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Abstract

The maritime transport sector plays a pivotal role in globalisation and economic growth.
Within the European Union (EU), member-states collaborate to promote the compliance with
adequate ship conduct by inspectorate entities. Depending on ship type, more or less stringent
regulations apply. However, due to the number of vessels operating within European waters,
these manual inspections cannot be performed on every ship.

Our goal is to help bridge the gap between the inspectorate domain and currently available
data science techniques. Individual ship compliance can be assessed in terms of the expected
behaviour of its type. This allows for the automatic detection of non-standard behaviour,
which could alert inspectors to an increased risk. Such alerts can help the inspectors prioritize
inspections of ships with an increased perceived risk to maximize the pragmatism of the
limited amount of manual inspection.

Concretely, we aim to capture the underlying structure of maritime transit in a net-
work. This, in turn, generates new insights into ship behaviour and applications within the
inspectorate domain. We do so by modelling ship behaviour in a network-based approach.

For this purpose we: (1) generate a network representing ship trajectories within the
EU; (2) construct a set of network-based ship features; and (3) model each ship type in a
supervised-learning manner based on the constructed features. By achieving adequate AUC
performance for ship type models, we validate our approach. Through model analysis, insights
such as port relevance towards ship type are attained.
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1 Background

Transit of goods across international waters is of paramount importance. Within the European
Union, the maritime shipping sector alone accounts for roughly 75% of all international trades
conducted [1]. These transactions are heavily regulated to minimise the health and environmental
risks associated with ship transportation. The large number of companies within the shipping sector
makes for an extremely competitive market. Furthermore, compliance with ship regulations usually
involves additional costs to these companies. Therefore, there is economic incentive for companies
to disregard the regulation guidelines set.

The Netherlands is the largest maritime transport hub in Europe [2], serving as both entry and
an exit point to intercontinental exchange of goods. This is exacerbated by Rotterdam’s status as
the second largest bunker fuel port in the world [3]. Here, in the Netherlands, the body responsible
for enforcing such regulations is the “Inspectie Leefomgeving en Transport” (ILT) [4]. One of the
purposes of the inspectors of the ILT is to perform regular manual inspections of ships within
ports. The current inspection candidate selection method by the inspectors is based solely on their
domain knowledge, following a risk assessment system described in the Paris Memorandum of
Understanding on Port State Control (Paris MoU) [5].

Manually assessing the compliance of all ships pertaining to every company at each port is
infeasible. The methods used by inspectors are not suited to adequately address the current volume
of ships. Additionally, there is a disparity between the availability of data-driven approaches and
their application within the inspectorate domain. An example of this disparity is the limited amount
of data used by the Paris MoU.

We propose using Network Analysis (NA) to extract graph measures which describe characteristics
of ports visited. Similar NA techniques have previously been used for identifying celebrities in
social media platforms [6][7]. A common approach for such a task is looking for nodes (persons)
within the network, which had a high number of edges (interactions) with other nodes. We propose
using similar measures for encoding ports within ship trajectories, such as centrality. There is little
consensus over when to use the term “network” vs the term “graph” and since both are almost
interchangeable, we will use the network terminology in this thesis since this has been a common
approach when talking about data related to transportation.

Centrality allows us to estimate the importance of a node within the network. Using such
centrality measures for encoding the ports visited by a ship provides context to the ports visited
by this ship. An example of this is the difference between visiting an international harbour or a
small fishing village. More precisely, the ports mentioned above will have greatly differing graph
measures.

The data available in this research contains information regarding which ports are visited per
ship, from which port they set out, and the duration of this trajectory. This allows us to create a
network of ports (nodes) and trajectories (edges) between them. The network can then be used to
extract graph measures for the nodes. In addition to such node based graph measures, trajectory
duration is also encoded based on a comparison to trajectories in the network. As a consequence
this helps to distinguish between ship behaviour based on operating speed.

The data, collected by the ILT, spans more than half a decade, so a subset of trajectories within
the first year are chosen to be used to create a network. We choose to call this “normal” behaviour
since it leaves out extreme values for trajectory duration and covers an entire year to account for
seasonal changes. In this thesis we will refer to the network describing this “normal” behaviour as
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the Maritime Movement Network (MMN).
Supervised machine learning is used in a OneVsRest approach to train and test a model to

distinguish between ship types (e.g. container, bulk carrier, etc) based on a feature set partially
extracted from the MMN containing node centrality, trajectory duration, and other features. A
disadvantage of creating the MMN is that data used for its creation can not be be used for training
nor testing purposes without leaking data to the classifier. We verify the performance of the model
is adequate using stratified cross-validation. If the models performance is deemed adequate, any
misclassification would mean its behaviour differs significantly from the observed general behaviour
of that ship type. Any such misclassifications could automatically alert inspectors to an increased
risk.

In this thesis we will present the following contributions:

1. Introduce a graph representation for ship trajectories

2. Define features for ship trajectories based on graph measures

3. Apply a supervised machine learning approach to model ship types based on the constructed
features

The structure of this thesis is as follows: Section 2 will focus on the previous uses of NA within
the domain, and other research concerning ship type classification. In Section 3 the graph measures
are defined. Section 4 describes the data used. Section 5 describes the experimental setup in detail.
Section 6 refers to the results of the experiments. Lastly Section 8 concludes our work and gives
direction for future work.

2 Related Work

In this section will discuss the use of NA and other techniques used to model ship types.

2.1 Network Analysis

NA has been used to characterize a cargo ship network [8]. It was noted that there are three main
subdivisions to be made between the types of ships namely: oil tankers, bulk carriers, and container
ships. Each of these ship types has different characteristics such as speed or time spend unloading.

The main conclusion that could be drawn was that globally the cargo ship network tended to
have large average clustering and that the strength, degree of nodes, as well as the weight of edges
had broad distributions. Degree in this work is defined as the number of edges connected to a node
and strength is defined as the combined weighted in- out, degree. the clustering coefficient can be
interpreted as a measure of the completeness of the graph [8]. The latter characteristics regarding
weight, degree and strength are very useful.

Recall that the goal of this thesis is to use Machine learning to model ship types based on this
kind of data. More possible splits based on feature values allow for a split that minimizes the
combined entropy [9]. Since broad distributions allow for more possible splits based on the feature
values, these broad distributions are a very useful characteristic for features used in the machine
learning.
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It should be noted this study was on data from around the world instead of the fine-grained
data in our study. This thesis covers a data set with 2̃000 distinct ports in Europe compared
to 1̃000 distinct ports worldwide in the study [8] . The study has made useful general analyses,
characterizing the network as a distribution network. This is suggested by the asymmetrical weight
of the directed edges between the ports, compared to a transportation network where ships make
round trajectories. Therefor a directed network is needed to fully represent ship behaviour.

2.2 Ship type modeling

Sheng et al. [10] and Kraus et al. [11] have focused on the geographical trajectories of ships to model
ship type instead of the network-based approach as proposed by this paper. These trajectories
are based on detailed AIS (Automatic Identification system) data which includes GPS position,
orientation, speed, etc. One can easily see the potential of this data. However this is also its valency,
the sheer size, since every boat will send messages every two to ten seconds, and other messages
every six minutes or so. Thus besides the modeling of ship types, the main problem solved by these
papers is the compression of AIS data while preserving and extracting distinguishing features.

The first of such papers focused on modeling fishing ships and cargo ships based on AIS ship
trajectories [10]. Ship trajectories are subdivided into three movement patterns: anchored, straight
sailing and turning. This was done by a proposed basic movement algorithm. From these movement
patterns five features describe general movements such as stops and sailing distance. Another six
features concerning turning behaviour, were introduced and five features describing sailing speed.
Lastly main travel direction discretized by the eight cardinal directions. The logistic regression
algorithm used in this paper had a AUC performance of 0.963. Within this classification speed is of
huge importance and turning behaviour was important to a lesser extend. Most misclassifications
by this model could be contributed to specific ship behaviour such as ocean-going fishing vessels in
transit or cargo ships loading or unloading.

Kraus et al. [11] implemented similar features for their classification model. A major difference
between both studies is that the turning features could not be implemented due to lack of AIS
coverage in the German Bight.

To compensate a new set of features was introduced based on geographical location. The
implementation of these features was done by dividing their research area into grids which were
optimised for entropy based on class distribution.

This model was able to differentiate between five different ship types. An important conclusion
is that ship dimensions are of major importance when differentiating between tankers and cargo
ships. This is a result of both ship types having common routes as well as similar speeds.

The need for another, more global, ship type classifier is shown in the study [11]. The lack of
AIS data, due to coverage issues, made it impossible to implement some of the features proposed in
the study [10].

3 Definitions

This section is intended to provide a brief overview of the terminology used for graphs and additional
terminology of the graph measures.

3



3.1 Graph

A graph G is defined as G = (V,E), where V is the set of n vertices, E is a set of m edges, between
the vertices in V with two attributes: weight and estimation of geographical distance.

The collection of edges within the graph consists of two vertices u, v where there are weight and
distance associated with that edge of the form (u, v, w, g). A node in our graph will be a port and
an edge will consist of instances of trips between two ports. The associated geographical distance
g(u, v) is estimated using the travel times between vertices u, v and weight w(u, v) are the number
of ships travelling between u, v.

3.2 Graph measures

Given a graph G, node centrality can be calculated in multiple ways. The node centrality measures
used to assess node importance.

The expression for betweenness centrality of a node u is:

B(u) =
∑

s 6=u6=t

|σst(u)|
|σst|

(1)

Here σst is the set of shortest paths from vertex s to vertex t and σst(u) the subset of those shortest
paths that pass vertex u. These shortest paths are calculated using Dijkstra’s weighted algorithm
with an estimation of geographic distance using travel time as the weight [12].

The weighted inward closeness centrality for a node u is

C(u) =
n− 1∑n−1

v=1 g(v, u)
(2)

Lastly we use the strength which is the weighted combined, in and out- degree of vertices. Which is
defined as:

weighted degree in(u) =
n∑

v=1

w(v, u) (3)

weighted degree out(u) =
n∑

v=1

w(u, v) (4)

The resulting strength of vertex u is thus:

S(u) = weighted degree in(u) + weighted degree out(u) (5)

4 Data sets

Different data sets have been collected by the ILT in the past six years. Two different, related,
data sets are used in this paper. First the portcall data set, which contains all trajectories made by
ships within Europe. A subset of these will be used for creating the MMN. The trajectories not
included in the MMN wil be used for training and testing of the machine learning model discussed
in Section 5.4. Secondly a port data set which contains metadata about ports which will be used to
denote extra information about ports visited by a ship.
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Figure 1: Relative frequency (%) of missingness per relevant column in trajectories

4.1 Trajectory

A row in the data set consists of 48 columns, which can be observed in appendix A Table 5. For
this research, we define a ship trajectory by its unique ship identifier, the travel time of the voyage,
and previous and destination port.

4.1.1 Missing data

Figure 1 is meant as an indication of missing values, for variables that could be used as alternatives
for edge and node attributes.

The column annotating the length of a ship, misses around 40% of values. This is quite troublesome
given the conclusion of related work that these dimensions are of great importance for distinguishing
tankers and cargo ships.

Another interesting column is the risk profile missing in around 8% of trajectories. There are a
total of 32 columns missing values, however all other columns miss less than 1% of their values One
of these is especially troublesome for the network approach:

• An unknown port in the previous port: This happens around in 0.85% of the total trajectories.

This limitation is a consequence of the method used to synthesize the data set. Since all ships will
have an unknown port of origin for their first trajectory in the data set, these trajectories will be
left out.

4.1.2 Non representative data

Although some columns do not have any missing values, they contain extreme values. In this thesis
we will use the term “non representative data” for these values, which we define as data that does
not accurately describe the behaviour of the ship, within the context of the network. One of these
is a non representative travel time and can be divided into three categories:

• Administrative errors
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• Unknown ship behaviour such as anchorage outside a port

• Ships that leave the scope of the data set and return at a later point

Lastly we have instances of ships that change ship type within the scope of the data set.

4.2 Ports

A port in the ports data set consists of 84 columns, which can be observed in appendix A Table 6.
These columns indicate the presence of facilities such as pubs, cranes and some more information
about the accessibility of the port. Furthermore, it also contains the coordinates of the port itself.

4.2.1 Missing data

Although the ports do not have missing values, this does not mean it all ports are included in the
data set. This is clear when comparing the number of unique ports in the portcall data set and the
number of ports in the port data set, respectfully 2000 ports vs a subset of 500 ports. This means
we do not have additional information for 75% of all ports. Consequently the detailed features will
only be used when visiting a port within the port data set.

4.2.2 Enrichment

Most data in the ports data set is industry-specific and additional data is not easily accessible, such
specific facilities or characteristics of ports. Therefor the enrichment of this data set will be limited
to adding the geographical coordinates to ports not included in the ports data set through API
calls to BING’s geo-locate services.

5 Methodology

In this section we will describe (A) the creation of the MMN (B) the ship features (C) the machine
learning model. Within Subsection 5.1 we will discuss the data used for the creation of the MMN
and the calculation of its attributes used for feature extraction. The Subsection 5.3 will discuss the
features used, their normalisation and present an example graph with corresponding features. In
the last Subsection 5.4 the ML model used is discussed. This will include the performance measure
used and creation of train and test sets. Figure 2 provides an oversight data processing, network
creation, graph measure calculation and feature extraction.

5.1 Maritime Movement Network

For the MMN creation a subset of the first year of trajectory data is chosen. Trajectories in this
subset are filtered out if they contain missing values in the previous port, in the travel time denoted
or if the ship changes registration within the data set. The later filtering regarding change in
registration introduces a bias since this happens mostly in a specific ship type namely the pleasure
yachts, however these are of minimal interest in this thesis since we focus mostly on commercial
shipping.
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Figure 2: Diagram of ship feature creation

The frequency of missingness can be regarded in Figure 1. However, this still leaves room for
variables such as travel time duration, that differ greatly from the median travel times. Therefor to
ensure accurate, representative, data, we use the subset of data to derive the MMN from the data
in Subsection 4.1.

This subset is then used to create a MMN between ports where trajectories are only included
when their travel time falls within the double Median Absolute Deviation (MAD) cutoff, see
Subsection 5.1.1. As a result 82.3% of the trajectories used for MMN creation are included in the
MMN.

These trajectories are used to calculate two edge attributes, the weight and distance. The weight
is the number of trajectories between two ports and the distance is the average of the travel times
that fall within the MAD cutoff. The resulting MMN includes all ship type trajectories within the
subset, with a travel time that falls within the MAD.

The use of MAD introduces a certain bias for estimated geographical distance due to class
imbalance between ship types. This bias results in a tendency to include more trajectories from
higher frequency ship types compared to lower frequency ship types.

An example of the resulting MMN can be seen in Figure 3.

5.1.1 MAD

The double MAD is able to handle the skewed distributions within trajectory duration. The method
is similar to other quantile measures, which are used to clean noisy data. However by using the
median instead of average it is robust against extreme values. A cutoff value of 1.5 was chosen since
it was observed, the results did not change significantly for different values. In the case where the
MAD is zero all trajectories are included.

5.2 Graph measures

Using the MMN, several previously described graph measures are calculated. The MMN, will have
a MAD range per trajectory, which will be used to determine the relative speed of ships in the
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Figure 3: A example of a Maritime Movement Network, with node centrality and an example of a
ship trajectory in dotted lines

training and testing data sets. Secondly, the node importance is calculated in three different ways
namely: betweenness, closeness and strength.

These node features are then discretized by means of equal frequency binning. The binning is
used to reduce the feature dimensions and allow for aggregation of port visiting behaviour. The
number of bins is chosen to be ten due to research showing that equal frequency binning with
an optimized amount of bins does not heavily influence the performance of supervised learning
approaches compared to using the standard of ten bins [13].

5.3 Ship features

After the MMN is created and all necessary ranges and bins are calculated, the following feature
types can be extracted for each ship in the training and test sets: exogenous features, where ship
behaviour is compared to the MMN and endogenous features, which can be extracted from the
data without comparison to the MMN.

5.3.1 Endogenous

• Number of visited ports with Oil

• Number of visited ports with Diesel

• Number of ports visited

• Number of unique ports visited
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It should be noted that the presence of oil and diesel is only known for a subset of around 25% of
all ports.

Other endogenous features are normalized by using the fraction of the value divided by the
number of total trajectories per ship.

• Number of travel times between 125-250 hours

• Number of travel times between 250-500 hours

• Number of travel times bigger than 500 hours

These features are intended to indicate whether a ship leaves the scope of the data set and relative
speed.

5.3.2 Exogenous

The following exogenous network features are created based on the MAD range calculated in the
network creation step described in Subsection 5.1. Lastly, a feature ”missing trajectory” is present,
which encodes trajectories that are not present in the MMN. Afterwards, these counts will be
normalized by using the fraction divided by the number of total trajectories per ship:

• Number of normal trajectories

• Number of fast trajectories

• Number of slow trajectories

• Number of missing trajectories

Other exogenous features are extracted from the previously calculated graph measures and
binned using the bins calculated in the MMN creation step described in Subsection 5.1. These are
normalized by using the fraction of the value divided by the total number of ports visited per ship.

• Strength of ports visited

• Inbetweeness Centrality of ports visited

• Closeness Centrality of ports visited

Lastly we have a more general feature describing the total strength of all ports visited per ship:

• Total strength of ports visited

Figure 3 contains multiple trajectories of a ship starting from node A ending in node B, the
exogenous features for this ship trajectory are denoted in Table 2

5.4 Machine learning

We will train a model to classify ships based on ship types using features extracted from the MMN.
The performances will be compared using ten folds of stratified cross-validation. We will consider a
classifier with decent performance if its performance is larger than or equal to 0.8 AUC, which we
will discuss further in Section 5.4.3.
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Feature description # features Origin
Port centrality 10 Exogenous

Port betweenness 10 Exogenous
Port strength 10 Exogenous

Unique port count 1 Endogenous
Total port count 1 Endogenous

Total port strength 1 Exogenous
Presence oil and diesel 2 Endogenous

trajectory duration 3 Endogenous
Relative trajectory duration 3 Exogenous

Missing trajectories 1 Exogenous

Table 1: Overview of features

feature value feature value
Pop1 0.16 Betw1 0.16
Pop2 0.33 Betw2 0.66
Pop3 0.33 Betw3 0.16
Pop4 0.16 Fast trajectory 0.2
Cent1 0.33 Normal trajectory 0.2
Cent2 0.16 Delayed trajectory 0.2
Cent3 0.16 Missing trajectory 0.4
Cent4 0.33

Total strength 80

Table 2: Exogenous feature set of the example ship trajectories with a reduced # bins

5.4.1 Training and test sets

All data excluding the subset used for MMN creation and data that is filtered out, is used as the
train and test set. This subset is then sorted by individual ships based on their unique identifier.
The sorted data is then split into training and test sets using stratified-K-fold using a K of ten.
Stratification is used to ensure the relative frequency of the ship type we try to model is the same
in each split [14]. This is done because of class imbalance between ship types.

5.4.2 Classifier

For classification a non-linear gradient boosted tree framework (XGB) [15] was chosen. XGB was
configured to use 100 decision trees with a max depth of three. This classifier was chosen due to
its robustness to unrelated features, and its scalability [16]. This is verified by its standing as a
state-of-art supervised machine learning approach [17].

5.4.3 Performance

Classification performance is measured as the Area Under the receiver operating characteristic
Curve (AUC) [18]. The performance measure ranges between 0.5 and 1, where the lowest value 0.5
relates to an uninformed classifier and 1 is a perfect classifier.
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6 Results

In this section we present the results of the experimental setups using the features extracted from
the MMN. Table 3 below shows the performance of the different models measured with AUC.

6.1 AUC

The AUC performance yielded by our experimental setup can be seen in Table 3. Mean and standard
deviation values for each ship type across folds can be regarded. Ship type names were aliased With
letters due to their length, referenced in appendix A Table 8.

Ship Type AUC N Ship Type AUC N

A 0.93± 0.01 5452 N 0.88± 0.02 2081
B 0.97± 0.02 236 O 0.98± 0.00 2291
C 0.80± 0.06 111 P 0.97± 0.01 864
D 0.86± 0.02 833 Q 0.89± 0.01 4117
E 0.84± 0.04 84 R 0.87± 0.06 70
F 0.98± 0.01 124 S 0.98± 0.02 62
G 0.93± 0.04 72 T 0.75± 0.14 57
H 0.93± 0.01 844 U 0.84± 0.01 2274
I 0.86± 0.02 838 V 0.97± 0.01 402
J 0.95± 0.02 452 W 0.92± 0.03 259
K 0.94± 0.01 936 X 0.97± 0.01 529
L 0.83± 0.08 170 Y 0.87± 0.01 617
M 0.93± 0.03 63

Table 3: AUC per ship type vs Rest, N being the number of instances in training and testing

6.2 Feature importance

The individual feature are shown per ship type classifier in Figure 4 as a heat map, where a cell
represents the feature importance per model. A lighter color indicates a larger reliance on that
feature in the model. Appendix A, table 4 contains the ship types corresponding to the indices
used in Figure 4

A notable trend within these features is the focus on endogenous node features. This indicates the
importance of endogenous features for ship types to differentiate between ship types. Observing the
general tendency to focus on one out of the four endogenous node features. A probable explanation
for this trend is the ability to differentiate between larger transit hubs and thus larger ships and
associated ship types, based on these endogenous node features. This explanation is based on the
bias for bigger ports concerning the oil and diesel presence, due to the lack of port in the ports
data set which can be observed in Subsection 4.2. A example of this is the importance of the oil
count for commercial and non-commercial pleasure yachts (B,I), which can be interpreted as a
feature excluding membership.
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Regarding the exogenous features, each ship type has an apparent preference for a specific
centrality bin. On closer inspections these contain ports related to that ship type. Another interesting
feature importance can be observed in the ship type Warship and naval auxiliary (M). This model
has a relatively high feature importance for trajectories not in the MMN. We interpret this as
distinctive behaviour of warships, which do not fall within the characterisation of a distribution
network. But share the characteristic of uncommon trajectories.

Lastly we can observe the use of the relative trajectory duration. These features contain the feature
delayed which has the highest importance overall for the Container ship type. The importance
of this feature, to that class, can be explained to due container ships having the second highest
frequency within the data. Therefore an interpretation of this feature is exclusion of membership to
container ship type based on speed.

Figure 4: Feature importance per ship type

7 Discussion

When comparing the results of the MMN based model with the previous model described by Sheng
et al. [10], a similar performance was achieved for 33% of ship types. However the number of ship
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types that are modeled is much larger than in previous model. With a minimum performance of the
NLS Tanker classifier of 0.75, the method proposed is widely applicable. This is further supported
by remaining performances ranging between 0.80 and 0.98. These results lead us to conclude that
the MMN model is comparable with state of the art models and could a supplemental role in the
prioritizing ship inspections by giving priority to ships which are misclassified by the model.

A problem encountered within the scope of this research was figuring out which travel duration
in the trajectories contained in the portcall data set were reliable. This was made difficult due to
administrative errors and unknown ship behaviour such as anchorage outside of ports. The method
used for extracting “reliable” travel duration was applying the robust MAD to the data. The MAD
method had some disadvantages such as the need for more than three instances of travel duration
to differentiate between them. Such limitations could be countered by using average speed instead
of travel duration, although this would require the distances between ports to be known.

The applicability of this approach is limited by some characteristics of the ship types themselves.
The main reason being, that the network approach mostly focuses on the trajectories, and thus
movement of a ship between ports. This leads to more specialised ship types having a lower
performance since they do not have common routes or ports. However they might share other
common characteristics such as time spend in ports which was not included as a feature.

Other difficulties encountered included the lack of metadata for 75% of ports. We were able to
synthesize extra information regarding the location of ports which were missing. But due to the
unavailability of other data regarding the ports such as accessibility and the tonnage of cranes
present, the decision was made not to include features based on these variables except for the oil
and diesel counts.

Lastly, the disadvantages of the MMN creation should be mentioned. First of all, the data used
to create the MMN cannot be used for training or testing without leaking information about the
target variable. Secondly the choice of what subset to use for MMN creation heavily influences
the performance of the classifier. This is due to the ship instances changing for example no longer
including certain trajectories. But also due to graph measures changing due to changes in trajectories
included in the MMN.

8 Conclusions and Future work

In this thesis we introduced (1) a graph based representation for ship trajectories, (2) a method for
extracting features for ship trajectories based on graph measures, and (3) showed the effectiveness
of these features for modelling ship types.

The method proposed in this thesis serves as an indication of its applicability to data describing
movement, and can hopefully be expanded upon for classifying different target variables. It has
been shown to be applicable to differentiate quite well between many different ship types. However,
as pointed out in the discussion it is still far from a gold standard.

The proposed model resulted in multiple decent models but was not enough to classify all ship
types. However, it does indicate the effectiveness of basic network analysis to classify certain
behaviour.

The advantages of this approach are: simplicity, widespread applicability, and extra information
concerning relations within the data. The use of these features is not limited to ship type models
but could form a base for risk identification based solely on ship trajectory and other historic
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behaviour. Thus one of the main advantages of the network-based approach is its flex ability to
different classification goals and interpret-ability of relations. These relations could otherwise not
be extrapolated by any machine learning approach, while being instinctively identified as relevant
by a human inspector.

Within network analysis the idea of a network describing behaviour is not a novel concept neither
is the idea of multi-network analysis to encode different interactions. However, it does not seem to
have been applied to transport networks for classifying actors within those networks.

Further research could focus on applicability of network based approaches to better account for
dynamic ship behaviour. Currently, risk assessment is done in a static way such that only current
values are taken into account for the risk profile of a ship. When relations between these static
variables can be defined, it could be used to analyse ship risk in a dynamic historical way. Thus,
using the same graph measures could improve upon the understanding of such as dynamic behaviour.
Such networks could include the changes of Flags of Convenience (FoC) or even ownership of a
ship by different shipping companies.

Alternatively, the MMN could include cargo capacity on edges as well as encoding time in port
distributions in node attributes. These additions would better capture differences between ship types
as ship types usually have differing cargo capacity as well as different time in port distributions.
Observing the ability of the model to identify ports indicative of different ship types, the usage of
the MMN to predict the flow of goods between is feasible. Such applications would increase insight
in the flows of goods within the EU and could help identify wrongly labelled cargo. Furthermore,
this could provide valuable insights for future infrastructure development based on the needs of
individual ports in relation to the maritime transport infrastructure as a whole.

In combination with new approaches to NA such as pattern mining, it is feasible to improve upon
the performance of the current model by identifying indicative movement patterns between ports.

Lastly, interest lies in real-time calculation and classification of ships to detect possible cases
of fraud as well as a method to find optimal subsets of data for MMN creation. However, for real
time calculation of these features, the network structure will have to be adjusted and more efficient
algorithms should be used to minimize the computation of any updates to the network and features.
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Ship type Ship type

Bulk carrier A Chemical tanker N
Commercial yacht B Container O

Dredger C Fishing vessel P
Gas carrier D General cargo/multipurpose Q

Government ship used for non-commercial purpose E Heavy load R
High speed passenger craft F Livestock carrier S

MODU / FPSO G NLS tanker T
Offshore supply H Oil tanker U

Other special activities I Passenger ship V
Pleasure yacht not engaged in trade J Refrigerated cargo W

Ro-Ro cargo K Ro-Ro passenger ship X
Special purpose ship L Tug Y

Warship and naval auxiliary M

Table 4: Ship type annex

Column Name Column Name Column Name

Port.Call.ID External.System.ID Sent.At
ETD LT ATD LT Is.Anchorage

Country.Code IMO.Number X.ATA..Ship.Name
X.ATA..Ship.Flag.Code X.ATA..Ship.Flag.Description ATA LT

X.ATA..Ship.Flag.Is.PMOU X.ATA..Ship.Gross.Tonnage Port.Location.Name
X.ATA..Ship.Keel.Laying.Date X.ATA..Ship.Length Port.Name

X.ATA..Ship.Type.Code X.ATA..Ship.Type.Description Time lag ATA h
X.ATA..Ship.Type.Is.High.Risk X.ATA..Ship.Status Previous country

X.ATA..Ship.Risk.Profile X.ATA..Ship.Priority Postponement.Status
X.ATA..Non.elegible.for.PSC ETA LT Time travel h

X.ATA..Non.elegible.for.PSC.Reason.Code Time lag Sent h Time lag Sent d
X.ATA..Non.elegible.for.PSC.Reason.Descriptions Is.Detained Previous port

Call.Role.In.Postponement Time travel d Time lag ATA d
Miss.Justification Miss.Reason Miss.Reason.Is.Expired
Time travel h rel Time in port h Time in port d

Miss.Status Return to same port

Table 5: Portcall column name annex
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Column Name Column Name Column Name Column Name Column Name

Join Count TARGET FID JOIN FID OBJECTID 1 INDEX NO
REGION NO PORT NAME COUNTRY LATITUDE LONGITUDE

LAT MIN LAT HEMI LONG DEG LONG MIN LONG HEMI
CHART HARBORSIZE HARBORTYPE SHELTER ENTRY TIDE

ENTRYSWELL ENTRY ICE ENTRYOTHER OVERHD LIM CHAN DEPTH
ANCH DEPTH CARGODEPTH OIL DEPTH TIDE RANGE MAX VESSEL
HOLDGROUND TURN BASIN PORTOFENTR US REP ETAMESSAGE
PILOT REQD PILOTAVAIL LOC ASSIST PILOTADVSD TUGSALVAGE
TUG ASSIST PRATIQUE SSCC CERT QUAR OTHER COMM PHONE
COMM FAX COMM RADIO COMM VHF COMM AIR COMM RAIL

CARGOWHARF CARGO ANCH CARGMDMOOR CARBCHMOOR CARICEMOOR
MED FACIL GARBAGE DEGAUSS DRTYBALLST CRANEFIXED

CRANEMOBIL CRANEFLOAT LIFT 100 LIFT50 100 LIFT 25 49
LIFT 0 24 LONGSHORE ELECTRICAL SERV STEAM NAV EQUIP

ELECREPAIR PROVISIONS WATER FUEL OIL DIESEL
ENG SUPPLY REPAIRCODE DRYDOCK RAILWAY Shape Length

Shape Area LAT DEG PUB DECKSUPPLY

Table 6: Port column name annex
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