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Abstract

The process of industrial design engineering is often involved
with the simultaneous optimization of multiple highly costly ob-
jectives. Such Multi-objective Optimization Problems (MOPs)
have been widely solved using surrogate models. The S-Metric
Selection E�cient Global Optimization (SMS-EGO) algorithm,
an e�cient surrogate-assisted approach to multi-objective opti-
mization, has become particularly popular in optimization liter-
ature. In this thesis, the SMS-EGO algorithm is extended with
optimally weighted, linearly combined ensembles of regression
models to improve its e�ciency. The main idea is to predict mul-
tiple objective functions individually by combining the output
of multiple surrogate models into optimally weighted ensembles.
In addition, uncertainty about predictions is quantified and in-
corporated in the ensembles to balance between exploration and
exploitation, forcing the algorithm to find well-spread data points
with minimal target values on all objective functions. The per-
formance of the proposed algorithm is evaluated on a diverse set
of benchmark problems with a budget of merely 25 evaluations
of the real objective functions. The experimental results show
that the proposed Ensemble-based S-Metric Selection E�cient
Global Optimization (E-SMS-EGO) algorithm outperforms three
state-of-the-art multi-objective optimization algorithms in terms
of e�ciency, robustness and spread across the objective space.
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–A fresh start is a journey. A journey that requires a
plan.

Vivian Jokotade

1
Introduction

In a world of technology, we find ourselves surrounded by all sorts of
intelligent and well-built industrial applications. The cars we drive
are becoming faster, the chips in our electronic devices are becoming
smaller, and airplanes take us all across the world at an ever-increasing

rate. In order to make this possible, industrial engineers are constantly op-
timizing the design of their products to achieve better performance and
e�ciency while at the same time trying to minimize the costs.

Industrial design processes are often considered to be black-box optimiza-
tion problems, as it is generally uncertain how a change in design configura-
tion a�ects the intended objective [34]. Therefore, gaining insight into the
objective landscape of a certain product requires industrial engineers to eval-
uate proposed design configurations in an iterative manner [39]. Nowadays,
as more and more computational resources become available, the evalua-
tion of such configurations can be performed very accurately by running
advanced computerized simulations. As a result, computational optimization
techniques have been increasingly deployed to aid the optimization of indus-
trial products over the last couple of decades [28, 69].

Even though the available computation power grows, such computerized
simulations are often so costly that it still takes a lot of time and resources
to evaluate objectives, especially when trying to optimize multiple, possibly
conflicting objectives [34]. To avoid spending an excessive amount of time
and resources at design evaluation, a widely used technique is to fit a regres-
sion model through the objective values of previously evaluated designs, to
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Research Questions Chapter 1. Introduction

approximate the costly objective function. In particular, ensembles of multi-
ple, diverse surrogate models have been successfully applied to approximate
costly objective functions and they were shown to yield great performance
in optimization tasks [39, 64]. Especially when no prior knowledge about the
behavior of the objective function is available, ensembles of surrogate models
have been proven to perform really well [54].

In addition to optimizing a single objective, industrial engineering ap-
plications often require multiple objectives to be optimized simultaneously.
Often, these di�erent objectives behave in very di�erent ways and can even be
conflicting. For example, when optimizing the design of a car, one objective
could be the maximum speed which should be maximized, whereas the fuel
usage should be minimized as a second objective. In this case, the objectives
are conflicting, which makes it impossible to designate the optimal configura-
tion in an obvious manner. A lot of research has been dedicated to solve such
Multi-Objective Optimization Problems (MOPs) [70]. Also, with the interest
of reducing computational costs, multiple proposed frameworks make use
of surrogate models to predict the costly evaluation functions based on a
few evaluated points. Besides being used for single objective optimization
problems, the use of surrogate models has also been proven to be e�ective
for multiple-objective optimization tasks [37]. However, existing techniques
unfortunately often still depend on domain-specific prior knowledge about
the given optimization tasks. To eliminate this need for prior understanding
of MOP landscapes, this thesis studies how diverse surrogate models can be
combined into adaptive ensembles to solve computationally very expensive
multi-objective optimization problems in an e�cient manner.

1.1 Research Questions
Intending to investigate the usefulness of adaptive ensembles of surrogate
models in a multi-objective optimization setting, this thesis provides an
answer to the following research question:

How can convex linear combinations of surrogate models be used
to solve computationally very expensive multi-objective

optimization problems in an e�cient manner?

An answer to this research question will be formulated by answering the
following sub-questions:

1. How can convex linear combinations of surrogate models be
used to accurately predict costly objective functions?
Friese and Bartz-Beielstein [32] proposed to create ensembles of surro-
gate base models by linearly combining surrogate model weights. This
method was shown to be beneficial in the creation of well-performing
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Research Questions Chapter 1. Introduction

surrogate ensembles, which were able to accurately predict costly ob-
jective functions. In order to include a large amount of base models
in their ensembles, an evolutionary search on the model weights was
shown to perform well. In this thesis, an adjusted version of this convex
linear ensemble technique is implemented to investigate its e�ciency
and robustness in the context of multi-objective optimization.

2. How does the inclusion of uncertainty quantification mea-
sures contribute to the performance of linearly combined en-
sembles of surrogate models?
When it comes to global optimization with the use of surrogate models,
new points are predicted by finding the most promising regions on the
surrogate landscape. Normally, the predicted value is considered to
be the most important decision factor in the proposal of new points
[58]. However, using the predicted value as the only decision factor can
easily lead to getting stuck in local minima [49]. In order to overcome
this problem, an uncertainty quantification measure can be used to
gain insight in the model’s confidence about a predicted data point.
Unfortunately, a considerable number of surrogate techniques does not
automatically take the uncertainty of points into account [73]. Espe-
cially when creating ensembles of surrogates, uncertainty quantification
measures are not trivial to calculate and use. With the intention to
enhance the linear combination ensemble method, this thesis therefore
studies how including uncertainty quantification measures a�ects the
performance of the model.

3. How can ensemble surrogates for di�erent objectives be com-
bined in an optimal way to obtain the Pareto-front in multi-
objective optimization tasks?
When trying to optimize multiple objective functions, the outcomes
of the individual objective functions have to be combined in a cer-
tain manner. For this purpose, several methods have been proposed
to combine the information from individual objective landscapes in
such a way that multiple objectives can be optimized at the same time,
while taking the mutual dependencies of all objectives into account.
The underlying techniques for these methods di�er drastically, varying
from scalarization-based approaches [53] to set-based approaches [41].
To answer the third sub-question, this thesis studies how to combine
the individual combinations of surrogate models in an optimal way in
order to obtain an adequate Pareto-front. A very promising method
for finding the Pareto-optimal points is to use the S-metric selection
criterion [57]. Therefore, it is investigated how the fundamentals of
the S-metric selection method can be used in a sequential manner to
optimize multiple ensembles of surrogates.
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Thesis Outline Chapter 1. Introduction

4. In terms of e�ciency and function evaluations, how does the
proposed multi-objective approach perform in comparison to
competitive state-of-the-art multi-objective optimization al-
gorithms?
Over the past decades, surrogate-assisted optimization algorithms have
been used and studied extensively with regard to optimization problems
with multiple objectives. Several famous and widely used algorithms
like NSGA-II[21], MOEA/D[85], C-TAEA[48] have, among other algo-
rithms, been shown to perform well on multi-objective optimization
problems. Existing algorithms mainly di�er in the way in which po-
tential candidates are chosen and in how the multiple objectives are
weighed up against each other, resulting in di�erent performances in
terms of e�ciency and accuracy. Whereas some algorithms focus on
minimizing the number of objective function evaluations [34, 42, 57],
other algorithms try to obtain the best possible result, sometimes at
the expense of more objective function evaluations [20, 50]. Since the
proposed method in this thesis project aims at optimizing accuracy as
well as minimizing the required objective function evaluations, it is stud-
ied how the algorithm performs compared to similar state-of-the-art
algorithms.

1.2 Thesis Outline
The remainder of this thesis is structured as follows:
To provide the reader with the basic knowledge that is considered to be
required to read this thesis, some preliminary concepts will first be discussed
in Chapter 2.
Subsequently, related literature will be discussed in more detail in Chapter 3
to provide an overview on what has already been written about the topic.
A formal description of the multi-objective optimization problem in indus-
trial engineering is given in Chapter 4, after which Chapter 5 states the
proposed solution to this problem.
Chapter 6 comprehensively describes the experiments that were conducted
to evaluate the proposed algorithm, as well as the results.
This work is concluded by giving an overview on the contributions and limi-
tations of the proposed methods in Chapter 7, along with recommendations
for possible future research.
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–Without knowledge, action is useless.
Abu Bakr

2
Preliminaries

In this chapter, a brief overview of basic concepts is provided to equip
the reader with the requisite knowledge to read this thesis. First, an
introduction on general surrogate-assisted optimization is given, after
which the concept of multi-objective optimization is described. The

reader is considered to be familiar with basic mathematical and computer sci-
ence concepts like (multi-variate) regression, optimization and linear algebra.
Please note that the mathematical optimization processes in this thesis are
applied with the intention to minimize objectives. However, a minimization
problem can be easily transformed into a maximization problem without loss
of generality (multiply by ≠1).

2.1 Surrogate-assisted Optimization
In mathematical optimization, the goal is to find the best solution out of
a set of feasible solutions, where the quality of the solutions is provided by
an objective function. As we consider minimization in this thesis, the best
solution would be the solution with the lowest value on the objective function
on a given interval of one or more independent variables, formally stated:

min
x

f(x) (2.1.1)

In case of a known mathematical objective function, this optimum can of-
ten be found easily by means of numerical di�erential methods [59]. However,
many real-world optimization problems lack such a formal mathematical defi-
nition of the objective function. For example, when minimizing the amount of
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Figure 2.1.1: An example of a surrogate model approximating an objective func-
tion.

drag on an aircraft wing, there is no pre-defined formula available to calculate
the e�ect of adjustments to the wing design [77]. Therefore, every variable
configuration has to be evaluated, possibly by using simulations, in order to
obtain the corresponding objective value. In that case, obtaining insight in
the whole objective landscape would be infeasible, as it takes too long to
evaluate every individual configuration. As a result, finding the optimum of
the objective function becomes impossible in reasonable time, since the shape
of the function is unknown. Fortunately, the real, costly objective function
can be approximated by fitting a regression model through a selection of
known, already evaluated configurations.

Such models, which mimic the behavior of a function, are referred to as
surrogate models, also called meta-models or response surface models [39]. In
the broadest sense, a surrogate model is mathematically defined as a function
f̂(x̨) : Rn æ R, approximating a real objective function f(x̨) : Rn æ R,
which models the dependence of a response variable y on one or more (n)
independent variables x̨ = {x1, . . . , xn}. The surrogate-model is trained on a
collection of realizations {x̨i, yi}N , with N being the total amount of available
data points. Fig. 2.1.1 illustrates how a surrogate model can be fitted to
approximate a true objective function. Subsequently, the optimum of the
surrogate model can be derived using classical optimization techniques, e.g.,
di�erentiation, random search or more sophisticated methods [59]. If the
surrogate model is su�ciently accurate, it can be assumed that the found
optimum closely corresponds to the optimum of the real objective function.
The way in which the accuracy and reliability of surrogate models can be
measured will be addressed in Chapter 3.
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2.1.1 Types of Surrogate Models
A wide variety of models can potentially be used as surrogate model, de-
pending on the shape and behavior of the objective function in question.
In this section, the most widely used surrogate models are featured, briefly
discussing their operation and applications.

Support Vector Regression

The idea of support vector machines (SVM’s) was first proposed by Boser et
al. [11], who considered data points to be vectors in space. Initially, SVM’s
were only used for classification by introducing an optimally separating
hyperplane to divide data points into classes. The idea behind this algorithm
is to maximize the distance ‘ between the input vectors that are closest to
this hyperplane, also called the support vectors. If the input vectors are not
linearly separable, they can be mapped into a higher dimensional space Z,
making it possible to linearly separate the data points by means of a new
hyperplane.

Drucker et al. [25] showed that the idea of support vectors can also be
used for regression, in which the goal is to train a function f(x̨), ensuring
that for all of the training points, it does not deviate more than the distance
treshold ‘ from the actual obtained data points yi. At the same time, it is
ensured that the function is as flat as possible. For example, in case of a
simple linear function taking the form

f(x) = w · x + b with w œ R, b œ R, (2.1.2)

a support vector regression model is found by minimizing w

subject to
I

yi ≠ w · xi ≠ b Æ ‘

w · xi + b ≠ yi Æ ‘
(2.1.3)

Fig. 2.1.2 provides a simple graphical representation of a SVM used for linear
regression. For a clear and more detailed description of SVM in the regression
setting see [65].

Tree-based Regression

Decision trees as first formulated by Breiman et al. [15] have been applied
widely in and outside the field of computer science, both for classification
and regression. A decision tree can be seen as a flowchart-like graph built
out of nodes and branches. In every internal node, an attribute is tested for a
given property, to which various branches form the possible outcomes. When
there are no more attributes left to test on, so-called leaf nodes form the
final outcomes for a given problem. In the classification setting, the tree is
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Figure 2.1.2: A linear SVM trained on a small dataset with a linear trend (obtained
from [65]).

most often learned by binary decisions in every node, where the leaf nodes
state the class to which the data points are assigned.

When learning a decision tree for regression, a slightly di�erent method
is applied, in which leaf nodes form partitions of the parameter space of the
data vectors x̨. The decision tree is formed in such a way that the gained
information is maximized at every node, resulting in the same predicted
value for configurations that are similar to each other. A clear illustration of
a regression tree on a two-dimensional function is given in Fig. 2.1.3.

(a) The shown partitions represent a re-
gression tree that approximates a linear
function as indicated by the colors.

(b) The regression tree corresponding to
the partitions as shown in (a), where the
leaf nodes indicate the designated class
for di�erent input values.

Figure 2.1.3: A regression model as approximated by a decision tree. (obtained
from [32]) Fig. a denotes the trained partitions in the parameter space, whereas Fig.
(b) shows the corresponding decision tree.
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Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) were introduced by Fried-
man [30] as a mechanism for dealing with objective functions that exhibit
di�erent trends, varying over the parameter space. As opposed to fitting a
single model, the MARS algorithm fits multiple models at di�erent domains
over the parameter space œ. This is done by iteratively choosing cutting
points in the parameter space, and fitting regression models on the resulting
bins in such a way that the error is minimized for all functions. In theory,
one could use any regression model to fit a line through the data, but MARS
is most often implemented using simple regression models, constants and
hinge functions [63]. Fig. 2.1.4 demonstrates how MARS can be e�ectively
applied on data that follows a non-trivial trend, with just one cutting point.

Figure 2.1.4: Multivariate Adaptive Regression Splines fitted on data that follows
a non-linear trend (obtained from [63]).

Radial Basis Function Interpolation

A popular method for approximating unknown objective functions is to make
use of Radial Basis Functions (RBF’s). The main idea of RBF’s was first
introduced almost fifty years ago by Hardy [35] with the purpose of mod-
elling hills and valleys in cartography. Since then, they have been e�ectively
applied in various ways for a broad range of purposes, making them a popular
technique in industrial engineering.

In essence, a radial basis function is any real-valued function Ï(|| · ||)
measured in terms of the distance from the input data x̨ to either the origin,
having Ï(x̨) = Ï(||x̨||), or some fixed center point c, such that Ï(x̨) = Ï(||x̨≠
c̨||). By interpolating such RBF’s, a surrogate model can be created based
on available data points. In order to do so, the objective function can be
approximated by instantiating multiple radial basis functions and linearly
combining their weights such that

f̂(x̨) =
ncÿ

i=1
wiÏ(||x̨ ≠ c̨(i)||), (2.1.4)
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in which Ï denotes the form of the basis function. c̨(i) is defined as the center
of the ith instantiation of this basis function. Several forms of basis functions
can be used, e.g. linear, quadratic or Gaussian functions. When creating a
surrogate model, the centers of the RBF’s are commonly considered to be
the values of the available evaluated data points [6]. A major benefit of RBF
interpolation is that it is linear in terms of the basis function weights, re-
gardless of the complexity of the used basis function. This makes it relatively
easy to approximate the weights wi by solving the linear system

[�][w] = [f ] (2.1.5)

where � : Õij = Ï(||xi ≠ cj ||), i, j = 1, . . . , n and f = f1, f2, . . . , fn, determin-
ing the weights vector to be:

w = �≠1f (2.1.6)

Having the weights w, the corresponding objective value fú can be computed
for any configuration x̨ú by filling in Eq. 2.1.4.

Kriging based Methods

A similar, but slightly more complex model can be made with the Kriging sur-
rogate technique, also called Gaussian Processes. The method was introduced
by Krige [44] to improve the accuracy of estimating gold concentration in ore
deposits and has been extensively implemented ever since. Although there
are multiple realisations of the general Kriging idea, an often used realisation
is the ordinary Kriging method, which is considered in the following. The
ordinary Kriging method is, in essence, quite similar to RBF interpolation
with Gaussian basis functions as the basis functions are included in a similar
way, here called kernels k. With Kriging, however, the kernels k also account
for the the correlation of errors between known points, such that

k(x, xÕ) = exp
A

≠
mÿ

i=1
wi|xi ≠ xÕ

i|pi

B

(2.1.7)

when using a Gaussian kernel. Here, xi and xÕ
i denote two points in the vector

x̨. In addition to the distance between points xi and xÕ
i, the correlations

depend on the correlation weight parameter wi and the parameter pi which
denotes the penalization of the distance |xi ≠ xÕ

i|. By calculating the kernels
for all pairwise correlations of the n known function values y̨ at configurations
x̨, a correlation matrix K can be created:

K =

Q

ca
k(x1, x1) · · · k(x1, xn)

... . . . ...
k(xn, x1) · · · k(xn, xn)

R

db
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Subsequently, K can be plugged into the probability density function of
a multivariate Gaussian distribution, after which the parameters w and p
can be estimated by calculating the Maximum Likelihood Estimation (MLE)
with respect to y. Doing so, a model is estimated for which the likelihood
of the known objective values is maximized. To stay within the scope of
this thesis, the complete mathematical derivation of the model is omitted
here, but for an extensive overview of the Kriging method we refer to [39]
or [6]. In general, Kriging performs very well on many di�erent tasks as
it provides local error approximation for new points, but quickly becomes
computationally expensive if the magnitude of data increases.

Additional Surrogate Models

In addition to the surrogate models that were discussed so far, it is, in
principle, possible to use any regression (or even classification) model to
approximate an objective function. Models that, among others, often appear
in surrogate literature are polynomial response surfaces, artificial neural net-
works and basic regression models. However, these are left out of the current
thesis as the aforementioned models are expected to capture a su�ciently
broad range of function behaviors in order to make diverse ensemble models.
Even though neural networks could still add valuable information, it is chosen
to leave them out because of their need for large quantities of data in order
to perform e�ectively, which is not available for problems within the scope
of this project.

Furthermore, it is worth mentioning that di�erent surrogate models per-
form very di�erently on di�erent objective functions, because of the large
variation in the forms and shapes the functions can represent [58]. The al-
gorithm that is proposed in this thesis is, however, not bound to specific
surrogate techniques and is expected to perform well with any (diverse)
collection of surrogate models.

2.1.2 Surrogate Model Handling
The process of fitting and updating surrogate models for optimization can be
executed in multiple ways. For instance, in a single evaluation framework, one
single surrogate model is chosen based on some criterion, which is fitted to the
data in order to obtain a prediction of the objective function. Subsequently, a
multi-evaluation framework fits multiple surrogate models to the data, out of
which one model with the best fitness is used to predict the objective function.
Here, the focus lies on the model combination (ensemble) framework, in which
multiple surrogate models are fitted to the data, after which the predictive
information of (a selection of) the models is combined in order to obtain an
accurate prediction of the objective function.
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2.1.3 E�cient Global Optimization
In general, a small amount of initial evaluated data points is not su�cient to
obtain a good representation of the overall objective landscape. Therefore,
new points have to be sampled to update the surrogate and increase its
performance. So, in addition to choosing which (combination of) surrogate
models to use for approximating the objective function, a method is required
to determine the way in which the selection of new points for evaluation takes
place. As the goal is to approximate the optimum of an objective function
with as little expensive function evaluations as possible, a method has to be
used accordingly.

A widely used and extensively studied algorithm for e�ciently optimizing
expensive black-box functions is the E�cient Global Optimization (EGO)
algorithm as introduced by Jones et al. [42]. The EGO algorithm heavily
exploits the proposed surrogate model by sequentially choosing new candidate
points for evaluation, based on two main features of the surrogate model.
Namely, new candidate points are selected by addressing the prediction of
the model at a given point, as well as the uncertainty about the prediction at
that point. By considering both of these features, the algorithm provides an
autonomous mechanism for balancing between exploration and exploitation
of the search space. The EGO algorithm still approximates an expensive
objective function by fitting a Kriging model as introduced in Section 2.1.
However, in addition to just taking into account the response surface of the
surrogate model, the original EGO algorithm introduces an infill-criterion
which addresses the uncertainty of the predicted response surface as described
in Algorithm 1, as obtained from [73].

Algorithm 1 E�cient Global Optimization

1: Fit a Kriging regression model f̂ on the initial data points X, y.
2: while stopping criteria not fulfilled do
3: Find global optimum of infill-criterion:

xú := argmaxxEI(x)

4: Evaluate xú : yú = y((x)ú) and append xú, yú to X, y
5: Re-estimate model f̂

6: end while

As shown in Algorithm 1, the original EGO algorithm uses the Expected
Improvement (EI) criterion, which computes the expected amount of possible
improvement of new points over the current optimal solution. As most of the
surrogate models lack an internal measure of variance, EI was originally only
proposed in combination with a Kriging model [42]. However, in addition to
EI, various other infill-criteria and uncertainty measures have been proposed,
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which will be further discussed in section 3.2.

2.2 Multi-Objective Optimization
In this thesis, the focus lies with the simultaneous optimization of multiple
objective functions. So-called multi-objective optimization problems (MOPs)
as such are mathematically defined as

min
x̨

f̨(x̨) , where f̨(x̨) = [f1(x̨), . . . , fm(x̨)] (2.2.1)

in which f̨ is a collection of m objective functions, where x̨ = [x1, . . . , xn]
is a solution on n independent variables in the feasible region � ™ Rn. In
addition to single-objective optimization, the simultaneous optimization of
multiple objective functions brings new challenges and dependencies that
have to be taken into account. Ideally, Equation 2.2.1 is solved by finding
the Utopian solution x̨ú, which achieves the minimal value for all of the m
objectives. Unfortunately, it is often impossible to find such a perfect solution
as the objective functions in most MOPs are at least partly conflicting.

Two objective functions fi and fj are conflicting if a solution x̨ achieves
the optimal value on one of the objective functions, while generating a sub-
optimal value for the other. In that case, finding a better value for the one
function always happens at the expense of obtaining a worse value on the
other objective function.

2.2.1 Pareto-E�cient Solutions
Assuming that a solution x̨ú does not exist where a minimum value is at-
tained for all functions f1, . . . , fm, minimization is defined with respect to
partial orders. The goal is then, to find solutions for which one objective
can not be improved without deteriorating on another objective function.
Such feasible, non-dominated solutions x̨Õ œ œ are called Pareto optimal or
Pareto-e�cient solutions to MOPs as stated in Equation 2.2.1, if and only if
there does not exist a solution x̨ in œ such that f(x̨) Æ f(x̨Õ). The principle
of Pareto-optimality originates from economics, first described by Vilfred
Pareto, according to [26]. Following this principle, the goal in multi-objective
optimization is to find a set of solutions for an MOP, rather than one sin-
gle point. Such a set of partially ordered (sub-)optimal solutions is called a
Pareto-optimal set P, formally defined as

P := {x̨ œ � | @x̨Õ œ � : f̨(x̨Õ) ∞ f̨(x̨)} (2.2.2)

where ∞ indicates Pareto-dominance. A solution x̨ dominates another solu-
tion x̨Õ if and only if

’i(fi(x̨) Æ fi(x̨Õ)) and ÷fi(x̨) < fi(x̨Õ), i = 1, . . . , m (2.2.3)
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The set of solutions P together form the Pareto-front, as illustrated in Fig.
2.2.1.

Figure 2.2.1: Illustration of a Pareto-front and related concepts regarding domi-
nance.

2.2.2 Optimization Approaches
Even though multi-objective optimization processes provide a set of Pareto-
e�cient solutions, often a single final solution is desired for most practical
MOPs. Therefore, solution processes are generally concerned with a human
decision maker who determines the final, most preferred solution. Generally,
this decision maker is an expert in the field of the MOP who interprets
the solutions using knowledge about the objectives [14]. In general, there
are three frameworks in which a decision maker can be included in the
optimization process, consisting of a priori, a posteriori and no-preference
methods [14].

A Priori Methods

In a priori optimization methods, the decision maker sheds his light on the
MOP in advance of the optimization process. Based on knowledge about the
various objectives, the decision maker states which of the objective functions
might be more important to minimize. Doing so, the decision maker provides
a starting point for optimization by, for instance, stating which weights to
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give to the objectives. The optimization process can then be performed
according to a prior framework.

A Posteriori Methods

Another, very common approach to MOP solving is to consult the decision
maker after the optimization process has been finished. In this case, the
decision maker is provided with a set of Pareto-optimal solutions, out of
which one solution has to be chosen.

No-preference Methods

When little or no information about the objective functions is available, a
common approach is to perform the optimization process without further
contemplation by a decision maker. In general, no-preference methods are
likely to propose solutions that are concentrated somewhere close the knee
point of the Pareto front, as no special expectations point the process into a
certain specified direction.

Whenever the input of the decision maker is included one single time
in the optimization process, it is called a non-interactive approach. If the
knowledge of a decision maker is consulted multiple times during the opti-
mization process, it is referred to as an interactive approach. Both [27] and
[14] provide an clear and extensive overview on multi-objective optimization
approaches.
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–Every new beginning comes from some other begin-
ning’s end.

Lucius Annaeus Seneca

3
Related Literature

In the following, a thorough overview of research related to the present
work is provided. A large body of academic studies has already been
dedicated to ensembles of surrogates, as well as multi-objective opti-
mization. As quite a substantial amount of techniques is incorporated

in this thesis, this chapter briefly covers the most relevant approaches, as
well as the algorithms, techniques and frameworks that lie at the foundation
of the proposed method.

3.1 Ensembles of Surrogate Models
Combining the output of multiple surrogate models into an ensemble has
repeatedly been shown to be beneficial to optimization processes in both
practical applications and artificial test functions. For instance, Roy and
Datta [62] showed that ensembles of surrogate models improved the devel-
opment of saltwater intrusion management strategies in coastal aquifers.
Similarly, Zhang et al. [84] show that an adaptive ensemble of individual
models outperforms single surrogate models when optimizing the amount
of power generated by a wind farm as function of the distribution of wind
turbines across the farm.

Also, Acar and Rais-Rohani [2] succeeded to significantly lower car crash
impact based on the shape and wall thickness of car designs with the use of
ensembles of surrogate models, as compared to using individual models.

It is needless to say that the use of ensembles of surrogate models is not
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limited to the aforementioned cases. A summary of further applications of
surrogate ensembles can be found in [39] and [78].

3.1.1 Classical Ensemble Techniques
The automatic selection and combination of surrogate models was initially
performed by means of simple techniques. Some of the classical, most basic
ensemble techniques are Greedy selection [31], Ranking [31], Bagging [16] and
Boosting [29]. These techniques lay at the foundation of ensemble surrogate
modelling literature, as they were among the first methods to combine the
output from multiple surrogate models. As the current study is focused at
more sophisticated ways of ensemble learning, these methods are not further
discussed in detail here, but a clear description and comparison of these basic
ensemble methods are provided by [31] and [32].

3.1.2 Weighted Averaging of Surrogate Models
A more advanced and very widely used method for ensemble creation is to
assign weights to individual surrogate models based on their performance
[33]. As a first rule to ensure the creation of a valid ensemble, it is necessary
that the combined weights sum up to one. In this way, the output of multiple
surrogate models is combined into a new ensemble model. However, the way
in which these weights are found and assigned varies enormously between
methods, and the performance of these methods heavily depends on the given
optimization task [39]. The construction of weighted averaging ensembles
generally seems to be consisting of three main components, namely:

1. The used accuracy measure for the performance evaluation of individual
models.

2. The chosen resampling method for (ensemble) model evaluation.

3. The scope of the weight factor selection.

Over the following three sections, the choices that can be made regarding
these components are summarized. Also, an outline is given on how the most
influential methods applied weighted averaging of surrogate models in order
to create ensembles.

Accuracy Measures

When generating weighted surrogate model ensembles, weights are assigned
based on the contributions of individual models [32]. In general, surrogate
models that perform better are given higher weights, and the weights for the
worst performing models are reduced to zero. As the weights are based on
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the individual model performance, the composition of the found ensembles
strongly depends on the choice of performance metric.

The vast majority of ensemble methods make use of basic accuracy mea-
sures to gain insight in the performance of the surrogate models. For example,
the (General) Root Mean Squared Error (RMSE) is often used to obtain the
model accuracies [32, 33, 74]. Furthermore, it has been shown that, among
other metrics, the Relative Average Absolute Error (RAAE) [40], Relative
Maximum Absolute Error (RMAE) [40] and R-square [83] metrics can pro-
vide meaningful insights into model performance [39]. In [40], Chen and
Simpson provide a thorough comparison between accuracy measures, and
conclude that the usefulness of certain performance measures highly depends
on the used surrogate models in question, as well as the given test problems.
Note that these accuracy measures can be applied applied both locally and
globally, as further specified hereafter in Section 3.1.2. Also, the same metrics
can generally be used to obtain insight in the performance of the obtained
ensemble models, which should not be confused with the measure used for
finding new points in the EGO framework, as further discussed in Section
3.2.

Resampling Methods

As the goal of ensemble surrogate modelling is to generate an ensemble that
predicts the real, expensive objective function as accurately as possible, it is
of crucial importance that the accuracy of (individual) models is assessed in a
valid way. To ensure the creation of valid and robust ensembles, methods for
model validation call for reliable resampling strategies. Bischl et al. [8] show
that making use of resampling strategies like cross-validation, bootstrapping
and sub-sampling significantly improves the accuracy of meta-models, as it
prevents overfitting on the often limited amount of data-points. Additionally,
it was shown that, for a limited amount of base models, evaluating ensemble
performance by performing leave-one-out cross-validation (LOO-CV) can be
beneficial, making sure that the available data is used to the biggest extend
[32, 58]. However, LOO-CV quickly becomes too computationally expensive
if applied to a larger set of base models [32].

In order to automatically filter out base models with large errors, Song
et al. [67] evaluate models by introducing their normalized cross-validation
error, which gives a penalty to models with high cross-validated errors.

Weight Factor Selection

The assignment of weights to individual surrogate models can either be car-
ried out globally, or locally for di�erent partitions of the design space. In the
literature, weighted ensemble methods are roughly divided into two categories:
Global weighted averaging, and point-wise weighted averaging of models [39].
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Global Weighted Averaging
In global weighted averaging methods, the complete design space is consid-
ered altogether in the calculation of individual model performances, and the
output of the models is combined using the same weight across the whole
input space.

As a first attempt at weighted model combination, Goel et al. [33] com-
bined polynomial regression, Kriging and RBF models into ensembles by
globally weighting the models based on their performances to approximate
expensive objective functions. This highly influential study has been used as
a starting point in the creation of many similar methods.

For example, Ye and Pan [79] applied the same technique in combina-
tion with clustering methods to improve e�ciency. By reducing the design
space, they were able to generate ensembles with similar performances, while
requiring less computational e�ort.

In [2], Acar et al. further exploited the global weighted averaging method
by introducing an optimization procedure on the weight factors, such that a
weighted ensemble with minimal global error is found.

Similarly, Zhou et al. [87] managed to improve on existing methods by
obtaining weight factors by means of a recursive process, in which the weights
are updated in each iteration until an ensemble with desirable prediction
accuracy is found.

Shi et al. [64] use the covariance matrix of residuals as a base for weighting
several radial basis functions in an e�cient manner. In order to do so, they
use the covariance matrix weighting method as proposed by Bishop [9] and
later improved by Viana et al. [74].

Friese et al. [32] performed an exhaustive search over model weights,
showing that any ensemble with positive weights can, in terms of RMSE,
never perform worse than the worst performing base model, and always has
a chance to perform better than either of the individual base models due to
the convex nature of the weight combination. Moreover, they investigated a
way to e�ciently scale up the amount of included models in an ensemble by
performing an evolutionary search over the model weights. As they showed
that a convex linear combination of model weights can improve on individual
models, this study is used as a reference point for the method proposed in
this thesis.

Point-wise Weighted Ensembles
More recent approaches have tried to create ensembles based on local accu-
racy measures, where the model weights are assigned di�erently across the
input space. By doing so, ensembles are better capable of capturing local
trends in specified regions of the design space.

For instance, Acar [1] used the cross-validated prediction variance as a
local accuracy measure to indicate individual model performance. Model
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weights are, however, still fixed over the entire input space, even though the
model performances are based on a local accuracy measure.

Laying more focus on local trends, Zhang et al. [84] proposed an adaptive
hybrid ensemble technique that combines favorable characteristics of di�erent
surrogate models by formulating trust regions based on distance between
data points, and assigning weights based on these regions.

In a similar way focusing on local variations, Lee and Choi [46] find the
ensemble with optimal weights by only addressing the k nearest points to
the prediction point of interest, instead of building a global ensemble model.
Song et al. [67] further built on [84] by filtering out badly performing base
models and allocating di�erent weights to every data point in the input
vector, based on probabilities derived from a Gaussian Process. The accu-
racy and robustness of this method improved remarkably with respect to
individual models, as well as multiple benchmark ensemble models.
A more straightforward point-wise ensemble method was proposed by Yin
et al. [81] who divide the design space into multiple pre-defined subdomains
and assign a set of optimal weights to all of the domains, while ensuring a
smooth transition between the subdomain ensembles.

In general, point-wise weighted ensembles of surrogate models seem to
be more accurate than global average weighting methods, as they mainly
capture local trends in the objective function. A drawback, however, is that
the ensemble models may perform poorly if the local error measure at a
certain point is inaccurate, even though the local error measure at other
points is accurate. Potentially, this inaccurate region could a�ect the overall
landscape of the predicted function [80]. To overcome this problem, [83] and
[80] combined local error measures with global error measures, generating
ensembles that cover both local and global trends.

3.2 Uncertainty Quantification
In the EGO framework, new points are iteratively chosen for evaluation based
on their predicted values. In addition to only using the values of the pre-
dictions, some applications require that the uncertainty of these predictions
is also taken into account, e.g. in terms of variances, standard deviations,
or confidence intervals. The infill criterion at predicted locations is then a
combined measure of the predicted value and the uncertainty of the predic-
tion. Popular infill criteria, also called acquisition functions, are the Expected
Improvement [42], Lower Confidence Bound [18], and Probability of Improve-
ment [71], which all take into account the uncertainty of predictions.

Some regression models, like Kriging/GP, automatically address the con-
fidence of predictions as they also provide an estimation of the prediction
variance [44, 66]. In this case, the infill criterion can be calculated without a

20



Model-Based Multi-Objective Optimization Chapter 3. Related Literature

significant amount of extra e�ort.
Unfortunately, the majority of regression models is not equipped with built-in
variance estimation properties as such, which calls for the implementation of
an external uncertainty quantification (UQ) measure in order to be adopted
to the EGO framework.

A more generic method which can be applied to any kind of regression
model is to fit the model multiple times by bootstrapping, i.e., random
sampling with replacement [68]. Doing so, additional variance metrics can
be calculated from the set of models to obtain an indication of prediction
uncertainty. Although this method generally works well, it is computationally
very expensive to apply in the EGO framework.

Van Stein et al. [73] provide a fine UQ measure that operates inde-
pendently of surrogate modeling assumptions by addressing the empirical
prediction error at a given point, as well as the variability of the k nearest
neighbours based on the euclidean distance to these neighbouring points.

On the contrary, Rehbach et al. [60] recently provided evidence that
in some cases, using infill criteria with uncertainty quantification actually
worsens optimization performance in comparison to just using the predicted
value as infill criterion. In general, they concluded that exploration loses
importance in favor of exploitation when only a small evaluation budget is
available, especially with problems of higher dimensionality.

3.3 Model-Based Multi-Objective Optimization
In the multi-objective optimization setting, the role of surrogate models
in the optimization process is not always unambiguously [4]. For example,
Loshchilov et al. [51] trained surrogate models to distinguish dominated so-
lutions from non-dominated solutions. Likewise, Bandaru et al. [7] proposed
to use a multi-class surrogate classification model to determine the dom-
inance information between two candidate points. Additionaly, surrogate
models have been used to approximate the increase in hypervolume (further
explained in Chapter 4) of new proposed individuals [55].

In the present thesis, multiple objective functions are approximated sep-
arately by surrogate models. By simultaneously minimizing these surrogate
models, the goal is to find a collection of optimal points, as described in
Section 2.2.

Horn et al.[37] provide a detailed taxonomy for Model-Based Multi-
Objective Optimization (MBMO), narrowing a broad range of algorithms
down to three main categories, namely:

• Scalarization-based approaches

• Pareto-based approaches
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• Direct indicator-based approaches

With regard to these categories, the most influential state-of-the-art
MBMO algorithms are briefly covered over the following sections. In ad-
dition, a comprehensive flow chart of the possibilities in MBMO is provided
in Fig. 3.3.1.

Figure 3.3.1: Stages and challenges in MBMO (obtained from [37]).

3.3.1 Scalarization-Based Approaches
Instead of trying to minimize multiple objectives sequentially, scalarization-
based approaches recast a multi-objective problem as a single objective
problem. By applying an aggregate function to the surrogates of multiple
objectives, the problem can thus be solved by means of a standard single
optimization algorithm [53]. A popular scalarization-based approach as such
is the weighted sum method, where weights are assigned to every objective
to indicate to which extend they contribute to the solution. For instance,
the widely used ParEGO algorithm as proposed by Knowles [43] randomly
selects of set of weights, until either a satisfactory solution has been found
or the computation budget has depleted. Note that these weights are not to
be confused with the weights given to individual base models in the creation
of surrogate ensembles.
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Zhang et al. [85] proposed the MOEA/D-EGO algorithm, which cuts up
the MOP into single objective sub-problems, and searches for points that
maximize the combined Expected Improvement values for all of the individual
surrogate models.

A drawback for scalarization-based approaches, however, is that they
generally just provide a single solution, whereas it might be desirable to
obtain a set of Pareto-optimal solutions to choose from.

3.3.2 Pareto-Based Approaches
In Pareto-based approaches, a multi-objective optimization is performed
over the infill criteria for all of the objectives. To be more specific, the
MOP objectives are not considered as a single scalar, but rather as a vector
of objective values. Hence, a collection of Pareto-optimal solutions can be
achieved instead of a single solution [37, 41]. In order to find such optimal
points, e�cient algorithms are used to search the entire design space for
points that perform well on all or most of the objectives.

For example, many well-known Pareto-based algorithms, like MOEA’s
[24, 86], NSGA-II [21], NSGA-III [20] make use of genetic or evolutionary
search strategies to perform an e�cient search over the design space. Similarly,
C-TAEA [48] strives to balance between exploration and exploitation by
introducing two competing populations, where the one population greedily
searches for optimal solutions, whereas the other population heuristically
explores under-represented regions in the design space.

A drawback for Pareto-based approaches is that they often require a
lot of redundant evaluations on the surrogates as they mostly consider the
complete design space, including regions that lie outside the scope of interest.

3.3.3 Direct Indicator-Based Approaches
To prevent the evaluation of uninteresting points on the surrogate models,
indicator-based approaches apply a more e�cient and demarcated search.
With indicator-based MBMO approaches, the objective functions are approxi-
mated with surrogate models as in scalarization and pareto-based approaches.
However, instead of maximizing the vector of function values all at once, an
internal optimization process is first executed on the separate surrogate mod-
els, to find possible ’optimal’ data points per objective. Subsequently, for all
of these points, the contribution to the approximated Pareto-front is calcu-
lated. That is to say, new points are found by maximizing the contribution
of a potential solution to the approximated Pareto-front, formulated as a
single-criterion optimization problem [37].

The SMS-EGO algorithm as proposed Ponweiser [57] evaluates the found
approximations directly by generating a collection of minimal values per
surrogate function. As this generates a substantial set of candidate points in
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the Pareto-hyperspace, the most optimal point can be found by carrying out
a maximization process on the additional hyperspace. Only after maximizing
the approximated hyperspace, the optimal solution is evaluated on the true
objective functions, saving a lot of expensive resources.

Much like the SMS-EGO algorithm, the ‘≠EGO algorithm [75] intro-
duces an additive ‘ margin, to enforce the search for potential points that
have a significant contribution to the approximated Pareto-front. As the
performances of the SMS-EGO algorithm have been shown to exceed those
of similar algorithms [37], its main framework is adopted in the current work.

3.3.4 Ensemble-Based Multi-Objective Optimization
Even though the literature about surrogate ensembles and model-based multi-
objective optimization is quite extensive, the question on how to combine
the two topics in a knowledgeable manner has, to the best of my knowledge,
rarely been addressed so far.

In [61], Rosales-Perez et al. created hybrid ensembles to predicting mul-
tiple objectives by iteratively training new SVMs and adding them to the
ensemble. This was shown to be beneficial to the optimization process as
ensembles became more accurate as more SVMs were added. Zavoianu et
al. [82] created ensembles of various modeling tools to approximate multi-
ple non-linear objectives and concluded that, in many scenarios, ensembles
of surrogate models showed better performance than individual surrogate
models in the MBMO setting.
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–If we can really understand the problem, the answer
will come out of it, because the answer is not separate
from the problem.

Jiddu Krishnamurti

4
Industrial Design

Optimization Problem

Multi-objective optimization problems can di�er a lot in
terms of input dimensionality or number of objectives and are
often presented as black-box optimization problems. Such black-
box optimization problems occur in all kinds of applications

with di�erent scopes, di�ering from transportation scheduling [47] to DNA
sequencing [38]. In some applications, the number of objectives can run up
to more than a hundred objectives.

However, the present work focuses on the optimization of industrial design,
in which the amount of objectives is generally somewhere in the range from
two to ten [34]. Here, we address the problem of industrial design optimiza-
tion as an MOP as formulated in Eq. 2.2.1, where the individual objective
functions are very expensive to compute, e.g., wind turbine e�ciency [58],
aerodynamic drag [58] or boat hull stability [19], which are subject to many
physical constraints and complex dependencies. Such optimization problems
with multiple objectives in the process of industrial engineering are involved
with several stages and challenges, which are described in this chapter.

4.1 Obtaining Initial Design Configurations
Before starting an optimization process, it is necessary to obtain a collection
of initial design points which serves as a starting point for optimization. In
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practice, it is conventional to use former, already evaluated points to start the
optimization process. In case that such a set of known points is unavailable,
obtaining new initial design is often referred to as Design of Experiments
(DoE). DoE is a systematic method to determine the dependence of the
output of a process on the a�ecting factors [5]. Generally, DoE methods
are sampling techniques that sample points in the design space based in
a certain systematic manner, e.g., random sampling [5], grid sampling [5],
Latin Hypercube Sampling (LSH) [52], full factorial sampling [8] and more.

In some cases, additional expert knowledge about the given optimization
problem is available, in which the DoE process can be guided by experience.

4.2 Design Evaluation
In industrial engineering, the most time-consuming and expensive part is
often the stage of evaluating possible configurations [57]. This evaluation is
generally performed by means of either analytical, experimental or compu-
tational methods.

4.2.1 Analytical
The most accurate way to evaluate design is by analytical evaluation of
a objective function. In this case, a generalized equation for the objective
problems is known, which can be solved analytically. However, analytical
evaluation is only possible with simple, isolated equations, which are not
available in most industrial design applications [28].

4.2.2 Experimental
Another, more expensive way to evaluate industrial design is by creating
psychical prototypes, and measuring the objectives in a controlled setting
[28]. Even though experimental evaluation generally provides extremely reli-
able and informative insights, it is infeasible to build a prototype for every
iteration. Therefore, experimental evaluation is mostly exclusively conducted
in the final design phase.

4.2.3 Computational
Computational evaluation has gained a lot of popularity since computational
resources are becoming available at a larger scale. By capturing physical
processes and phenomena in computational models containing detailed equa-
tions, simulations can be performed to mimic real-world behavior of proposed
configurations. For instance, Finite Element Analysis [69] and Computational
Fluid Dynamics [28] techniques are used to calculate physical properties of
a design without the need for a physical prototype.
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Although it is practically impossible to account for every minor external
influence, computational evaluation methods can predict physical behavior
fairly accurately. Unfortunately, these required calculations are often so ad-
vanced that it can still take up to weeks or even months to calculate the
performance of one configuration on a single objective function.

4.3 Problem Description
Using either of the aforementioned evaluation methods, practice shows that it
is very costly to evaluate a design configuration in case of industrial engineer-
ing, especially when it comes to experimental or computational evaluation.
Consequently, the main problem is on how to minimize the amount of func-
tion evaluations required to obtain satisfactory results. Hence, an algorithm
that tackles such an MOP should exploit the known configurations as thor-
oughly as possible. In principle, the priority is therefore maximizing the
prediction accuracy on the individual objectives, and not minimizing the
required computation time to propose new data points. Although the prob-
lem is scalable, the primary scope of this study is limited to optimization
problems with a relatively low amount of objectives.

Furthermore, the behavior of objective landscapes is generally very di�er-
ent for the di�erent objectives in industrial design and little is usually known
about the behavior of the landscapes. Accordingly, a second challenge is to
include an adaptive/hybrid technique for selecting and combining surrogate
models into ensembles in such a way that the objective functions can be
approximated well without the need for prior knowledge on the objectives.

Finally, many experimental and computational methods are subject to
a certain amount of variability in outcomes, that will say, when provided
with the same input, the output can still di�er a bit due to the complex
nature of the evaluation methods. However, for the sake of experimenting and
obtaining conclusive results, the assumption here is that function evaluations
are deterministic, reliable and valid, i.e., that it is possible to approximate
the objective functions in a deterministic manner.

4.3.1 Hypervolume Indicator Optimization
In practice, when optimizing multiple objectives, the goal is to obtain a
Pareto-front that maximizes the amount of gained information (recall Sec-
tion 2.2. Although there are multiple methods for performance indication,
the performance assessment of Pareto-fronts is generally expressed with the
Hypervolume Indicator [89].

The Hypervolume indicates the (multi-dimensional) space between the
obtained Pareto-front and a chosen reference point. In Figure 2.2.1, the
hypervolume is denoted by the surface between the Non-dominated solutions
and the upper right corner of the plot. When optimizing more than two

27



Problem Description Chapter 4. Industrial Design Optimization Problem

objectives, the hypervolume would denote the hyperspace between a set of
solutions and a reference point. Therefore, the main goal in multi-objective
optimization is to maximize the Hypervolume indicator by obtaining a well-
spread set of solutions with as low values on all objectives as possible.
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–I never worry about the problem. I worry about the
solution.

Shaquille O’Neal

5
Proposed Solution

In this chapter, the new Ensemble-based S-Metric Selection E�cient
Global Optimization (E-SMS-EGO) algorithm is introduced, which ex-
tends the SMS-EGO algorithm by addressing additional predictive
power from ensembles of surrogates. The generation of ensembles of

surrogate models provides additional insight into the objective functions,
which is heavily exploited to force the multi-objective S-Metric Selection
optimization process in the right direction for minimization, while still aim-
ing to obtain a Pareto-front with evenly spread points. Consequently, this
method can be used to solve expensive multi-objective optimization prob-
lems in a highly e�cient manner, requiring a minimal amount of expensive
function evaluations.

5.1 E-SMS-EGO
The following section provides an extensive overview of the E-SMS-EGO
algorithm, which is built out of the following key components: The initial
sampling procedure, training the surrogate base models with respect to
each objective function, as well as finding the optimal ensemble weights for
every objective, followed by the separate minimization of all of the ensemble
function predictions to obtain a set of potential points for evaluation, out of
which the greatest contributor in terms of Hypervolume addition is chosen
for evaluation on the true objective function.
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First, a global outline of E-SMS-EGO is given in Algorithm 2, after which
the individual parts of the algorithm are decomposed and described in the
subsections that follow. Please note that Sections 5.1.2 through 5.1.4 are
executed in parallel for the di�erent objective functions, and integrated into
the multi-objective setting in Section 5.1.5

Algorithm 2 E-SMS-EGO
Input: x̨: initial sample; b̨: base models; f̨ : objective functions
Output: Pareto-optimal solutions

1: Y := evaluate x̨ on all functions f1, . . . , fm

2: while EvalBudget > 0 do
3: for all obj in f1, . . . , fm do
4: w̨ú

obj := FindOptWeights(x̨, y̨obj , folds, b̨) Û Optimal Weights
5: t̨mobj := TrainModels(x̨, y̨obj , b̨) Û Trained Models
6: x̨

Õ
obj := MinimizeEns(t̨mobj , w̨ú

obj , iter) Û Potential points
7: x̨

Õ
.append(x̨Õ

obj)
8: for all obj in f1, . . . , fm do
9: Y

Õ
obj .append(EnsemblePrediction(x̨Õ

, w̨ú
obj , t̨mobj))

10: xú = MaxHypervolume(x̨Õ
, Y

Õ) Û Greatest Contributor
11: x̨.append(xú)
12: Y.append({f1(xú), . . . , fm(xú)})
13: EvalBudget := EvalBudget ≠ 1
14: end while
15: return ParetoFront(y̨)

5.1.1 Initial Sampling
Before starting the optimization process, an initial set of data points is
obtained by means of a sampling procedure. E-SMS-EGO uses the optimized
Latin Hypercube Sampling method [52], which provides a sample of data
points that are equally distributed across the search domain. By dividing
the range of each of the n input variables into N equally probable intervals,
N samples are placed in the search domain, ensuring only one sample per
interval for every variable, as illustrated in Figure 5.1.1. By using LHS,
the amount of information that the surrogate models can derive from the
sample is maximized. After the LHS sampling step, the found data points are
evaluated on the objective functions to obtain the corresponding objective
values.
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Figure 5.1.1: Example of a sample generated with LHS with n = 2, N = 7 on a
normalized domain for both variables.

5.1.2 Finding Optimal Ensemble Weights
Next, the goal is to create a well-performing and robust ensemble for every
objective function. Therefore, the second step involves finding the optimal
linear combination of weights per objective function. In E-SMS-EGO, the
optimal weights are found per objective by means of 10-fold cross validation
(line 4), largely based on the linear combination method proposed by Friese
et al. [32].

First, all possible weight combinations are obtained by calculating p pos-
sible integer partitions with size k (the amount of base models) out of the
integer 10. After dividing these partitions by 10, this results in the weight
matrix W:

Wp,k =

Q

cccccccca

1 0 0 · · · 0 01,k

0.9 0.1 0 · · · 0 02,k

0.8 0.1 0.1 · · · 0 03,k
...

...
... . . . ...

...
0 0 0 · · · 0.1 0.9p≠1,k

0p,1 0p,2 0p,3 · · · 0p,k≠1 1p,k

R

ddddddddb

where:
p: number of possible weight combinations.
k: amount of base models.
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Out of this collection of possible weight combinations, the optimal weights
are found separately for all of the objective functions by executing the fol-
lowing steps according to the 10-fold cross validation procedure:

1. First, the base models are trained on the training partition of the
cross-validation fold.

2. Subsequently, all of the trained models are fitted separately to predict
the objective value of the configurations in the test partition, resulting
in a prediction matrix of size k times the amount of test points in the
fold.

3. Next, an ensemble prediction is determined by calculating the weighted
average using every possible weight combination, i.e., the rows in matrix
W , as in Equation 5.1.1.

4. Finally, the MSE is calculated between the ensemble predictions and
the corresponding objective function values as obtained in the initial
sampling procedure.

This results in ten MSE scores for all of the possible weight combinations,
which are averaged to get the cross-validated MSE score per weight vector.
As a result, the combination of weights with the minimal corresponding
cross-validated MSE value is selected as optimal weight vector w̨ú

obj to create
the ensemble for approximating the objective function in question.

5.1.3 Surrogate Model Training
As a next step, the k base models are trained on the full data set in line 5
to obtain an as accurate prediction per base model as possible. By training
the models on the full data set after finding the optimal weights, the model
predictions can be used with these optimal weights to obtain accurate and
robust ensemble predictions in the next step.

5.1.4 Minimizing Ensemble Predictions
Subsequently, a minimization process is carried out in line 6 to obtain the
minimum of the ensemble. This is done by predicting the objective function
value with the ensemble consisting of the trained base models in combination
with the optimal weights that were found earlier. With the intention to
encourage exploration and avoid getting stuck in local minima, the ensemble
prediction is made up of two components, the predicted value (Equation
5.1.1) and the uncertainty quantification component (Equation 5.1.2), as
introduced in Section 3.2.
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Predicted Value

The Ensemble Predicted Value (EPV) is computed as follows for a given
objective function:

EPV (x̨) =
Nÿ

i=0
w̨i · f̂i(x̨)T , (5.1.1)

where:
f̂i: an individual base model.
w̨i: the vector of best weights of the corresponding objective function.

Uncertainty Quantification

In addition to just using the EPV, the final prediction is calculated by
introducing an infill criterion. Section 6.3 shows multiple experiments that
were conducted to find out which infill-criterion is most beneficial to the
proposed algorithm. The k-NN variance infill criterion [73] (as formulated in
Equation 5.1.2) was shown to be most beneficial, and is therefore included
in the final version of the proposed algorithm.

‚Uk≠NN =

q

iœN(x̨)
wk

i

---EPV (x̨) ≠ yi

---
q

iœN(x̨)
wk

i

+
min

iœN(x̨)
d(x̨i, x̨)

max
x̨i,x̨jœ‰

d(x̨i, x̨) ‡̂. (5.1.2)

where
wi = 1 ≠ d(x̨i,x̨)q

iœN(x̨)
d(x̨i,x̨) , ‡̂ =

Ú
Var

Ë
{yi}iœN(x̨) fi {f̂(x̨)}

È
.

Resulting the final ensemble prediction per objective function including
the uncertainty measure to be:

KPV = EPV (x̨) ≠ ‚Uk≠NN (5.1.3)

The actual minimization process on the ensemble prediction function per
objective is then done by repeatedly picking a random data point in the
search domain and running a simple scikit-learn minimization function over
it.

5.1.5 S-Metric Selection
As the minimization process in step 5.1.4 is repeated multiple times, a col-
lection of potential points in the search domain is obtained for all of the
objectives in parallel. Subsequently, these points are again evaluated in lines
8, 9 using the composed ensemble for all of the objectives to obtain a predicted
value per objective. These predictions are then in turn used to estimate a
hypervolume score for all potential points, out of which the point with the
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biggest estimated hypervolume (greatest contributor) is chosen for evalua-
tion on the actual objective function in line 10. This model-assisted S-Metric
selection approach as provided by Ponweiser et al. [57] allows for an accurate
identification of new data points by making exhaustive use of the available
data, and therefore minimizing the amount of function evaluations as desired.

Moreover, apart from scaling nicely with the amount of objectives [76],
the S-Metric selection does not require normalization of objective spaces,
which makes it -along with some other nice theoretical properties [88]- ideal
to extend with optimally weighted ensemble surrogate models.
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The true method of knowledge is experiment.
William Blake

6
Experimental Evaluation

This chapter describes a selection of experiments that were con-
ducted in order to evaluate the proposed solution. Certain im-
portant choices for the final proposed framework were based on
insights gained from the experiments described in sections 6.2

and 6.3. In addition, the Section 6.4 covers a comprehensive comparison to
corresponding state-of-the-art multi-objective optimization techniques.

6.1 General Experimental Setup
All of the experiments described below were performed in an isolated Ana-
conda environment, running Python 3.8.3 on the mithril server in the LIACS
Data Science Lab. This machine has 1 Terabyte RAM memory and 64 Intel
Xeon E5-4667v3 CPUs @ 2.00 GHz (128 threads). Further implementation
details and source code are available at https://github.com/Gitdeon/E-SMS-
EGO.

6.2 Linearly Weighted Ensembles
As a starting point for the analysis of the proposed framework, some ex-
periments were first conducted in a single objective optimization setting to
test the general performance of linearly weighted ensembles. To show the
e�ectiveness of linearly weighted ensembles of surrogate models, the best
performing ensembles were compared to their individual base models under
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multiple experimental conditions.

6.2.1 Experimental Setup

Surrogate models and ensemble generation

In the first experiment, an ensemble was created by linearly combining the
following five base models as introduced in Chapter 2:

• Kriging/Gaussian Process Regressor (GPR)

• Radial Basis Function (RBF)

• Decision Tree (DT)

• Multi-variate Adaptive Regression Splines (MARS)

• Support Vector Regression (SVR)

To ensure a fair comparison and similar implementation, all of the models
were obtained from the scikit-learn package [56], a highly renowned pack-
age with a wide variety of implemented methods for pre-processing, model
building, model evaluation and several other tasks. Initially, the standard
hyper-parameter values were adopted for all of the base models. All base
models were trained using 10-fold cross-validation on a small, two dimen-
sional data set with 20 random samples, and ensembles were generated by
performing a 10-fold cross-validated exhaustive search over all the ensemble
weights according to the method described in section 5.1.2.

Test Functions

The experiments were performed on four single objective test functions with
varying landscape properties and di�erent inputs to obtain diverse data
and ensure reliable results. Included are the two-dimensional Ackley [3] and
Branin [13] functions, as well as the Himmelblau [36] and Sphere [12] func-
tions which take in inputs of variable dimensionality.

Test function 1: Ackley function

f(x1, x2) = ≠20 exp
3

≠0.2
Ò

0.5
!
x2

1 + x2
2
"4

≠ exp[0.5(cos(2fix1)
+ cos(2fix2))] + e + 20,

where x1 œ [≠5, 5], x2 œ [≠5, 5]

(6.2.1)
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Test function 2: Branin/ Branin-Hoo function

f(x1, x2) =
1
x2 ≠ bx2

1 + cx1 ≠ 6
22

+ 10(1 ≠ t)cos(x1) + 10,

where b = 5.1/(4fi2), c = 5/fi,

and x1 œ [≠5, 10], x2 œ [0, 15],

(6.2.2)

Test function 3: Himmelblau function

f(x1, x2) = (x2
1 + x2 ≠ 11)2 + (x1 + x2

2 ≠ 7)2,

where x1 œ [≠5, 5], x2 œ [≠5, 5]
(6.2.3)

Test function 4: Sphere function

f(x̨) = f(x1, x2, ..., xn) =
nÿ

i=1
x2

i ,

where xi œ [≠5.12, 5.12] ’i œ [1, . . . , n]
(6.2.4)

In the experiments, personal implementations of the Ackley and Branin
functions were used. The Himmelblau and Sphere functions were adopted
from the MF2 (available at https://github.com/sjvrijn/mf2) and SMT [12]
Python packages respectively. Two dimension were used for all objective
functions, with ranges as described in Equations 6.2.1 to 6.2.4.

Evaluation Metrics

In an attempt to present a complete comparison, the performance of the
ensembles were compared to the base models by means of multiple evaluation
metrics. Model performances are expressed in terms of the Mean Absolute
Error (MAE), Maximum Error (ME) and Median Absolute Error (Med):

MAE =
qn

j=1|ej |
n

, (6.2.5)

ME = max
j=1...N

|ej |, (6.2.6)

Med = Md(|E|), (6.2.7)

The models are evaluated by means of these three measures as they cover
diverse aspects of model performance. Both the MAE and the Med cover
the general performance over the global search space. A low MAE value
means that a model performs well over the whole search space, but can be
influenced by some poorly predicted outliers. As the Med is una�ected by
such tail prediction errors, it is insensitive to outliers, indicating a more
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robust performance. On the other hand, to gain insight in the outlying
points, the Maximum (Absolute) Error shows the maximum deviation of
the points at which a model performs worst. Therefore, by combining the
information gained from these three measures, the model performances can
be summarized in a complete manner.

6.2.2 Results
All of the experiments show results in favor of the ensemble technique using
linear weights. Table 6.2.1 sums up the average results over fifty repetitions
in all of the experimental conditions, showing that the ensemble approach
outperforms all of the base models in every single configuration. Likewise,
Figure 6.2.1 shows an example of the boxplots on the model performances
in terms of MAE after another fifty generations of the ensemble creation
process. These results are as expected, as the chosen weight configuration
for the final ensemble is always the one with the best performances, even if a
single base model does perform better than any other weight configuration,
in which case the weight for the best performing base model is set to one,
whereas the other model weights are reduced to zero. Also, the spread in
outcomes seems to be a bit smaller in case of the ensemble models, making
it a more stable and robust method for surrogate prediction.

Figure 6.2.1: Boxplots of the MAE values per model on a 2D Himmelblau function
with x1 œ [≠5, 5], x2 œ [≠5, 5], sorted based on the mean MAE value.

As can be seen in Table 6.2.1, the performance of the base models largely
depends on the objective function that has to be estimated. However, the
found ensemble steadily performs best independently of the objective func-
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tion. Therefore, this method is likely to perform well on any objective function
without the need for any prior knowledge about the landscape.

Even though it would, in theory, be possible for base models to be chosen
as the best ’ensemble’, the results show that in the vast majority of cases,
the ensembles are made up out of diverse combinations of base models. To
illustrate this, Figure 6.2.2 shows an example of the distribution of weights
in the best performing ensembles after repeating the ensemble generation
process fifty times on all of the four test functions. It can be seen that all of
the weight is seldomly assigned to a single base model, even further proving
the e�cacy of the linearly weighted ensembles.

Figure 6.2.2: Distribution of the weights of the best performing ensembles on the
four test problems, according to the MAE measure.

Table 6.2.1: Comparison of the performances of each surrogate model expressed
in Mean Absolute Error (MAE), Maximum Error (ME) and Median Absolute Error
(Med). The best performances per column are displayed in bold.

Model Ackley Branin Himmelblau Sphere
MAE ME Med MAE ME Med MAE ME Med MAE ME Med

Kriging 3.47 6.11 2.79 30.80 67.24 19.85 66.57 130.15 44.44 6.38 14.06 4.68
RBF 2.28 4.16 1.75 16.93 36.94 9.74 69.82 134.23 47.67 4.20 9.36 2.78
DT 1.56 2.47 1.33 31.43 59.54 23.25 71.65 123.32 51.35 5.59 10.05 4.92
MARS 0.91 1.48 0.77 25.70 45.62 23.59 85.29 134.55 67.39 2.36 4.07 2.21
SVR 1.07 1.79 0.91 65.01 120.13 51.77 83.47 141.80 67.38 7.36 12.68 6.93
Ensemble 0.79 1.29 0.61 14.24 28.79 7.56 52.52 97.19 33.32 2.23 3.91 1.63
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Finally, to illustrate how the linearly weighted ensemble method can be
succesfully used to approximate functions, it can be seen in Figure 6.2.3
that the general trends of the Ackley function, despite its capricious nature,
can be approximated pretty well using merely fifteen sample configurations.
Moreover, the variable values at the found minimum are identical to those
at the minimum of the real objective function.

Figure 6.2.3: An example of an ensemble model best predicting the Ackley func-
tion based on 15 configurations. Found weights: (Kriging:0.0 , RBF:0.1 , DT:0.2 ,
MARS:0.2 , SVR:0.5).

6.3 Uncertainty Quantification
Subsequently, some experiments were conducted to investigate the impact of
di�erent infill criteria on the performance of the optimization process, when
using the ensemble method as described in Section 5.1.2 with the MAE error
metric.

6.3.1 Experimental Setup
Several infill criteria were used in combination with the ensemble method to
find which methods works best. As prior works show very contrasting results
with regards to which infill criteria perform better (recall Section 3.2), exper-
iments were performed for multiple functions with varying dimensionality.
As the goal is to approach the global minimum with as little function evalu-
ations as possible, the optimization process is repeated for all infill criteria

40



Uncertainty Quantification Chapter 6. Experimental Evaluation

with a budget of fifty function evaluations in every experimental setup. To
account for randomness, results were averaged over five independent runs
per experimental setup.

Sampling

In order to start the optimization process with a fair sample, Latin Hypercube
Sampling (LHS) as described in section 5.1.1 was used to obtain a sample
that is equally distributed across the search space. In these experiments, the
initial sample size is limited to five times the number of input dimensions,
taking into consideration that objective function evaluations are extremely
expensive.

Infill Criteria

In the EGO setting, the infill criterion is used to integrate the models response
surface with the uncertainty of the prediction, which has to be minimized
in order to find the predicted minimal value (recall Section 2.1.3). Since
the application of the Expected Improvement infill criterion as implemented
in the original EGO algorithm is limited to Kriging-based regression mod-
els, ensemble-based EGO calls for di�erent infill criteria. This experimental
section covers the predicted value without any uncertainty measure, the Knn-
variance empirical uncertainty measure [73], the variance between non-zero
weighted base models and the variance over cross-validated predictions by
the best performing ensemble.

Infill criterion 1: Ensemble Predicted Value (as described in Section 5.1.4.)

EPV (x̨) =
Nÿ

i=0
w̨i · f̂i(x̨)T , (6.3.1)

where:
f̂i: an individual base model.
w̨i: the vector of best weights of the corresponding objective function.

Infill criterion 2: Knn-variance

KPV = EPV (x̨) ≠ Ûk≠NN , (6.3.2)

with Ûk≠NN as formulated in Equation 5.1.2

Infill criterion 3: Variance between non-zero weighted base models

V PV = EPV (x̨) ≠ Var
Ë
{f̂i(x̨) · w̨i|w̨i ”= 0, i = 1, . . . , k}

È
. (6.3.3)

where
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k: amount of base models.

Infill criterion 4: Cross validated standard deviation between ensembles

CV PV = EPV (x̨) ≠
ı̂ıÙ 1

M ≠ 1

Mÿ

j=0
(EPVj(x̨) ≠ EPV (x̨))2. (6.3.4)

where
M : Number of cross-validation folds

By using the cross-validation method, ten ensembles are created, making
use of the weights that had the best overall performance. This results in ten
predictions per new assigned points, of which the variance can be used as an
uncertainty measure.

Test Problems

To gain insight into how the infill criteria perform, they were tested on the
Rosenbrock function, a normalized Lp space function, and the Forrester func-
tion, all for which the number of input dimensions can vary.

Test function 1: Rosenbrock

f(x̨) =
N≠1ÿ

i=1
[100(xi+1 ≠ xi)2 + (1 ≠ xi)2], (6.3.5)

where xi œ [≠5, 5] ’i œ [1, . . . , n].

Test function 2: Lp Norm

f(x̨) = Îx̨Îp = p

ı̂ıÙ
nxÿ

i

|xi|p (6.3.6)

where xi œ [≠3, 3] ’i œ [1, . . . , n]

Test function 3: Forrester

The third function is a multi-dimensional adaptation of the Forrester
function as implemented in [72] with xi œ [≠2, 2] ’i œ [1, . . . , n].

6.3.2 Results
The infill criteria were tested and compared to each other in terms of evalu-
ated function values and convergence rates.

42



Uncertainty Quantification Chapter 6. Experimental Evaluation

Minimum Objective Values

Table 6.3.1 shows the minimal objective values obtained after fifty function
evaluations, averaged over ten independent runs. Here, it becomes clear the
cross-validated variance infill criterion performs worst in almost all cases,
even though it was massively more costly to compute both in terms of time
and computational expenses. This poor performance is probably due to the
detection of di�erent minima over the folds, which, by averaging the results,
leads to the proposal of points somewhere in between promising locations.

Furthermore, it becomes clear that the k≠NN infill criterion significantly
outperforms the other infill criteria in most cases, except for the Rosenbrock
function in higher dimensions. As the dimensionality of the Rosenbrock
function increases, the predicted value without any measure for uncertainty
easily outperforms all the other infill criteria, corresponding the findings in
[60]. This result can most likely be dedicated to the wide search domain
and range of the Rosenbrock function, in which case exploitation would
be preferred over exploration, especially with a small number of function
evaluations. It could also be argued that the k≠NN infill criterion performs
suboptimal in a large search domain of higher dimensionality as data points
might be too far away from each other to obtain any beneficial information
from their interactions.

Convergence

In addition, Figure 6.3.1 shows the convergence plots of Ensemble-based EGO
(E-EGO) per infill criterion on the three single objective test functions. In
terms of convergence, the infill criterion perform quite di�erently, depending
on the functions they minimize. On the Lp Norm function, the k≠NN infill
criterion shows remarkable and unmatched results, actually reaching the
global minimum within 50 evaluations in some case and doing so much
faster than the other infill criteria. Also, the k≠NN infil criterion converges
faster than the other algorithms on the Rosenbrock and Forrester functions
in lower dimensionality, but seems to perform similarly or worse in higher
dimensionality, as becomes clear in table 6.3.1.

Table 6.3.1: Minimal obtained objective function values per infill criterion averaged
over 10 independent runs of the algorithm. (k = 9 in k-NN, 10 folds in cv-Var) The
best achieved values per function are shown in bold.

IC Forrester Lp Norm Rosenbrock
2D 3D 5D 2D 3D 5D 2D 3D 5D

PV -149.31 -161.20 -132.91 0.2427 0.1987 0.7782 28.50 7.99 88.02
Var -172.59 -155.74 -125.51 0.2365 0.1510 0.6546 19.16 251.22 251.76
k-NN ≠176.14 ≠161.78 ≠139.14 0.0224 0.0835 0.2173 5.03 62.47 730.38
cv-Var -141.29 -132.42 -94.83 0.2381 0.4191 0.7435 22.89 288.64 1554.15
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(a) Rosenbrock function

(b) Forrester function

(b) Lp Norm function

Figure 6.3.1: Convergence plots of single objective E-EGO using the Predicted
value, Variance, k-NN variance and Cross-Validated Variance as infill criteria. Ex-
periments involve 2,3 and 5 input dimensions (from left to right). The y-axis shows
the best achieved value so far with respect to the global minimum. The center line
denotes the median across five repetitions, surrounded by a plane representing all
values between the lower and upper quartiles.

All in all, the k≠NN showed favorable results in most of the cases, except
for being outmatched by the Predicted Value in two cases. Even though
exploitation might be more important than exploration in case of more
dimensions, it is, however, still desired to incorporate some level of uncertainty
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in case of multi-objective optimization, as the goal is to find points that
perform well on all objectives rather than finding the global minimum of one
of the objective functions. Hence, on basis of these experiments, it can be
concluded that the k≠NN infill criterion is capable of exploiting promising
locations very well, while still providing a globally accurate model.

6.4 Algorithm Comparison
In this final section on experimental evaluation, the proposed E-SMS-EGO
algorithm is compared to similar, widely used multi-objective optimization
algorithms in terms of hypervolume and spread. The algorithm is compared
to the famous NSGA-II, MOEA/D and C-TAEA algorithms. The realiza-
tion of this chapter largely depends on the excellent Pymoo multi-objective
optimization benchmarking package provided by Blank and Deb [10].

6.4.1 Experimental Setup
To compare SMS-EGO to the competing algorithms, all of the algorithms
were run ten times with di�erent initial samples and random seeds.

Sampling and Evaluation Budget

Again, LHS was used to obtain an initial sample to start the optimization
process. The initial sample size for E-SMS-EGO was set to 5 ◊ N , with N :
number of input variables. As the goal is to acquire a well-spread Pareto-
front in as little function evaluations as possible, the amount of function
evaluations was set to 25.

Functions

Inspired by earlier work on multi-objective optimization and the extensive
benchmark suite provided by [10], a diverse collection of multi-objective op-
timization problems was composed to compare the algorithm performances.
To ensure a thorough comparison, this collection includes some artificially
designed two-objective problems and real-world like problems. Table 6.4.1
provides an overview of the optimization problems in terms of input dimen-
sion (n), Lower Bounds (LB) and Upper Bounds (UB) of the input variables,
as well as the number of objectives (k) and the hypervolume reference point
(ref). In addition, it shows if the problem is artificially designed (AD) or
real-world like (RWL). This collection consists of the following functions:
BNH [17], TNK[23], CTP1 [22], ZDT4 [23], Kursawe (KSW) [45], Welded
Beam (WB) [34], Car Side Impact (CSI) [20].
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Table 6.4.1: Artificially designed and Real World Like multi-objective optimization
problems as implemented in the pymoo package.

Problem type k n LB UB ref

BNH AD 2 2 [0, 0] [5, 3] [140, 50]
TNK AD 2 2 [0, 0] [fi, fi] [2, 2]
CTP1 AD 2 2 [0, 0] [1, 1] [1, 2]
ZDT4 AD 2 10 [0,-5,. . . ,-5]n [1,5,. . . ,5]n [1,260]
KSW AD 2 3 [-5, -5, -5] [5, 5, 5] [-10, 2]

WB RWL 2 4 [0.125, 0.1, 0.1, 0.125] [5, 10, 10, 5] [350,1]

CSI RWL 3 7 [0.5, 0.45, 0.5, 0.5,
0.875, 0.4, 0.4]

[1.5, 1.35, 1.5, 1.5,
2.625, 1.2, 1.2] [42, 4.5, 13]

Algorithms

The competing algorithms are NSGA-II, MOEA/D and C-TAEA as im-
plemented in the Pymoo package [10]. As these algorithms make use of
populations instead of a single point per iteration, the population sizes and
number of generations were both set to 5 to equal the total amount of function
evaluations, on top of the initial sample.

6.4.2 Results

Hypervolume

As becomes clear in Table 6.4.2, E-SMS-EGO significantly outperforms
NSGA-II, MOEA/D and C-TAEA in terms of the Hypervolume scores of
the obtained Pareto-fronts. Also, in most cases, the standard deviation is
lower for E-SMS-EGO, suggesting that the proposed method is more robust
and stable than the competing algorithms. On some functions, e.g. TNK,
WB, some of the competing algorithms show very poor results in terms of
Hypervolume, with abnormally high standard deviations. In these cases, the
algorithms did not succeed to find enough feasible, Pareto-optimal solutions
below the reference point, therefore receiving a Hypervolume score of 0 in
some of the runs. On some problems, especially MOEA/D seemed to perform
poorly when allowed only a small amount of function evaluations. However,
E-SMS-EGO did not seem to su�er from this issue and was able to find a
Pareto-front in all of the runs.
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Table 6.4.2: Mean Hypervolume score with respect to the reference point for each
test function. The best results per test function are shown in boldface if they were
significantly higher according to Welch’s t-test with – : 0.05.

Problem Measure NSGA-II MOAE/D C-TAEA E-SMS-EGO

BNH HV 4760 4617 4723 5035
Std. 134.4 209.8 157.7 35.85

TNK HV 1.849 0.000 1.015 3.926
Std. 0.597 0.000 1.134 0.116

CTP1 HV 1.115 1.136 1.103 1.261
Std. 0.088 0.061 0.085 0.016

ZDT4 HV 162.1 116.5 161.0 176.0
Std. 18.90 43.16 17.71 14.62

KSW HV 41.47 43.04 42.01 56.09
Std. 15.05 19.35 12.97 9.923

WB HV 32.90 1.217 32.49 33.63
Std. 1.298 5.969 4.690 1.797

CSI HV 11.14 10.56 16.67 19.41
Std. 3.205 2.092 1.101 0.260

Spread

In addition, Figures 6.4.1 and 6.4.2 show the Pareto-frontiers obtained by
the four algorithms on five of the test functions. Here, it can be seen that
E-SMS-EGO in general succeeds to find the best Pareto-fronts compared
to the competing algorithms, as the solutions are located more towards the
minimal values on all objectives. In addition to finding more Pareto-optimal
solutions, the solutions found by E-SMS-EGO are well-spread across the
objective space, which is demonstrated nicely, especially for the BNH, CTP1,
Kursawe and Car Side Impact problems.

Furthermore, it is shown that, for some problems, only a small amount of
Pareto-optimal solutions could be found, which is most likely explained by
the limited amount of allowed function evaluations. Especially for NSGA-II
and MOEA/D, which were only allowed small population sizes, this explains
why so little Pareto-optimal solutions were found. However, the vast majority
of solutions that were found by the competing algorithms were still inferior
to the solutions found by E-SMS-EGO, verifying that the proposed method
beats the competing algorithms altogether in terms of e�cacy in multi-
objective optimization.
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(a) Pareto-fronts BNH (b) Pareto-fronts CTP1

(c) Pareto-fronts Kursawe (d) Pareto-fronts ZDT4

Figure 6.4.1: Pareto frontiers obtained by the four algorithms on four of the test
functions.

Figure 6.4.2: Pareto frontiers obtained by the four algorithms on the three-
objective Car Side Impact problem.
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–It’s what you learn after you know it all that counts.
John Wooden

7
Conclusion and Future Work

In this thesis, the novel Ensemble-based E�cient Global Optimization
S≠Metric Selection (E-SMS-EGO) algorithm is proposed, and has
been shown to be very successful in finding well-performing, Pareto-
optimal solutions to multi-objective optimization problems with a very

limited evaluation budget. By heavily exploiting already known data points,
E-SMS-EGO has been shown to outperform comparable state-of-the art
multi-objective optimization algorithms, i.e., NSGA-II, MOEA/D and C-
TAEA on a diverse collection of artificially designed and real world like test
problems.

7.1 Contributions
Multiple experiments were performed with di�erent techniques to compose
the proposed algorithm in an optimal way. This resulted in an algorithm that
improves upon the SMS-EGO algorithm by using optimally weighted ensem-
bles of regression models as surrogates. By further extending the algorithm
with the k-NN variance measure as a method of uncertainty quantification,
E-SMS-EGO was able to find minimal solutions that were nicely spread
across the objective space, with just a small number of function evaluations.
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7.2 Limitations
A minor limitation of the proposed method is that the creation of ensembles
might be biased. The hyperparameters of some models, e.g. Kriging, MARS
are already optimized in some way by nature, whereas the hyperparameters of
other regression models are not tuned at all. In some cases, this might result in
favoring some models over others in terms of weight distribution, thus missing
out on beneficial information from the other surrogate models. In order to
overcome this problem, an interesting addition to the proposed algorithm
would be to tune the hyperparameters of the individual surrogate models
before combining them into ensembles. Apart from making the ensemble
creation unbiased, adding a hyperparameter tuning step to the algorithm is
expected to be beneficial to its performance in any case, as the predictions
of the individual base models would be more accurate.

7.3 Future Work
In addition, there are many interesting directions for further research on the
proposed algorithm, of which some are mentioned in the following.

In the first place, the way in which ensembles are composed in the pro-
posed algorithm is relatively simple. There is probably some room for im-
provement in the way the base models are combined into ensembles. There-
fore, it could be interesting to experiment with more sophisticated weighting
methods, rather than global linear weighted averaging. For instance, weights
could be combined locally in a point-wise manner to detect local trends in
objective functions.

In the experimental results, the number of base models was limited to
five. It is expected to increase performance of the proposed method even
further if more surrogate models would be incorporated into the ensembles.
The proposed method is, in theory, scalable to a large extent, so adding more
surrogate models should not raise any problems, except for an increase in
computation time. In case of a large number of surrogate models, a way to
decrease computation time could be to find the optimal weights by means
of an evolutionary search, as proposed by Friese et al. [32].

Even though the computational requirements for point prediction are
generally negligible in comparison with the real function evaluations, some
steps could be taken to limit the required computational resources for propos-
ing potential solutions. Now, a new ensemble is created every time a new
data point is evaluated. In theory, it would be possible to limit the creation
of new ensembles to occur after a fixed amount of newly added data points.
This could, however, possibly deteriorate the performance of the algorithm,
so such changes would have to be administered with caution.

Also, even though E-SMS-EGO has been shown to perform well on some
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constrained multi-objective optimization problems, it does currently not con-
sist of a mechanism for active constraint handling. Potentially, including such
a mechanism could further improve the performance of the algorithm.

Finally, a logical next step would be to apply the E-SMS-EGO algorithm
on a real world multi-objective optimization problem to test its practical
relevance and e�cacy in addition to the displayed theoretical results.
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