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Abstract. We present neatures, a prototype computational art system
that demonstrates the potential of digitally evolving artificial organ-
issms for generating aesthetically pleasing artifacts. Insect-like hexapedal
agents act in a virtual environment which they can sense and manipulate
through painting. Their cognitive models are designed in accordance with
theory of situated cognition. Two experimental setups are investigated:
painting with a narrow- and wide perspective vision sensor. Populations
of agents are optimized for the aesthetic quality of their work using a
custom complexity-based fitness function that solely evaluates the ar-
tifact. Our results suggest that a wide-perspective vision may be more
suited for maximizing aesthetic fitness while narrow-perspective vision
induces more behavioral complexity and artifact diversity. We recognize
that both setups evolve distinct strategies with their own merits. We
further discuss our results and propose future directions for the current
approach.
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1 Introduction

Computational systems that produce artworks with high levels of autonomy have
always provoked discussion about the definition of art and creativity. Researchers
and artists working in the field of evolutionary and generative art cede control to
autonomous systems that produce artworks, often intending to eliminate human
intervention where possible [19]. Digital evolution is an established algorith-
mic process that has proven very capable of innovation [20]. In art and design,
appropriate implementation of this technique can aid the generation of novel,
valuable and surprising artifacts [5][3] that may be deemed creative by unbiased
observers [9]. It has also been essential in the field of artificial life (a-life) [28]
where researchers have been consistently surprised by creative solutions invented
by artificial organisms evolving in computational environments [29]. Naturally,
the process of digital evolution merely imitates life itself. The biological mecha-
nism of natural selection is known to find and cause inventive adaptations that
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enhance the survival and reproduction of organisms [17]. Consequently, these
may lead to the appearance of design without a designer [11]. Adaptations may
include changes in behavior. We aim our attention at a particular behavior in
some non-human organisms, namely the creation of artifacts.

Several species in the natural world are known to decorate and produce
structures that resemble visual art in the sense that they are intended to be
attractive to potential mates. This structure creation is an important behavioral
characteristic of male bower birds [13]. Bower-building plays an important role
in mate selection; features of the bower such as size and symmetry are found
to be accurate predictors of mating success [33]. Similar behavior is observed
in the male white-spotted pufferfish, which makes symmetrical patterns in the
shape of a circle as spawning nests on sandy bottoms to attract mates [34].
This evidence suggests that some animal species favor particular qualities in
artifacts. Interestingly, although the pufferfish’ behavior appears complex to a
human observer, further research provided evidence that it can be explained
by merely a set of simple rules [39]. Such findings are especially interesting to
researchers in evolutionary art and artificial life, who investigate what conditions
are necessary to build computational systems and artificial organisms capable of
expressing the same kind of creativity and open-ended behavior as observed in
nature [54] [36] Although humans are not the intended audience for the animal
structures mentioned above, the works arguably do possess perceptual features
that have been linked to human aesthetic predilections such as symmetry [1][42].
This suggests we may share some of the same conceptions of beauty as non-
human organisms due to selection pressures.

In this paper, we explore whether artificial organisms could adapt to simi-
lar, but digitally induced pressures as a consequence of constructing artifacts.
The following sections briefly discuss some challenges related to building such a
computational system.

1.1 Computational aesthetic evaluation

Early examples of evolutionary art include the highly influential work of Sims [49]
and Latham [56], who used genetic algorithms to mutate symbolic expressions
for the composition of unpredictable yet interesting visual shapes and patterns.
Both adopted a top-down approach that relies on human aesthetic judgment for
the evaluation of artifacts using an interactive genetic algorithm (IGA). This
technique facilitates easy exploration of large parameter spaces [52] but suffers
from significant limitations: (1) IGAs rely on human evaluation at every itera-
tion and so suffer from the fitness bottleneck [55], and (2) human fatigue and
inconsistency make it difficult to capture universal measures [52]. Attempts to
overcome these limitations have included massively multi-user systems [47] and
the application of machine learning to capture user preferences [38].

Challenges in IGA helped inspire the research field of computational aes-
thetic evaluation (CAE), where people seek computational solutions for the as-
sessment of human aesthetics [25]. Machado and Cardoso [31] created NEvAr,
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an autonomous system that evolves Sims’ symbolic expressions with an auto-
mated evaluation procedure for images that focuses exclusively on form. Here, a
speculative fitness function inspired by the study of information aesthetics [41]
was designed which favors images that are “simultaneously, visually complex
and that can be processed (by our brains) easily”. In the science of aesthetics,
NEvAr ’s fitness function indicates a formalist theory as it proposes aesthetic
experience relies on the intrinsic beauty of the artifact. In contrast, a conceptual
theory relies on other factors that may be more important for aesthetic prefer-
ence like socio-cultural contexts of the work and the previous experience of the
artists and observers [48]. In a more recent publication, Redies [43] proposes a
model of visual aesthetic experience that unifies these two theories.

Alternatively, some niche efforts to CAE adopt a bottom-up approach. In
creative ecosystems [35], a fitness function is undetermined at first and evolves
through the interaction of simulated agents over multiple generations. This
method has the potential to evolve an emergent aesthetic [16]. Although artifi-
cial ecosystems are found to evolve consistent aesthetics, they do not necessarily
appeal to humans and have not been observed to do so [19]. Ultimately, there
is currently no agreement on which paradigm offers the most effective computa-
tional framework of human aesthetics.

1.2 Embodiment

Most individuals in evolutionary art systems are composed of a direct map-
ping from genotype to phenotype, which does not allow for greater levels of
complexity to emerge as is the case in biology [18]. In creative ecosystems for
computational art, we find simulated creative processes as complex systems for
the synthesis of artifacts. Sometimes, these involve simulating one or multiple
embodied artificial agents, supplied with some form of limited cognition, situ-
ated in a virtual environment to which they respond [44]. The use of an en-
vironment potentially allows the system to demonstrate emergent behaviors of
greater complexity through the exploitation of dynamical hierarchies, even when
an individual’s underlying genetic encoding is of low dimensionality [36].

Theorists in situated cognition view the environment as highly significant to
driving human cognitive processes. Clark and Chalmers [8] suggest that the envi-
ronment directly influences an agent’s behaviors as part of a two-way interaction
between action and perception. Here, embodiment is key because it allows us to
manipulate it to our needs. Biological brains have evolved to take advantage of
the environment by offloading cognition to it through the body. Simultaneously,
our visual systems evolved to rely on it more. This perspective supports the
view of externalism, in which the cognitive process is considered something that
occurs in- and outside of the mind [8]. In this context, embodiment is key to the
creation of art and can be imagined as a feedback loop of action and perception
occurring through a body. Brinck [6] states that the production (and consump-
tion) of visual art can be accounted for by the theory of situated cognition [7]:
”Artist and canvas form a coupled system. Artistic practice starts with gaze,
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and then comes the gesture that accomplishes itself when the artist is in touch
with the piece [they are] working on.”[6]

Experiments in the use of embodied artificial organisms and situated cogni-
tion for computational art and creativity have largely been unexplored. Thus,
we present neatures: a prototype for an autonomous creative art system that
simulates artificial organisms capable of producing visual art in their environ-
ment.

2 Related work

There have been several interesting art and research projects involving the use of
embodied agents to create visual art. Jean Tinguely already experimented with
mechanical drawing machines in the 50s, exploring notions of automated artists
and artificial creative processes [14]. Influences to his work can be seen in the
field of swarm painting, which involves the simulation of agents supplied with
some form of cognition producing emergent artworks. Robotic Action Painter
[40] is an autonomous abstract art system based on behavioral studies of ants
and other social insects. An artwork is created employing several small wheeled
robots that leave colored lines (pheromone) as they travel. A color detection
sensor on each robot recognizes lines in the environment and triggers specified
behaviors for particular colors, a process analogous to stigmergy ; a form of self-
organization [15]. The result is a painting with chaotic structures that are free
from preconceptions and merely represent the actions themselves. McCormack
developed similar experiments using biological processes of niche construction to
enhance the diversity and variation of agents’ behaviors in the drawing system
[37].

Drawing machines that take a more anthropomorphic approach can be clas-
sified as robot painters. eDavid [12] is an industrial robot that simulates the
human painting process using a visual feedback loop to explore painterly ren-
dering on a real canvas. Explorations in expanding its artistic skill demonstrated
the possibility of expressing a given collection of images in a different style [57].
With neatures, we take inspiration from the flexibility of robot painters and
the emerging complexity of swarms to explore the effects of aesthetic selection
pressures in an evolutionary art system.

3 Implementation

Neatures 1 is a prototype computational visual art system that was developed
in an attempt to employ artificial organisms for the production of visual arti-
facts. The current implementation is heavily inspired by the seminal work of
Sims (1994), Evolving Virtual Creatures, in which a genetic algorithm was used

1 Neatures is open-source and available at https://github.com/lshoek/creative-evo-
simulator
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to guide the evolution of specific abilities such as locomotion and jumping. Nea-
tures’ artificial organisms ‘live’ in three-dimensional space and are subject to
physically plausible simulation. This is achieved using the Bullet physics engine
[10]. The software comprises of a controller server which stores the population
and commands the complete evolutionary process. A simulator client can connect
to a controller and receive queries for queued rollouts. This component features
a graphical user interface, allowing the user to observe the virtual organisms in
real-time. The following sections briefly cover the system implementation.

3.1 Agent morphology

Virtual organisms situated in physically plausible environments are subject to
strict laws of physics and, like real organisms, require an appropriate body to
fulfill their purpose. Designing such a body is a difficult task, and perhaps best
suited for an evolutionary process to solve. Sims [49] used a genotypic encoding
of nodes and connections for the morphology of his creatures, as well as genetic
operators, allowing for the evolution of morphology alongside control policy. In
this system, a genotypic encoding scheme is used to generate a hexapod at the
start of a simulation and remains fixed. The reason for this is that evolutionary
optimization of morphology dramatically increases the complexity of the search
landscape and is incompatible with fixed-topology neural network architectures.
Each element stores some information about their phenotypic transformations

Body Limb

Fig. 1: Agent morphology genotype (left) and phenotype (right).

such as size, attachment points, and node or joint type. A phenotype generation
algorithm recursively traverses the graph and builds a hierarchical structure
of boxes connected to each other by joints. Figure 1 depicts the morphology
encoding and phenotype of a hexapod. The algorithm in the current work was
implemented after Krčah’s example [27] with some alterations tailored to suit
this work’s purpose. One notable difference, for instance, is that we use a single
degree of freedom per joint for simplicity.

3.2 The sensorimotor loop

In every simulation rollout, agents are tasked to produce artifacts in their en-
vironment. For the current experiment, the author has decided to implement
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a drawing task, requiring additional functionality that extends previous work
related to virtual creatures. In neatures, each agent is equipped with a single
brush-type node capable of applying virtual ink drops to the canvas; a specified
surface area in the environment that the agent can sense and manipulate. Four
invisible walls are located at a specified distance from the canvas edges to pre-
vent agents from moving too far away from the center. Ink is only released under
the conditions that the brush node is in contact with the canvas, and the agent
has decided to activate it.

An agent’s decision-making process and behavior are determined by its con-
trol policy. This is defined by a neural controller that continuously accepts sen-
sory data as input, and based on this data, outputs a set of activation values.
Agents sense their environment through two types of sensors: (1) a propriocep-
tive sensor, implemented by tracking the current joint angles and storing these
in a ∈ IRj , where j is equal to the number of joints in the agent’s morphology
and (2) a vision sensor capturing a 64x64px grayscale bitmap representation of
the current canvas’ content. The data of both sensors is appended to form an ob-
servation to be fed to the neural controller at regular time intervals. The physics
engine and control policy are updated 60 and 20 times per second of simulated
time, respectively. Figure 2 presents the complete cognitive model of an agent.
The neural controller involves two cognitive modules; a vision model V for pro-
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Fig. 2: Cognitive model of an agent.

cessing visual data inside the incoming observation, and an action model C to
generate the agent’s next action. V is a convolutional variational autoencoder
(CVAE) that was pre-trained to compress the canvas data to a latent vector
z ∈ IR32. C is a simple linear model that takes as input a combination of latent
vector z, a joint angle vector, and a special stimulation value that will be further
clarified below. Compression of the visual data allows the action controller to be
kept small, which alleviates the credit assignment problem in difficult reinforce-
ment learning (RL) tasks and tends to iterate faster [21]. The output layer of C
uses a tanh activation function to output to produce a vector of effector values,
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including target joint angles used to update the motor parameters of the agent’s
joints and a value indicating the stroke width of the brush. Finally, a stimula-
tion output value connects to a central pattern generator (CPG) after which a
feedback connection to the corresponding action model input is made for the
next time the neural controller is queried [26]. This minimal recurrent network
structure is set up this way to evoke changing joint angle outputs. Without it,
the agent would cease to move in cases where its observations remain unchanged
over multiple frames and its body incidentally has zero momentum. Additionally,
as sensory input drives neural excitation, it grants C control over the agent’s
movement speed, which could bring about more interesting behaviors.

3.3 Neuroevolution

In this experiment, evolution is used to optimize virtual organisms by evaluating
the quality of their work, rather than the means by which it was achieved. This
may further reduce credit assignment accuracy of gradient-based numerical op-
timization algorithms as adaptations to the controller could have unanticipated
effects on the artifact fitness. Therefore, gradient-free methods such as evolution
strategies [46] might be more effective at solving this problem. Neuroevolution
methods have a long history of success with evolutionary robotics and have
recently increased in popularity as they have been found to perform consider-
ably well on deep RL tasks [51]. The author chose covariance matrix adaptation
evolution strategy (CMA-ES) [22] for the optimization of the action controller
parameters. Evidence shows that the algorithm performs relatively well on de-
ceptive landscapes or sparse-reward functions up to a couple of thousands of
parameters [24]. This project uses an open-source Python implementation of the
algorithm by Hansen [23].

4 Experiment

We carry out two experiments where an artificial organism is evolved by optimiz-
ing for the aesthetic quality of its artifacts. The artistic medium of expression
chosen for this task is painting. The main reason for this is that there exists a
multitude of interesting theories and evaluation techniques of visual human aes-
thetics—suitable for two-dimensional imagery—that could be pursued to design
an acceptable fitness function [18].

As stated in Section 3.1, we decided to exclude morphology from evolution-
ary optimization, meaning we must formulate an appropriate body design for
the current experiment ourselves. We take inspiration from behavioral robotics
research, where it has long been common practice to use biologically based robot
designs to study artificial organisms [2]. As a matter of course, the insect-like
hexapod was chosen for the current task. This design is a popular benchmark
that we suppose will allow for an adequate degree of flexibility required to ex-
plore the possibilities of the virtual environment. Figure 3 shows a screenshot of
the agent as it appears in the simulator client of the system.
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Fig. 3: A screenshot of neatures’ simulator module showing an agent finishing
its painting near the end of a rollout.

4.1 Setup

The following is a brief description of the realized experiments. In the first setup,
the agent is supplied with a wide-perspective vision sensor. This is defined as a
64x64px grayscale bitmap representation of the environment that is equal to the
size of the canvas. The orientation of this representation is at all times aligned
with the facing direction of the agent and centered around the point where it
last touched the canvas with its brush node. Figure 4a shows an example of how
the canvas is sensed with this perspective. The second setup supplies the agent
with a narrow-perspective vision sensor, encompassing 6,5% of the canvas area
as shown in Figure 4b.

The vision capabilities of the agent exist in a separate conceptual space from
the one it is situated in. Agents’ visual capabilities exist in artifact space, whereas
their neural controllers output actions in effector space. The former is a two-
dimensional representation of the environment, cultivated by the agent itself.
The latter relates to objects in the three-dimensional virtual environment. Other
than muscle memory (the action controller parameters), an agent has no other
capabilities of memorization. As a result, the environment is the only cognitive
resource to the agent by which an approximate model of situated cognition is
realized. The key idea to this experiment is that, under the given conditions, a
mapping between these two may be learned. If successful, the creature would be
able to produce an aesthetically pleasing artifact in artifact space by means of
its motor function in effector space.

4.2 Measuring aesthetic quality

After a rollout has ended, the resulting artifact is queued for fitness evaluation.
In our computational environment, the fitness function is a proxy for natural
selection pressures that cause the evolution of adaptations [17]. As outsiders
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(a) (b)

Fig. 4: Narrow-perspective (a) and wide-perspective vision (b). In each, the
image on the left shows the canvas as it appears in the environment with a
red square highlighting the perceived area. The image on the right shows a
representation of the visual information the agent receives.

to this virtual world, we can design this function externally, and observe what
behaviors emerge from evolutionary optimization. Taking inspiration from some
animal species’ mate selection indicators that are attributed to external artifacts,
we intentionally ignore any behavioral aspects of an agent’s existence. Our fitness
function is designed to evaluate images in accordance with speculative visual
aesthetic theory, essentially assuming the role of an art critic.

To measure the aesthetic quality of an artifact, we use a metric closely related
to Birkhoff’s [4] formalist aesthetic measure, defining the formula M = O/C,
where M is the aesthetic effectiveness, O is the degree of order and C is the
degree of complexity. Birkhoff theorizes that aesthetic response to an object is
stronger when the degree to which psychological effort is required to perceive
it—induced by its complex features—is met with a higher degree of tension
being released as the perception is realized—originating from orderly features
such as symmetry and self-similarity. This formula has been disputed early and
is generally regarded as inaccurate [58]. Scha & Bod [45], for instance, note that
it penalizes complexity too considerably and is better suited as a measure of the
degree of self-similarity. Galanter [18] however notes that at least two aspects
of Birkhoff’s work remain legitimate today, namely, the intuitive connection
between aesthetic value and order/complexity relationships, and the search for
a neurological base of aesthetic behavior. These aspects are reflected in the
fitness function of Machado & Cardoso [31], defined in Equation 1. We slightly
adjusted their approach to determining an artifact’s aesthetic reward. Taking
inspiration from information aesthetics [41], Machado & Cardoso speculate an
image’s intrinsic aesthetic value to be equal to the ratio of image complexity IC
to processing complexity PC.

rewardaesthetic =
IC

PC
(1)

PC is measured at two temporal instances (t0 and t1) in the time it takes
to perceive an image and provide Equation 2. The processing complexity is
maximized as PCt1 and PCt0 approach each other.
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PC = (PCt0PCt1)
a

(
PCt1 − PCt0

PCt1

)b

(2)

In order to find PCt0 and PCt1, we calculate the inverse of the root mean
square error (RMSE) between the original image i, and the same image after
fractal compression Fractal(i), as shown in Equation 3. Figure 5 shows a com-
parison between the two images.

PCtn =
1

RMSE(Fractal(i), i)
(3)

Fig. 5: Comparison between an artifact before (left) and after fractal compres-
sion (right). Magnified by 200%.

In a more recent work by Machado et al. [32], several complexity measures
were compared with human ratings of complexity across a selected set of images
in five distinct stylistic categories. Among the results of their feature extraction
experiments, their JPEG-Sobel method was found to correlate the most with
human ratings, especially those related to the abstract artistic category. We
calculate IC following this method as shown in Equation 4. First, the Sobel
[50] edge detection operator is applied to i horizontal and vertical directions,
after which the resulting gradients are averaged. Then, JPEG compression is
performed on the edges. In the dividend, size defines the total number of bytes
required to store the image data.

IC =
RMSE(Sobel(i), JPEG(Sobel(i)))

size(Sobel(i))size(JPEG(Sobel(i)))
(4)

Taylor et al. [53] note the fractal qualities of late-period action paintings
by Jackson Pollock and suggests their fractal dimensions are correlated with
their aesthetic qualities. Therefore, we decided to parameterize Equation 2 using
a = 0.6 and b = 0.3, increasing bias towards artifacts with more orderly features.
We argue that this suits the current experimental setup because of the generally
chaotic nature of agents’ behaviors, generating complex and incidental painting
patterns by default. With this adjustment, we intend to counter excessive levels
of image complexity in the artifacts.

In early experiments, we found that additional encouragement to act through
an easily attainable coverage reward could help agents to advance faster in early
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generations. This has the added benefit that it imposes a minimum specified
amount of content on the artifacts. Equation 5 defines rewardcoverage(x), where
x is the mean value of all normalized pixel intensities of the artifact and p is
the peak coverage rate. It is essentially a smooth interpolation between x and p,
ensuring a result of 1 when x = p.

rewardcoverage (x) = 1− sin

(
π

1
px+ 1

2

)4

(5)

with initial condition

x = min(x, p) (6)

In our experiments, we use p = 0.0625, meaning that the maximum coverage
reward is already reached when 6,25% of the canvas area is painted. Finally,
the total artifact fitness is calculated as defined in Equation 7. This shows the
aesthetic reward is proportional to the coverage reward until the peak reward p
is reached, thus penalizing paintings that have little content. Table 1 presents a
set of images and their fitness values.

fitness = 100 rewardcoverage + rewardaesthetic × rewardcoverage (7)

Table 1: A set of images and their fitness: (a) perfect symmetry, (b) an early-
generation artifact with little variability in stroke width, (c) an early-generation
artifact with high variability in stroke width, (d) Gaussian noise, (e) a contrast-
enhanced snippet of No. 26A: Black and White by Jackson Pollock (1948).

(a) (b) (c) (d) (e)

Fitness 101.2 116.2 145.9 399.5 871.5
Coverage 27.7% 15.5% 12.4% 18.2% 46.0%
IC 0.0697 0.4042 0.8046 44.269 48.443
PC 0.0561 0.0250 0.0175 0.0148 0.0063

We find these results to be satisfactory for our purposes. Although the fitness
function is arguably too generous on Gaussian noise (Table 1d), such an artifact
is practically impossible for an agent to produce. The Pollock-snippet (Table 1e)
is evaluated far more positively and represents a more plausible result for the
current setup.
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4.3 Training procedure

Before any control policies can be evolved, visual model V must be pre-trained
to discern between visual observations. First, 20,000 artifact samples (256x256
grayscale bitmaps) were collected in a preliminary run using an untrained visual
model V . Then, a new dataset was generated by applying random affine trans-
formations to each collected sample. This new dataset is more representative of
an agent’s visual observations. Finally, using the updated dataset, V was trained
to encode visual observations into latent vector z ∈ IR32 for 200 epochs. Two
examples of reconstructions of z on novel observations are presented in Figure 6.
We believe the reconstructions present superficial yet discernible features that
are adequate for the current task.

Fig. 6: Reconstructions of latent vector z on a typical narrow- (left) and wide-
perspective vision observation (right).

In our experiments, action controller C is trained with CMA-ES to maxi-
mize fitness. At the start of every evolution process, the weights of every C are
randomly initialized with µ = 0 and σ = 0.1. A population size of 32 is used,
where each candidate’s behavior is determined by their corresponding action
controller C, comprising 658 trainable parameters each. Every generation, one
rollout is performed per agent and results in 32 artifacts. A rollout is defined as
240 seconds of simulated time an agent spends in the environment. Evaluations
occur immediately after each rollout in a separate process. After all rollouts
and evaluations are finished, CMA-ES uses the collected fitness values to up-
date each candidate’s action controller parameters for the next generation. Both
experiments are performed using an evolutionary process of 350 generations.

Our training setup marks several notable limitations. Foremost, the experi-
ments are carried out separately on two mid-range laptops (i7-7700HQ/GTX1050
and i7-8750H/GTX1070), each running a single simulator client and controller
server at the same time. The most significant bottleneck comes from the frac-
tal compression procedure required for each artifact evaluation. In the current
setup, we simulate two populations of 32 candidates for 350 generations and
takes about 40 hours to complete. More reliable results could be collected by
increasing the population size and averaging fitness over multiple rollouts for
a more representative metric of the agent’s general painting strategy. This is
however outside of the scope of this research.
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5 Results

We present the fitness results of the narrow- and wide-perspective vision exper-
iments in Figure 7.

Fig. 7: Fitness statistics of the narrow-perspective vision (left) and wide-
perspective vision population (right).

In the general fitness statics of the experiments, we see that the narrow-
perspective population’s mean fitness starts with a steep positive trend and con-
verges towards a local optimum before the 50th generation. The wide-perspective
population’s mean fitness improves gradually up to around the 100th generation
before a local optimum is reached. We also see that the wide-perspective popu-
lation is generally about 150 points ahead of the narrow-perspective population.
From these results, it is evident that the wide-perspective population performs
better in terms of fitness. However, it barely shows any signs of improvement
after a local optimum has been reached, until the final generation of the sim-
ulation. This is unlike the narrow-perspective population, which shows a slight
upward trend around the 300th generation, as well as some new best-ever ar-
tifacts of the population. Table 2 presents the highest-rated artifacts of both
experiments along with some key statistics.

Almost every artifact shows a clear trajectory on the canvas that is telling
of the strategy that was used to produce it. Figure 9 below shows the highest-
rated artifacts of the first 64 generations of both populations. We see that the
sort of artifacts produced by both populations can easily be distinguished from
approximately the 40th generation. From there on, we see that nearly all arti-
facts of the wide-vision population indicate a circular movement strategy, with
little diversity among paintings. The fitness results and artifacts of this pop-
ulation show that this strategy is further exploited in subsequent generations,
likely because of its effective contribution to maximizing fitness. In contrast,
the narrow-perspective population struggles to escape a local optimum early on
but demonstrates far more diversity among its artifacts in all generations. This
suggests that potentially fit strategies are being explored rather than being ex-
ploited. The discrepancy between the fitness results and the type of artifacts
produced by both populations led us to believe that coverage and fitness may be
strongly positively correlated. We decided to take a closer look as to whether this
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Table 2: The highest-rated artifacts of all generations of wide-perspective and
narrow-perspective populations and their key statistics.

Perspective Narrow Wide
Fitness 251.82 401.05
Coverage 21.33% 36.05%
IC 1.7714 2.8339
PC 0.0116 0.0094
Generation 335 194

is the case. In Figure 8 we see that coverage is an accurate predictor of fitness in
the wide-perspective population, but not necessarily for the narrow-perspective
population.

Fig. 8: Correlation between coverage and fitness means in the narrow- (left) and
wide-perspective (right) population.

6 Discussion

Our results of the current experiment demonstrate a notable distinction between
the narrow- and wide-perspective setup. In our experiment, we observe that vir-
tual organisms with narrow-perspective vision trigger explorative search of the
fitness landscape by the evolutionary algorithm and demonstrate more complex
and distinct behavior. We also see that this is not necessarily in the interest of
maximizing fitness. One explanation for this could be that relatively small adap-
tations to a narrow-perspective controller’s weights lead to greater variations in
the emerging painting strategy. In the agent’s cognitive model, perception and
action are closely coupled together. Therefore, distinct actions may be more likely
to be triggered when visual observations are more volatile, as is the case with
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the narrow-perspective agents. This is in line with Brinck’s [6] argument that art
creation is a situated activity, noting that what the artist perceives is directly
transformed into action. We further observe that narrow-perspective agents gen-
erally appear more sensitive to the environment in their painting strategies than
wide-perspective agents. Narrow-perspective agents show more effective correc-
tive behavior such as turning near the edge of the canvas. This is not as ap-
parent in wide-perspective agents who barely appear to discernibly change their
behavior near edges. Little response to edges is likely induced by the exploita-
tion of circular movement patterns—evidently an effective strategy for painting
highly fit artifacts. We further think that the widespread coverage of paint in
the environment reinforces an agent’s behavioral pattern. This may be due to
the relatively poor compression quality of global features in visual observations
of developed circular patterns, leading to similar encodings of z. Incidentally,
this fact may have greatly contributed to finding the simple circular movement
strategy.

From our observations, we theorize that volatile visual information, as demon-
strated by the narrow-perspective experiment, considerably complicates the shape
of the fitness landscape. For instance, a consistent circular movement strategy
would be much more difficult to sustain over the length of a rollout, as well as over
multiple generations, with narrow-perspective vision than with wide-perspective
vision. Even more so, this automatically concerns any potential strategy. Al-
though volatile visual information may impede the evolution of consistent ac-
tion and perception, it does have creative merit in the sense that it elicits greater
behavioral complexity in agents. Hence, the narrow-perspective population has
explored the greatest artifact space. This is demonstrated in Figure 10 which
presents two completely random selections of artifacts created in both popula-
tions.

Considering our evaluation procedure; if we, hypothetically, consider Pol-
lock’s work as an aesthetic benchmark for this system (Table 1e), we consider
the current fitness function helpful at guiding agents’ technique towards this
aesthetic up to a certain point. Figure 8 however suggests a possible perverse
instantiation problem; at least one strategy exists in which coverage can be ex-
ploited to maximize fitness. However, we believe an adjustment to the fitness
function would be premature. This is because, as the fitness function is based
on complexity, coverage cannot be positively correlated with fitness as it ap-
proaches 50%. The highest recorded coverage of all artifacts in both populations
is 36%, whereas the coverage of our Pollock example (Table 1e) is measured at
46%. We are confident that under the current time pressure of 240 seconds, it
is physically not possible for agents to cover a significantly greater part of the
canvas. Therefore, we believe that agents should be assigned sufficient time so
that 50% coverage could be achieved. After this is explored, we believe that a
worthwhile addition to the fitness function would be a novelty reward term to
overcome local optima by encouraging exploration [30].

In our experiment, we see that a proxy for selection pressures based in aes-
thetic properties of an external artifact can evolve a virtual organism with some
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success. Our agents’ artificially emergent and autonomous behaviors resemble
those of simple biological organisms in some ways on a superficial level and
are rather interesting to observe. Whether some of the resulting artifacts are
aesthetically pleasing is up to the beholder. Their chaotic patterns and compo-
sitions certainly parallel abstract expressionist action paintings to some degree.
The agents’ paintings share an interesting connection to this art movement as
all brushstrokes represent nothing but the actions themselves. With that, one
could argue for their artistic value.

6.1 Future work

We briefly propose future directions for the current research. Foremost, the sys-
tem would highly benefit from a more robust visual model. This need is empha-
sized by the poor reconstruction quality of wide-perspective visual observations.
This can be achieved by using a larger dataset of artifacts and intermediate
visual observations.

Future work could assess whether granting a virtual organism continuous
agency over its visual perspective, approximating the cognitive process of atten-
tion, is a worthwhile approach. This solution could explore the nuance between
the benefits of both visual perspective abilities demonstrated in this experiment.
The associating control policy is driven by effectors from the action controller,
meaning its control policy can be evolved.

The morphology and environmental setup we chose for the task of painting
is by no means the most suitable. We recommend that future work in embodied
agent art should keep exploring the evolution of morphologies. This prevents
authors from making predisposed choices about the most suitable body for a
given task. A significant downside to this is that it requires a flexible network
structure for the action controller model that is significantly more difficult to
train. A search algorithm for appropriate morphology choice is another separate
topic that could be further explored in the context of art-producing artificial
organisms [30].

Agents in the current work are limited to a single type of brush, paint color,
and environment to explore. Therefore, future extensions could try implement-
ing physically based painting systems, color palettes, and varying environments,
each of which could bring about interesting new artifacts and behaviors. Fur-
thermore, painting is only one method of artistic practice, and by no means the
most suitable for embodied agents to practice. Computational organisms and
environments allow for other artistic modes of expression to be explored such as
sculpture, dance, music, poetry, etc. The possibilities are far-reaching and may
one day perhaps exceed our imagination.

7 Conclusion

We have demonstrated that virtual organisms can be evolved to make aestheti-
cally pleasing paintings using selection pressures based on aesthetic properties of
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the painting. The results from our experiments show notable behavioral differ-
ences between agents employed with wide-perspective and narrow-perspective vi-
sion. The wide-perspective population achieved the best results in terms of fitness
by evolving a circular movement strategy effective at maximizing fitness early
on, but later showing barely any signs of improvement. The narrow-perspective
population performed worse and did not evolve an exploitable strategy. Instead,
it brought about a diverse set of artifacts across all generations. From this we
conclude that the wide-perspective setup may be more suited for maximizing aes-
thetic fitness while the narrow-vision setup induces more behavioral complexity
and artifact diversity. Although, the scope of the current research is limited,
the results provided some interesting insights and discussions which provide di-
rections for future applications of computational art systems involving virtual
organisms.
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Appendix

Fig. 9: The best artifacts of the first 64 generations (first generation on the top
left, 64th on the bottom right) of the narrow-perspective population (left) and
the wide-perspective population (right).

Fig. 10: Two random selections of artifacts drawn from all of the narrow-
perspective population (left) and the wide-perspective population (right).
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