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Abstract

Retrieving images based on content is increasingly becoming more useful due to the volume of
images available and the absence of human labour to correctly label these images. The alternative
is to use image descriptor that describe attributes, such as shape, color and texture, and these low
level features perform reasonably well. A user submits a query image to the database, the image is
described using the image descriptor and it returns the images that are most similar to the given
image. Unfortunately, the low level features are prone to noise and often include information that
is not useful. To mitigate this, a semantic segmentation step has been proposed in the retrieval
pipeline. Mask Region-based Convolutional Neural Network (Mask R-CNN) is used to semantically
extract subregions from a query image, from which we extract Local Binary Patterns (LBP),
Histograms of Oriented Gradients (HOG), color and Scale Invariant Feature Transform (SIFT)
features. We compare the retrieved results against an unsegmented query image using the Mean
Average Precision (mAP). We show that the retrieval performance of scale and rotation invariant
features (RGB histograms, HOG, SIFT), is improved by using segmentation and that performance
for features that are not invariant (LBP, COLTEX) is decreased when using segmentation.
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1 Introduction

In the past two decades, storing and searching images in online databases has become a part of
daily life. When a user wants to search for images, different methods are used to efficiently and
accurately retrieve a collection of relevant images. Such methods include things as entering keywords
to compare with annotations or keywords of each image and returning the images that have the
most overlap. This has progressively become a more difficult and expensive way to search, due to
the amount of images available and the human labour of describing each image.
A solution is to search for images not based on annotations, but by a query image, where a user
gives an image to a database and it will return the images that are most similar to the query image
through the use of a similarity measure, such as Euclidean, Manhattan and Square Chi-squared[1].
Many Content Based Image Retrieval (CBIR) systems have been proposed with earlier systems
indexing images based on single attributes[2] to indexing using features extracted by complex
neural networks[3]. Since images are composed of objects, many have proposed that using semantic
segmentation could improve the retrieval performance of an image descriptor by allowing the
extraction method to focus on the objects itself.
One type of image descriptors that could benefit from such segmentation is the low level image
descriptor. These features are computationally very efficient at describing an image and are more
general than higher level features. The downside to this, is that with images that contain differ-
ent objects of varying size and shape, they often include noisy information around the objects of
interest. Segmentation would solve this weakness and should produce a more robust image descriptor.

Over the years, many segmentation methods have been proposed[4]. One way that has become more
prevalent over the years is to use machine learning to determine where the Region of Interest (ROI)
of an image are. Fully Convolutional Networks or FCN[5][6] use multiple layers of convolution to
preprocess an image before it is inputted to the classifying neural network. This allows for varying
sizes of input to be fed to the network. which is not possible with standard CNNs. These FCNs have
proven to perform well on standard segmentation datasets[7][8], such as PASCAL and ImageNet.
In this research we will propose an image retrieval pipeline that uses a FCN to semantically segment
the image before extracting features. We then compare these to the features of non-segmented
images using mAP to show that segmentation does improve retrieval accuracy. For the segmentation
we will use FCN based network, Mask R-CNN[9], which can accurately segment objects in general
images. Our assumption is that semantic segmentation will improve retrieval accuracy for low
level image descriptor, such as color and texture histograms. We will compare five different image
descriptor: Local Binary Patterns[10], RGB color histograms, HSV color histograms[11], Histogram
of Oriented Gradients[12] and Scale Invariant Feature Transforms[13] and compare retrieval results
using the mAP score between a pass where the query image is segmented before feature extraction
and a pass where no segmentation is done.
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2 Definitions

Acronyms

CBIR Content Based Image Retrieval. 1, 4, 5, 20, Glossary: CBIR

HOG Histograms of Oriented Gradients. 2, 8, 9, 15, 16, 19, Glossary: Histograms of Oriented
Gradients

LBP Local Binary Patterns. 2, 7, 9, 10, 15–17, 19, 20, Glossary: Local Binary Patterns

mAP Mean Average Precision. 1, 2, 12, 16, 17, 19, 20, Glossary: Mean Average Precision

Mask R-CNN Mask Region-based Convolutional Neural Network. 1, 2, 5, 6, 10, Glossary: Mask
Region-based Convolutional Neural Network

MS COCO Microsoft Common Objects in Context. 10, 15, 19, Glossary: Microsoft Common
Objects in Context

ROI Region of Interest. 1, 6–10, 15, Glossary: Region of Interest

SIFT Scale Invariant Feature Transform. 2, 9, 10, 16, 17, 19, 20, Glossary: Histograms of Oriented
Gradients

Glossary

CBIR A Content Based Image Retrieval (CBIR) is a method of retrieving images from a database
using the image properties instead of external information, such as user annotations. 1

COLTEX COLTEX is an image descriptor that calculates the distribution of the relationship
between hue and intensity with three relational matrices.. 2, 8, 9, 15, 16, 19, 20

Histograms of Oriented Gradients Histograms of Oriented Gradients is an image descriptor
to describe the structure or shape of an image by extracting the gradient and orientations of
the edges.. 2

image descriptor An image or feature descriptor is a value that describes the content of an image.
Descriptors can be calculated from different aspects of an image and allows for comparisons
between images.. 1, 2, 4, 5, 7–10, 15–17, 19, 20

keypoint A keyoint is a spatial location in an image that defines a point of interest.. 9

Local Binary Patterns Local Binary Patterns is an image descriptor that describes textural
features of an image, using pixel neighbours to calculate the distribution of intensity changes
over an image.. 2
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Mask Region-based Convolutional Neural Network A Region-based Convolutional Neural
Network that in addition to classifying objects in an image, also produces bounding boxes
and masks for each classified object.. 2

Mean Average Precision Mean Average Precision is an evaluation metric used in computer
vision tasks. It is a single value score of the average of Average Precision.. 2

Microsoft Common Objects in Context MS COCO is a large image dataset used for detection,
keypoint, segmentation and retrieval tasks. It contains 80 object classes and has annotations
for each image in its dataset.. 10

precision Precision measures the ratio of relevant images over retrieved images.. 11

recall Recall measures the ratio of relevant images over all images that were retrieved. 11

Region of Interest Regions of interest are regions of an image that contain key features.. 1
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3 Related Works

Intüıtively, segmenting an image into smaller sub-images and feeding those sub-images to the
database should retrieve more accurate results than not. Guo et al.[14] shows an outline of such
an image retrieval pipeline using segmentation, as well as providing the possible benefits of using
segmentation. These benefits include such things as computational efficiency and an improvement
in accuracy by removing background noise. It also outlines some possible weaknesses of using
segmentation in retrieval tasks.
The use of segmentation in CBIR systems is almost as old as the introduction of the system itself.
Williams et al. 1998[15] introduces an algorithm for segmenting color images into homogeneous
regions and extracting low level features from them.
More recent research has focused more on the feature extraction methods that introduce some
form of segmentation. For example, using the global distribution of color to segment the image
(Borah et al., 2005)[16] and extracting size and shape histograms has been tested against standard
image descriptors such as color chromaticity moments[17] and have retrieved more accurate images
compared to the unsegmented image descriptor.
The combination of low level features to describe image segments[18], produced better results than
other existing methods, especially for occluded images. This seems to suggest that low level features
do indeed benefit from semantic segmentation. Yuvaraj et al.[19] uses color histograms and residual
values which segments the input images and extracts features from those segments before indexing
them in the database.
These methods unfortunately require that special modifications be made to the feature extraction
algorithm that makes use of the segments. This makes a direct comparison between the retrieval
performance of an unsegmented image against the retrieval performance of a segmented image,
something that this paper aims to answer.

Recent methods in the semantic segmentation of images have focused on using deep neural networks.
Since these networks are typically trained on large amounts of labeled training data[20][21], there
are unsupervised models that use pretrained networks to extract mid-level deep features for
segmentation prediction[22], or clustering based on convolutional features[23]. The downside to
unsupervised models is that these models come at the cost of accuracy[24]. Girschik et al. proposed
a supervised pre-trained CNN that extracts features from a set number of category-independent
region proposals[25] and then predicts bounding box values. An improvement on this R-CNN has
achieved 66% accuracy on PASCAL VOC 2012 with faster computation[26]. These Region based
CNNs perform well on datasets with a wide variety of classes and are able to extract many instances
from an image.
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4 Methodology

Our goal is to show that low level feature extraction on segments will improve retrieval results
compared to retrieval on full images. To show this we will choose a number of image descriptors,
retrieve images using an arbitrary query image and its segmented image and compare the retrieved
images against each other. Figure 1 shows the image retrieval pipeline of an image that is to be
segmented as well as unsegmented. It generally consists of six steps:

1. The query image that is given to the CBIR system

2. Segmentation and preprocessing.

3. Feature Extraction on image segments.

4. Feature Comparison.

5. Image Ranking.

6. Image Retrieval.

In this chapter, we will briefly go over the components of the image retrieval pipeline.

Figure 1: Flow chart of the image retrieval pipeline

4.1 Segmentation

For this research, we have chosen for Mask R-CNN in our segmentation process, which is an
extension to Faster R-CNN[27] that introduces an object mask prediction branch along with Faster
R-CNN’s bounding box recognition branch. This particular method was chosen for its performance
in handling instance segmentation. Instance segmentation, on top of identifying semantically what
objects are present in an image, can also identify the object outlines of each instance of that object
at a pixel level as Figure 2 illustrates. For this research, this means that features can be extracted
from each object instance, rather than object regions, which allows for effective denoising.
We use Matterport’s implementation[28] of Mask R-CNN, which consists of 3 parts:
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Figure 2: Mask R-CNN framework

1. Feature Extraction Network, which consists of a ResNet101[29] CNN to extract low and
higher level features into a feature map. A Feature Pyramid Network (FPN)[30] is used in
addition to pass features from higher down to lower layers.

2. This feature map is then fed to the Region Proposal Network (RPN). The RPN scans the
feature map for ROIs, or anchors. For each anchor, RPN gives the class of the anchor (either
foreground or background) and the bounding box refinement. At the end the top anchors are
chosen as the final ROIs.

3. Finally, the generated ROIs are then classified through a deep CNN which classifies the
specific object classes of each region. Masks are also generated in this step from the ROIs.

These masks can then be used to extract specific objects from the image for feature extraction, as
shown in Figure 3.

Figure 3: Example of the ROI masks obtained from the MRCNN.

4.2 Segmented Images

Using the obtained masks from the Mask R-CNN, we can effectively isolate objects within an
image and feed it to the extraction algorithm. Since different extraction algorithms require different
preprocessing, we will use two ways to segment the query image:

1. Using the bounding boxes to crop the image into a MxN subimage.

2. Using the roi masks to extract the object from the query image and use padding to isolate it.

Figure 4 shows an example of the segmentation preprocessing. Which preprocessing is used will be
discussed below.
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(a) The original un-
segmented query.

(b) The cropped sub images us-
ing bounding boxes.

(c) The extracted subimages using Mask
R-CNN rois.

Figure 4: Example of segmentation preprocessing for the different feature extraction methods.

4.3 Feature Extraction

Images are commonly described using color, shape, texture, keypoints and there are many methods
to obtain descriptors for these attributes. We will focus on five descriptors that describe these
attributes and give a short overview of each.

4.3.1 Local Binary Patterns

LBP[10] are used to detect intensity changes over an image and is frequently used to detect textural
features. It does this by calculating the LBP value of a pixel by comparing the intensity of its N
neighbours with itself. The intensity value is obtained from the gray-scaled pixel. From this we
obtain a bit string B for pixel P , where the binary value at the i-th position is:

Bi =

{
0, if intensity(P ) < intensity(Ni)

1, otherwise

The neighbourhood does not have to be adjacent and its size is variable, thus the parameters for
LBP are:

• P points in a circular symmetric neighbourhood around the current pixel.

• Radius R, that denotes the distance at which to sample from.

We will use LBP uniformity to obtain our desired histogram image descriptor. We consider an LBP
value to be uniform if the bit string contains at most two 0-1 or 1-0 transitions. From this we can
calculate a histogram where each bin is one bit string that is uniform, which will be P + 1 uniform
patterns. The last bin that is added is all nonuniform values, thus our final image descriptor for
LBP is a histogram of size P + 2. The advantages of uniformity are that the number of bins in the
histogram is significantly reduced, P + 2 over 2P , and that it is rotation invariant.
For the segmented image, we will use the generated masks to discard pixels that are not part of the
ROI.

4.3.2 RGB Histograms

Color histograms are commonly used as image descriptor due to their fast calculation. We will use
a simple color histogram to describe the RGB color distribution of an image. To generalize the
distribution, we will use a bin size of N . Generated masks by the segmenting stage are used to
discard pixels outside of the ROIs.
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4.3.3 COLTEX

Instead of the traditional RGB values, the Hue, Saturation and Intensity (HSI or HSV) color space
is also commonly used to represent the colors of an image. One of the advantages over RGB is that
the intensity is separated from color information. COLTEX[31] is an extraction method that uses
the hue and intensity information together to capture the color distribution and texture content.
Between hue and intensity, the dominant component can be determined using a hard threshold.[11]
in saturation. COLTEX then calculates the weights of the true color (hue dominance) and true gray
(intensity dominance) to capture the distribution in relation to the current pixel. These relations
are stored in three NxN matrices:

• Diagonal, pixels to the bottom right

• Vertical, pixels to the bottom

• Horizontal, pixels to the right

where N = N1 +N2 and:

N1 =
2π

QH

+ 1 (1)

N2 =
255

QI

+ 1 (2)

The parameters for COLTEX areQH andQI , the quantization levels of hue and intensity, respectively.
Our final image descriptor is the flattened diagonal, vertical and horizontal matrices of size 3N2.
For the segmented image we use the bounding box to crop the object to obtain a MxN sub image,
which will be fed to the COLTEX algorithm.

4.3.4 Histograms of Oriented Gradients

To detect shape features we will use HOG[12]. HOG features are able to detect the structure in an
image by extracting the gradient and orientation of each edge.
The image is first divided into cells, a region of NxN pixels. For each ell, the gradients of each pixel
is calculated in the horizontal and vertical direction, resulting in two NxN sized matrices. Using
these matrices, we can calculate the magnitude and orientation of each pixel. Local histograms are
then generated from the magnitude and orientation for each cell. Since each cell is evenly sized, the
input image size must be divisible by NxN . To do this, the image is first resized to MxM where
N |M .
For better invariance in lighting, the orientation histograms of each cell are concatenated with
the surrounding cell histograms into blocks and then normalized using the root of sum squares,
resulting in the normalized histogram for a block of cells.
All blocks are then concatenated, which produces the final HOG image descriptor. The input
parameters for the HOG algorithm are K the number of bins of the orientation histogram, the
number of pixels NxN per cell and cells HxH per block.
Lastly, for the segmented image, we will extract the ROI from the input image using the masks
obtained from the segmentation step. This provides us with a list of segmented object images.
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4.3.5 Scale Invariant Feature Transforms

Lastly, SIFT[13] is used to extract distinct keypoints from an image that are scale and rotation
invariant. There are four major stages:

1. Scale space extrema detection. Using different scales or octaves of the input image and
Gaussian blurring to find potential keypoints. In each octave the image is increasingly blurred.
Each adjacent image is then subtracted to generate the Difference of Gaussians (DOG). To
obtain a potential keypoint, each pixel in the image is compared to its 8 neighbours and to
the 9 pixels in the next and previous scale. If the pixel is a local extrema then it is a keypoint.
Because differing scale levels are used in the detection step, the resulting keypoints are scale
invariant.

2. Keypoint Localization, by eliminating keypoints that have low contrast or lie along an
edge, we can reduce the large amount of keypoints produced in step 1.

3. Orientation assignment. Rotation invariance is achieved by assigning a consistent orienta-
tion to each keypoint, to which the descriptor can be represented relative to this orientation.
For each keypoint, the gradient magnitude and orientation is computed. These are then
collected into an orientation histogram and the peaks within 80% of the highest peak are
selected to create a keypoint with that orientation. Thus we end with multiple orientations
for the same location and scale.

4. Descriptor generation is done from the obtained location, scale and orientation of each
keypoint. A 16x16 window around the keypoint is sampled around the keypoint and divided
into 4x4 subregions. Then 8 bin orientation histograms are created for each 4x4 subregion.
These orientation histograms are then concatenated to obtain the final 4x4x8 = 128 element
feature vector for each keypoint.
Lastly to reduce the effects of illumination, the values in the descriptor are thresholded to be
no larger than 0.2, after which the resulting normalized feature vector is our image descriptor
for a keypoint.

For the feature extraction of the segmented image, we extract the ROI using the segmentation
masks and run the SIFT algorithm on that extracted image.
Since an image can have an arbitrary number of keypoints, it makes direct comparisons between
two SIFT descriptors not as direct as the other descriptors. This will be discussed in the next
section.

4.4 Feature Comparison and Ranking

To determine for images X, Y, Z if X is more similar to Y than Z we will compare the image
descriptor of X against both Y and Z. Since LBP, RGB histograms, COLTEX and HOG image
descriptors are a single 1D feature vector, we the Euclidean Distance distance function to assign a
score to an image in relation to X. For two feature vectors P and Q of size N :

d(P,Q) =

√√√√ N∑
i=0

(Qi − Pi)2 (3)
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Then if d(X, Y ) < d(X,Z), we can conclude that image Y is more similar to X than Z. In this
research we extract features from the unsegmented images to index our feature database. Then
we compare the image descriptors of both systems with the image descriptors in the database to
obtain the distance score for each image in the database.
Unfortunately, for SIFT, the shape of the image descriptor is Nx128, where N is the number of
keypoints in the image. Since N is variable, we cannot directly compare two SIFT descriptors using
the distance function above.
Instead, we compare each keypoint, a 1D vector, in X against each keypoint in Y and Z, using the
distance function above. To determine if a match between two keypoints is good, we will apply the
ratio test to the match. If the distance ratio is less than the threshold, we will accept the match.
Lowe[13] suggests using a threshold of 0.75. Using the ratio test, we can count the number of correct
matches between X and Y and between X and Z.
This is then the final score for each image in relation to X. We can then conclude that X is more
similar to Y than Z when |matches(X,Z)| < |matches(X, Y )|.

In all cases, each image in the database is assigned a distance score, where lower scores denote
a higher similarity to the query image. The image database is then sorted in ascending order to
obtain our ranked results. Figure 7 shows an example of retrieved results using the LBP image
descriptor. We retrieve a subset of the image database to evaluate the performance of the system.

4.5 Dataset

Many image datasets are available for both segmentation and retrieval tasks. For this research, we
wanted to measure the performance of the image descriptors on a wide variety of images. These had
to contain multiple different objects of varying sizes, shape and colors. Datasets such as COREL
dataset contains 10,800 images of 80 different classes or COIL100, which contains 100 different
classes with varying angles, were considered. However, we have ultimately chosen for the Microsoft
Common Objects in Context (MS COCO) dataset[21]. The MS COCO dataset consist of over
200,000 annotated images, with 80 different object classes. MS COCO provides an annotation file
that provides the labels of each object in an image, provides the ROI and corresponding bounding
box coordinates and easily allows for the cross referencing of classes. MS COCO also is used
in a wide range of computer vision tasks, such as object detection, keypoint detection, image
segmentation and retrieval tasks.
Lastly, although the segmentation algorithm, Mask R-CNN, that we use in the segmentation step
can segment arbitrary images, because Mask R-CNN is trained on this dataset, we can limit the
noise that poor segmentation can produce, which will lead to a more pure comparison between
unsegmented and segmented images.

4.6 Performance Evaluation

For a query image, we will do two passes, unsegmented and segmented, through the image retrieval
pipeline as shown in Figure 1, where the unsegmented image will skip the segmentation step. Each
pass will result in a list of N images sorted by relevance to the query image.
We will use binary classification in our evaluation of the retrieved images. If the retrieved image
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contains a class that is also in the query class, then we consider the retrieved image to be correct.
Let Ci be the set of classes for image i. For query image P and retrieved image Q, Q is relevant if:

|CP ∩ CQ| > 0 (4)

Using this classification, we can calculate the TP and FP = N − TP . To determine if the
segmentation improves the image retrieval performance for a feature extraction method, we
calculate the precision and recall for both segmented and unsegmented passes. The precision is
calculated as follows:

P =
TP

TP + FP
(5)

And recall:

R =
TP

N
(6)

For each retrieved image, we calculate the precision and recall until we retrieve N images. Since
the precision tends to decrease as recall increases, we can represent the precision as a function of
recall. This can then be plotted to obtain a Precision-Recall curve as seen in Figure 8.
Through interpolation, we can calculate the precision at an 11-step recall interval, ranging from 0.0
to 1.0. The interpolation is done by searching for the highest precision to the right of the recall
interval. Figure 5b shows the interpolated PR curve for one pass.

(a) PR curve for LBP. (b) Interpolation of the PR curve

Figure 5: Example of the Precision-Recall curve for LBP and its interpolated curve.

To directly compare the unsegmented and segmented retrieval results, we calculate the average
precision (AP) for a system by first calculating the precision and recall for each retrieved image,
as Figure 6 illustrates. For the first N retrieved images and m relevant images, the AP is then
calculated as follows.

AP =
1

m

N∑
i=1

P (k)xrel(k) (7)
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Figure 6: Example of precision and recall calculation per retrieved image. To obtain the average
precision for a query, we calculate the mean of precision where a relevant image is returned.

where P (k) is the precision value at the kth retrieved image and

rel(k) =

{
1, if kthimage is relevant (see eq 4)

0, otherwise

The average of APs over Q queries is called the mAP, a score between 0.0 and 1.0, and it gives us
a single value to compare an unsegmented system with a segmented system, where a score of 1.0
denotes a system that only retrieves relevant images.

4.7 Statistical Analysis

For the unsegmented system U and segmented system S, in order to show that an improvement of
S over U is significant, we will use the statistical significance test.
Our null hypothesis (H0, in all feature comparisons, is that U and S are equal in terms of retrieval
performance. Since we calculated the average precision for each step until N , we can compare the
single valued AP of U and S at each retrieval step i and assign a sign to it:

Signi =

{
+, if mAP (Ui) < mAP (Si)

−, otherwise

Then our finalized null hypothesis will be:

H0 : Pr(+) = Pr(−) = 0.5 (8)

Under the assumption that the null hypothesis is true, there is a probability of 0.5 that the sign is
either + or −. Thus, we use a binomial probability with a p = 0.5:

Pr(x, p, n) =
n!

x!(n− x)!
(p)x(1− p)n−x (9)

Pr(x, n) =
n!

x!(n− x)!
(
1

2
)n (10)
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We want to calculate the probability of observing i or more positives. Thus, our final probability
function is :

Pr(x, i) =
x∑

n=i

n!

x!(n− x)!
(
1

2
)n (11)

Where i is the number of positives and x the total number of signs.
If the probability is lower than our significance threshold or alpha value, then we can reject H0 and
conclude that the improvement is indeed significant. For our alpha value, we will choose a value of
0.5.
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(a) The query image that con-
tains several person classes.

(b) The first 5 retrieved images using LBP on the unsegmented query image.

(c) The first 5 retrieved images using LBP on the segmented query and combining the distances of each
segment.

Figure 7: Example of retrieved results using LBP. The labels above the images show the classes
and occurrences in the image.
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5 Experiments

In this chapter, we will give the parameters used in each image descriptor, as discussed in the
previous chapter. As explained in chapter 4.6, we will do multiple passes through the unsegmented
and segmented systems, using arbitrary images from the MS COCO validation dataset. It consists
of 5000 images and contains 80 classes. 200 queries were done on both systems and each pass
returned the first 1000 images from the ranked image list.

5.1 Local Binary Patterns

For LBP, we use a 24 sampling points in a radius of 3 to calculate the LBP of our image. From
this we obtain a 26 bin histogram.
In the segmented system, we isolate the objects using the ROI masks obtained and feed the
individual sub images to LBP. The images are also gray scaled, since LBP only calculates intensity
differences. Lastly, Euclidean distance was used as the distance metric to rank the image database,
as described in section4.4.

5.2 RGB Histograms

We choose a bin size of 15 for the number of bins of the RGB histogram. This gives us a 45 element
feature vector, 15 for each color channel. The segmented system will include the masks in the
histogram calculation. This will discard pixels that fall outside of the masks. The 45 element feature
vector is compared against the image database using Euclidean distance to retrieve a ranked list of
images.

5.3 COLTEX

As discussed in section 4.3.3, the input parameters for COLTEX are the quantizations of the hue
and intensity. The COLTEX paper suggests that a quantization hue of 4 and quantization intensity
of 4 produces better early performance then other suggested levels. Thus our inputs are also 4 and
4 for the hue and intensity, respectively. Using function 1 and 2, the COLTEX algorithm gives us a
feature vector of size 13872. Euclidean distance is used to score each image by comparing the 13872
element feature vectors.

5.4 Histogram of Oriented Gradients

Since HOG uses uniform sized blocks to generate the orientation histograms and our dataset
contains different sized images, we resize each image to 256x256, use a cell size of 16x16 and a
block size of 2x2. For an image of size 256x256, 255 blocks of size 16x16 will fill the image. With a
orientation histogram size of 9, each 16x16 block contains a 4x9 = 36 element feature vector, thus
our final HOG is a 8100 element feature vector. This vector is compared to the HOG vectors in the
image database using Euclidean distance.
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5.5 Scale Invariant Feature Tranforms

The last image descriptor has n number of layers per octave used in the keypoint detection step. The
SIFT paper suggest using a layer number of 3, which is shown to obtain the highest repeatability,
thus we will also use 3 as our number of layers.
We use the modified distance function for SIFT to retrieve similar images as described in section
4.4. Our threshold to determine whether a match is rejected will be 0.75.

5.6 Precision-Recall Curves

We averaged the PR curves for 200 queries for each system, as shown in Figure 8 and compared
the precision value for each recall level in table 1. For the COLTEX image descriptor, we see a
clear domination of the unsegmented system. This indicates that segmentation, in the case of
COLTEX, does not improve the retrieval performance and instead is detrimental to it. In all image
descriptors, the unsegmented system has a better retrieval performance at recall 0.0, which suggests
more relevant images were found at higher ranks than the segmented system. However in all image
descriptors, excluding COLTEX, we observe that there is a definitive threshold where the segmented
system outperforms its unsegmented counterpart. For RGB, HOG and SIFT, this is at a very early
recall of 0.1, after which there is a parallel-like descent difference between both systems. Overall,
unsegmented LBP consistently has the highest precision across all recall levels, compared to other
image descriptors.

LBP RGB COLTEX HOG SIFT
Recall U S U S U S U S U S

0.0 0.657 0.601 0.583 0.582 0.608 0.584 0.488 0.427 0.594 0.585
0.1 0.431 0.412 0.394 0.403 0.389 0.365 0.329 0.336 0.373 0.387
0.2 0.406 0.396 0.380 0.392 0.372 0.357 0.326 0.331 0.365 0.378
0.3 0.392 0.389 0.374 0.386 0.365 0.352 0.324 0.329 0.362 0.375
0.4 0.384 0.384 0.370 0.381 0.360 0.346 0.323 0.327 0.360 0.373
0.5 0.379 0.380 0.368 0.378 0.357 0.343 0.321 0.326 0.359 0.372
0.6 0.375 0.376 0.365 0.375 0.354 0.340 0.320 0.325 0.358 0.371
0.7 0.371 0.373 0.363 0.373 0.351 0.338 0.320 0.324 0.357 0.370
0.8 0.367 0.369 0.360 0.370 0.349 0.335 0.319 0.323 0.356 0.369
0.9 0.364 0.366 0.358 0.368 0.347 0.334 0.318 0.322 0.355 0.368
1.0 0.361 0.363 0.355 0.364 0.344 0.331 0.318 0.322 0.353 0.365

Table 1: Precision values of each image descriptor at an 11-step Recall interval. These are the mean
interpolated precision values over 200 queries with 1000 retrieved images per query. A higher value
denotes a higher retrieval accuracy at a particular Recall level. The colored cells indicate the Recall
threshold at which the segmented system performs better than the unsegmented system.

5.7 Mean Average Precision

Finally, we calculate the AP for each pass and average the score to obtain our final single-valued
mAP score for an image descriptor. Table 2 shows these scores for both the segmented and
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unsegmented system. We observe from these results that three out of five image descriptor show an
improvement using segmentation. The difference in most cases is small, to the third decimal place,
with the only exception being SIFT, at a mAP of 37.6%, which showed a positive difference of 1.3%.
Overall, based on the mAP score, unsegmented LBP had the best retrieval performance of 39.1%.

Image Descriptor Unsegmented mAP Segmented mAP Difference

LBP 0.391 0.387 0.004
RGB 0.354 0.363 +0.009

COLTEX 0.365 0.350 -0.015
HOG 0.324 0.329 +0.005
SIFT 0.363 0.376 +0.013

Table 2: Mean mAP scores over 200 queries

5.8 Significance

We will briefly report the significance result for each image descriptor where the mAP of the
segmented system is higher than the unsegmented system.. Our null hypothesis for each image
descriptor is that both systems are equivalent, as discussed in section 4.7 and we will reject this
hypothesis if the p-value is less than the alpha-level of 0.05. Table 3 shows the number of queries
where the segmented system achieved a higher AP score than the unsegmented system. These
values, with the sample size of 200, are used to calculate the p-values.

Image Descriptor Number of +

LBP 88
RGB 111

COLTEX 74
HOG 97
SIFT 131

Table 3: Sign Test results of each image descriptor. The results show the number of queries where
the mAP of the segmented system was higher. All image descriptor systems were run with 200
queries.

• RGB histograms showed a difference of +0.009 and a p-value of 0.068. We cannot refute the
hypothesis and therefore a +0.009 increase is not significant.

• HOG showed a +0.005 mAP difference and had a p-value of 0.689. Thus, the segmented
system is not significantly better than the unsegmented system.

• SIFT had a difference of +0.013 and a p-value of 0.000006. We can then conclude that the
segmenting is significantly better than not.
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(a) LBP (b) RGB Histograms

(c) COLTEX (d) HOG

(e) SIFT

Figure 8: Averaged PR curves for each feature extraction method over 200 queries.
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6 Discussion

Our aim in this research was to find if segmentation overall improves image retrieval by using low
level image descriptors, such as color, shape, and texture. We used mAP scores for the five image
descriptors to show that segmentation for LBP and COLTEX were outright a detriment to the
retrieval performance. RGB, HOG and SIFT, on the other hand, showed improvements, however
during the significance test, we found that the improvements of the RGB and HOG segmented
system were insignificant. The SIFT image descriptor is the only feature that significantly benefits
from a segmentation step in the retrieval pipeline.
We observed in all cases, as table 1 shows, that, between recall 0.0 and 0.1, the unsegmented system
always outperforms the segmented system, which indicates that more relevant images were retrieved
at higher ranks. Especially in the case of LBP and HOG, we see that the unsegmented system
performed 5.6% and 6.1% better at recall 0.0. After that, from recall 0.1 to 1.0, we observe that
both systems follow each other in parallel. The exception to this trend is LBP, where the segmented
system starts to outperform at recall 0.5.
The results also show that segmentation improves the retrieval performance for non-textural features
when the recall is higher than 10%. This means that the segmented systems tend to retrieve more
relevant images at later ranks. LBP at recall 0.5 to 1.0 seems to perform equally, with a difference
of at most 2%. SIFT, out of all tested image descriptors, benefits the most from segmentation,
with a 3.5% increase in mAP score and it consistently has a better precision at recall 0.1 to 1.0. In
terms of overall performance, table 2 shows that unsegmented LBP has the best average retrieval
performance on the MS COCO dataset, with a mAP of 39.1%. The segmented system that has the
highest retrieval accuracy is LBP, with a mAP of 38.7%.
One of the potential benefits of segmentation is the ability to remove unwanted information before
feature extraction. However, it may also produce some invariance, where depending on the feature,
the extracted feature does not generalize well enough to describe a general image. Segments could
also be too small to extract features from. In the case of LBP and COLTEX, both are not scale
invariant and perform poorly when textures are scaled differently, whereas RGB, HOG and SIFT
are scale invariant and, as we have showed, perform better when segmentation is used. Thus we
conclude that features, such as RGB, HOG and SIFT, that are more invariant to transform changes
are better suited for segmentation.
Some limitations of this research are the use of a diverse image dataset. Since MS COCO contains
a wide variety of object classes in varying shapes, sizes and textures, some image descriptor are not
suitable for such a task. The ranking score could be negatively impacted by the inclusion of objects
that are too small to extract any meaningful features from and thus, more incorrect images could
be returned. This skews the score since the objects are evenly weighted. In this case, it was the
textural features that were most affected by the lack of similar textured images. Another limitation
was that it was not always possible to fully discard noisy information from the feature extraction
method. This was true in the case of COLTEX, where we input the bounding box sub-image
into the algorithm. In spite of these limitations, we have removed as many factors as possible to
conclude that the segmentation step in the image retrieval pipeline does not improve the retrieval
performance of low level features. Further research could be done on the types of image descriptor.
Such as if there is a difference between local and global image descriptor when using segmentation.
This could show that features like SIFT perform better in all circumstances using segmentation
than global features like LBP. The comparison between unsegmented and segmented retrievals
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using an unsegmented and segmented database, respectively, can also be further researched. Since
this research only focused on the retrieval performance of a feature database that is indexed using
unsegmented features, further research could index the database using segmented based features
and the performance against our results.

7 Conclusion

This research aimed to show whether segmentation in a CBIR system would improve retrieval
performance using low level image descriptor. The results showed that based on the mAP score,
segmentation does not improve retrieval accuracy of LBP and COLTEX, where they had a mAP of
39.1% and 36.5% for the unsegmented system, compared to 38.7% and 35.0% for the segmented
one. SIFT showed the most improvement using segmentation, with a mAP of 37.6%, over the
unsegmented mAP of 36.3%. This was a significant increase of 3.5%. We concluded that segmentation
benefits invariant features and decreases performance of features that are not.
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