2012, doi: 10.1109/TASL.2011.2125954.

[8] Fujita, Yusuke & Kanda, Naoyuki & Horiguchi, Shota & Xue, Yawen & Nagamatsu, Kenji & Watanabe,
Shinji.  (2019). End-to-End Neural Speaker Diarization with  Self-Attention. 296-303.
10.1109/ASRU46091.2019.9003959.

[91 Torfi, Amirsina & Nasrabadi, N.M. & Dawson, J. (2017). Text-Independent Speaker Verification Using 3D
Convolutional Neural Networks. arXiv:1705.09422 [cs.CV]

[10] Lu, Liang & Dong, Yuan & Zhao, Xianyu & Liu, Jiging & Wang, Haila. (2009). The effect of language
factors for robust speaker recognition. Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988
International Conference on. 4217-4220. 10.1109/ICASSP.2009.4960559.

[11] Rohdin, Johan & Stafylakis, Themos & Silnova, Anna & Zeinali, Hossein & Burget, Lukas & Plchot,
Oldrich. (2019). Speaker Verification Using End-to-end Adversarial Language Adaptation. 6006-6010.
10.1109/ICASSP.2019.8683616.

[12] Nagrani, Arsha & Chung, Joon Son & Xie, Weidi & Zisserman, Andrew. (2019). VoxCeleb: Large-scale
Speaker Verification in the Wild. Computer Speech & Language. 60. 101027. 10.1016/j.¢s1.2019.101027.

[13] Thullier, F.,; Bouchard, B., & Ménélas, B. (2017). A Text-Independent Speaker Authentication System for
Mobile Devices. Cryptogr., 1, 16.

[14] Brunet, Kevin & Taam, Karim & Cherrier, Estelle & Faye, Ndiaga & Rosenberger, Christophe. (2013).
Speaker Recognition for Mobile User Authentication: An Android Solution. 8¢me Conférence sur la
Sécurité des Architectures Réseaux et Systémes d'Information (SAR SSI)

[15] Reynolds, D., Quatieri, T., & Dunn, R.B. (2000). Speaker Verification Using Adapted Gaussian Mixture
Models. Digit. Signal Process., 10, 19-41.

[16] Kinnunen, T., & Li, H. (2010). An overview of text-independent speaker recognition: From features to

supervectors. Speech Commun., 52, 12-40.

[171W. M. Campbell, D. E. Sturim and D. A. Reynolds, "Support vector machines using GMM supervectors
for speaker verification," in IEEE Signal Processing Letters, vol. 13, no. 5, pp. 308-311, May 2006, doi:
10.1109/LSP.2006.870086.


https://chdr.nl/trialhome/

[18] Kenny, Patrick & Ouellet, Pierre & Dehak, Najim & Gupta, Vishwa & Dumouchel, Pierre. (2008). A Study
of Interspeaker Variability in Speaker Verification. Audio, Speech, and Language Processing, [EEE
Transactions on. 16. 980 - 988. 10.1109/TASL.2008.925147.

[19] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel and P. Ouellet, "Front-End Factor Analysis for Speaker
Verification," in IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788-
798, May 2011, doi: 10.1109/TASL.2010.2064307.

[20] Yuan X, Li G, Han J, Wang D, Tiankai Z (2021) Overview of the development of speaker recognition.
Journal of Physics: Confer- ence Series 1827(1):012125.

[21] Garcia-Romero, D., & Espy-Wilson, C. (2011). Analysis of i-vector Length Normalization in Speaker
Recognition Systems. INTERSPEECH.

[22] Lei, Y., Scheffer, N., Ferrer, L., & McLaren, M. (2014). A novel scheme for speaker recognition using a
phonetically-aware deep neural network. 2014 TEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 1695-1699.

[23] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey and S. Khudanpur, "X-Vectors: Robust DNN Embeddings
for Speaker Recognition," 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 5329-5333, doi: 10.1109/ICASSP.2018.8461375.

[24] Ke Chen and Ahmad Salman. 2011. Extracting speaker-specific information with a regularized Siamese
deep network. In Proceedings of the 24th International Conference on Neural Information Processing
Systems (NIPS'11). Curran Associates Inc., Red Hook, NY, USA, 298-306.

[25] Bhattacharya, G., Alam, J., Kenny, P. (2017) Deep Speaker Embeddings for Short-Duration Speaker
Verification. Proc. Interspeech 2017, 1517-1521, DOI: 10.21437/Interspeech.2017-1575.

[26] Ravanelli, M., & Bengio, Y. (2018). Speaker Recognition from Raw Waveform with SincNet. 2018 IEEE
Spoken Language Technology Workshop (SLT), 1021-1028.

271 K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, doi:
10.1109/CVPR.2016.90.

[28] Chung, J.S., Nagrani, A., & Zisserman, A. (2018). VoxCeleb2: Deep Speaker Recognition. INTERSPEECH.

[291Y. Yu, L. Fan and W. Li, "Ensemble Additive Margin Softmax for Speaker Verification," ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp.
6046-6050, doi: 10.1109/ICASSP.2019.8683649.

[30] Kye, Seong & Jung, Youngmoon & Lee, Hae & Hwang, Sung & Kim, Hoirin. (2020). Meta-Learning for
Short Utterance Speaker Recognition with Imbalance Length Pairs.

311 Wan, Li & Wang, Quan & Papir, Alan & Moreno, Ignacio. (2018). Generalized End-to-End Loss for Speaker
Verification. 4879-4883. 10.1109/ICASSP.2018.8462665.

[32] Peddinti, V., Povey, D.; & Khudanpur, S. (2015). A time delay neural network architecture for efficient
modeling of long temporal contexts. INTERSPEECH.

331 Fan, Z., Li, M., Zhou, S., & Xu, B. (2020). Exploring wav2vec 2.0 on speaker verification and language
identification. ArXiv, abs/2012.06185.

[34] Lin, W., & Mak, M. (2020). Wav2Spk: A Simple DNN Architecture for Learning Speaker Embeddings from
Waveforms. INTERSPEECH.

[35] Bn, LeakyReLU, & Conv (2019). RawNet: Advanced end-to-end deep neural network using raw waveforms

for text-independent speaker verification.

[36] Koénig A, Riviere K, Linz N, Lindsay H, Elbaum J, Fabre R, Derreumaux A, Robert P: Measuring Stress
in Health Professionals Over the Phone Using Automatic Speech Analysis During the COVID-19 Pandemic:
Observational Pilot Study, J Med Internet Res 2021;23(4): e24191

[37] Xiang, Xu & Wang, Shuai & Huang, Houjun & Qian, Yanmin & Yu, Kai. (2019). Margin Matters: Towards
More Discriminative Deep Neural Network Embeddings for Speaker Recognition. 1652-1656.
10.1109/APSTPA ASC47483.2019.9023039.

[38] Deng, Jiankang & Guo, Jia & Zafeiriou, Stefanos. (2018). ArcFace: Additive Angular Margin Loss for Deep
Face Recognition.

[39] Vishnyakova, Olga & van Leeuwen, David (2020): Text-Independent Speaker Recognition based on DNN



embeddings, Master’s thesis, Radboud University, Nijmegen

[40] Coria, Juan & Bredin, Hervé & Ghannay, Sahar & Rosset, Sophie. (2020). A Comparison of Metric Learning
Loss Functions for End-To-End Speaker Verification. 10.1007/978-3-030-59430-5__11.

[41] Jati, A. & Peri, Raghuveer & Pal, Monisankha & Park, Tae & Kumar, Naveen & Travadi, Ruchir &
Georgiou, Panayiotis & Narayanan, Shrikanth. (2019). Multi-Task Discriminative Training of Hybrid
DNN-TVM Model for Speaker Verification with Noisy and Far-Field Speech. 2463-2467.
10.21437 /Interspeech.2019-3010.

[42] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey and S. Khudanpur, "Speaker Recognition for
Multi-speaker Conversations Using X-vectors,” ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech  and  Signal  Processing (ICASSP), 2019, pD- 5796-5800, doi:
10.1109/ICASSP.2019.8683760.

[431Zhu, Y., Ko, T., Snyder, D., Mak, B., Povey, D. (2018) Self-Attentive Speaker Embeddings for Text-
Independent Speaker Verification. Proc. Interspeech 2018, 3573-3577, DOL: 10.21437/Interspeech.2018-
1158.

[441Y. Zhu and B. Mak, "Orthogonal Training for Text-Independent Speaker Verification," ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 6584-
6588, doi: 10.1109/ICASSP40776.2020.9053198.

[45] Z. Wang, K. Yao, X. Li and S. Fang, "Multi-Resolution Multi-Head Attention in Deep Speaker Embedding,"
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 6464-6468, doi: 10.1109/ICASSP40776.2020.9053217.

[46] Xie, Weidi & Nagrani, Arsha & Chung, Joon Son & Zisserman, Andrew. (2019). Utterance-level
Aggregation for Speaker Recognition in the Wild. 5791-5795. 10.1109/ICASSP.2019.8683120.

[471H. Muckenhirn, M. Magimai.-Doss and S. Marcell, "Towards Directly Modeling Raw Speech Signal for
Speaker Verification Using CNNS," 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 4884-4888, doi: 10.1109/ICASSP.2018.8462165.

[48] V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public domain
audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2015, pp. 5206-5210, doi: 10.1109/ICASSP.2015.7178964.

[49] Ravanelli, Mirco & Bengio, Y.. (2018). Learning Speaker Representations with Mutual Information.

[50] Chowdhury, L., Zunair, H., & Mohammed, N. (2020). Robust Deep Speaker Recognition: Learning Latent
Representation with Joint Angular Margin Loss. Applied Sciences, 10(21), 7522. MDPI AG.

[51] Richey, C., Artigas, M., Armstrong, Z., Bartels, C., Franco, H., Graciarena, M., Lawson, A., Nandwana,
M.K., Stauffer, A.R., Hout, J.V., Gamble, P., Hetherly, J., Stephenson, C., & Ni, K.S. (2018). Voices
Obscured in Complex Environmental Settings (VOICES) corpus. INTERSPEECH.

[521 McLaren, M., Ferrer, L., Castan, D., Lawson, A. (2016) The 2016 Speakers in the Wild Speaker Recognition
Evaluation. Proc. Interspeech 2016, 823-827.

[53] Heigold, Georg & Moreno, Ignacio & Bengio, Samy & Shazeer, Noam. (2015). End-to-End Text-Dependent
Speaker Verification.

[541 Jung, J., Kim, S., Shim, H., Kim, J., & Yu, H. (2020). Improved RawNet with Feature Map Scaling for
Text-Independent Speaker Verification Using Raw Waveforms. INTERSPEECH.

[55] Kanagasundaram, Ahilan & Sridharan, S & Sriram, G & Prachi, S & Fookes, C. (2019). A Study of X-
vector Based Speaker Recognition on Short Utterances. 10.21437/Interspeech.2019-1891.

[56] Lawrence R. Rabiner and Ronald W. Schafer. 2007. Introduction to Digital Speech Processing. Now
Publishers Inc., Hanover, MA, USA.

[57] Welcome to python speech features’s documentation! https://python-speech-
features.readthedocs.io/en/latest/. Accessed: 2021- 06-25.

[58] Mel frequency cepstral coefficient (mfec) tutorial,
http://practicaleryptography.com/miscellaneous/machine-learning/ guide-mel-frequency-cepstral-

coefficients-mfecs/. Accessed: 2021-05-04.
[59] Arasteh, S.T. (2020). Generalized LSTM-based End-to-End Text-Independent Speaker Verification. ArXiv,
abs/2011.04896.



[60] Equal error rate, https://www.sciencedirect.com/topics/computer-science/equal-error-rate. Accessed:
2021-06-27.

[61] Li, Lantian & Wang, Dong & Kang, Jiawen & Wang, Renyu & Wu, Jing & Gao, Zhendong & Chen, Xiao.
(2020). A Principle Solution for Enroll-Test Mismatch in Speaker Recognition.

[62] Understanding the 3db rule, https://pulsarinstruments.com/en/post/understanding-3db-rule. Accessed:
2021-06-25.

[631 Brown, A., Huh, J., Nagrani, A., Chung, J.S., & Zisserman, A. (2021). Playing a Part: Speaker Verification
at the Movies. ICASSP.

[64] Sarma, Biswajit & Das, Rohan. (2020). Emotion Invariant Speaker Embeddings for Speaker Identification
with Emotional Speech.

[65] S. Shahnawazuddin, W. Ahmad, N. Adiga and A. Kumar, "In-Domain and Out-of-Domain Data
Augmentation to Improve Children’s Speaker Verification System in Limited Data Scenario," ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.
7554-7558, doi: 10.1109/ICASSP40776.2020.9053891.

[66] Kajarekar, Sachin & Malayath, Narendranath. (2000). Analysis of Speaker and Channel Variability in
Speech.

[671 Reynolds D. (2009) Universal Background Models. In: Li S.Z., Jain A. (eds) Encyclopedia of Biometrics.
Springer, Boston, MA. https://doi.org/10.1007 /978-0-387-73003-5 197

[68] Chen, Ke. (2003). Towards better making a decision in speaker verification. Pattern Recognition. 36. 329-
346. 10.1016/S0031-3203(02)00034-1.

[69] A. Kanagasundaram, D. Dean and S. Sridharan, "Improving out-domain PLDA speaker verification using

unsupervised inter-dataset variability compensation approach," 2015 IEEE International Conference on
Acoustics, Speech  and  Signal  Processing (ICASSP), 2015, pp- 4654-4658, doi:
10.1109/ICASSP.2015.7178853.

[70] Fagherazzi G, Fischer A, Ismael M, Despotovic V: Voice for Health: The Use of Vocal Biomarkers from
Research to Clinical Practice. Digit Biomark 2021;5:78-88. doi: 10.1159/000515346

[71] Goudlokje en de drie beren, https://www.beleven.org/verhaal/goudlokje en de drie beren Accessed:
2021-06-25.

[72] Nederland, https://nl.wikipedia.org/wiki/Nederland Accessed: 2021-06-25.

[73] Leiden, https://nl.wikipedia.org/wiki/Leiden Accessed: 2021-06-25.

[74] Stel dat de zee opens twee meter stijgt https://www.nrc.nl/nieuws/2021/01/31/stel-dat-de-zee-opeens-
twee-meter-stijet Accessed: 2021-06-25.

9. APPENDIX

91Text 1: “De drie beren”
Text 1 is a short story called “Goudlokje en de drie beren” [71].

“Er waren eens drie beren die gezellig in een eigen huis woonden, midden in een groot bos. De
ene was een klein beertje, de andere was een middelmatig grote beer en de derde was een reusachtig
grote beer. Zij hadden elk hun eigen papbord: een klein bord voor de kleine beer, een middelmatig
groot bord voor de middelmatig grote beer en een groot bord voor de reusachtig grote beer. En elk
van hen had zijn eigen stoel: een kleine stoel voor de kleine beer, een middelmatig grote stoel voor
de middelmatig grote beer en een grote stoel voor de reusachtig grote beer. Zij hadden ook elk hun
eigen bed: een klein bedje voor de kleine beer, een middelmatig groot bed voor de middelmatig grote
beer en een groot bed voor de reusachtig grote beer. Op een dag maakten zij hun pap klaar voor
het ontbijt en deden die in hun papborden. Daarna gingen ze in het bos wandelen, terwijl hun pap
afkoelde, zodat zij hun mond er niet aan zouden branden. En terwijl zij wandelden, kwam een klein
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meisje, dat Goudlokje heette, bij het huisje. Eerst keek zij door het raam naar binnen en daarna
gluurde zij door het sleutelgat. Toen zij niemand zag, deed zij de deur open. De deur was niet op
slot, omdat de beren goede beren waren die nooit iemand kwaad deden. Zij verwachtten ook niet
van anderen dat zij hun kwaad zouden doen. Goudlokje deed dus de deur open en ging naar binnen.
Zij was blij verrast toen zij de pap op tafel zag staan. Als zij even had nagedacht, had zij wel
gewacht totdat de beren thuisgekomen waren, die haar dan misschien uitgenodigd zouden hebben
mee te eten. Het waren namelijk erg aardige beren, een beetje ruw misschien, maar dat zijn alle
beren, en zij waren echt hartelijk en gastvrij. Maar de pap zag er erg lekker uit en Goudlokje besloot
zichzelf te bedienen. Eerst nam zij een hapje van de pap van de reusachtig grote beer en die was te
heet voor haar. En toen nam zij een hapje van de pap van de middelgrote beer en die was te koud
voor haar. En toen nam zij een hapje van de pap van de kleine beer en die was niet te warm en
niet te koud. Goudlokje vond hem zo lekker, dat ze het hele bord leeg at. Toen ging het meisje in
de stoel zitten van de reusachtig grote beer, maar die was te hard voor haar. Daarna probeerde zij
de stoel van de middelgrote beer en die was te zacht voor haar. Daarom probeerde zij de stoel van
de kleine beer en die was niet te hard en niet te zacht, maar net goed. Ze ging erop zitten en ze
bleef zitten totdat de bodem uit de stoel zakte en zij op de grond terechtkwam. Goudlokje stond
op en ging naar boven, naar de slaapkamer waar de drie beren 's nachts sliepen. Eerst ging zij op
het bed liggen van de reusachtig grote beer, maar het hoofdeind was te hoog voor haar. Daarna
ging zij op het bed liggen van de middelgrote beer, maar van dat bed was het voeteneind te hoog.
Tenslotte ging zij naar het bedje van de kleine beer. En dat was net goed. Ze ging erin liggen, trok
de dekens op en viel in een diepe slaap. De drie beren dachten op dit moment dat hun pap wel
afgekoeld zou zijn. Daarom gingen zij naar huis om te ontbijten. Goudlokje had de lepel van de
reusachtig grote beer rechtop in zijn pap laten staan. Toen deze dat zag, zei hij met zijn grote zware
stem: "Er heeft iemand aan mijn lepel gezeten! En toen de middelgrote beer naar zijn bord keek,
zag hij dat ook bij hem de lepel rechtop in de pap stond. Hij zei met zijn middelmatig zware stem:
"Er heeft iemand aan mijn lepel gezeten!" Het kleine beertje keek naar zijn bord. Hij zag dat zijn
pap op was. En hij zei met zijn kleine stemmetje: "Er heeft iemand aan mijn lepel gezeten en mijn
pap is op!" De drie beren begrepen dat er iemand in hun huisje was geweest. Zij gingen in de kamer
zoeken of die iemand er nog was. Nu had Goudlokje vergeten het harde kussen recht te leggen toen
zij uit de stoel opstond van de reusachtig grote beer. "Er heeft iemand op mijn stoel gezeten!" Dat
zei de reusachtig grote beer met zijn grote zware stem. Het kussen van de middelgrote beer was
ingedeukt. En de middelgrote beer zei met zijn middelzware stem: "Er heeft iemand op mijn stoel
gezeten!" Je weet wat Goudlokje met de derde stoel had gedaan. Dus zei het kleine beertje met een
klein stemmetje: "Er heeft iemand in mijn stoel gezeten totdat de bodem eruit viel!" De drie beren
vonden het toen echt nodig om verder te zoeken. Zij gingen naar boven naar hun slaapkamer. Tja,
Goudlokje had de kussens van de reusachtig grote beer van hun plaats getrokken. "Er heeft iemand
in mijn bed gelegen!" Zo sprak de reusachtig grote beer met zijn grote, zware stem. En de sprei van
het bed van de middelgrote beer was helemaal verkreukeld. "Er heeft iemand in mijn bed gelegen!"
Zo sprak de middelgrote beer met zijn middelmatig zware stem. En toen het kleine beertje bij zijn
bed kwam, lag de sprei op zijn plaats en het kussen lag op zijn plaats. Maar op het kussen lag het
hoofdje van Goudlokje - en dat lag helemaal niet op zijn plaats, want dat hoofd had daar helemaal
niets te maken. "Er heeft iemand in mijn bed gelegen - en zij ligt er nog in!" Zo sprak het kleine
beertje met zijn kleine stemmetje. Goudlokje intussen had in haar slaap de grote, zware stem
gehoord van de reusachtig grote beer en de middelmatig zware stem van de middelgrote beer, maar
op dezelfde manier waarop je stemmen in je droom hoort. Van het hoge, schelle stemmetje van het
kleine beertje werd zij echter wakker. Meteen ging zij rechtop zitten. Toen zij de drie beren aan de



ene kant van het bed zag staan, schrok zij z6, dat zij zich aan de andere kant uit het bed liet vallen
en naar het raam holde. Het raam stond open, want de drie beren waren hele nette beren, die altijd
het raam openzetten als zij 's morgens waren opgestaan. Goudlokje sprong naar buiten en rende zo
vlug zij kon het bos in - en zij keek niet één keer om. Wat er daarna met haar gebeurd is, weet ik
niet, maar ik weet wel dat de drie beren haar nooit hebben teruggezien.”

92 Text 2: Wikipedia (Nederland & Leiden)

Text 2 consist of excerpts from the Dutch Wikipedia article on “The Netherlands” and “Leiden”
[72, 73].

“Nederland is een van de landen binnen het Koninkrijk der Nederlanden. Nederland ligt voor
het overgrote deel in het noordwesten van Europa, aan de Noordzee. Naast het Europese deel zijn
er nog de drie bijzondere gemeenten in de Caribische Zee, die ook wel Caribisch Nederland worden
genoemd. Europees Nederland wordt in het zuiden begrensd door Belgié, langs de oostgrens door
Duitsland en aan west- en noordzijde door de zee. De hoofdstad van Nederland is Amsterdam, de
regeringszetel is Den Haag. Ruim 19% van het oppervlak bestaat uit water en een groot deel van
het land en de bevolking bevindt zich onder zeeniveau. Het land wordt beschermd tegen het water
door middel van een systeem van dijken en waterwerken. Door landwinning zijn polders gecreéerd.
Bestuurlijk is het land verdeeld in twaalf provincies en circa 350 gemeenten. Nederland werd
onafhankelijk tijdens de Tachtigjarige Oorlog, waarin de gezamenlijke Noordelijke en Zuidelijke
Nederlanden tegen de Spaanse overheersing in opstand kwamen. In 1579 vormden de Noordelijke
Nederlanden de Unie van Utrecht, waarmee een nieuwe politieke entiteit ontstond. Met de Acte
van Verlatinghe van 1581 werd door de gewesten van die unie de onafhankelijkheid van de
Republiek der Zeven Verenigde Nederlanden uitgeroepen. Deze werd vanaf 1609 bij het begin van
het Twaalfjarig Bestand internationaal erkend en na de Vrede van Miinster ook door Spanje. Vanaf
de Franse tijd ontwikkelde Nederland zich tot een natiestaat. De Nederlandse vorst regeerde anno
1815 ook over het huidige Belgié¢ en Luxemburg, evenals een aantal overzeese gebieden (Nederlands-
Indi¢, Suriname en de Nederlandse Antillen). Belgié¢ werd echter onafhankelijk na de Belgische
Revolutie in 1830 en Luxemburg maakte zich in 1890 los van de Nederlandse Kroon. De
dekolonisatie maakte in de 20e eeuw ook een einde aan de Nederlandse kolonién. Behalve de drie
Caribische bijzondere gemeenten onderhouden ook de eilanden Aruba, Curagao en Sint Maarten
een hechte band met Nederland: deze vier landen vormen sinds 2010 samen het Koninkrijk der
Nederlanden. Politiek is Nederland sinds de grondwetsherziening van 1848 een parlementaire
democratie met een constitutionele monarchie, een staatsvorm waarbij de macht volgens de regels
gedeeld wordt door de koning(in), de ministers onder wie de minister-president en de twee kamers
van het parlement. Nederland was medeoprichter van onder meer de Europese Unie, de G-10, de
NAVO, de Wereldhandelsorganisatie en de OESO. Met Belgié¢ en Luxemburg vormt het de Benelux.
Den Haag speelt een belangrijke internationale rol op juridisch gebied, als locatie voor vier
internationale tribunalen en Europol. In 2009 behoorde Nederland als 's werelds zevende economie
naar bbp per hoofd van de bevolking tot de meest ontwikkelde landen. Het bezette in 2013 de vierde
plaats in de index van de menselijke ontwikkeling. De Nederlandse economie steunt vooral op een
zeer hoog ontwikkelde land- en tuinbouwsector, de dienstensector en de internationale handel, met
name op de doorvoer van goederen naar Duitsland. Leiden is een stad en gemeente in het
noordwesten van de Nederlandse provincie Zuid-Holland. De Oude Rijn stroomt door Leiden
voordat deze — even verderop — in zee uitmondt. Leiden is het centrum van een agglomeratie en



stadsgewest met onder meer Katwijk. Leiden staat bekend als studentenstad; het heeft de oudste
universiteit van Nederland. Daarnaast is het een toeristische trekpleister, dankzij landelijk bekende
musea en de oude binnenstad met grachten, monumentale bouwwerken en hofjes. De bijnaam luidt
de Sleutelstad, verwijzend naar de sleutels in het stadswapen. Het historische centrum wordt
gevormd door de Burcht van Leiden, een motteburcht op de samenvloeiing van twee armen van de
Rijn. Rond de Burcht ligt een omvangrijke grachtengordel, in totaal zijn er 83 bruggen binnen de
singel. De Leidse Loper is een wandeling langs 24 historische bezienswaardigheden in de binnenstad
van Leiden. Twee van de voornaamste civiele bouwwerken bevinden zich aan de Breestraat: het
Stadhuis, gesierd door de breedste renaissancegevel van Nederland, en het Gemeenlandshuis van
Rijnland, dat lange tijd het hoogheemraadschap van Rijnland huisvestte. Weer andere bouwwerken
getuigen van de nijverheids- en handelsgeschiedenis van de stad, zoals de Waag, de Koornbrug en
enkele tientallen monumentale wevershuisjes. Eén wevershuis is als museum van binnen te
bezichtigen. Ook de universiteit heeft in de voorbije eeuwen een zichtbare stempel op de binnenstad
gedrukt. Noemenswaardig zijn het Academiegebouw aan het Rapenburg, met daarachter de Leidse
hortus botanicus en het bezoekerscentrum van de Oude Sterrewacht, en het Kamerlingh Onnes
Gebouw van de rechtenfaculteit aan het Steenschuur. Leiden telt twee universiteiten en een
hogeschool. De Universiteit Leiden werd opgericht in 1575 en is daarmee de oudste universiteit van
Nederland. De universiteit heeft zeven faculteiten en meer dan 24.000 studenten. Het hart van de
universiteit is het Academiegebouw aan het Rapenburg. De Universiteit Leiden beschikt verder
onder meer over een eigen botanische tuin, een eigen observatorium en een eigen
universiteitsbibliotheek. Sinds 1983 heeft ook de Amerikaanse Webster University een vestiging in
Leiden. De Hogeschool Leiden is een hbo-instelling met ruim 9000 studenten gevestigd in het Leiden
Bio Science Park. In dit Bio Science Park bevinden =zich vestigingen van verschillende
kennisinstituten, tezamen met een aantal biotechnologische bedrijven.”

93Text 3: nrc.nl article

Text 3 is a recent article published on nrc.nl with the title “Stel dat de zee opens twee meter
stijgt” [74].

“Als de zeespiegel na 2050 sneller stijgt dan verwacht, wat moet Nederland dan doen? Er zijn
drie opties, blijkt uit allerlei plannen. Het land beschermen, zoals nu, een offensieve aanpak, of de
economie oostwaarts verleggen. Lang is gedacht dat de stijging van de zeespiegel aan het einde van
deze eeuw echt niet meer dan een meter zou bedragen. Maar stel dat het toch meer wordt, misschien
twee meter? Han Meyer: ,Hoe lang kun je de Nieuwe Waterweg dan blijven uitdiepen om tankers
met fossiele brandstoffen naar binnen te laten? Hoe lang hou je dat vol, als door die uitdieping het
gevaar van overstromingen door extreem hoog water en het binnendringen van zout water steeds
ernstiger wordt?” Han Meyer is voormalig hoogleraar stedenbouw aan de TU Delft en de
belangrijkste auteur van een intrigerend voorstel: een pleidooi om de Nieuwe Waterweg,
honderdvijftig jaar geleden aangelegd, ondieper te maken en het water van Rijn en Maas grotendeels
een andere kant op te sturen. Dan stroomt niet langer bijna twee derde van het rivierwater via de
Nieuwe Waterweg naar zee, maar via het Haringvliet. De sluizen in de dam daar zouden dan alleen
bij extreem hoog water worden gesloten. Als er tegelijk sprake is van een stormvloed en veel afvoer
van rivierwater, zou het water kunnen worden opgevangen in het Haringvliet en het Volkerak, de
Grevelingen en de Oosterschelde. Betekent dat het einde van de Europoort? ,In plaats van een
monofunctionele vaarweg kan de Nieuwe Waterweg een multifunctionele riviermonding worden,



met ruimte voor zowel op de toekomst gerichte havenontwikkeling als voor meer
natuurontwikkeling, meer veiligheid, minder zoutindringing en bijzondere stedelijke milieus”, aldus
het rapport dat mede is opgesteld door Ark Natuurontwikkeling in samenwerking met het Wereld
Natuur Fonds.Meyer zegt: ,,De Rotterdamse haven bestaat voor een groot deel uit opslag, overslag
en verwerking van fossiele brandstoffen. Moet je dat tot in lengte van dagen in stand houden? Tk
zou zeggen van niet. Je kunt bovendien niet blijvend grote tankers diep het land in laten varen.
Dat is net zoiets als snelwegen aanleggen die tot diep in de stad reiken. Dat moet je niet doen. Laat
alle grote schepen buiten de kust aanmeren, zoals nu op de Maasvlakte gebeurt. Ook andere
havensteden zoals Hamburg, Londen en Shanghai gaan die richting op.” Meyers pleidooi is een van
de dertien meer of minder uitgewerkte ideeén die worden bestudeerd door deskundigen van het
Kennisprogramma Zeespiegelstijging om te kijken of ze nadere uitwerking verdienen. Dit
programma werd anderhalf jaar geleden ingesteld door minister Cora van Nieuwenhuizen
(Infrastructuur en Waterstaat, VVD) en Deltacommissaris Peter Glas, de regeringscommissaris die
onder andere moet zorgen voor de bescherming tegen het water. Er kwamen steeds meer signalen
dat de zeespiegelstijging misschien niet beperkt blijft tot één meter, maar vanaf 2050 kan versnellen,
bijvoorbeeld door het smelten van landijs op Antarctica. ,,De huidige strategie van Nederland is de
kust op z’n plaats te houden door zandsuppleties, en in de zeearmen houden we de zee buiten de
deur met dammen en stormvloedkeringen”, legt Jos van Alphen uit, nauw betrokken bij het
Kennisprogramma. ,Maar wat doe je als de zeespiegel maar blijft stijgen? Dan moet je steeds vaker
de stormvloedkeringen sluiten. En waar laat je dan al het rivierwater, dat natuurlijk gewoon door
blijft stromen? ”Er =zijn veel meer plannen om de zeespiegelstijging het hoofd te bieden.
Kennisinstituut Deltares heeft de afgelopen jaren maar liefst honderdtachtig plannen verzameld.
»Het is belangrijk dat Nederland zich verder voorbereidt op de zeespiegelstijging, ook op een
mogelijke sterke versnelling. De verschillende plannen geven inspiratie”, stelt Marjolijn Haasnoot,
wetenschapper klimaatadaptatie en water bij de Universiteit Utrecht en kennisinstituut Deltares.
Er zijn grosso modo drie manieren om met deze mogelijke stijging om te gaan, blijkt uit de dertien
plannen die nu nader worden beoordeeld. De eerste manier: het huidige vasteland blijven
beschermen, met aanpassingen aan het waterbeheer. Hiertoe behoort het idee van Meyer. En ook
de ,denkrichting” van twintig onderzoekers van Wageningen University & Research: veel meer
ruimte voor de rivieren, vooral voor de IJssel, inkrimping van de landbouw, en veel meer water in
en rondom groene steden. Een tweede strategie is de offensieve, zeewaarts gerichte aanpak. Hiertoe
behoren plannen om land voor de Hollandse en Zeeuwse kust aan te winnen, of het maken van een
nieuwe kustlijn met daartussen ruimte voor waterberging. Ook het idee van oceanograaf Sjoerd
Groeskamp van het Koninklijk Nederlands Instituut voor Onderzoek der Zee, past hierbij. Hij stelt
voor om zowat heel Noordwest-Europa te beschermen door een dijk te bouwen tussen Frankrijk en

Engeland, en tussen Schotland en Noorwegen.”

9.4 Media speakers
id Speaker Sex YouTube link

Mark Rutte https://www.youtube.com/watch?v=uE7MT8-2tT0
Harry Potter luisterboek https://www.youtube.com/watch?v=mgVdWD6OFis
Marieke Lips
NOS op 3

Arjen Lubach

https://www.youtube.com/watch?v=qrbprOOLEa8
https://www.youtube.com/watch?7v=C0qCe8ZzQII
https://www.youtube.com/watch?7v=yFYxBhMiQWw
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Gerrit Hiemstra https://www.youtube.com/watch?v=33RqwsCFtyg
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Annechien Steenhuizen
YOUSSEF EL JEBLI
Sterre Leufkens

Koning Willem-Alexander
De Eetclub luisterboek
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Michael Pilarczyk

Eric Scherder

Daphne de Baat

Bettina Reitz-Joosse
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https://www.youtube.com/watch?v=HUwX9QkHP08
https://www.youtube.com/watch?v=sXsgYjvzP6 A
https://www.youtube.com/watch?v=nKAqeS8BOWo
https://www.youtube.com/watch?v=SWLyu_F35W4
https://www.youtube.com/watch?v=RC7TOWRzaUeQ
https://www.youtube.com/watch?v=uHzqn4_vyLg
https://www.youtube.com/watch?v=ztZzcx5v-XE
https://www.youtube.com/watch?v=ybZN1x3Qylk
https://www.youtube.com/watch?v=6RpWFBgTHZU
https://www.youtube.com/watch?v=AYtXJsd-vQQ8



