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Abstract

Achieving an accurate prognosis of patients with endometrial cancer is a complicated and
demanding process that involves multiple steps. It is literally about predicting the future
and therefore graphical models that allow oncologists to reason about patients outcome can
be extremely helpful.

Bayesian networks (BNs) are graphical probability distributions that represent (causal
and other) relationships among the relevant variables and can provide more insights about
a disease and its treatment to clinicians. BNs determine the joint probability distributions
that are formulated in the form of networks. These networks consist of nodes that represent
the participating variables. The models have the potential to assist medical experts in
causal reasoning in addition to risk prediction for patients, in our case concerning outcome
of endometrial cancer treatment. In this specific domain, a list of biomarkers have been
found to be correlated with lymph node metastasis, but they are not used in practice to
predict and reason about a patient’s survival. The present thesis focuses on unveiling how
Bayesian networks can incorporate such variables and be used in order to build prognostic
decision support models, employing a combination of clinical background knowledge and
structural machine learning algorithms. In particular, it is investigated whether it is possible
to develop a reliable prognostic Bayesian network, that gynecological oncologists can use
preoperatively to assess patients with endometrial cancer. In addition, a comparison is
made with a Cox proportional hazards model (CPH), which is among the most well-known
regression techniques used for survival analysis.

The present study is based on a dataset of 763 patients of median age of 65 years, who
underwent surgery for their treatment between February 1995 and August 2013. The BN
implementation process integrates expert knowledge with score-based structure learning al-
gorithm results. In detail, the network includes different survival variables and multiple
types of preoperative, histopathological, molecular biomarkers. The ENDORISK (preopera-
tive risk stratification in endometrial cancer) BN model has developed in close collaboration
with clinicians of the Department of Obstetrics and Gynaecology of Radboud University
Medical Center and acts as the basis of the research paper that has been published in the
PLOS Medicine Journal (May 2020) [51]. It consists of preoperative tumor grade, immuno-
histochemical expression of estrogen receptor (ER), progesterone receptor (PR), p53, L1 cell
adhesion molecule (L1CAM), cancer antigen 125 serum lever (Ca-125), thrombocyte count,
cervival cytology and imaging results variables. Bootstrapping is also used to assess the
strength of the connections among the participating nodes. The comparison with a Cox
regression model reveals that the Bayesian model has many advantages over the CPH model
and it can be actively used by the oncologists, facilitating the decision-making process and
catering for each individual with endometrial cancer. These intuitive models are easy to
grasp and can be updated effortlessly based on new information. They have the ability to
transform to decision models and allow their users to reason about the patient’s condition
based on updated evidence.

Keywords: artificial intelligence, Bayesian networks, decision models, prognosis, machine
learning, Cox proportional hazards models, survival analysis, prediction, structure learning
algorithms, score-based algorithms, endometrial cancer, preoperative assessment.
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1 Introduction

1.1 The role of prognostic models in medicine

Prognostic models in medicine play an important role in estimating the clinical outcome of
treatment for a particular disease well in advance. In developing such models, knowledge of
the functioning of the human body is crucial and much of this knowledge is causal in nature.
The process of developing a prognostic model is focused on unveiling the variables that jointly
impact the outcome of a disease in a particular direction. Medical doctors have always been
fascinated by how information from several patients can be incorporated into a single prognostic
model and effectively support them in predicting a patient’s health situation in the future.

A variety of factors, such as a person’s medical history, age, gender, results of a physical
examination, and laboratory test results are used as variables in these models. It is highly
significant that these models consist of variables that are easy to be measured. This way, it can
be ensured that physicians can use them in practice. As a process, the prognosis is based on the
diagnosis, the provided treatment, and the doctor’s skills.

Prognostic models are divided in population-level models and patient-level models. The for-
mer category reflects common trends based on specified attributes for groups of people, while
the latter category consists of models focusing on generating the necessary information to come
up with proper therapy and patient-centric advice [2]. This way, the evaluation of the future
outcome is improved, and doctors are led to better decision-making.

An essential attribute of prognostic models is the fact that they have a wide range of use.
More specifically, they define healthcare policies worldwide by setting up universal predictive
scenarios. They also enable doctors to come up with a subset of patients, for whom specific
innovative therapies are suitable. These models focus on facilitating patient clinical management
and support doctors in everyday decisions (e.g., treatment choice, treatment adjustment, medical
test selection) [2]

The modeling process uses data from clinical studies to obtain simple prognostic scoring
rules. Such rules can be formulas in which significant variables are multiplied by a positive
coefficient (the larger, the more significance), whereas insignificant variables are left out (get a
coefficient of 0). The result of this procedure yields prognostic knowledge based on statistics [69].
An example is the International Prognostic Index (IPI) and the revised one (R-IPI). While the
former predicts two risk groups, the latter comes up with three prognostic groups for patients
with non-Hodgkin lymphoma. A total score is calculated for patients older than 60, according to
specific variables (e.g., increased level of blood lactate dehydrogenase). For example, an R-IPI
score equal to 2 points corresponds to a substantial degree of survival (four-year progression-
free survival) [59]. In addition, prognostication can be used in terms of classification of events
of patients, providing information about the individual’s survival according to a fixed point in
time, which is used as a threshold [2].

A sophisticated alternative to scoring models for prognostics is logistic regression and Cox
regression [12]. In the present thesis, the Cox regression analysis is used. In these methods,
the modeling process aims at capturing the probability of survival and how several variables
(deterministically) jointly influence a specific outcome probability.

Bayesian networks can also assist physicians in predicting survival while providing flexibility
to their users. The goal is to acquire a good idea of how multiple factors connect in terms
of causality, leading this way to a pre-specified outcome. The data sources used are either
expert knowledge, medical data, literature, or all of the above in order to create this graphical
representation [73].

Bayesian networks are promising and flexible tools, dealing effectively with missing informa-
tion. Given that they are the focus area of the present thesis, their advantages are analyzed in
detail later on.
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Figure 1: Histology of tissue, as shown under the microscope, obtained by a biopsy revealing
endometrial adenocarcinoma

1.2 Research focus

The main point of interest of the current thesis is the ability to provide preoperatively a more
precise prognosis for patients with endometrial cancer. The fact is that before surgery, limited
information is available, and thus, incorporating all preoperative information in a predictive
model as well as possible to predict postoperative outcome becomes a matter of great importance.

The critical point of concern, triggering the current research, is the fact that in the Nether-
lands, the number of treatment provided to patients is not consistent with the outcome. Physi-
cians reach a diagnosis in endometrial cancer by carefully histologically examining an endometrial
biopsy, as shown in Figure 1. The aforementioned is a standard practice followed by medical
doctors around the world. Doctors proceed with the surgical staging of the disease, only if they
have sufficient information collected. As a consequence, the grade of the tumor is not determined
adequately in a considerable number of cases. More specifically, research shows a discrepancy of
40% between the preoperative diagnosis and the final pathology. This is a crucial factor giving
rise to either more or less treatment than actually required. Around 10% of patients get lymph
node metastasis, yielding a very poor prognosis, the risk of which is hard to estimate. Poor
outcome varies considerably among patients.

In response to this problem, the current thesis investigates how a prognostic model can be
developed from data using Bayesian networks. These networks use available theoretical knowl-
edge, cohort endometrial cancer data, and experts’ guidance. They are probabilistic graphical
models, with predictive power, that do not have as a prerequisite that all values for all available
predictors in the data are needed to use them. This is a big different between the previously
mentioned prognostic scoring rules that require all included variables to be known to use them.

An attempt is made to reveal the predictive strength of Bayesian networks and their potential
for a more patient-oriented risk computation preoperatively. In detail, the prediction model
utilizes data such as patient information, tumor attributes, and biomarkers. More specifically,
selected serum-markers and bio-markers are incorporated, as research has shown that they have
high predictive value. Thus we aspire to provide new insights to physicians and equip them with
a useful tool to improve the prognosis of endometrial cancer.

Additionally, a qualitative comparison between the Bayesian model and the commonly used
Cox proportional hazards regression model for survival data is carried out. Cox regression is the
standard technique for survival analysis in clinical medicine [11]. The goal is to uncover points
of convergence between the two methods and understand in which way they differ. Following
this, a quantitative comparison between the established prognostic Bayesian model and a Cox
regression model takes place. The goal is to acquire a better understanding of how the Bayesian
model behaves as a prognostic model and to evaluate this behavior from a survival analysis point
of view.
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1.3 The structure of the thesis

Following the present introduction, chapter 2 provides an overview of the fundamental concepts
of probability theory, Bayesian networks, and survival analysis. Chapter 3 provides the reader
with all the needed information about the problem domain (endometrial cancer), the known
risk factors of the disease and explains the current situation regarding prognosis and survival.
Subsequently, chapter 4 focuses on the dataset used in the thesis, categorizes the variables into
preoperative and postoperative ones and specifies the selected variables. Chapter 6 offers a
review of useful software for the present research, describes fully all the steps taken during
implementation of the models, the data processing, model fitting and extension. In addition,
details are provided about how one can reason about survival, the implementation of a simple
CPH model. Finally a comparison is made with BNs, concluding in which ways Cox models differ
and why Bayesian networks are a really intuitive and more flexible approach for risk prediction
of patients with endometrial cancer. The last chapter, chapter 7, concludes the thesis with a
discussion and some directions for future research.

1.4 Contributions

The goal in the present research is to verify whether an efficient model for the prognosis of
endometrial cancer can be implemented by using machine learning and specifically Bayesian
networks. Medical research has brought to light new information about multimodal biomark-
ers that can be conveniently extracted and are closely associated with this disease. None of
them are actively used in clinical practice. It was therefore necessary to assess if combining
such variables with Bayesian networks can enable gynecological oncologists to achieve better
prognosis preoperatively. The final Bayesian network is capable of satisfying this need and is
flexible enough to be used for more than one event of interest. The medical doctors of Radboud
University Medical Center have used the ENDORISK model in their research as decision sup-
port tool aiming at revealing both patients survival and also lymph node metastasis. After the
developed model had been finalized, the researchers validated it externally. The continuation
of their research has been already funded after the publication of the research paper. The next
step is planning an implementation study for doctors to actually start using the model in their
practice. The medical doctors continue with performing molecular analysis on the cohort to
expand the model with new variables and the plan is to validate it later on in a big cohort in
Norway (10,000 patients). Additionally the current thesis focuses on comparing this model with
the regression-based Cox model and specifies in detail in which ways BNs prevail over CPHs.
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2 Preliminaries

2.1 Notation

To provide a clear understanding of the technical terms employed in this thesis, we first start
with reviewing the notations used. We use upper-case letters or strings, e.g., X, Y , to denote
random variables and bold upper-case letters e.g., X and Y, to denote a set of random variables.
For a binary variable with values true and false, its values are also denoted by lower-case letters
x, and x̄, short for X = true and X = false, respectively. Alternatively, we use X = T and
X = F , and X = 1 and X = 0, respectively. If the value of a variable is known, this is often
referred to as an observation, an instantiation, or evidence.

2.2 Probability theory

We continue with a brief review of some key concepts from probability theory, i.e., we con-
sider events, joint probability distributions, conditional probability distributions, the chain rule,
marginalization, and conditional independence.

Let X = {X1, . . . , Xn} be a set of random variables, where Val(X) indicates the domain of
X ∈ X and Val(X) the domain of X, respectively. An (elementary) event E ≡ X = x is any
random variable X with a value x from its domain. The set of all possible Boolean combinations
of events, or Boolean algebra denoted as B(X), is defined by using the operators: conjunction
(X = x ∩X ′ = x′) (also called intersection), disjunction (X = x ∪X ′ = x′) (also called union),
and negation (X = x) (also called complementation). This Boolean algebra contains events such
as (X1 = x1 ∪X2 = x2), (X3 = x3 ∩X4 = x4), and X2 = x2. Events are partially ordered by
⊆, with the universal lowerbound ∅ ∈ B(X) and universal upperbound Ω ∈ B(X), i.e., we have
for each E ∈ B(X) that ∅ ⊆ E and E ⊆ Ω. Usually (X = x ∩ X ′ = x′) is represented in set
notation as {X = x,X ′ = x′}.

A probability distribution is a function or mapping that assigns probabilities, i.e., values
from the closed real interval [0, 1], to any event involving variables in X.

Definition 1 (Probability Distribution). A probability distribution for a set of random variables
X with domain Val(X) is defined as a function P : B(X)→ [0, 1], such that the following axioms
hold:

(1) P (E) is a non-negative real value for all E ∈ B(X);

(2) P (Ω) = 1;

(3) for any set of disjoint events E1, . . . , En ∈ B(X), with (Ei ∩ Ej) = ∅, 1 ≤ i, j ≤ n, i 6= j,
we have that:

P

(
n⋃
k=1

Ek

)
=

n∑
k=1

P (Ek).

It is a fundamental property of probability theory that it is sufficient to specify a probability
distribution in terms of joint events {X1 = x1, X2 = x2, . . . , Xn = xn}, i.e., in terms of a joint
probability distribution P (X1, X2, . . . , Xn) for all values of the domain Val(X) (possibly with
the exception of one element from Val(X), where its probability can be derived from the other
probabilities of elements of Val(X) according to axioms (2) and (3)).

When the actual value of a random variable in an elementary event does not matter in a
given context, we often also write P (X) rather than P (X = x) for the probability of variable X
taking the value x.

The marginal probability distribution for a set of variables Y given the probability distribution
for the random variables X, with Y ⊆ X and X = Y∪Z, where Y and Z are disjoint, is obtained

10



by summing out the other variables (i.e. Z) from the joint probability distribution P (X), and
is defined as:

P (Y) =
∑

z∈Val(X\Y)

P (Y,Z = z)

Let P (X,Y) be a joint probability distribution over a set of random variables X and Y. A
conditional probability distribution P (X | Y) is defined as:

P (X | Y) =
P (X,Y)

P (Y)
(1)

with P (Y) > 0.
It is good to realize that P (X | Y) is actually a family of probability distributions, one for

every value y of Y. The conditional probability P (X = x | Y = y) is the probability of the
event X = x given knowledge about the event Y = y.

The concept of conditional probability is one of the most fundamental and most important
concepts in probability theory. In addition, the conditional probability plays an essential role in
a wide range of domains, including classification, decision making, prediction and other similar
situations, where the results of interest are based on available knowledge.

By moving the denominator on the right of Equation 1 to the left, Equation 1 can also be
written as:

P (X,Y) = P (X | Y)P (Y) = P (Y | X)P (X) (2)

By applying Equation 2 to a set of random variables {X1, X2, . . . , Xn}, this creates a chain
of conditional probabilities, more formally:

Proposition 1 (Chain Rule). Let P be a joint probability distribution over a set of random
variables X = {X1, X2, . . . , Xn}. Then it holds that:

P (X1, X2, . . . , Xn) = P (Xn | Xn−1, . . . , X1) · · ·P (X2 | X1)P (X1)

The chain rule allows us to compute the joint distribution of a set of any random variables
by only making use of conditional probabilities. This rule is particularly useful in Bayesian
networks, which we will introduce later in this chapter. Combined with the network structures,
the use of the chain rule can facilitate the representation for a joint distribution.

Another immediate result of Equation 2 by rearranging terms is Bayes’ rule:

P (X | Y) =
P (X)P (Y | X)

P (Y)
(3)

Bayes’ rule tells us how we can calculate a conditional probability given its inverse conditional
probability. For example, using Bayes’ rule makes it possible for us to derive the conditional
probability P (X | Y) from its inverse conditional probability P (Y | X), if we also have infor-
mation about the prior probability P (X), P (Y) of events X and Y respectively. P (Y) also
behaves as a normalizing constant.

A more general conditional version of Bayes’ rule, where all probabilities are conditional on
the same set of variables Z, also holds:

P (X | Y,Z) =
P (X | Z)P (Y | X,Z)

P (Y | Z)

with P (Y | Z) > 0.
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Another fundamental concept in probability theory is conditional independence. Two sets
of variables X, Y are said to be conditionally independent given a set of variable Z, denoted
X ⊥⊥P Y | Z, if

P (X | Y,Z) = P (X | Z) or P (Y,Z) = 0 (4)

Equation 4 asserts that given knowledge of a set of variables Z, knowledge of whether Y
occurs provides no extra information on the probability of whether X occurs.

2.3 Bayesian networks

Bayesian networks are a compact and natural graphical representation of probability distribu-
tions. A Bayesian network, abbreviated as BN, is a probabilistic graphical model that repre-
sents a set of random variables and their conditional independences via a directed acyclic graph
(DAG).

As Bayesian networks are a graphical formalism, we will use a lot of notions of graph theory
and a small fraction of it is summarized next. Let the pair G = (V(G),E(G)) be a graph, often
abbreviated to G = (V,E), then the set V is called its set of nodes, and the elements in the set
E ⊆ V ×V are called edges. For Bayesian networks, we restrict ourselves to directed edges or
arcs, i.e., if (v, v′) ∈ E, then we assume that it is different from (v′, v) and (v′, v) 6∈ E. An arc
(v, v′) ∈ E is often denoted v → v′. When a graph G only contains arcs, it is called a directed
graph. Furthermore, the concept of children of a node v ∈ V is defined as γ(v) = {v′ | v →
v′ ∈ E} and the set of parents of a node v ∈ V is defined as π(v) = {v′ | v′ → v ∈ E}. Finally,
when we follow the arcs of a graph G between two nodes v and u we have a directed path; when
there are no paths in the graph G of the form v → w → · · · → u→ v (first and last node of the
directed path are equal) it is called acyclic. In the following we will no longer make a distinction
between nodes v ∈ V and the associated random variable Xv, and simply indicate the node by
X.

A formal definition for Bayesian networks is given in the following.

Definition 2 (Bayesian Network). A Bayesian network B is defined as a pair B = (G,P ), where
G is an acyclic directed graph and P a probability distribution. The graph G = (V,E), consists
of a set of nodes V, representing random variables, and a set of directed edges or arcs E ⊆ V×V.
Let X ∈ V be a variable and π(X) be the parents of X in graph G. The distribution P is
defined as a joint distribution over variables V, specified by multiplying conditional probability
distributions for each variable X ∈ V in the form of P (X | π(X)), formally:

P (V) =
∏
X∈V

P (X | π(X)) (5)

As mentioned earlier, a directed acyclic graph G represents a set of conditional independence
assumptions over a set of variables X. The aforementioned relations are defined via a core
criterion of graphical causal models, which is known as d-separation.

An existing path between two nodes X, Y in a DAG G is composed of a sequence of edges,
independently of their direction. An ancestor node X of node Y is a node with a sequence of
arcs starting from X and going to Y , as follows: X → · · · → Y ; node Y is called the descendant
of X. When one node Y has only converging arcs (head-to-head) i.e. → Y ←, it is called a
collider. The rest of the non-end-points are known as non-colliders and they are connecting to
other nodes as follows:

• tail-to-tail arcs: ← Y →

• tail-to-head arcs: ← Y ←

• head-to-tail arcs: → Y →

12



Next, the formal definition of d-separation is provided.

Definition 3 (D-separation [50]). Every path connecting sets of nodes X and Y in a DAG G,
ignoring direction of the arcs, is considered to be d-separated by a set of of nodes Z, if and only
if the following holds:

• every path between nodes in X and Y includes a non-collider node in Z, or

• none of the collider nodes on a path and none of their descendants occur in Z

written as X ⊥⊥dG Y | Z.

An example of d-separation is given in Fig. 2. In this case, X1, X7 are d-separated, given
that X4, X5 block the only existing path between X1, and X7; they are both non-colliders: the
X1 ⊥⊥d X7 | {X4, X5} holds. On the other hand, X1 ⊥⊥dG X7 | X2 and X1 ⊥⊥dG X7 | X6 are false,
given that the highlighted nodes X2 and X6 are colliders as shown in the 2. We call in both
cases X1 and X7 d-connected, written as: X1 6⊥⊥dG X7 | X2 and X1 6⊥⊥dG X7 | X6.

Figure 2: D-separation example [17]

As a Bayesian network is both a representation of a joint probability distribution in the
form of a graph and a specification of the associated probabilistic parameters, the two, network
and parameters, are closely connected. One of the properties of a Bayesian network is that all
the independence expressed by means of d-separation are also implied by the joint probability
distribution. Formally it holds for any Bayesian network B = (G,P ) for any disjoint sets of
nodes (variables) X, Y, and Z that

X ⊥⊥dG Y | Z⇒ X ⊥⊥P Y | Z

It is said that G is an I-map of P [50].

2.3.1 Bayesian networks in prognosis

Prognosis is the process of reaching a specific prediction about the outcome of a disease, given
information about the patient and based on a therapeutic approach [73]. The primary focus of
such a model is to be able to predict the patient’s situation in the future. It is possible that
the focus is not a person but a group of people [2]. In the former case, the physicians interact
with these models to get some conclusions about the patient’s outcome in the future. As a
consequence, the patient reacts to the predictions/decisions and has a better understanding of
the situation and the available options. In the latter case, where more patients are the focus,
the Bayesian models support the medical doctors in coordinating better the treatment process
and perform better resources management [77].

Time is also critical in these types of models. Bayesian networks enable doctors to predict
a specific outcome in the future when time is also incorporated in the model. The prognostic
Bayesian models have a significant advantage; the prediction process takes place whenever it
is required by the physician, combining each time all available knowledge for a specific patient
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[75]. What needs to be clarified is that after interacting with a Bayesian model, the doctor can
obtain an idea regarding all variables of interest and not just outcome variables (e.g., death).

The goal is to be able to query the Bayesian network and answer questions as accurately as
possible about new data, that are not used for learning the probabilities and train the prognostic
BN.

In detail, training is considered to be the procedure in which a dataset is used to build the
prognostic Bayesian network. The network is created in such a way, that the final Bayesian
network yields probabilities that approach the training data. It is uncommon to produce a
Bayesian network that is capable of precisely recreating the training dataset. The training
process consists of two essential steps. First off the structure of the network is created, and
then the learning of the parameters takes place. The knowledge that lies within each Bayesian
network is the structure and the probabilities between the selected variables.

2.3.2 Advantages and challenges in Bayesian networks

The current section highlights the significant advantages of Bayesian networks. The accuracy
of Bayesian network can be good even when learned from a small dataset, but in that case the
graphical structure needs to be sparse, as otherwise the network will act as a database giving rise
to overfitting. In some applications, the number of missing records can be high. Even in these
cases, algorithms such as the Expectation-Maximization (EM) algorithm enable to calculate
conditional probabilities [71].

A feature of great importance is the fact that BNs are able to combine multiple sources of
information for obtaining a suitable graphical structure and probability distribution. As also
happened in the current thesis, researchers often use expert knowledge in designing the model
structure together with available data to build the complete model (structure and distribution).
It is even possible to combine available data concerning variables with variables for which data
is not available at all, and use expert knowledge or information from the literature instead to
assess probability distributions [39]. This makes the formalism rather unique in its flexibility.

On the other hand, there are some challenges to tackle when working with Bayesian networks.
In many cases, the available datasets contain both discrete and continuous variables. To combine
the two types of variable, usually the decision is made to discretize the continuous variables and
to proceed with working in the discrete domain. As a consequence, the discretized variables
may lose some information and possibly also statistical strength. Although there are some
known automatic methods to pursue discretization, the option to take into consideration expert
knowledge remains an optimal way to deal with the challenge [30, 81, 16].

A challenging problem occurs when a network consists of a large number of nodes and it is
in that case likely that the Bayesian network has some nodes having many parent nodes, i.e.,
the network is large, complex, and dense. If only a low number of data points is available for
a particular node as a function of the parent-node values, the resulting model will not fit the
data well. In general, the size of a conditional probability table (CPT) of a node in a Bayesian
network is exponential in its number of parent nodes, i.e., O(n · dk+1), where k is the maximum
number of parent nodes, d is the maximum number of values each node can take, and n the
number of nodes present in the Bayesian network. Clearly, the number of parent nodes influences
severely the number of needed BN parameters. In cases of small datasets and dense Bayesian
networks, Bayesian networks lose their key advantage and alternative methods are needed [71].

2.3.3 Incomplete data

The presence of incomplete observations in the dataset leads to multiple problems. Firstly,
missing information decreases the size of the sample and as a consequence the statistical tests
are much less accurate. Additionally, from a more practical point of view, the majority of
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computational mechanisms prefers complete information. This is why the available statistical
tools offer different options to create complete datasets by imputing the missing observations.

It is quite often the case that the reason behind this missing information is unknown. The
statisticians usually perform comparison of their analysis under different assumptions. In order
to be able to make such assumptions for the missing data and decide about how to tackle
this challenge, the statisticians categorize the multiple mechanisms based on how random they
appear to be.

• Missing completely at random (MCAR): In this situation the probability of a variable
missing is the same for all variables in the dataset. If, indeed, this is a valid assumption
to make, then the statisticians do not have bias in their inferences.

• Missing at random (MAR): In most cases, the information is not missing completely at
random from a dataset. Thus, the statistician proceeds to a slightly more complex as-
sumption. When data fall under this category then a variable is missing with a probability
that is based only on existing knowledge and not dependent on the missing data. If a
predictor variable is MAR, then it can be treated as NA, but it is necessary to have a
study with enough data on this variable to avoid any bias.

• Missing not at random (MNAR): In this case, the probability of a variable missing is always
related to unobserved information and the statistician does not have any background
information in respect to the missingness of these data.

In any case, the researchers’ goal is to understand and remove the bias if it is introduced
in their analysis. Each time, the statisticians choose among various missing data methods to
impute or delete incomplete data. The imputation methods are used to deal with the missing
data and create a complete version of the datasets. These methods replace the NA’s with
estimated values given the knownn information. There is a great variety of available methods
such as single imputation, multiple imputation and model-based estimation. Maintaining the
initial dataset size can improve effectively the accuracy of the analysis and reduce bias. On
the other hand, bias can be also introduced if imputation is performed in a wrong way. In
practice, the deletion of the missing information is possible too, but it should be performed
really carefully. Discarding data can be quite inefficient and can increase standard errors given
that the number of observations is reduced.

In more detail, single imputation methods are considered to be the ones that produce a
complete dataset by inserting values where the dataset has NAs, without having determined a
specific model for the incomplete data. A procedure that is used quite often is mean imputation,
in which the incomplete observations are filled in with the mean value of the existing values for
each variable. Please refer to [34] for other options of single imputation. One of the issues
occurring when single procedures are used is that the replaced observations are perceived by
the analysis as real observations but with standard errors. Multiple imputation addresses this
issue by catering for the uncertainty of the estimates. In general, these methods attempt to
fill in each missing observation with multiple imputed values instead of one. Each value comes
from a slightly altered model. The goal is to acquire different complete datasets, for which the
researcher performs a standard analysis and later on combines inferences for the total number of
the imputed datasets. However, as already mentioned, there are deletion procedures that address
the challenge of missing data. The most frequent are the listwise or complete case deletion and
pairwise or available case deletion. The former one refers to deleting the observations that have
missing data for any variable in the dataset and considering only complete observations. Pairwise
deletion describes the method in which an observation is deleted when there is a missing value
for a variable needed for a specific analysis, but incorporating this observation in analysis for
which all required variables have values. [34]
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Structure Observability Learning Method
Known Fully known Maximum-Likelihood estimation
Known Partially known EM, MCMC
Unknown Fully known Search model space
Unknown Partially known EM & Search model space

Table 1: Different cases in learning BN

2.3.4 Learning Bayesian networks

In lots of different applications, the underlying Bayesian network needs to be determined by using
the given dataset. The process requires the construction of the graph representation, given that
someone has the necessary prior knowledge and data at their disposal (e.g., knowledge by experts,
cause-effect relations between variables). Following this, the estimation of the parameters of the
joint probability distribution in the Bayesian network takes place. In practice, the latter is called
fitting a Bayesian network to the given data. The construction of the graph, in the absence of
expert knowledge, is realized by using appropriate structure learning algorithms.

The following equation describes the joint probability of a Bayesian network with structure
G with its associated parameters Θ given a database D.

In detail, the term P (G,Θ | D) is the product of P (G | D) and P (Θ | G,D). P (G | D)
describes how likely a particular Bayesian network is, given data D. This term show that there
are many different graphs G that are needed to calculate it. In this case, a search algorithm could
be used to reveal the graph that maximizes the term, when D is fixed. P (Θ | G,D) expresses
how likely specific probability tables are for a Bayesian network, given a graph structure G and
data D. This equation reflects the fact that the learning of the structure and the parameters of
a Bayesian network are two different processes.

P (G,Θ | D) = P (G | D)P (Θ | G,D) (6)

Structure learning focuses on identifying the DAG G, which reveals the existing dependencies
among the variables. The process becomes more challenging when there are either additionally
hidden nodes (partially known) or missing data. The table below indicates different cases of
learning a Bayesian network [46].

The difference between structure and parameter learning is the assumption that parameters
in separate local distributions should be independent, and as a result, they are learned effec-
tively and simultaneously for every variable [57]. In contrast, research has shown that structure
learning is a challenging procedure, and multiple algorithms try to deal with it.

When it comes to parameter learning, it is also important to distinguish if the purpose is
to come up with a point parameter estimation (best selected unique model), or a Bayesian pa-
rameter estimation (posterior distribution over parameters). Parameter learning as a procedure
fits a model to the data by producing an estimation of the parameters of the global probability
distribution. Given a structure that is known to the user, either through proper structure learn-
ing algorithm or prior knowledge, an estimation of the parameters of the local distribution is
computed effectively. In detail, each one of the nodes in the network has a corresponding CPT
(Conditional Probability Table). This reflects the node’s conditional probability distribution,
according to the values of the parent nodes.

In respect to learning the structure of a Bayesian network, two major categories exist. These
are the constraint-based algorithms and the score-based algorithms. There are also hybrid
algorithms. The best scenario is to construct a graph that is the minimal I-map of the dependence
structure of the dataset. [47]. Even if this is not the case, the resulted distribution should
approach the correct distribution in the probability space.
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Constraint-based algorithms approach the problem through various statistical conditional
independence tests in order to produce the dependencies between the variables. The number of
dependencies and independencies is then illustrated in a DAG. More specifically, these algorithms
calculate the conditional independencies among the variables. The conditional independence
constraints are distributed then across the DAG. After this step, the incompatible ones are
entirely excluded. These algorithms yield only the I-equivalent graphs, which are the ones with
structures that illustrate identical independence relations [63]. The basis of constraint-based
algorithms is Pearl’s Inductive Causation algorithm [70] Examples of these algorithms are PC
[18], gs, iamb [68], fast.iamb [78]. In Bayesian networks based on smaller datasets, structure
learning algorithms give better results than score-based ones. In more detail, the steps that
are executed by these algorithms are as follows [55]: The underlying structure of the network is
learned. Specifically, the result is the undirected graph, which is the skeleton of the network. The
complexity of the exhaustive search, even for small datasets, means that the algorithms limit the
search, that they perform, to each node’s Markov blanket. The Markov blanket consists of the
parents, the children, and the total number of nodes that have a common child with this specific
node. The connections, which participate in a u-structure, become directed (Xi → Xk ← Xj).
Finally, the remaining arcs become also directed, by making sure that the network is a directed
acyclic graph.

Score-based algorithms have as their purpose to provide an optimized graph and should be
preferred when large datasets are available. The basis of this type of algorithms is the fact that
in each of the models, one network score is assigned, revealing this way how well the model
fits the data. The goal is then to maximize a scoring function [53][19]. The first part of the
score-based algorithms is a scoring criterion capturing how well a graph G fits the data D. This
score enables us to order different Bayesian networks based on their quality. The two score-based
algorithms considered in the present thesis are Hc (Hill-climbing search), and tabu search.

Hill-climbing search is a heuristic search algorithm that falls under the local search algorithms
category. Given the pseudocode of the hill-climbing algorithm, a dataset and a heuristic function
are used and an attempt is made to come up with the most suitable solution to a problem in
a reasonable period of time. More specifically, the algorithm chooses the best successor node
under some heuristic function denoted by f. This function sorts all possible options at every
step of the search. Every time a successor node is found, the algorithm commits the search to
it and continues with the most suitable step in the search space. The process continues until no
more improvement is feasible and a local maximum (or minimum) is achieved. It is the case that
the mentioned solution may not be the global optimal solution. In the current thesis, we use
arc-strength in the Bayesian network, to help the algorithm avoid being stuck in local maxima,
which of course is not the best and most optimal solution [14].

On the other hand, tabu search algorithm is similar to hill-climbing, but better behavior is
expected. More specifically, the algorithm’s notable feature is that it uses memory structures,
which are called tabu-lists. A short-term group of past results is saved in the tabu-list, in order
to better filter the resulted models and come up with the most optimal one, avoiding this way
being stuck in the local optimum. Through the use of the tabu-list the search does not return
the recently visited nodes of the search area, unless the number of moves in this alternation is
greater than the length of the tabu-list. One simple way to update the tabu-list is to include
any step that has been revisited in the last k steps of the search [14].

Hybrid algorithms characteristic is that they have two phases. The constraint-based approach
is used for the first one in order to minimize the space of the number of graphs G (restrict phase).
The second phase, which is a score-based approach, focuses on unveiling the optimal solution in
the limited space. A really good example in this category is the Max-Min hill-climbing (MMHC)
[57] [68]
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Figure 3: Pseudocode for hill-climbing algorithm

Figure 4: Pseudocode for tabu search algorithm

2.3.5 Querying the Bayesian Networks

Inference is the process of getting answers from a Bayesian network after its implementation.
The graph provides information about a specific subset of the variables when the values of
different variables are known. These variables are also called evidence variables. By defining
the values of these evidence variables, the Bayesian network is instantiated, and the process of
acquiring answers, which is known as probabilistic reasoning, starts. The unique feature of BN is
the fact that there are no input or output variables. Input variables are considered the ones for
which the values are known. This way any variable can be either an input or an output variable.
After their determination, the information propagates in both sides in each BN, resulting in the
desired probabilities. To sum up, the probabilistic inference can be defined as the procedure
that produces the posterior distribution of variables based on specific evidence.

There are currently multiple different algorithms performing probabilistic inference in
Bayesian networks. These algorithms differ in their characteristics and what they offer. Others
are less complex but not that fast, while some are not that accurate and vague while being fast.
Some of them attempt to cluster dependent nodes and treat them as super-nodes. Others in-
corporate message propagation to exchange probabilistic information, whereas some algorithms
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eliminate nodes that are not necessary and absorb the probabilistic information in the rest of the
nodes. Based on the need, the user proceeds with choosing the appropriate probabilistic infer-
ence algorithm taking into consideration the different trade-offs. These algorithms are divided
into exact and approximate algorithms. Inference becomes a challenging task when performed
in extensive networks. Additionally, Bayesian networks with very small probabilities increase
the difficulty, and they cannot be easily queried. In case there is a causal relationship among
the nodes in a Bayesian network, then inference is interpreted differently. The arcs between
the nodes reflect causality, and the queries assess the probability of identified causes, given the
outcome or vice versa [47].

2.3.6 Goodness-of-fit

In the process of discovering the best possible fit among a list of similar models, a proper
comparison has to be performed. The goal is to find what is the model that explains the dataset
in the best possible way. As in several types of mathematical models, Bayesian models that
have minor differences (e.g., an extra node, an additional arc, an opposite direction for specific
arc) need to be effectively compared.

The essential quantity in this process is the likelihood of the dataset D given the DAG
structure G. We also will use P (G): the probability distribution over the DAG structures. The
likelihood is simply the probability of the data D given the graph G, i.e. P (D | G).

In this thesis we often wish to compare the fit of two different DAGs, G and G′, on the same
dataset D. This is done by means of the likelihood ratio:

q =
P (D | G)

P (D | G′)
(7)

also called the Bayes factor.
The log-likelihood is often easier to compute:

log q = logP (D | G)− logP (D | G′) (8)

After the computation of a node’s log-likelihood, all the values for each node are added together.
The Bayesian score for a BN B is thus defined by summing all the logs together for the participant
nodes. This way, the result is more numerically tractable. However, the mentioned step is
performed under the assumption that the observations are independent and that they come
from identical distributions.

Thus, the model selection takes place by checking the log-likelihood (equation 8) of the
available dataset D under a model G and under a model G′. By using this approach, the
explanation is straight-forward; In case G yields a better score, then, it is considered to be a
more representative picture of the dataset, in comparison with G′. The log-likelihood values can
be lower than zero. Thus, the best possible value for this score is the least negative. In terms
of absolute numbers, the lower it gets, the better the result is. As already discussed, careful
consideration of the number of variables that are present to the model is needed. In general, the
increase of the variables in a Bayesian network brings a much more convenient score in the end.
As a result, the focus should be on maintaining the right balance between the number of nodes
in the model and the available data. In our case, the log-likelihood ratio is used as a means of
comparison between the different models.

In the case that we have to cater to more complicated Bayesian models (e.g., larger BN),
two options are possible. One way to tackle this challenge is to include background information
about the Bayesian network. Alternatively, the user can accept the assumption of all BNs being
evenly possible.
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2.4 Survival analysis

2.4.1 Introduction

Survival analysis describes the methods used for the data analysis which focuses on the time
until a specific event. According to the theory of survival analysis, time acts as a parameter
which allows modeling the time until a particular event takes place. It is important to clarify
that there is no assumption that the rates of occurrences remain the same. The model, in this
case, reflects one of the following three cases:

• the time until a specific event takes place,

• the comparison of the time until a specific event among multiple groups,

• the correlation between the time until an event occurs with quantitative data.

The term event might refer to recurrence after treatment, recovery, any other specified point
of interest in the life of one of the individuals of the study or death. In general the method
of survival analysis supports model-ling the time of the occurrence of any event. However only
one event is the point of interest of a specific statistical analysis and as a result the probability
distribution describes only one variable which is the event variable (usually survival).

2.4.2 Statistics

A survival function expresses the probability of a participant in the study to survive and specif-
ically the probability that the event of interest (death) will not happen until a specific point
in time t. T corresponds to the time when the event of interest takes place and P (T > t)
corresponds to the probability that the survival time comes later than the moment t.

S(t) = P (T > t) =

∫ ∞
t

f(x)dx (9)

Where,

f(t) = −dS(t)

dt
(10)

f(t)dt can be roughly interpreted as the probability that the event of interest will take place at
time t, where f(t) > 0 and the area underneath is equal to 1.

Figure 5: survival function [17]

There are numerous survival curves mentioned in the literature. However, they have the
same essential characteristics: they are monotone functions which are equal to 1 at time t = 0
and approach 0 as time increases to infinity, as figure 5 shows [17].
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The hazard function h(t) corresponds to the probability at a specific moment, per portion
of time, for the event of interest to occur, given that the individual has not experienced it up to
time t [17].

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)
∆t

(11)

In some sense, the two functions describe the same thing from different perspectives. While
the survival function illustrates the positive aspect, by computing the not failing scenario, the
Hazard function gives the failing scenario [28]. If someone knows one of them, then it is easy to
come up with the corresponding form of the other function. More specifically these functions
can be written as: [17]

S(t) = exp

[
−
∫ t

0
h(u)du

]
(12)

h(t) = −

[
dS(t)
dt

S(t)

]
=
f(t)

S(t)
(13)

Figure 6: Comparison of Survival and hazard function to the same data [17]

The idea is that when we perform data analysis, through any programming language, the
one emerges from the other, through a smooth transformation.

Figure 7: Relationship of S(t) and h(t)

The goals of the statistical analysis of survival data are listed below.

• Calculation and explanation of Survival and hazard functions
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• Comparison of Survival and hazard functions: Comparison of the survival functions of
different groups of individuals in a study, by taking into consideration a specific variable
for which the groups have opposing values. The former group could be patients that use
placebo pills and the latter patients that use treatment.

• The assessment of how the variables in a survival dataset influence the survival time. In
this case, proper mathematical models are necessary.

To sum up, both these functions provide insights into survival and contribute to the anal-
ysis of survival data. Nevertheless, the hazard function gives a more sensitive and intuitive
representation of risk.

2.4.3 Censoring

An interesting topic related to survival analysis is censoring. The presence of partially known
(censored information) in a study complicates the analysis. Many researchers consider this to be
a challenging subject to tackle. In medical studies, patients might stop visiting the doctor and
as a result there is no follow up information available. The study may finish, without knowing if
the event of interest happens or not. Moreover, another event might take place in an individual’s
life (e.g., death, when death is not the event of interest). Scientists should handle these data
differently. It is possible to ignore these missing observations and focus on the analysis of the
uncensored complete data. However, this approach leads to less efficiency, especially when e.g.
in the medical world half of the observations are incomplete. Additionally, ignoring the missing
information introduces estimation bias to the analysis.

Researchers take into consideration the following types of censored data:

• Right Censoring happens when an individual drops out of the study before an event takes
place, or the study’s end occurs before the event of interest. E.g. In case the event of
interest is death, then the data are censored if the patients are still alive when the study
finishes. This is a very common type of censoring.

• Left Censoring occurs when the event of interest happens before the actual starting date
of the study. In a study that is about following people until they get a specific disease, it
is possible to record the existence of the disease when the first examination takes place at
time t; It is only known then that the event occurred before t and not exactly when. This
is a quite rare situation.

• Interval Censoring happens when an individual can have good results in the first exam-
ination but a negative second examination. In a situation like this, the patient gets the
disease between the two moments in time (time interval), but we are not able to determine
exactly when.

• Type I censoring arises when a study consists of a specific number of individuals and stops
at a planned moment in time, when all remaining subjects are right-censored. This type of
censoring also happens when there is a completely random reason for which the subjects
drop out of the study.

• Type II censoring occurs when the study, consisting of a selected number of subjects,
finishes after a pre-specified number of individuals participating in the experiment fails.
In this case, the remaining individuals are right-censored.

• Random (or non-informative) censoring appears when every individual that participates
in the study has a censoring time, which is stochastically independent of the time to
experience the event of interest. The individuals who have failure time larger than their
censoring time belong to the right-censored subjects.
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2.4.4 The different approaches in survival analysis

In this section, we attempt to describe the three approaches to model fitting in survival analysis.
The purpose is to explain the basics before diving into the methods used in the current thesis.
The first one is the parametric approach which assumes the statistical distribution of the survival
curve. By carefully considering the Hazard and survival function, the suitable distribution is
selected. Parametric models are considered easy to understand and explain. An additional
benefit of these models is that they are fast to learn from a given dataset. Even if a parametric
model does not fit that well the data, it can still be effectively used and provide results. However,
these models also have some limitations. The selected functional form for the baseline hazard
poses a constraint for the survival analysis. The use of a parametric model is more suitable
for less complicated cases. In real cases, it is highly possible, that there is no good fit. In
general, not all distributions are equally suitable for each scenario. Normal Distribution is
preferred when the risk of failure rises significantly with time. Uniform Distribution is not
often assumed in real-life applications. In this case the hazard increases exponentially with
time. Additionally, Exponential Distribution is assumed really often in survival analysis. The
risk of failure is constant over time in this case. Moreover, both Weibull and Log-normal
Distribution can be optimized. The former one has a parameter gamma that can be improved in
a way that produces multiple hazard behavior over time. This flexibility makes this distribution
applicable to lots of different real-life scenarios. The same holds for Log-normal Distribution in
which the alteration of sigma leads to non-monotonic shape for hazard function. In this case
Weibull Distribution is not advisable. However their common flexibility and the fact that they
are somehow complementary to each other, makes these distributions applicable to almost all
situations.

On the other hand, non-parametric algorithms do not assume much about the form of base-
line hazard and focus on calculating the regression coefficients. This aspect provides them with
the flexibility to learn any functional form from the given data. These models are preferable in
case of large datasets and no previous knowledge.

Non-parametric models, as said, are flexible and robust given the lack of assumptions for the
functional forms. Their use can lead to models with better performance, especially for predicting
purposes. On the other hand, these algorithms pose limitations too. The usage of more massive
datasets is necessary for the estimation of baseline hazard. They also require more time to be
trained, and there is a high risk of over-fitting the data, without being able to explain why some
predictions are made.

The last approach is the semi-parametric models, where the baseline hazard is partially
assumed. In these models, there are both parametric and non-parametric components. More
specifically, the component which is associated with the covariates is parametric. On the other
hand, the part concerning the estimation of survival function is completely non-parametric and as
a result no assumption is being made for its distribution. The most well-known semi-parametric
method is the Cox proportional hazards model which is used in the current thesis and analyzed
later on. It is considered to be the cornerstone of survival analysis in recent years.

2.4.5 Product limit estimation

The Kaplan-Meier survival curve corresponds to the survival probability in a specified period,
when time is divided into multiple time intervals. The method belongs to non-parametric esti-
mators and in comparison with the parametric methods, it has higher flexibility and can cater
for medical applications [3].

The mentioned analysis takes place based on three fundamental assumptions. First of all,
the censored patients are considered to have the same chances for survival as the ones that
continue to be under surveillance. Additionally, the survival probabilities are assumed to be
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equal both for patients that joined the study quite early but also later. Last but not least, this
type of analysis assumes that the event takes place at the indicated time.

The Kaplan-Meier survival analysis method is also known as product-limit estimator. Given
N survival times in a dataset D, where d are uncensored and c are censored, we assume that at
time ti, the number of deaths is equal to di. In this case, the following holds: d1+d2+...+dk = d,
in which t1 < t2 < ... < tk.

An alternative description is obtained by assuming that at a time interval ti−1, ti, ni patients
are at risk and censoring happens at time t1, t2, ...., tk. Given that the hazard is not changing
in the mentioned period, the maximum likelihood of this hazard hi is expressed as follows:

ĥi =
NumberOfDeathsIn(ti−1, ti)

TotalT imeSurvived
=

di
ni(ti − ti−1)

(14)

S(t) = P (T > t) = exp

{
−
∫ t

0
h(u)du

}
= exp

∑
i

{
−
∫ ti

ti−1

hidt

}
= exp

{
−
∑
i

(ti − ti−1)hi

}
(15)

As a result,

Ŝ(t) = exp

{
−
∑
i

(ti − ti−1)ĥi

}
= exp

{
−
∑
i

di
ni

}
(16)

where the following holds: ti ≤ t.
For large values of ni,
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The product of all i for ti ≤ t is calculated and known as Kaplan-Meier estimate. As a result,

Ŝ(t) =
N∏

i:ti≤t

(
1− di

ni

)
(18)

given that in the previous equation, we considered the product over all i, for ti ≤ t.
The calculation of survival probabilities by using the Kaplan-Meier estimate is essential to

investigate survival data and perform a successful analysis. In this calculation, no assumption
is made about the population that generated the sample of survival times. They are completely
determined by the characteristics of the sampled data [28].

2.4.6 Cox proportional hazards model

As already said, instead of determining the statistical structure of a given population entirely
and having a parametric hazards model in place, an alternative approach can be used. In this
case, the estimation of how the predictor variables affect survival does not have as a prerequisite
the definition of a baseline hazard function [28]. Additionally, no other assumption for the
probability distribution function of the sampled data is necessary, making this approach an
essential method for survival data analysis.

The Cox proportional hazards (CPH) model describes the conditional hazard function which
is interpreted as the risk of a specific individual to experience a specific event at a specific point
in time based on present conditions:

h(t|X) = h0(t)× ci = h0(t) exp(βTX) = h0(t) exp(β1X1 + · · ·+ βpXp) (19)
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In this equation, β = (β1, . . . , βp)
T represents the unknown regression coefficients of the

model in a p-dimensional vector. These coefficients measure how the covariates X1,. . . ,Xp affect
survival. Their estimation happens with no assumptions about the baseline hazard function
h0. In other words, the way that survival times are distributed is not at all associated with
the estimation process. The baseline hazard function h0 is an unknown non-negative function
and it is interpreted as the hazard of an individual to experience a specific event for which all
covariates are zero.

As mentioned earlier, no other assumption is made regarding the population. The Cox
method is widely applicable to a variety of different situations, and it is generally preferred.
However, the procedure requires the hazard functions to be proportional over time. It is neces-
sary to state the core ideas of the Cox method. To be more specific, the hazards are assumed
by the model to be proportional. This means that there is an assumption regarding a consistent
relationship between the dependent variable and the predictor variables.

In this method, the risk of a specific event in any group of observations is a fixed multiple of
the risk in any other. The consequence of this is that the hazard curves for these groups should
be proportional and can not intersect. However, this assumption needs to be checked. The
proportionality can be evaluated through statistical analysis and graphical diagnostic methods.
Furthermore, the method entails the assessment of how well the model fits the sampled data
(goodness-of-fit). In the presence of censored data, the method also expects non-informative
censoring.

Hazard ratio: In the equation below, βl is explained with regard to relative risk when Xl

rises by 1 and all covariates are constant:

h0(t) exp(β1X1 + · · ·+ βlXl+1 + · · ·+ βpXp)

h0(t) exp(β1X1 + · · ·+ βlXl + · · ·+ βpXp)
= exp(βl) (20)

In case βl < 0, then exp(βl) < 1 and the risk of experiencing an event decreases for a subject
as Xl rises. On the other hand, if βl > 0, the risk of an event rises as Xl increases. Consider X
and X′ as two covariate vectors, the hazard ratio is described by the following equation and as
shown it is not dependent on time:

h(t | X)

h(t | X′)
=
h0(t) exp(βTX)

h0(t) exp(βTX′)
= exp(βT (X−X′)) (21)

As it can be concluded h(t | X) and h(t | X′) are proportional, which of course explains the
name of these models. It is necessary to elaborate more on the possible situations on top of the
details mentioned above. When the hazard ratio is less than 1, it shows that as the value of a
single covariate increases the length of survival increases, indicating a decrease in the hazard.
In literature, the predictor variables that have hazard ratio higher than 1, they are known as
bad prognostic factors. On the other hand, the covariates with a hazard ratio of less than 1,
they are known as good prognostic factors.

Earlier, the Cox proportional hazards model is mentioned as a non-parametric approach.
However, we need to be more specific and correct about its categorization. The method includes
a parametric part which is the regression parameter β ∈ Rp and a non-parametric part which
corresponds to the baseline hazard function h0(·). As a result, it is more accurate to consider
the method as a semi-parametric approach.

Model validation: While using the Cox proportional hazards model, the goodness-of-fit is
closely associated with the concept of proportionality. It is necessary to prove that the impact
of explanatory variables is not at all related to survival time. In case the hazard functions are
not proportional, the estimated regression coefficients (X) cannot describe sufficiently how the
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explanatory variables affect the event of interest. In other words, the impact of a single variable
is not reflected by one regression coefficient [48] [28].

The evaluation of the goodness-of-fit for a specific model might fail due to multiple reasons.
Let us mention some of them. First of all, it is possible to perform an incorrect determination
of the functional form of the covariates, e.g., instead of incorporating log(Xj), Xj is used in 19.
Additionally, the PH assumption might not be valid for the specific case because of regression
coefficients β that vary with time. Moreover, the link function exp might be specified inaccu-
rately. In other words, there may not exist a log-linear association between the hazard and the
linear predictor βTX [28].

The assessment of a model like this 19 takes place by using various techniques. There are
different goodness-of-fit tests, graphical techniques and residual methods that have been devel-
oped for this purpose. Some example methods are the following. Regarding the proportionality
assumption, it can be checked through a score-type hypothesis test and Schoenfeld residuals.
The deviation from this assumption takes place when the regression coefficients are dependent
on time and as a result equation 19 changes to:

h(t | X) = h0(t) exp(β(t)TX) (22)

The assessment of PH, in this case, corresponds to examining:

H0 : β(t) ≡ β (23)

where β(t) := (β1(t), . . . , βp(t))
T A likelihood ratio test or the Wald test can also be used for

this purpose. Martingale residuals can also assist in examining the functional form of a covariate
and the proportionality assumption. It is also essential to evaluate the influence of individual
subjects in the study on the estimation of β.

In case the Cox proportional hazards model does not fit the data, it is possible to refine the
model through several techniques. Some of them are combining the Cox model with stratifica-
tion. In this case, time-dependency is integrated to the model by making sure the regression-
coefficients influenced by time, are present to the model. Other technique to tackle this issue is
additive hazards model and of course much more.

2.5 Bayesian networks vs survival analysis

Survival analysis and especially Cox proportional hazards models are widely used in the medical
world. The purpose of the method is to estimate how different risk factors influence survival.
As part of this thesis, we implement both a CPH model and a Bayesian network. In the current
section we compare the two methods qualitatively, before proceeding with the implementation.

An essential advantage of Bayesian networks is their ability to capture causality which is
explicitly reflected. This can not be modeled in Cox regression models. As already explained
hazard ratio indicates the impact of a single risk factor to survival. Based on the literature,
this ratio is determined as the fraction of the hazard in a particular risk group to the hazard
in an another group. The latter one is considered as a group of individuals to whom we do
not observe any of the risk factors. According to a common assumption of these models, HR
remains consistent over time [11]. However, it makes sense that this is not always the case.
An extension of CPH models is thus introduced to deal with this assumption. In general,
HRs can quite possibly be altered depending on the existing risk factors. On the other hand,
Bayesian networks do not depend on mandatory assumptions that set constraints to their use,
apart from conditional independence assumptions and they are much more flexible. Bayesian
networks are effectively learnt from data, while it is is also possible to be modeled solely based
on expert’s knowledge. Alternatively, they can be formulated by combining both approaches.
On the contrary, this is not the case for regression models.
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Moreover, BNs can be used for multi-risk assessment by integrating different risk models.
These models can be initialized by inserting the values for different risk factors and observe
how the probability for a specific outcome e.g. death is affected. These models can reflect
multiple outcomes in a single network. This allows optimal treatment of patients by applying
individual level prediction. There is also the possibility to broaden such a model in order to
use it as a decision model, by introducing appropriate utility variables. On the other hand,
it is not clear how the extension of the model takes place in CPHs, without performing again
parameter learning [29]. In general, one model is required per outcome under a research study.
In order to understand how this works in BNs, please refer to figure 14 and its explanation.
Bayesian networks are not that widely known in health sector, however regression models and
specifically CPHs are preferred. A possible explanation is that a good understanding of Bayesian
statistics is necessary to perceive the concepts and apply them efficiently. On top of that, they
are computationally demanding models, while CPHs can be used with almost every available
statistical package.
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3 The problem domain: endometrial cancer

3.1 Clinical description

Endometrial cancer is the result of an affection that occurs in the uterus. More specifically, this
type of cancer grows into the endometrium, which is the inner epithelial layer of the uterus[76].It
is considered to be more common in developed countries, where more risk factors are present [4]
[21]. In general, there has been an increase in incidence rates around the world. More specifically,
in countries with accelerated development generated by different socioeconomic factors, e.g.,
North America and Europe, the increase is multiplied by ten in comparison with less developed
countries [24, 35, 36]. This increase relates to a proportionate increase in life expectancy [64]. A
study, published on October 16, 2017, in the Journal of the National Cancer Institute, reveals
that there is a rapid rise in rates in the entire age spectrum in 26 out of the 43 populations. The
same study indicates that this increase takes place in 27 postmenopausal populations and 15 pre-
menopausal ones. This information agrees with the dataset used in the current thesis, as women
with postmenopausal status have a higher risk of developing endometrial cancer in comparison to
pre-menopausal women [35]. During 2017, around 61,380 women were diagnosed with this type
of cancer in the USA. Endometrial cancer is the fourth most common cancer and the sixth most
common cause of death in the United States. In Europe, approximately 9000 patients die from
this disease [7] [4] and one in every twenty women with cancer in Europe develops the disease
into the uterus. Despite the progress that has been made during the last years not only relatively
to the early detection of the disease but also treatment methodologies, there are not promising
results regarding mortality [9, 61]. Endometrial cancer (EC) has become the most frequent type
of cancer in the female reproductive system in developed countries. Some risk factors as high-fat
consumption and in general poor diet increase the number of incidents [25] [8]. More than half
of the cancers developed have a good prognosis. However, there is a proportion of 20% that lead
to a bad clinical result [41, 42] The classification based on histopathological factors creates two
categories [42, 26]:

• Endometrioid endometrial cancer (EEC);

• Non Endometrioid endometrial cancer (NEEC).

EEC of grade one or two, which is considered to be low-risk cancer [41]-[60], is treated by
a hysterectomy with two-sided salpingo-oophorectomy. On the other hand, the treatment for
grade three of the former type and also for high-risk NEEC is advised to be a complete surgical
staging. The step mentioned above is a matter of crucial importance since, in these carcinomas,
the disease tends to spread. More specifically, lymph node dissection has to take place, given
that they tend to spread to lymph nodes. This staging also consists of omentum biopsies and
random biopsies throughout abdomen [32, 79, 44, 65, 5]. The current method of establishing
a preoperative diagnosis of endometrial cancer takes place in a specific way by doctors all over
the world, using an endometrial sample. The most important thing is the fact that this way,
preoperative diagnosis differs from the final pathology by 40%. The substantial result of this is
that patients do not receive the proper treatment. More specifically, 25% of the patients in the
Netherlands receive more treatment than they should. On the contrary, 15% of patients receive
less treatment. The most crucial point is that nowadays, patients do or do not receive surgical
staging because of the under-grading or over-grading [20]. Besides that, there is another resulting
issue related to the prediction of lymph node metastasis that happens based on preoperative
grading only. In detail, patients that have preoperative low-risk histology (grade 1 or 2) have
a 5-8% risk of lymph node metastasis [67], on the other hand, patients with high-risk histology
(grade 3 EEC and NEEC) have a 24% risk of lymph node metastasis [67]. Staging is then based
only on histology, an essential part of low-risk patients is not taken into consideration for lymph
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node metastasis. It is essential to highlight that 5-8% remains a significant proportion, given
that low-risk patients are approximately 80% of the total population. At the same time, the
overtreatment of high-risk patients, without the presence of lymph node metastasis, is a fact.
The need for molecular markers is highly crucial because, by using them, the assessment of each
patient’s risk happens preoperatively and becomes much more effective. The research that has
been done so far regarding markers such as estrogen receptor (ER) and progesterone receptor
(PR), has shown that loss of both of these receptors in tumor biopsies relates to lymph node
metastasis and can increase the preoperative risk selection [31, 67] Prognosis, in this case, is
inferior too. Another marker is p53, the over-expression of which is connected to lymph node
metastasis too (MoMaTEC study). The dataset used in the current thesis also includes the L1
cell adhesion molecule (L1CAM), which is considered a valuable and powerful marker for the
prediction of lymph node metastasis and patient’s survival [23, 80, 72].

3.2 Risk factors

A risk factor can be everything that can cause a person’s higher chance of developing a disease.
It is necessary to clarify that the presence of one or more risk factors does not necessarily mean
that the woman develops the disease. It is also possible that a woman with no risk factors present
may develop endometrial cancer. It is also the case that the doctors are not in a position to
be sure about whether or not a specific risk factor or risk factors present to a patient caused
the disease in the first place[62]. Multiple factors can influence the risk of endometrial cancer,
either positively or negatively [62]. At this point, the analysis of crucial risk factors takes place.
First of all, a body-mass index (BMI) that is higher than 30 kg/m2 triples the risk of the
disease. High BMI leads to higher levels of estrogen, given that estrogen is produced in fat
tissues before the patients are even considered patients at risk[10]. Additionally, unopposed
estrogen is used to improve/treat postmenopausal symptoms. Methods that affect the hormone
levels in this way are considered to create a high risk of getting the disease. Specifically, there is
a correlation between EEC (80%) and high levels of hormones. The latter increases the risk of
EEC significantly. Moreover, women with the starting date of their menstrual cycle earlier than
the age of twelve and menopause that comes later than usual have a higher risk in comparison
to rest. It is a fact that every woman in her menstrual cycle experiences a high level of estrogen.
The higher the number of menstrual cycles, the greater the risk of cancer becomes. Studies have
shown that the drug tamoxifen is related to breast cancer treatment. It can also cause the growth
of the endometrium, and when it is used during menopause, it increases the risk of the disease.
Furthermore, the nulliparity condition is among the risk factors of the disease. Women that are
unable to get pregnant or have never been pregnant have a higher risk of developing endometrial
cancer. This is because pregnancy causes a decrease in estrogen. The risk is additionally higher,
in case a patient has a previous occurrence of cancer, in which the therapy consisted of radiation
treatment to the pelvis or family members have also experienced the disease in the past. On
the other hand, some factors help reduce the risk of the disease. Firstly, the grand multiparity
condition leads to the increased production of progestagens. As a result, pregnancies protect in
a way women from endometrial cancer by decreasing the risk. Smoking contributes to reducing
the risk too, by influencing estrogen and the body’s metabolism. Other self-explanatory factors
in decreasing this risk are regular exercise, birth control pills, and phytoestrogen diet [4].

3.3 Prognosis and Survival

The factors that enable better prognosis of the disease are the surgical FIGO stage, myometrial
invasion, histology, and the grade of differentiation. The separate FIGO stages represent 5-year
survival. Based on [4], stage I has approximately 85% survival, stage II has 75%, and stage III has
45%, while one out of four people with stage IV disease has 5-year survival [45][1]. Myometrial
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invasion affects 5-year survival significantly too. FIGO surgical staging, based on myometrial
invasion, is altered more by tumor grade. The percentage is higher for low-grade tumors, which
are affected by approximately 95% when deep myometrial invasion is present. On the other hand,
some research has indicated lymph-vascular space invasion as an independent prognostic factor,
even though there is a correlation with tumor grade and myometrial invasion. More specifically,
more than a single vascular cross section should participate, although LVSI is expressed in
around 37% of endometrial cancers[4][1]. Being able to recognize lymph node metastasis risk in
each patient is crucial for prognosis and survival too. It is a fact that surgical findings provide
valuable prognostic insights. As a result, the selection of treatment is facilitated. This way,
physicians can assess lymph nodes effectively and come up with a tailored therapeutic approach
[6]. Achieving successful prognostification through the use of such models preoperatively can
potentially lead to improved individualized treatment. By properly classifying the patients
with low risk endometrial cancer, that do not require surgery, the individuals do not undertake
unnecessary treatment and healthcare costs can also be reduced.
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4 Description of the data used in the research

4.1 Introduction

The research for the present thesis is conducted as part of an ENITEC study and with close
collaboration with gynecologic oncologists in the Department of Obstetrics and Gynecology, at
Radboud university medical centre. The initial study cohort consisted of patients that received
treatment for International Federation of Gynecology and Obstetrics (FIGO) stage I-IV en-
dometrioid endometrial carcinoma (EEC), or non-endometrioid endometrial carcinoma (NEEC)
at one of the European Network for Individualized Treatment of Endometrial Cancer (ENITEC)
centres that participated in the study. The patients were treated between 1995 and 2003 and
they had minimum 36 months follow-up time. Patients treatment provided expert physicians
with a complete set of clinical and pathological data. In total, 1199 individuals were part of this
study, for whom preoperative endometrial biopsy tissue was used for analysis purposes. Addi-
tionally, preoperative endometrial biopsy slides were obtained so as the list of chosen molecular
biomarkers is evaluated. The final selected cohort used for the present thesis is 763 patients that
received treatment for EC. Only individuals that received their diagnosis by an expert physician
in the field of gynecologic pathology were included [51] [72].

4.2 Preoperative variables

Age is incorporated in the dataset. The risk is getting higher as age increases, and it is also
related to lymph node metastasis and poor survival. The age at the time of diagnosis and the
patient’s birth date are both known. The dataset also consists of information regarding death
dates. Additionally, we are also aware of whether or not the patient’s decease is a result of
endometrial cancer. As body mass index (BMI ) gets higher, the risk of developing endome-
trial cancer rises. More specifically, values over 25kg/m2 double the risk. Physicians consider
this when examining a patient’s primary state [10]. A higher level of BMI in pre-menopausal
women leads to insulin resistance and severe hormone changes such as progesterone deficiency.
On the other hand, in postmenopausal women bio-available oestradiol and testosterone result
in a high increase in the number of endometrial-cells[4] Both of these variables are essential
when evaluating the primary situation and possibly affect patient’s risk. Cervical cytology is a
screening process that provides useful information about the cervix. More specifically, it shows
if malignant cervical cells are present or not. It is not expected to see endometrial cells in the
pap smear. The presence of endometrial cells is considered to be a sign of carcinoma progression
in the endometrium. It could be a consequence of the epithelial-mesenchymal transition (EMT)
mechanism. The mentioned mechanism is responsible for the loss of cell adhesion, which can
drive endometrial cells to the cervix [4].

Serum markers: Ca-125 is a serum marker. It is likely to have Ca-125 expressed when
malignancy is not present. It is frequent when cancer becomes metastatic. According to [27],
Ca-125, among other proposed predictors, is established as an effective indicator for nodal
metastasis with cut-off value: 35 IU/mL.

tumor characteristics: The dataset consists of four protein indicators: tumor suppressor p53,
PR (progesterone receptor), ER (estrogen receptor), and L1 cell adhesion molecule (L1CAM).
According to some research, they are independent prognostic markers in the case of primary
tumors [67][54]. The majority of endometrial cancers show preoperatively expression of the
estrogen receptor. More specifically, a low level of ER has been proven to be an independent
predictor for lymph node metastasis and recurrence of the disease. The same holds for PR.
Both estrogen and progesterone receptors are expressed mostly in endometrioid endometrial
cancers giving a quite good prognosis[72]. The normal behavior of the tumor suppressor gene
(P53 ) protects the cells. In case it is mutated, this essential attribute vanishes. It is thus a
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protein that does not work correctly, leading this way to its over-expression (especially in serous
carcinomas[72]). This situation is related to poor prognosis. These markers can be present at
the same time. This fact is mainly related to specific values of some variables: the patient’s
higher age, advanced FIGO stage, grade 3 tumor, lymph node metastasis, and non-endometrioid
endometrial cancer histological behavior[67]. L1CAM is a protein closely associated with the
molecular mechanisms of epithelial-mesenchymal transition (EMT). The over-expression of this
protein leads to cell mobility and a higher risk of spreading cancer. Especially an over-expression
greater than 10% has proven to be connected to the recurrence of the disease and mortality. In
comparison with the other proteins, L1CAM is a far better prognostic indicator. Especially in
endometrioid cancers, research has shown that the stated protein is capable of identifying the
group of tumors with aggressive character and poor outcome. L1CAM should be assessed for all
EC of type I, given that when increased, the protein provides much better insights than other
available factors (e.g., cancer’s histological grade). Furthermore, L1CAM does not associate
with BMI, patient’s age at the time of diagnosis, diabetes, obesity, nulliparity, hypertension,
and exposure to unopposed estrogens. The physicians should perform the risk analysis based
on L1CAM by testing curettage material before surgery[80]. The dataset also includes three
variables corresponding to the serum markers level of white blood cells (leukocytes), hemoglobin,
and platelets. The immune response-associated production of these markers is related to the
primary tumor. Preoperative grade is ranging from grade 1-3. This assessment is basically
about how aggressive a tumor looks. Grade 1 is well-differentiated and low-risk cancer. The
second one is more aggressive and moderate differentiated, while grade 3 is the most aggressive
and poorly differentiated cancer. It is assessed with an endometrial biopsy. An assessment of
histology also takes place. It refers to the structure of the cells. There are multiple different
types of carcinomas but two main categories: endometrioid and non-endometrioid. The former
type can be grade 1,2 or 3 while the latter is always aggressive (grade 3 carcinomas). It is
the case that some carcinomas can be both endometrioid and non-endometrioid when different
parts have different cell architecture. A carcinoma is stated to be non-endometrioid when the
non-endometrioid part is more than 10% of the carcinoma.

Imaging variables: The dataset consists of essential imaging variables too. Computed To-
mography (CT ), X-thorax, Magnetic Resonance Imaging (MRI ) and Positron Emission To-
mography (PET-CT ) implement this information. Their purpose is to provide a more precise
staging of the disease. The use of different types of imaging is because none of them provides as
clear results as physicians would like to. The imaging methods assess the enlargement of lymph
nodes. In more detail, CT’s purpose is to reveal the existence of enlarged lymph nodes in the
pelvis and para-aortic area. It is also used for the detection of distant metastasis, taking place
either in the liver or the lungs. X-thorax’s object is to detect if the cancer is metastatic and
present in the lungs. MRI and PET-CT detect similar patterns with CT. However, both of them
are considered to be better and more accurate methods than CT. MRI findings are significant
for a more tailor-made treatment. The physicians also prefer MRI, because, it enables them to
proceed with a successful selection of the group of patients, that can benefit from para-aortic
lymph node dissection[43].

4.3 Postoperative variables

There is also a postoperative version of grade variable. It refers to the tumor grade after the
surgery and reflects how aggressive it is. The same holds for histology. It is the result of
the assessment of the cell architecture after the surgery. Additionally, myometrial invasion
represents the depth of tumor invasion inside myometrium, which is the middle layer of the
uterus. In case the tumor is present in the uterus, the FIGO stage corresponds to stage IA or
IB. It is considered to be a significant postoperative prognostic factor. However, the depth of the
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invasion is not known precisely. Lymphovascular space invasion refers to the fact that the tumor
can grow into the blood vessels or lymph vessels. It is a crucial postoperative variable and a sign
that the patient may have a high risk of metastatic disease [4]. Cervical invasion refers to the
fact that the tumor can grow inside the cervix. As a critical postoperative indicator, it shows
if the tumor is endocervical or stromal (grows outside the cervix). In case, the latter holds,
the FIGO stage is at least stage II. FIGO stage shows precisely where the tumor is localized,
reflecting this way the stage after surgery. In total, there are eight stages. Please refer to [4]
for more information. Additional therapy/treatment variables are present in the dataset, i.e.
variables that describe the use of hormonal suppletion therapy (either hormonal contraception
or estrogen suppletion for postmenopausal complaints) and also the use of hormonal therapy for
medical conditions (mostly breast cancer), which is either tamoxifen or variant. Furthermore,
some of the individuals of the study receive chemotherapy, radiotherapy or a combination of
them after surgery. Experience has revealed that using these methods before surgery does not
yield better results in comparison with postoperative use.Follow-up time is also a crucial variable.
The dataset contains information regarding the moment in time when the patient had the last
contact with her physicians. By following an individual throughout time, it is likewise expected
that information regarding recurrence of the disease is also stored. More specifically the type
can be one f the following types. Local recurrence takes place on the top of the vagina, where
the uterus is located. Additionally, regional recurrence is the one that happens inside the pelvis,
including the pelvic lymph nodes. Finally, distant recurrence is the one that appears outside
the pelvis area.

4.4 Selection of variables

The dataset, selected for the current thesis [51], consists of variables corresponding to biomark-
ers such as Ca-125, platelets while imaging methods and results are also present. Addition-
ally, estrogen receptor (ER), progesterone receptor (PR), L1 cell adhesion molecule (L1CAM)
and p53 were chosen for immunohistochemical staining on biopsy samples that were received
preoperatively. The loss of ER and PR is confirmed as independent prognostic variables for
the prediction of lymph node metastasis (LNM) [67]. The loss of ER is closely correlated to
epithelial-mesenchymal transition (EMT) mechanism [4]. L1CAM has been also confirmed as
powerful prognostic marker in endometrial cancer, which is related to EMT as analysed earlier
[22] [72]. On top of that, research has shown that p53 is closely related to patients that received
poor prognosis [33]. Additionally, the individuals received adjuvant therapy based on existing
protocols, applicable in each hospital and this information is taken also into consideration here.
With respect to outcome variables, the data describe the presence of lymph node metastasis
(pelvic, para-aortic), disease recurrence and disease-specific survival at one, three and five years.
The disease recurrence is incorporated in the data in three different categories; local recurrence
which corresponds to vaginal vault, regional recurrence involving pelvic structures and distant
recurrence in case of other types of recurrence present in each patient. Moreover, patients’
results of preoperative processes such as cervical cytology are listed too, supporting effectively
the process of building the prediction model later on. The selection of variables with potential
prognostic power took place by the physicians after careful and systematic research and review
of existing literature [52].
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Variable Names Cutoff value(s)

Preoperative Variables

Age < 70;≥ 70years
Body Mass Index (BMI) < 25;≥ 25kg/m2

Hemoglobin < 12;≥ 12g/dl
Leucocyte counts ≤ 10× 109;> 10× 109/l

Thrombocyte counts < 400× 109;≥ 400× 109/l
Ca-125 serum levels < 35;≥ 35IU/ml

Lymphadenopathy on MRI or CT No; Yes (≥ 10mm short axis diameter)
Cervical cytology No; Yes (atypical endometrial cells present)

Tumor grade 1; 2; 3
Tumor histology Endometrioid; Non-endometriod

Preoperative molecular biomarkers

ER expression < 10;≥ 10% of tumor cells with nuclear staining
PR expression < 10;≥ 10% of tumor cells with nuclear staining

L1CAM expression < 10;≥ 10% of tumor cells with membranous staining
p53 expression Wild type; Overexpression with cutoff value 40-50%

Postoperative Variables

Myometrial invasion No invasion; Invasion <50%; Invasion ≥50%
Lymphovascular space invasion (LVSI) No; Yes

Cervical invasion No; Yes
FIGO stage IA; IB; II; IIIA; IIIB; IIIC; IV
Tumor grade 1; 2; 3

Tumor histological subtype Endometrioid; Non-Endometrioid
Adjuvant therapy None; Radiotherapy; Chemotherapy; Chemoradiation;

Other

Table 2: Candidate predictor variables for constructing the Bayesian network
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5 Methods and results

5.1 Tools for data analysis & visualization

Bnlearn is an R package for performing learning of Bayesian networks. It is used for parameters
estimation and inference procedures. It started being used in 2007 and it has been under
development since then [58].

More specifically, the package helps us manually set up the structure of the network and learn
the parameters by providing the user with joint conditional probability tables. The process and
the details of the steps used are explained in a different part of the thesis. The model is
implemented by using two structure learning algorithms that are incorporated in this package
i.e. Hill-climbing and Tabu search algorithms. As it is analyzed later on, a large number of
structures are explored and by using as a resampling method, bootstrapping, the effect of local
optimum BNs on learning is reduced. Different functions of the package are used to acquire
the averaged BN and measure the strength of the arcs incorporated in the learnt structures.
Given this strength, we are able to draw conclusions in respect to the significance of the arcs
and the necessity of their presence in the Bayesian network. Validation of the models is also
supported by the package and finally inference can be also demonstrated. However, SAMIAM
software supports us in the inference process in this thesis project. It is an easy to use tool for
modeling and reasoning, developed in Java. Visualization of the network is done with SAMIAM
and by interacting with it, we are able to perform inference and explore its behavior, based on
multiple inputs. The software offers an interface where the user can build and interact with
the Bayesian networks, which can be also saved in multiple formats. The reasoning process
incorporates inference, parameter estimation, time-space trade-offs, sensitivity analysis, and
explanation-generation based on MAP and MPE [37]. Additionally GeNIe Modeler is also used
for the visualization part. It has graphical user interface and also supports the user during the
interactive modelling process and learning.

5.2 Summary of the steps

The main idea is that given the limited size of the dataset and the considerable number of
missing values, expert knowledge of cause-effect relationships is used to support and guide the
structure learning process. First of all, we attempt to reveal the direction of the arcs, pointing
from cause to effect, that connect the different variables. Additionally, it is checked if the results
obtained from the structure learning process can be explained sufficiently. Experts knowledge
supports us in reducing the search space of structure learning by indicating relationships between
variables that are really strong or the ones that should not exist. It is important to incorporate
expert knowledge in the model given their understanding of the fundamental elements of the
domain and the causal relationships between multiple factors. However, it is worth noting
that determining the model solely according to physicians knowledge can lead to biased results
that do not reflect adequately the problem area and the dataset. Hence, the contribution of
causal graphs as tool for knowledge elicitation is vital. This chapter analyses in depth how
the data is being prepared for the analysis, how we deal with incomplete data and perform
parameter learning to calculate the joint probability distributions. In general, all the different
steps involved in the Bayesian model implementation are defined here. It is also explained how
the user can interact with the model and perform inference to extract valuable information in
the form of posterior distributions. A simple cox model is also implemented and Brier scores are
calculated for both methods. A detailed qualitative comparison is also attempted to highlight
how beneficial BNs can be as prognostic models in the medical world.
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5.3 Visual representation

The first step of the process consists of discussions focusing on the relationships between the
available variables of the dataset. The goal is to discover a logical way to connect the variables,
in order to obtain the first visual representation of the problem and not an actual Bayesian
network.

In this network model representation, we attempt to demonstrate all the possible logical
connections and cause-effect relationships from a biological point of view. This helps us build a
starting representation to visualize the problem and understand more about the domain and the
available dataset. At the beginning, the aim is to gain some insights into how the gynecologic
oncologists deal with endometrial cancer as a disease and their thinking process when they need
to understand patients condition and proceed to their treatment. The first important point in
which we should focus on is the immune response. The reaction of human body towards the
existence of a substance that is not identified as part of the body itself causes the variability of the
serum levels of Hemoglobin, Platelets and white blood cells (Leukocytes) and this relationship
is represented by arcs connecting the different nodes.

Figure 8: Initial causal network model based on clinical evidence

On top of this, the preoperative grade assessment in a patient is done via an endometrial
biopsy. The mentioned core action that physicians perform is present in this representation as
the preoperative tumor grade node and it is closely related to the immune response. The way
that the body of the patient reacts helps physicians assess the situation preoperatively. This is
why a direct connection exists between these two. Moreover, a connection between menopause
and preoperative tumor grade reflects the fact that the closer the patient is to menopause the
higher the risk gets. Likewise, the preoperative tumor grade node is connected to BMI, given
that according to physicians the risk changes drastically relatively to patient’s BMI. When a
physician performs the assessment of a grade, s/he is not able to exactly determine the depth
of the carcinoma, which is known as local myometrial invasion. However, according to the
assessment, s/he understands how s/he should proceed with the patient. Thus, the preoperative
tumor grade is directly connected to local myometrial invasion. More specifically, the higher
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the preoperative grade is, the higher the risk of deep invasion to myometrium gets. Something
similar holds for the postoperative grade which is represented here by postoperative tumor grade
node. Both preoperative and postoperative grade assessments are directly related to myometrial
invasion according to literature and this is why the graph reflects the same. Being able to provide
prognosis preoperatively is highly crucial for the patients. However, the physicians are able to
determine if the carcinoma grows inside or outside of the cervix only postoperatively.

Given that this is an important postoperative prognostic factor, a connection between post-
operative tumor grade and cervical involvement is present too. The postoperative grade is
additionally closely associated with lymphovascular space invasion (LVSI). The physicians can
only postoperatively see if the carcinoma grows into the blood-vessels or lymph vessels, revealing
this way tumor’s metastatic trend. As a result, logical connections of LVSI and both lymph
node metastasis and distant metastasis nodes are drawn. If the physicians consider it necessary
for the patient, lymphadenectomy is performed and the lymph nodes in the pelvis and around
the aorta are removed during surgery. This way the doctors can see if the removed lymph nodes
are positive for carcinoma or not. Hence, this is considered to be an important postoperative
prognostic factor.

Furthermore, recent literature reveals the importance of different serum markers; one of them
is Ca-125. The node representing this serum level is placed in a direct connection to lymph
node metastasis. This happens because this tumor marker is elevated in multiple malignant
conditions, such as endometrial cancer. Additionally, It is noticed that it is connected to lymph
node metastasis and not preoperative or postoperative tumor grade nodes; This is because Ca-125
is mostly elevated when a metastatic disease is present and not when the presence of carcinoma
is inside the uterus only. The last node of this representation, CT-MRI, indicates the importance
of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scan to detect mostly
metastatic disease in lymph nodes.

5.4 Data processing

The first step before the analysis is the pre-processing of the data. Based on expert knowledge
a subset of the variables is selected and renamed. The purpose it to have meaningful names for
the nodes of the Bayesian model, when the visual representation is created. To continue, we
proceed with careful transformation of the data. The dataset is checked for values that do not
make sense e.g., 99. In this case they are considered to be missing values and they are replaced
with NA. Categorical variables are also transformed to factors. On top of that, the values of
the variables are replaced to more meaningful ones. For this reason, we define the states of
the variables in a convenient way e.g., values of Primarytumor variable: 1 ,2 ,3 are replaced by
grade1, grade2, grade3 respectively. This way, we can properly interprete the differences in the
probabilities that are reflected to the Bayesian network. Please refer to the appendix for the
code used to clean and refine the dataset.

5.5 The Bayesian network development

5.5.1 Introduction

The Bayesian network is constructed step by step by using multiple iterations. First of all,
the most important variables for tumor progression are considered. In detail, postoperative
tumor grade, myometrial invasion (MI) and lymphovascular space invasion (LVSI) are among
the primitive nodes of the network. The mentioned variables are not used for predicting the
outcomes and as a result, a list of preoperative predictors are also introduced to the model.
The table below demonstrates the baseline attributes of the development cohort. It is worth
mentioning that 215 individuals provided the experts with information on the entire list of the
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variables in the data.
After discussing with the clinical doctors about the domain and creating the logical rep-

resentation, the problem becomes more clear. Given its complexity, it is expected that a lot
of changes and adjustments are made during this step-wise modelling approach. The variables
are illustrated as nodes in the network and their relationships are shown as arcs. The arcs are
directed, which reveals causality. The improvement of the network takes place by manually
interacting with the structure, after careful data-driven thinking.

By adding or removing arcs according to expert knowledge, we are able to refine the model a
bit further. It is important to mention that we evaluate several times during the implementation
process how well each network fits the data by calculating its log-likelihood. The closer this
value is to zero, the better the model gets. Additionally, we manage to improve the model
by incorporating structure learning algorithms results. This concept and its implementation is
analysed later on.

Figure 9: The first Bayesian network model

At this point, after translating the initial representation to the first Bayesian model, the DAG
looks as illustrated in figure 9 After the first discussions with the clinical doctors and before
evaluating the structure by using log-likelihood, we have been requested to incorporate more
variables that are crucial for the progress of the disease. Specifically, as it is reflected in the graph
that follows, connections between ER, PR, p53, L1CAM and Primarytumor are drawn. This
is suggested by the physicians given that they can get an idea of what the tumor grade might
be by looking into these metrics preoperatively. Of course, these first graphical representations
express solely the doctor’s perspective, based on their everyday way of working. An extra arc is
additionally placed between Cytology and Primarytumor, given that a cervical swab can assist
doctors in the preoperative examination of the tumor. The same holds for the extra connection
between Primarytumor and Lymph node metastasis node. Concerning the connection between
Histology and Lymph Vascular invasion, since physicians were in doubt about whether or not
a direct connection makes sense, at this point it is left out. We re-examine different scenarios
regarding this pair of nodes later on.
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Variable Name Development Cohort (N=763)

Age 65 (58-71)

Body Mass Index (kg/m2) 29 (26-33)

Follow-up time (months) 60 (45–74)

Tumor grade, preoperative
1 372 (48.8%)
2 173 (22.7%)
3 110 (14.4%)

Unknown 108 (14.2%)

ER expression
Positive 686 (89.9%)
Negative 76 (10.0%)
Unknown 1 (0.1%)

PR expression
Positive 620 (81.3%)
Negative 137 (18.0%)
Unknown 6 (0.8%)

L1CAM expression
Positive 79 (10.4%)
Negative 665 (87.2%)
Unknown 19 (2.5%)

p53 expression
Wildtype 584 (76.5%)
Mutant 112 (14.7%)

Unknown 67 (8.8%)

Ca-125
≤ 35IU/ml 318 (41.7%)
≥ 35IU/ml 90 (11.8%)
Unknown 355 (46.5%)

Thrombocytes
< 400times109/l 557 (73.0%)
≥ 400times109/l 25 (3.3%)

Unknown 181 (23.7%)

Imaging Results
No lymphadenopathy 460 (60.3%)

Lymphadenopathy 38 (5.0%)
Unknown 265 (34.7%)

Cervical Cytology
Normal 406 (53.2%)

Abnormal 27 (3.5%)
Unknown 330 (43.3%)

Tumor grade
1 317 (41.5%)
2 289 (37.9%)
3 157 (20.6%)

Table 3: Development cohort baseline attributes
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Variable Name Development Cohort (N=763)

Histological subtype
EEC 714 (93.6%)

NEEC 49 (6.4%)
Unknown

Myometrial Invasion (MI)
< 50% 477 (62.5%)
≥ 50% 283 (37.1%)

Unknown 3 (0.4%)

Cervical invasion
No 591 (77.5%)
Yes 86 (11.3%)

Unknown 86 (11.3%)

Lymphovascular space invasion
No 435 (57.0%)
Yes 96 (12.6%)

Unknown 232 (30.4%)

Enlarged lymph nodes
Negative 440 (57.7%)
Positive 53 (6.9%)

Unknown 270 (35.4%)

Treatment
None 415 (54.4%)

Radiotherapy 283 (37.1%)
Chemotherapy 38 (5.0%)

Chemoradiation 26 (3.4%)
Hormonal 0 (0%)
Unknown 1 (0.1%)

Table 4: Development cohort baseline attributes (continued)
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Figure 10: Enriched first Bayesian network model based on expert knowledge

5.5.2 Learning parameters & dealing with missing data

The first step to build the Bayesian network is to create a model string in R. The direction
of the arcs is defined and we incorporate cause-effect relationships in the model. After this,
the model string is transformed to a directed acyclic graph (DAG). Based on this DAG, each
node’s conditional probability table (CPT) is computed as explained earlier. In detail, the bn.fit
function of the package uses the EM algorithm to fit the parameters of local distributions given
the available data and the structure of the DAG. It is important to note that given the definition
of a BN, the parameter learning process takes place only when the total number of arcs, that
are present in the network, are directed, and no plain connections exist between the nodes. The
imputation is done with the impute function, which uses as compulsory arguments the fitted BN
object and the subset of the dataset, with the exact number of variables that are present in the
model. There are two possible methods to perform imputation with this function: the parents
method which is the default one and the bayes-lw method. The former method calculates the
missing values of the parent nodes of a node in the local probability distribution incorporated
in the fitted object. The latter method, which is the one used in the experiments of the current
thesis, computes the missing values by using all the nodes of the DAG as evidence (without the
node for which the missing values are calculated). Specifically, the missing values are calculated
by incorporating the average likelihood weight measures for the total number of nodes in the
model. The user is able to define the number of the randomly selected samples n, that are
averaged, producing this way the new observation. Given that the subset of the dataset that
is used consists of discrete variables, the missing value is replaced by the level of the variable
that has the highest conditional probability. There is also the option to limit the number of
nodes used to compute the missing values, however we use all the available nodes in the model.
After imputing the data, the dataframe is checked for missing values before proceeding. A new
fitted object is now created with the imputed data as input and the SAMIAM software helps us
visualize the result and interact with it.
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5.5.3 Goodness-of-fit & model enrichment

A really important point is to check if the model fits the data. In the current thesis, as stated
earlier, many different scenarios are checked and the development of the Bayesian model follows
a step-wise implementation approach before reaching to its final state. The various adjustments
are discussed in the current section. The reasons driving these changes are the collaboration
with the gynecologic oncologists and the effort to incorporate their knowledge with the best
possible way into the model. Each resulted version of the Bayesian network is evaluated by
initializing the network and examining the way that the model behaves. On top of this, the
log-likelihood of each BN is computed. This happens by using the fitted object that ”carries”
the parameters of the Bayesian model. After discussing in depth the arcs in terms of causality
and evaluating the BN, a great number of changes takes place. Specifically, for the computation
of the log-likelihood and the comparison of the different models, we use Bnlearn package in R
and loglik function. It has to be stated that log-likelihood calculation makes sense only in terms
of model comparison. The closest a model’s loglik is to zero the better the model fits the data.

As a starting point, after introducing the initial Bayesian model the loglik is equal to -
4796,561. In the steps that follow, the goal is to refine the model as much as possible, using
medical expert knowledge, before we proceed with using structure learning algorithms. First
off, the connection between Primary tumor and Lymph node metastasis nodes is deleted as the
preoperative assessment of the tumor grade through endometrial biopsy does not have direct
relationship with Lymph node metastasis. Given that the goal is to include only the real mean-
ingful connections to the Bayesian model, by keeping the number of arcs as limited as possible,
the connection between Primary tumor and Cytology is also removed. On the other hand, af-
ter careful analysis, an arc from Cytology to Histology is added. The architecture of the cells,
expressed by Histology variable, can be more easily related to Cytology, given that the latter
represents the information driven by a cervical swab, which basically examines the existence of
malignant endometrial cells in the cervix. Additionally, the connection between the preoperative
grade, expressed by Primary tumor variable, and local myometrial invasion; MI is also deleted.
The underlying reason for this is the fact that the doctors are not able to identify preopera-
tively, how deep the tumor grows inside the middle layer of the uterus. Furthermore, a direct
connection between Ca-125 marker and CT-MRI should be present. As a tumor biomarker,
Ca-125 is increased in multiple malignant conditions such as endometrial cancer. Given that
both Computed Tomography (CT) scan and Magnetic Resonance Imaging (MRI) scan are used
to detect either distant metastasis and/or the presence of enlarged lymph nodes, we decide to
combine both variables in one, due to the limited information available for each. Regarding the
connections of ER, PR, L1CAM, p53 with Primary tumor variable that are introduced in the
first Bayesian network model, they should be deleted. Instead, these should be connected to
Histology and Lymph node metastasis nodes. This occurs because, by studying these variables,
the experts are able to get more clarity on the architecture of the cells, which corresponds to
Histology variable and not gain insights into how the tumor looks like preoperatively, which
is what Primary tumor variable actually reflects. The direct connection between Lymph node
metastasis and the mentioned markers, is a change driven by the fact that these are crucial
predictors for the disease spreading to lymph nodes. After performing these adjustments to the
Bayesian model, an increase of the log-likelihood confirms that the new version fits better the
data. Specifically log-likelihood is now equal to -4765,79. Further modifications, requested by
the physicians, are the elimination of the following nodes: BMI, Distant Metastasis, Menopause.
The addition of these variables does not influence the behavior of the model in any way, that
would be interesting or useful for the patients treatment. The goal is to include only the vari-
ables that can actually contribute to the model. Similarly, we chose to exclude hemoglobin,
leukocytes, the presence of which does not yield improved performance [52]. Moreover, Recur-
rence variable is added. Connections are established with the following variables: Lymph node

43



metastasis, Ca-125, Histology, Lymph Vascular invasion. This is due to the fact that these
variables are considered to be the most important predictors for disease recurrence according
to literature. After performing these modifications the log-likelihood of the Bayesian model is
calculated to evaluate how well the updated version fits the data. Indeed, the log-likelihood is
-4333,137. After the mentioned steps of extending the model and refining the structure solely
based on experts knowledge, the BN looks as shown in the graph below. In the following section,
the survival variables are introduced and explained. The structure learning process takes them
into consideration and thus further adjustments are implemented into the model. The clinical
doctors request us the addition of Therapy variable too. More in depth details about this step
are given later on.

Figure 11: Bayesian model, after improving the structure and before applying structure learning
algorithms

5.5.4 Survival variables

As already explained the modeling process consists of multiple in-between steps in which the
model is refined and extended. After performing multiple changes, we extend the model by
adding the survival variables too. The survival probabilities are calculated by using Kaplan-
Meier estimator which is described in detail in a previous chapter. The goal is to evaluate if
the survival probabilities produced in the Bayesian model are approximately the same as the
resulted probabilities after using the Kaplan-Meier estimator method. An important point is
that the dataset consists of patients for whom information is known up until three years after
the starting point of the research (right censoring). The three survival variables are generated
by using:

• the variable that reflects if the patient died because of endometrial cancer or not,

• the variable describing the follow-up time and

• the time of death
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In the following table, information for six sample patients are reflected. As it makes sense,
the patient that is reported dead after 14 months (second patient), has three-year survival and
five-year survival variables which are both equal to No. Additionally, the fourth, fifth and sixth
patients have an unknown outcome and as a result they are considered censored observations.

Patients Death by EC
1 Year

Survival
3 Year

Survival
5 Year

Survival
Follow-up Censored

1 Yes No No No 11 months No

2 Yes Yes No No 14 months No

3 Yes Yes Yes No 40 months No

4 No Yes Yes Unknown 41 months Yes

5 No Yes Unknown Unknown 15 months Yes

6 No Unknown Unknown Unknown 6 months Yes

Table 5: Survival variables for sample data

Product limit estimator of the survival function S, allows us to calculate the probability
that someone survived for a period longer than t. In this equation, ti corresponds to the time,
when at least one event took place, di reflects the number of deaths or in general the number of
patients that experience the event, at a specified time ti. Finally ni corresponds to the patients
that do not experience the event or are censored at time ti

S(t) =
∏
i:ti6t

(
1− di

ni

)
(24)

The calculations of survival probabilities by using the mentioned estimator are as shown in
the table below. It is worth noting, that these calculations produce similar results as the ones
generated in the Bayesian model. This is further shown later on.

Period At risk Censored Died Survived
Kaplan-Meier Survival
Probability Estimate

0-1year 763 4 16 747 0,979030144

1-3years 743 17 27 716 0,943453006

3-5years 699 294 16 683 0,921857515

Table 6: Survival probabilities using Kaplan-Meier estimator

5.5.5 Structure learning algorithms

Score-based structure learning algorithms are used in the present thesis, to enrich the Bayesian
model and investigate the strength of the connections between the variables. Specifically, we
use Hill-climbing and Tabu algorithms. The aspiration is to come up with the best possible
network, given the limited number of data available, the missing values and existing noise. In
order to deal with these points, the strength of the arcs in the model are measured by using the
bootstrapping technique. From the multiple networks that come out of the structure learning
algorithms, we are interested in the strongest arcs. These are the ones that are incorporated to
the model which has been built so far.

Bnlearn package in R consists of functions that facilitate the steps that are executed for both
structure learning algorithms. First off, boot.strength performs non-parametric bootstrapping
and is used for the assessment of arc strength and direction. In detail, each arc’s strength is
calculated as the number of times the arc is present in a network divided by the total number
of Bayesian networks generated from bootstrap samples. The function uses the imputed dataset
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containing only the variables that are present in the model. The probability of each arc is
then calculated and on top of this the function computes the probability of each arc’s direction
based on the present arcs in the model [55]. Given that the bn.strength result of this function
is not a single Bayesian network, the next step is to perform model averaging. For this goal
averaged.network function is used. Hence, the result is a network consisted of a set of arcs,
which are present in more than a pre-specified percentage d of the resulted Bayesian networks.
In example, if the threshold d is set to be equal to 60%, then the resulted graph reflects the arcs
that are present in at least 60% of the BNs produced. The result of this step is drawn below
by strength.plot function that shows the generated networks both for Hill-climbing and Tabu
algorithm. In these representations the strongest arcs are shown with wider arcs. According
to literature, a set of arcs is considered significant in case it is present in at least 85% of the
networks and with the most common direction (i.e. the direction that is present in more than
50% of the networs) [56]. However, in the present thesis, and due to the limited number of data,
different thresholds were examined. The results were discussed thoroughly with the physicians.
The aim is to end up with a list of arcs that could be used to successfully enrich the initial
Bayesian network. These algorithms assign a specific score to each candidate network and the
expected outcome is a network that maximizes this score. Given the resemblance of the two
structure learning algorithms, which is analyzed in a previous section, they behave as expected
in a similar way. In the following graphs, the result of both algorithms are shown. For the
calculations, the threshold is set to 70%, to reflect the connections that are present to at least
70% of the models produced through the process.

By carefully examining the result of the algorithms (figure 12) and discussing with the
doctors, multiple extra adjustments are made to the previously created Bayesian network model.

In detail, the first connection from Histology to LNM is necessary, given the causal rela-
tionship that exists between the architecture of the cells and the presence of enlarged lymph
nodes. Additionally, we notice that the existing arc between MI and LNM is highly important.
The deeper the local invasion is, the higher the risk of lymph node metastasis gets. When the
tumor is not limited to the uterus, it might grow to the cervix and spread. As an important
postoperative prognostic factor, the knowledge of the depth of myometrial invasion supports
physicians to estimate the risk of lymph node metastasis.

Additionally, in respect to estrogen receptor expression (ER) connecting to progesterone
receptor expression (PR), most endometrial cancers are hormone-dependent, which basically
means that they are driven by increased hormone levels. This is why females with high hormone
levels (e.g. females with high BMI or females with hormone-replacement therapy) have higher
chance of developing the disease. For this reason, the majority of endometrial cancer cases are ER
and PR positive, which basically means that they express receptors for both these hormones. The
loss of hormone receptors is related to a previously mentioned process, Epithelial to Mesenchymal
transition, which relates to cells’ more aggressive phenotype. An aggressive phenotype means
that the connection between the cells gets lost, as they become more irregular, which leads to an
easier metastasis. Strong connection is established between L1CAM and p53 too. The markers
are frequently expressed in the same way, by being either both positive or both negative. In non-
endometrioid tumors L1CAM is positive and almost all of them express p53 mutation. On the
other hand, endometrioid tumors express L1CAM and p53 less frequently [38] [74]. Additionally
a less important connection is revealed via both structured learning algorithms; Between PR
and L1CAM, which extended physicians perspective and it is therefore included.
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Figure 12: Structure learning algorithm results using bootstrapping

Furthermore, when doctors examine the architecture of the cells are able to determine a
type of therapy. This is why an arc between Histology and Therapy is added, even though the
connection exists indirectly in the Hill-climbing and Tabu results. Both algorithms reveal also
a strong correlation between Therapy and LNM, which of course is something expected. The
choice of the therapy affects the risk of metastasis.

Last but not least, the three survival variables are introduced to the Bayesian model and
they are connected to Recurrence and Therapy variables after the physicians identified causality
among them. The selection of treatment that is used for each patient can affect their survival.
Additionally, the type of recurrence, if any, affects the risk of death. The final Bayesian model
after all the necessary changes is as shown in the figure 13.
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Figure 13: Final Bayesian model, including survival variables, after incorporating structure
learning outcome, without any evidence inserted

5.5.6 Inference

At this point, the focus is the interaction with the Bayesian model and how it can be effectively
used. As previously mentioned, Bayesian models can be queried and provide information based
on knowledge about specific variables. We attempt to show how the Bayesian model can provide
us with insightful answers and demonstrate how much the answers agree with expert knowledge
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and available research on this subject, being a promising tool as a prognostic decision support
system.

The user can initialize selected variables, by providing a specific input as evidence and observe
model’s behavior. In the case shown below (Figure 14), the experts are able to choose specific
variables of interest e.g. Histology and ER and inspect how lymph node metastasis probability
distribution is affected, how the survival variables change or acquire insights about possible
future recurrence of the disease. The probability distributions are reflected in each node and
variable dependencies are demonstrated by the arrows. When no direct or indirect connection is
present between the nodes, they are considered independent. The variables in which one state
is equal to 100% and the remaining 0% are the initialized variables, for which evidence has been
inserted to the model. When input is given to the network, the probability distributions of
the remaining nodes are affected accordingly. More specifically, given a grade 3 histology and
negative ER, the probability of enlarged lymph nodes is increased by 22%, while the probability
of negative PR is high and equal to 89%, which is something expected, given that ER and PR
are usually co-expressed. Additionally, probability estimates of the entire set of the present
nodes are derived each time, as said. This is why, differences are noticed in other nodes of the
network, in comparison with figure 13, where no input has been provided to the network.

In general, the clinical doctors provided us with some sample results based on the model and
their expectations. Some of them are listed in the table 7. The first column corresponds to the
selected variables that are initialized and their chosen values. The column Expectation, indicates
the values that should be reflected to the BN based on expert knowledge around the respective
variables. The Observation column represents the answers that the BN provides to the users. It
has to be noted that given the nature of the Bayesian model, it is not completely correct to expect
exactly the same results as the second column indicates and based on existing literature. This is
due to the fact that the BN model incorporates the cause-effect relationships of multiple variables
and the reflected probability distributions are learnt based on all variables in the network. It
makes sense that performing inference in such models provides more sophisticated results as the
entire BN contributes to them. It is still valid, though, to look into the general patterns reflected
on the model and compare with the expected values. In case, a patient has Histology of grade 3,
it is expected a 20-25% probability of LNM, while the BN indicates a probability of 26%. The
preoperative evaluation and prediction of enlarged lymph nodes is not really accurate nowadays.
From the literature, it is known that the architecture of the cells, on top of myometrial invasion
and cervical involvement, has high predictive power in respect to lymph node metastasis [40][13].
This shows that indeed this variable could be used effectively to reveal high potential risk of
lymph node metastasis preoperatively. The BN reflects many connections of the said variable
with multiple others, demonstrating direct cause-effect relationships. Moreover, the positive
expression of L1CAM is associated with poor outcome of the disease and proven to be a good
predictor of lymph node metastasis [66]. This is shown in the network, given that the probability
of LNM is increased by 16%, when L1CAM is positively expressed. L1CAM is also correlated to
the presence of more aggressive disease, loss of hormones ER and PR and reduced survival. The
study [72] is in line with this fact, by revealing the association of the mentioned variable with
enlarged lymph nodes, the presence of high grade disease and metastasis. The incorporation of
ER and PR in the network is really important in terms of lymph node metastasis prediction
and poor outcome prognosis. These proteins are co-expressed and predict independently lymph
node metastasis [67]. It is indeed noticed a 14% increase of LNM probability and an 8%
increase of the probability to have poor disease specific outcome in 5 years. The combination of
information regarding these two proteins, together with p53 status provides better prognosis of
metastatic behavior and poor outcome preoperatively. By initializing Primarytumor to grade
2 and defining the ER and PR status to be positive, we notice that patients have low risk of
lymph node metastasis which corresponds to 7% and 93% 5-year disease specific survival.
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Figure 14: Final Bayesian model with Histology and ER variables initialized
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This fact is also illustrated in [67]. Furthermore, research has classified p53 receptor as an
important predictor of patients survival [15]. In case of loss of this receptor, the BN points
out a 21% probability of having lymph node metastasis and 6% higher probability of having
poor 5-year survival outcome. Additionally, according to [27] and experts input, Ca-125 plays
an important role in lymph node metastasis. Elevated status of Ca-125, corresponds to 36%
probability of having enlarged lymph nodes, while a normal level of Ca-125 decreases this
probability by 6% and yields to a 95% positive 5-year disease specific survival.

Evidence Expectation Observation

Histology: grade 3 LNM: 20-25% LNM: 26%

ER: negative
PR: negative 80%
- positive 20%

PR: negative 81%
- positive 19%

Primarytumor: grade 3
ER: negative

LNM: 25-30% LNM: 28%

Histology: grade 3
L1CAM: positive

LNM: 30% LNM: 32%

LNM: positive
Ca-125: elevated 80%
- normal 20%

Ca-125: elevated 79%
- normal 21%

Ca-125: elevated LNM: 25% LNM: 36%

Ca-125: normal LNM: 5-10% LNM: 3%

LVSI: yes LNM: 20-30% LNM: 35%

L1CAM: positive
ER: negative 40%
- positive 60%

ER: negative 32%
- positive 68%

L1CAM: positive
PR: negative 60%
- positive 40%

PR: negative 58%
- positive 42%

L1CAM: positive
P53: negative 50%
- positive 50%

P53: negative 57%
- positive 43%

L1CAM: positive LNM: 20-30% LNM: 25%

PR: negative
L1CAM: negative 70%
- positive 30%

L1CAM: negative 66%
- positive 34%

Table 7: Performing inference to the BN - Expert’s expectation vs BN observation

5.6 Cox proportional hazards model

First of all, the implementation of the Cox model requires the presence of survival and survminer
packages in R. As a basis, we use the dataset created via bnlearn function in Imputation.R script.
Refer to the appendix for the complete survival analysis script. The dataset is extended with
two variables, which are necessary for Cox model implementation: DeathEC and FUtime. The
former one illustrates whether or not the patient experienced the event of interest (i.e. death)
and the latter one reflects how much time after joining the first visit, the patient had her last
follow-up with the clinical doctors. In this extended version of the dataset, there are 18 missing
values for DeathEC variable and 11 missing values for FUtime. These observations are omitted
from the data and only the complete cases remain in the dataset.

At this point, we create the censor flag cens to indicate the observations that are censored.
We initialize the flag to be equal to 1 for the complete list of the observations that are present
in the data. This value indicates that they are initialized to be censored. On the other hand,
based on three specific conditions, the non-censored observation are flagged with cens equal to
0. In detail, the non-censored observations are:

• the patients that have 3-year disease-specific survival, the follow-up time is between 3 and
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5 years and the last follow-up do not represent the event of interest (DeathEC is equal to
0),

• the patients that have 1-year disease-specific survival, the follow-up time is between 1 and
3 years and at the moment of the last follow-up they are still alive,

• the patients that have follow-up time less than 12 months and they do not experience the
event of interest at the moment of the last follow-up.

Based on these variables, we calculate the survival object by Surv function in R. This object
can be explained as a matrix, with a single row for each case, the first column representing
the number of the observation and the second one the last follow-up time. A plus sign +
complements the value of the last follow-up time, specifying the censored observations. At first,
we considered including in the Cox proportional hazards model the following two variables:
Therapy and Recurrence of the disease. These two variables participate in the Markov blanket
of the survival nodes (e.g. 5-year disease-specific survival) in the Bayesian network. As a
consequence, it would make sense to implement such a model and investigate how they jointly
impact survival. However there is a limitation posed by the number of data for Recurrence
variable. Specifically the 86.2% of patients do not get the disease again, while 7.4% and 0.4% of
the population die from regional/distant recurrence and local recurrence of endometrial cancer
respectively. Due to this fact, by including Recurrence variable to the model, we observe extreme
coefficients and we can not get such a model to work. In a previous section, we analyse why
L1CAM protein is closely correlated with the disease and considered to be an important protein
for the prediction of patient’s survival in endometrial cancer. The Cox model in the present thesis
incorporates L1CAM variable, together with Therapy variable. The function coxph is used to fit
a Cox proportional hazards regression model. The survival object which is previously calculated
is used as input for fitting the survival model. After fitting the model and before examining the
coefficients, it is vital to assess the validity of the Cox model by measuring whether or not the
proportionality assumption holds. In other words, we calculate if the ratio of the hazards for
any two observations remains constant over time. Please refer to the theory in 2.4.6, discussing
in detail the proportional hazards assumption. In practice, we use function cox.zph, present
in survival package to measure this. Unfortunately, the p-values for both variables are much
smaller than 0.05, which reveals that the proportionality assumption is violated. To address
this issue, we decide to divide the time. Based on the histogram in figure 15, we split the time
as follows: (0,60],(60,228]

At this point, after fitting the model for a subset of data (with follow-up time up to 60
months (5 years)), we test proportional hazards assumption. We notice that the test is not
statistically significant for the two covariates and more specifically p-values are equal to 0.37 for
Therapy variable and 0.72 for L1CAM variable. Additionally, the global test is not statistically
significant , which allows us to accept that the proportional hazards assumption holds. The next
step is to evaluate the coefficients for this model. We use summary() R function to produce a
complete report for the model.

• The column marked z provides the Wald statistic value. It represents the ratio of each
regression coefficient to its standard error i.e. z = coef/se(coef). The Wald statistic
assesses if the difference of the beta coefficient of a specific variable from 0 is statistically
significant or not. From the report, we understand that this is the case for both variables.

• With respect to the regression coefficients (coef ) of the model, a value which is greater
than 0 corresponds to a higher hazard for the mentioned group. Because of the higher risk
of death for this group, the prognosis is worse in comparison with the group of reference.
E.g. The regression coefficient value for the group of patients who are positive for L1CAM
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is 0.63. In order to make the example easier to grasp, we consider this to be group 1. The
R summary for the model produces the hazard ratio for group 1 relative to the observations
that have negative value when measured for L1CAM (group 2). The regression coefficient
0.63 for group 1 demonstrates that patients with over-expression of L1CAM have higher
risk of death (higher survival rates) in comparison with group 2 in these data.

• The Hazard ratios (HR), which in practice are calculated as: exp(coef) measure the impact
for the model covariates. In detail, being part of group 1, increases the hazard by a factor
of 0.879 or 87.9%. Having over-expression of L1CAM is correlated to worse prognosis as
mentioned earlier.

• Summary() function produces the global statistical significance of the Cox model too,
which reveals that the model is statistically significant. In detail, it provides three separate
alternative test results: The likelihood-ratio test, the Wald test and the score (logrank)
test. The mentioned tests are asymptotically similar. For large datasets, they provide
equivalent p-values. However for smaller datasets they tend to differ moderately. In case
the dataset is relatively small, the likelihood-ratio method displays improved performance,
so it is usually a better option.

Figure 15: Histogram providing an approximate representation of the distribution of the last
follow-up time for the set of patients participated in the study

We can see below an illustration that provides us with an overview of how the mortality of the
different groups evolves over time. The figure 16 represents the survival function in the form of
a step function. Time is displayed on the x-axis and survival on the y-axis. Each time the curve
drops there are patients experiencing the event. E.g. By checking the survival curve in figure 17
for the group of patients with positive L1CAM expression, that is treated by radiotherapy, we see
that there is one patient at risk when time is 60 months. This patient is a censored observation
for whom the outcome is not known and as a result the representation shows the plot dropping
to zero at that point. Let’s focus on the survival curve reflecting the group of patients that
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are treated with chemotherapy and the are positive for L1CAM expression. We notice that the
median survival of the specific subset of the data is less than 40 months, which means that 50%
of the specific population survives approximately 37 months. The 95% confidence interval is
also defined for each group of patients. This estimate can support effectively the application of
the model to larger population of patients. By checking the survival curve of a different group
of patients for this model, we can extract information in a similar way. On top of this, we notice
vertical lines intersect the survival curve, demonstrating the censored observations. This way,
even if we are not aware of the outcome of specific patients, CPHs allow us incorporate them
in the analysis. The moment when this vertical line appears, the patient of this specific group
of patients drops out of the study. This means that we follow them until the moment that they
stop participating in the study and this information is included in the model. The figure 17
reflects the number of patients at risk for the specific group of observations for this subset of
the data, at different points in time.
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5.7 Quantitative comparison

The Brier Score is considered to be a really good performance measure, extensively used to eval-
uate predictive models in medicine. This approach verifies how accurate a probability prediction
is, by determining how close probability forecast is to the actual outcome for each individual.
It can be effectively used for binary outcomes, where two possible events exist. This statistical
approach is also used for categorical outcomes. However they should be adjusted so as they are
in a binary format e.g. true, false. Brier score is always a number between 0 and 1. A perfect
model would yield a score equal to 0 while brier score 0.25 corresponds to a much less beneficial
model with 50% overall incidence of the outcome. On the contrary, a model with brier score
equal to 1, is a model which provides completely inaccurate predictions to its users. The higher
the score is the harder the interpretation of such a model becomes.

The formula for brier score calculation is shown below and it is the mean squared error of a
forecast:

BS =
1

N

N∑
i=1

(pi − oi)2 (25)

In this equation N is the number of observation participating in the model for which the
calculation takes place. On top of that, pi corresponds to the probability which is calculated
by the prediction model. In this thesis, this refers to the survival probability. oi is determined
by the variable DeathEC in the dataset and it is the outcome for each patient which is either
1, in case the individual experiences the event of interest, or 0, in case she does not. Please
refer to the appendix for the R script used for this calculation. By focusing on 5-year survival,
the computation for the Bayesian model across multiple bootstrap samples generates a brier
score equal to 0.034, better than the Cox model, which yields a value equal to 0.078. Below the
histograms for both scores are displayed.

Figure 18: Brier score histogram for ENDORISK model
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Figure 19: Brier score histogram for Cox model
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6 Discussion

6.1 Conclusions

The outcome of interest for this thesis is 5-year disease-specific survival. We list the values of
cumulative survival based on both methods in the table 8. However it is really important to
mention that we should not look at these values in the same way. These methods differ and their
results should not be interpreted similarly. We are diving into their differences in the current
section based on the models that are demonstrated earlier.

Type of Therapy L1CAM protein level 5-year dss Cox model 5-year dss BN model
No Negative 0.90 0.95
Radiotherapy Negative 0.91 0.94
Chemotherapy Negative 0.73 0.63
Chemoradiotherapy Negative 0.88 0.88
No Positive 0.87 0.91
Radiotherapy Positive 0.88 0.90
Chemotherapy Positive 0.65 0.58
Chemoradiotherapy Positive 0.84 0.84

Table 8: Survival probabilities of the two models

First, we focus on explaining the CPHs results about 5-year disease specific survival. Typi-
cally in a clinical study, CPHs models produce a risk equation to estimate how great is the risk
of an event given the hazard function. In our case, there are two chosen predictor variables. To
derive the probabilities from Cox model, we specify the combinations of values of these covariates
for which the probabilities have to be generated. After defining these in a dataset, we calculate
the median survival time for the same. In that case we can evaluate, how these predictors jointly
impact survival based on this subset of data. It becomes clear that each outcome of interest has
to be evaluated and investigated on a specific model, under a static number of observations and
that is a limitation posed by all regression-based models.

Next to these, BNs results for the 5-year dss variable are listed too. As discussed previously,
Bayesian networks provide a graphical demonstration of joint probability distributions (JPDs)
that reflect the causal interactions of the participated variables and allow risk modelling. These
networks represent in a way personal belief in combination with new evidence that can be
incorporated later. Additionally, more than one outcomes can be examined under the same
model. In the case of the present thesis, the clinical doctors were also interested in lymph
node metastasis as an event of interest. This is really straightforward to achieve in BNs and
an advantage over CPHs models. More information can be found in [51] about these results.
In general, the same clinical model can provide answers to multiple questions being this way a
really powerful tool for clinicians.

The figure 13 highlights the conditional dependencies among the variables closely related to
endometrial cancer. Given no prior evidence, an observation’s chance of 5-year disease specific
survival is 93%. Once clinical doctors treat the patient with Chemotherapy after determining
a positive expression of L1CAM protein, the probability drops to 58%. In case the only known
evidence is L1CAM and its positive expression, we can use the model to actually investigate what
is the most suitable treatment. The more evidence the clinicians collect the more individualized
analysis is conducted. We can also explore different scenarios e.g. how the 5-year dss is affected
if the patient experiences a specific type of recurrence or increased levels of other biomarkers
such as Ca-125. This way, the prior probabilities in the network are updated and the different
nodes therefore reflect the updated distributions (posterior probabilities) according to Bayes’s
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theorem. A BN has the ability not only to remain relevant and applicable even if the population
is adjusted but also it can get more and more refined over time as new information is available.

Earlier we have also analyzed the coefficient for overexpression of L1CAM protein in Cox
model. This demonstrates a worse prognosis for this group of patients. When similar evidence
is inserted into the BN, we notice that 5-year disease-specific survival drops rapidly. In general
it is possible to perform individualised risk reasoning by using CPHs. However this is not that
simple and it requires the application of cumulative hazard and then combine coefficients of
multiple model predictor variables. The difficulty level increases, specifically when there is a
continuous variable involved in the model with a reference state which matches a mean value.
Interpretation becomes a challenging task then [49].

A Bayesian model is used to reason from cause to effect but also vice-versa, which is not pos-
sible in CPHs models. E.g. in case the event of interest is lymph node metastasis, by initializing
the BN with ’yes’ level of this variable, the doctor can evaluate the updated distributions of
the rest of the nodes and reason about how patient’s hormones are affected. Of course it is also
possible to insert any evidence available based on medical test results and estimate this way the
probability of lymph node metastasis by using the exact same model. To sum up information can
propagate from the initialised nodes towards all directions, through the links established clearly
in the DAG during model implementation. It is worth mentioning that when a model’s focus is
predicting risk, it is not necessary to have causal relationships among the present variables.

On the other hand, CPHs model supports scientists in observing how survival probabilities
evolve during the period of the study for specific groups of patients. E.g. when visualising the
survival curve of the Cox model, we can literally check what is the survival probability of a
specific group at a specific moment in time. In order to have something similar in a Bayesian
network, time has to be introduced in the form of a variable and parameter learning should be
therefore performed. After taking this step, we are able to evaluate survival after 1, 3 and 5
years in the present thesis.

An extra challenge of Cox models is the proportionality assumption. Especially if the hazard
of almost all variables that we want to incorporate into the model changes over time. In order to
have a valid model, this assumption has to hold. While working with Cox models, we dealt with
this challenge. In case the assumption is violated, different workarounds have to be explored to
overcome this barrier. Going into depth about it is not in scope for the current thesis but there
is great research and examples available. Bayesian networks do not pose such limitations to the
users. On the contrary, they create a transparent visualization of the dependencies, yielding a
more compact, flexible and intuitive model. Last but not least, a possible difficulty when using
BNs is the need to to have a tool (such as SAMIAM or GeNIe) after implementing it, in order
to be able to to manipulate and configure it in a straightforward way.

6.2 Future steps

As mentioned earlier, the medical doctors from Radboud University Medical Center have already
received more funding to continue with their research based on the ENDORISK model. The
plan is to implement a study in which oncologists start actively using the model in their medical
practise. More analysis is performed in order to extend the available data and include potentially
useful variables and then validation in a large cohort of patients in Norway (10,000 patients) will
take place. A possible future step would be the use of different structure learning algorithms
during the structure learning process with more emphasis on modern techniques for causal
discovery. Especially after introducing new variables in the data, it might be beneficial to
explore whether or not different algorithms (e.g. constraint based algorithms) can yield better
results and support the clinical doctors in discovering meaningful connections. After diving
into the fundamentals of Bayesian models, it might be also really interesting to investigate if
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Dynamic Bayesian networks (DNB) could be also used for such purposes and practically support
medical experts that focus on different types of cancer.
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Appendices

A Data Processing

1 # ----------------------

2 # Working on the dataset

3 # ----------------------

4

5 # VARIABLE NAMES AND POSSIBLE VALUES:

6

7 # INPUT VARIABLES

8 # ---------------

9 # Cytology: preoperative cervical cytology

10 # "non_malignant ": no malignant endometrial cells present

11 # "malignant ": malginant endometrial cells present

12

13 # Histology: postoperative tumor grade

14 # "grade_1"

15 # "grade_2"

16 # "grade_3"

17

18 # MI: Myometrial invasion

19 # "no -invasion "": no invasion of the myometrial by tumor cells

20 # "less -50": 0% < invasive tumor cells < 50% of wall

21 # "equalorgreater -50": invasive tumor cells >= 50% of wall

22

23 # PrimaryTumor: preoperative tumor grade

24 # "grade_1"

25 # "grade_2"

26 # "grade_3"

27

28 # Therapy

29 # "no"

30 # "radiotherapy"

31 # "chemotherapy"

32 # "chemo_and_radiotherapy"

33

34 # LVSI: Does the carcinoma grow into the bloodvessels or lymph vessels

35 # "no"

36 # "yes"

37

38 # CA125: CA -125 (Cancer Antigen 125) serum levels

39 # "less -35"

40 # "equalorgreater -35"

41

42 # CTMRI: CT or MRI imaging.

43 # The presence of lymphadenopathy or distant metastasis

44 # "no" : absent

45 # "yes": present

46

47 # ER: Estrogen receptor levels

48 # "negative"

49 # "positive"

50

51 # PR: Progesteron receptor levels

52 # "negative"

53 # "positive"

54

55 # L1CAM: L1CAM is an intracellular protein which promotes cell motility ,

56 # and thus might cause the carcinoma to spread faster.

57 # "negative"
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58 # "positive"

59

60 # p53 = p53 is a tumor suppressor gene

61 # "wildtype"

62 # "mutant"

63

64 # Pl: number of platelets in blood

65 # "no"

66 # "yes"

67

68 # Rec: Recurrence of the disease

69 # "no"

70 # "regional_distant"

71 # "local"

72

73 # OUTPUT VARIABLES

74 # ----------------

75

76 # LNM: lymphnode metastases

77 # "no"

78 # "yes"

79

80 # X1YR: disease specific disease survival of at least 1 year

81 # "no"

82 # "yes"

83

84 # X3YR: disease specific disease survival of at least 3 years

85 # "no"

86 # "yes"

87

88 # X5YR: disease specific disease survival of at least 5 years

89 # "no"

90 # "yes"

91

92 # Load Data

93 myData <- read.csv2(file="../Dataset/L1CAM_2_database_11122018_clean.csv",

94 header=TRUE , sep = ";", #colClasses = c(rep(" factor ")),

95 na.strings=c(""," ","NA"))

96

97 attach(myData)

98 # --------------------------------------------

99 # Rename selected variables of initial dataset

100 # --------------------------------------------

101 names(myData)[names(myData) == ’Grade_PREOP’] <- ’Primarytumor ’

102 names(myData)[names(myData) == ’Grade’] <- ’Histology ’

103 names(myData)[names(myData) == ’LVSI_bi1’] <- ’LVSIb’

104 names(myData)[names(myData) == ’Positive_nodes_bi1’] <- ’LNM’

105 names(myData)[names(myData) == ’CA125_PREOP_bi’] <- ’CA125’

106 names(myData)[names(myData) == ’CT_or_MRI_LNM’] <- ’CTMRI’

107 names(myData)[names(myData) == ’Platelets_bi’] <- ’Pl’

108 names(myData)[names(myData) == ’ER_expression_preop’] <- ’ER’

109 names(myData)[names(myData) == ’PR_expression_preop’] <- ’PR’

110 names(myData)[names(myData) == ’L1CAM_expression_preop’] <- ’L1CAM’

111 names(myData)[names(myData) == ’p53_expression_preop’] <- ’p53’

112 names(myData)[names(myData) == ’Recurrence_location ’] <- ’Rec’

113 names(myData)[names(myData) == ’Adjuvanttherapy ’] <- ’Therapy ’

114 names(myData)[names(myData) == ’Death_by_EC’] <- ’DeathEC ’

115 names(myData)[names(myData) == ’Duration_followup ’] <- ’FUtime ’

116 names(myData)[names(myData) == ’one_year_survival ’] <- ’X1YR’

117 names(myData)[names(myData) == ’three_year_survival ’] <- ’X3YR’

118 names(myData)[names(myData) == ’five_year_survival ’] <- ’X5YR’

119
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120

121 # ---------------------------

122 # Transformation of variables

123 # ---------------------------

124 attach(myData)

125 # Recode values with NA

126 for (i in 1: length(myData [,1])) {

127 if ((!is.na(myData$Cytology[i]) &&

128 myData$Cytology[i] == 99)) {

129 myData$Cytology[i] = NA

130 }

131 }

132

133 for (i in 1: length(myData [,1])) {

134 if ((!is.na(myData$CA125[i]) &&

135 myData$CA125[i] == 99)) {

136 myData$CA125[i] = NA

137 }

138 }

139

140 for (i in 1: length(myData [,1])) {

141 if ((!is.na(myData$LVSIb[i]) &&

142 myData$LVSIb[i] == 99)) {

143 myData$LVSIb[i] = NA

144 }

145 }

146

147 for (i in 1: length(myData [,1])) {

148 if ((!is.na(myData$MI[i]) &&

149 myData$MI[i] == 99)) {

150 myData$MI[i] = NA

151 }

152 }

153

154 for (i in 1: length(myData [,1])) {

155 if ((!is.na(myData$DeathEC[i]) &&

156 myData$DeathEC[i] == 99)) {

157 myData$DeathEC[i] = NA

158 }

159 }

160

161 for (i in 1: length(myData [,1])) {

162 if ((!is.na(myData$Primarytumor[i]) &&

163 myData$Primarytumor[i] == 99)) {

164 myData$Primarytumor[i] = NA

165 }

166 }

167

168 for (i in 1: length(myData [,1])){

169 if(myData$Cytology[i] == 3 && !is.na(myData$Cytology[i])){
170 myData$Cytology[i] = NA

171 }

172 }

173

174 for (i in 1: length(myData [,1])){

175 if(myData$Cytology[i] == 0 && !is.na(myData$Cytology[i])){
176 myData$Cytology[i] = NA

177 }

178 }

179

180 # --------------------------------------------

181 # Create the necessary subsets of the dataset
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182 # --------------------------------------------

183 attach(myData)

184

185 subsetDAG.o <- data.frame(MI , CTMRI , LNM , LVSIb ,

186 CA125 , Primarytumor , Histology , Pl,

187 Cytology , ER, PR, L1CAM , p53 ,

188 Rec , Therapy ,

189 X1YR , X3YR , X5YR)

190 summary(subsetDAG.o)

191 # ---------------------------------------------

192 # Transform the variables

193 # Categorical to factors , Continuous to numeric

194 # ---------------------------------------------

195 library(dplyr)

196 attach(subsetDAG.o)

197 subsetDAG.o <- subsetDAG.o %>%

198 mutate(

199 MI = as.factor(MI),

200 CTMRI = as.factor(CTMRI),

201 LNM = as.factor(LNM),

202 LVSIb = as.factor(LVSIb),

203 Primarytumor = as.factor(Primarytumor),

204 Histology = as.factor(Histology),

205 Pl = as.factor(Pl),

206 Cytology = as.factor(Cytology),

207 ER = as.factor(ER),

208 PR = as.factor(PR),

209 L1CAM = as.factor(L1CAM),

210 p53 = as.factor(p53),

211 Rec = as.factor(Rec),

212 Therapy = as.factor(Therapy),

213 CA125 = as.factor(CA125),

214 X1YR = as.factor(X1YR),

215 X3YR = as.factor(X3YR),

216 X5YR = as.factor(X5YR)

217 )

218

219 # -----------------------------------------------------------

220 # Change the values of the variables of subsetDAG.o to more

221 # meaningful ones , attach value labels to factors levels

222 # -----------------------------------------------------------

223 attach(subsetDAG.o)

224 summary(subsetDAG.o)

225 subsetDAG.o$ER <- factor(subsetDAG.o$ER,
226 levels = c(0,1),

227 labels = c("positive", "negative"))

228 summary(subsetDAG.o$ER)
229

230 subsetDAG.o$PR <- factor(subsetDAG.o$PR,
231 levels = c(0,1),

232 labels = c("positive", "negative"))

233 summary(subsetDAG.o$PR)
234

235 subsetDAG.o$L1CAM <- factor(subsetDAG.o$L1CAM ,
236 levels = c(0,1),

237 labels = c("negative", "positive"))

238 summary(subsetDAG.o$L1CAM)
239

240 subsetDAG.o$p53 <- factor(subsetDAG.o$p53 ,
241 levels = c(0,1),

242 labels = c("wildtype", "mutant"))

243 summary(subsetDAG.o$p53)
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244

245 subsetDAG.o$MI <- factor(subsetDAG.o$MI,
246 levels = c(0, 1, 2),

247 labels = c("no-invasion", "less -50", "equalorgreater -50

"))

248 summary(subsetDAG.o$MI)
249

250 subsetDAG.o$Primarytumor <- factor(subsetDAG.o$Primarytumor ,
251 levels = c(1,2,3),

252 labels = c("grade1", "grade2", "grade3"))

253 summary(subsetDAG.o$Primarytumor)
254

255 subsetDAG.o$Histology <- factor(subsetDAG.o$Histology ,
256 levels = c(1,2,3),

257 labels = c("grade1", "grade2", "grade3"))

258 summary(subsetDAG.o$Histology)
259

260 subsetDAG.o$LVSIb <- factor(subsetDAG.o$LVSIb ,
261 levels = c(0,1),

262 labels = c("no", "yes"))

263 summary(subsetDAG.o$LVSIb)
264

265 subsetDAG.o$LNM <- factor(subsetDAG.o$LNM ,
266 levels = c(0,1),

267 labels = c("negative", "positive"))

268 summary(subsetDAG.o$LNM)
269

270 subsetDAG.o$CA125 <- factor(subsetDAG.o$CA125 ,
271 levels = c(0,1),

272 labels = c("less -35", "equalorgreater -35"))

273 summary(subsetDAG.o$CA125)
274

275 subsetDAG.o$CTMRI <- factor(subsetDAG.o$CTMRI ,
276 levels = c(0,1),

277 labels = c("no", "yes"))

278 summary(subsetDAG.o$CTMRI)
279

280 subsetDAG.o$Pl <- factor(subsetDAG.o$Pl,
281 levels = c(0,1),

282 labels = c("no", "yes"))

283 summary(subsetDAG.o$Pl)
284

285 subsetDAG.o$Cytology <- factor(subsetDAG.o$Cytology ,
286 levels = c(1,2),

287 labels = c("non -malignant", "malignant"))

288 summary(subsetDAG.o$Cytology)
289

290 subsetDAG.o$X1YR <- factor(subsetDAG.o$X1YR ,
291 levels = c(0,1),

292 labels = c("yes", "no"))

293 summary(subsetDAG.o$X1YR)
294

295 subsetDAG.o$X3YR <- factor(subsetDAG.o$X3YR ,
296 levels = c(0,1),

297 labels = c("yes", "no"))

298 summary(subsetDAG.o$X3YR)
299

300 subsetDAG.o$X5YR <- factor(subsetDAG.o$X5YR ,
301 levels = c(0,1),

302 labels = c("yes", "no"))

303 summary(subsetDAG.o$X5YR)
304
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305 subsetDAG.o$Rec <- factor(subsetDAG.o$Rec ,
306 levels = c(0,1,2,3),

307 labels = c("no", "yes_distant", "yes_local", "yes_

regional"))

308 summary(subsetDAG.o$Rec)
309

310 subsetDAG.o$Therapy <- factor(subsetDAG.o$Therapy ,
311 levels = c(0,1,2,3),

312 labels = c("no", "radiotherapy", "chemotherapy", "

chemoradiotherapy"))

313 summary(subsetDAG.o$Therapy)

B Modeling Process - Dealing with Incomplete & Missing Data

1 # ------------------------------------------- #

2 # Build a Bayesian network from a modelstring

3 # ------------------------------------------- #

4 # Multiple models were explored during the implementation process;

5 # Only the first and the final ones are shown below.

6 # Properly adjusted subsets of the main dataset , are used later on ,

7 # in order to perform parameter learning on the different

8 # Directed Acyclic Graphs (DAGs)

9 #------------------------------------------------------------

10 # Prior to structure learning and after improving the network

11 #------------------------------------------------------------

12 modelstringDAG.o <- paste("[MI][ Cytology]",

13 "[Pl|LNM][ Primarytumor]",

14 "[Histology|Primarytumor:MI:Cytology]",

15 "[LNM|LVSIb:MI]",

16 "[CA125|LNM][ CTMRI|LNM:CA125]",

17 "[LVSIb|Histology:Cytology:MI]",

18 "[p53|LNM:Histology]",

19 "[ER|LNM:Histology ][PR|LNM:Histology]",

20 "[L1CAM|LNM:Histology]",

21 "[Rec|CA125:LNM:LVSIb:Histology]",sep="")

1 #------------------------------------------------

2 # Final model , after incorporating structure

3 # learning algorithms results and survival nodes

4 #------------------------------------------------

5 modelstringDAG.o <- paste("[MI][ Cytology]",

6 "[Pl|LNM][ Primarytumor]",

7 "[Histology|Primarytumor:MI:Cytology]",

8 "[LNM|LVSIb:MI:Histology:Therapy]",

9 "[CA125|LNM][ CTMRI|LNM:CA125]",

10 "[LVSIb|Histology:Cytology:Therapy]",

11 "[p53|LNM:Histology:L1CAM]",

12 "[ER|LNM:Histology ][PR|LNM:Histology:ER]",

13 "[L1CAM|LNM:Histology:PR]",

14 "[Rec|CA125:LNM:LVSIb:Histology]",

15 "[Therapy|Histology]", "[X1YR|Rec:Therapy:X3YR:X5YR]",

16 "[X3YR|Rec:Therapy:X5YR]",

17 "[X5YR|Rec:Therapy]",sep="")

1 # ------------------------------------

2 # BN by Hand - Imputation with bnlearn

3 # ------------------------------------

4 library(bnlearn)

5

6 # ------------------------------------------------------------

7 # The necessary subsets are created in the cleaning.R
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8 # Load a bayesian network (modelstring) from multiplemodels.R

9 # -------------------------------------------------------------

10 # Transform the modelstring to Directed Acyclic Graph

11 DAG.o <- model2network(modelstringDAG.o)

12

13 # Plot the Graphs

14 graphviz.plot(DAG.o, shape = "ellipse")

15

16 # -------------------------------------------------

17 # Create the bn.fit object (i.e. with parameters)

18 # Both the number and names of nodes should be the

19 # same in "Dag" and the dataset

20 # ---------------------------------------------------

21 # fit the parameters of the local distributions given

22 # its structure and a data set -> in a form of

23 # conditional probability tables.

24 # ---------------------------------------------------

25 attach(subsetDAG.o)

26 fittedDAG.o <- bn.fit(DAG.o, data = subsetDAG.o, method = "bayes")

27

28 # bn.net returns the structure underlying a fitted Bayesian network.

29 # fittedDAG.o.net <- bn.net(fittedDAG.o)

30

31 # --------------------

32 # Imputation

33 # --------------------

34 imputed.o <- impute(fittedDAG.o, subsetDAG.o, method = "bayes -lw")

35 class(imputed.o)

36

37 # Double -Check whether NA or not

38 sapply(imputed.o, function(x) sum(is.na(x)))

39

40 summary(imputed.o)

41

42 # Save the imputed dataset

43 write.csv(imputed.o, file = "imputed.o.csv")

44

45 # ------------------------------------------------------------------------

46 # Create the bn.fit object (i.e. with parameters) with imputed.o datasets

47 # ------------------------------------------------------------------------

48 fittedDAGi.o <- bn.fit(DAG.o, data = imputed.o)

49 fittedDAGi.o.net <- bn.net(fittedDAGi.o)

50

51 # Create the .net file for SAMIAM use for imputed datasets

52 write.net("BN.net", fittedDAGi.o)

53

54 # -----------------------------

55 # Check if models fit the data

56 # -----------------------------

57 # complete cases based on initial dataset: subsetDAG.O for score of unimputed BN

58 sum(complete.cases(subsetDAG.o))

59 cmpcases.o <- subsetDAG.o[complete.cases(subsetDAG.o), ]

60

61 # Compute logLikelihoods to compare the BN , how well the model fits the data

62 logLik(fittedDAG.o, cmpcases.o) # -987.2534

63

64 # Check what happens to the likelihood

65 # How well the model fits complete cases data

66 # (using fitted object , created with imputed data)

67 logLik(fittedDAGi.o, cmpcases.o)

68 # (using fitted object , created with imputed data)

69 logLik(fittedDAGi.o, imputed.o)
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C Structure learning process

1 # -------------------------------

2 # Score -based Structure Learning

3 # -------------------------------

4 # Compute arc strength for hc and tabu , a way of avoid getting

5 # stuck in local maxima: restart for the number of random

6 # restarts & perturb for the number of perturbed

7 # arcs in the new starting DAG

8

9 library(bnlearn)

10

11 #------------------------

12 # Hill -climbing algorithm

13 #------------------------

14 hc.strength <- boot.strength(imputed.o, R = 500, algorithm = "hc",

15 algorithm.args = list(score = "bde",

16 iss = 10, restart = 5, perturb = 10))

17

18 # We choose the threshold for an arc to be considered strong enough and

19 # added to the the averaged network

20 head(hc.strength [(hc.strength$strength > 0.85)

21 & (hc.strength$direction >= 0.5), ], n = 3)

22 hc.strongest <- hc.strength [(hc.strength$strength > 0.85)

23 & (hc.strength$direction >= 0.5), ]

24

25 # With d <- 0, all arcs are present , and their strength is obvious by the

26 # width of the arcs. Adjust the threshold d:

27 d <- 0.5

28

29 hc.avg <- averaged.network(hc.strength , threshold = d)

30

31 hc.strplot <- strength.plot(hc.avg , hc.strength ,

32 sub = paste("Algorithm = hc search; Threshold =",as.character(d)),

33 shape = "ellipse") #highlight = list(arcs = arcs())

34

35 dev.copy2pdf(file = "endomcancer -hc -d05outcome.pdf")

36

37 #---------------------

38 #Tabu search algorithm

39 #---------------------

40 tabu.strength <- boot.strength(imputed.o, R = 500, algorithm = "tabu",

41 algorithm.args = list(score = "bde", iss = 10)) #debug = TRUE

42

43

44 # We choose the threshold for an arc to be considered strong enough and

45 # added to the the averaged network

46 head(tabu.strength [(tabu.strength$strength > 0.85)

47 & (tabu.strength$direction >= 0.5), ], n = 3)

48 # Arcs are considered significant if they appear in at least 85% of the networks

49 # and in the most frequent direction >0.5

50

51 tabu.strongest <- tabu.strength [(tabu.strength$strength > 0.85)

52 & (tabu.strength$direction >= 0.5), ]

53

54 # With d <- 0, all arcs are present , and their strength is obvious by the width

of the arcs

55 d <- 0.5

56

57 tabu.avg <- averaged.network(tabu.strength , threshold = d)

58
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59 tabu.strplot <- strength.plot(tabu.avg , tabu.strength ,

60 sub = paste("Algorithm = Tabu search; Threshold =",

61 as.character(d)),

62 shape = "ellipse") #highlight = list(arcs = arcs())

63

64 dev.copy2pdf(file = "endomcancer -tabu -d07outcome.pdf")

D Survival analysis

1 # ------------------

2 # Survival Analysis

3 # ------------------

4 sessioninfo :: session_info()

5

6 # Load necessary libraries

7 library(survival)

8 #library(survreg)

9 #library(ggplot2)

10 #library(ggfortify)

11 library(survminer)

12 #library(pec)

13

14

15 # Use of imputed.o dataset (created via bnlearn function in Imputation.R script)

16 # Extension of dataset with two important variables for survival analysis:

17 # Deathec and FUtime

18 # The extended version: subsetDAG.ext

19

20

21 attach(myData)

22 subsetDAG.ext <- data.frame(imputed.o, DeathEC , FUtime)

23 subsetDAG.ext$FUtime <- as.numeric(FUtime)

24 summary(subsetDAG.ext$FUtime)
25 subsetDAG.ext$DeathEC <- as.factor(DeathEC)

26 summary(subsetDAG.ext$DeathEC)
27

28 # Double -Check whether NA or not

29 sapply(subsetDAG.ext , function(x) sum(is.na(x)))

30 summary(subsetDAG.ext)

31

32 subsetDAG.ext.cmp <- na.omit(subsetDAG.ext)

33 subsetDAG.ext.i <- subsetDAG.ext.cmp

34

35

36 # Create the censor flag variable for patients for whom the outcome is

37 # not known according to the three ourcome variables X1TY , X3YR , X5YR

38

39 subsetDAG.ext.i$cens <- 1

40

41 subsetDAG.ext.i[( subsetDAG.ext.i$X3YR == "yes" & subsetDAG.ext.i$FUtime < 60

42 & subsetDAG.ext.i$FUtime >= 36

43 & subsetDAG.ext.i$DeathEC == 0) |

44 (subsetDAG.ext.i$X1YR == "yes" & subsetDAG.ext.i$FUtime < 36

45 & subsetDAG.ext.i$FUtime >= 12

46 & subsetDAG.ext.i$DeathEC == 0) |

47 (subsetDAG.ext.i$FUtime < 12 & subsetDAG.ext.i$DeathEC == 0),

48 "cens"] <- 0

49

50 subsetDAG.ext.i$cens <- as.factor(subsetDAG.ext.i$cens)
51

52
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53

54 # Fit a cox model containing two variables Therapy and LICAM

55

56 cox.fit <- coxph(Surv(time = FUtime , event = as.numeric(cens))

57 ~ Therapy +L1CAM , data = subsetDAG.ext.i, x= TRUE)

58

59 summary(cox.fit)

60 cox.zph(cox.fit)

61

62 # Violation of proportionality assumption , p values for both Therapy

63 # and L1CAM are <0.05. To address this issue , we divide the survival

64 # analysis into two time periods

65

66 # Follow up time histogram

67 attach(subsetDAG.ext.i)

68 hist(FUtime , main = paste("Histogram of Follow -up Time"))

69

70 # Based on the histogram it is reasonable to divide time to the following

71 # periods (0, 60], (60, 228).

72

73 # Time period: (0, 60]

74 subsetDAG.FU <- subsetDAG.ext.i[which(subsetDAG.ext.i$FUtime <=60) ,]

75 attach(subsetDAG.FU)

76

77 cox.fit <- coxph(Surv(time = FUtime , event = as.numeric(cens))

78 ~ Therapy + L1CAM , data = subsetDAG.FU , x= TRUE)

79 cox.fit

80 summary(cox.fit)

81

82 # Check proportionality assumption

83 cox.zph(cox.fit) #it holds

84

85 # Simple tabulatios to understand how many observations experienced

86 # the event in the subset of the data based on the two variables

87 table(subsetDAG.FU$Therapy , subsetDAG.FU$DeathEC)
88 table(subsetDAG.FU$L1CAM , subsetDAG.FU$DeathEC)
89

90 # The variables Therapy , L1CAM are not significant

91 # the model is not significant p-value =0.8

92 # We focus only on the model fitted in the first

93 # subset of the data to measure the 5 year disease specific survival

94

95 # Data used: subsetDAG.FU for Followup time: (0, 60]

96 require(survival)

97

98 fit <- survfit(Surv(time = FUtime , event = as.numeric(cens))

99 ~ Therapy+L1CAM , data = subsetDAG.FU)

100

101 ggsurvival <- ggsurvplot(fit , conf.int = TRUE ,

102 risk.table = TRUE ,

103 risk.table.col="strata",

104 xlab = "Time in months",

105 ggtheme = theme_bw(),

106 data = subsetDAG.FU)

107 ggsurvival

108 curv_facet <- ggsurvival$plot + facet_wrap(L1CAM ~ Therapy)

109 curv_facet

110

111 # Facet risk tables

112 ggsurvival$table + facet_wrap(~ L1CAM + Therapy , scales = "free")+

113 theme(legend.position = "none")

114
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115 # Focus on each facet columns and produce the relevant risk table

116 tb_fac <- ggsurvival$table + facet_grid(.~ Therapy , scales = "free")

117 tb_fac + theme(legend.position = "none")

118

119 tb_fac <- ggsurvival$table + facet_grid(.~ L1CAM , scales = "free")

120 tb_fac + theme(legend.position = "none")

E Models comparison - Brier Score calculation

1 library(bnlearn)

2 library(pec)

3 library(survival)

4

5 #----------------------------

6 # 5 year survival as outcome

7 #----------------------------

8

9 # Calculation for Bayesian network

10

11 nbs <- 110 #number of bootstrap samples

12 ss <- 650 #sample size

13 bs=matrix(nrow=nbs ,ncol =1)

14

15 for (i in 1:nbs){

16 set.seed(i)

17 ss.rows <- sample (1: nrow(subsetDAG.o),ss,replace=TRUE)

18 ss.subset <- subsetDAG.o[ss.rows ,]

19 ss.isubset <- bnlearn :: impute(fittedDAG.o, ss.subset , method = "bayes -lw")

20 fittedDAGi.o <- bn.fit(DAG.o, data = ss.isubset)

21 pred <- predict(fittedDAGi.o, node="X5YR" ,ss.isubset , prob=TRUE)

22 res.prob <- data.frame(t(attributes(pred)$prob))
23 ss.isubset$X5YR.binary <-ifelse(ss.isubset$X5YR=="yes" ,1,0)
24 df <- as.data.frame(cbind(pred , res.prob ,X5YR=ss.isubset$X5YR ,X5YR.binary=ss.

isubset$X5YR.binary))
25

26 #Brier score computation

27 bs[i,1] <- sum((df$yes -df$X5YR.binary)^2)/ss
28

29 }

30

31 #Brier score across bootstrap samples

32 bs

33 mean(bs) #0.0336

34 hist(bs ,xlab = "Brier Score", main="5-year survival")

35

36

37 # Calculation for Cox model

38

39 nbs <- 80 #number of bootstrap samples

40 ss <- 650 #sample size

41 bs=matrix(nrow=nbs ,ncol =1)

42

43 for (i in 1:nbs){

44 set.seed(i)

45 subsetDAG.FU <- subsetDAG.ext.i[which(subsetDAG.ext.i$FUtime <=60) ,]

46 ss.rows <- sample (1: nrow(subsetDAG.FU),ss,replace=TRUE)

47 ss.subset.train <- subsetDAG.FU[ss.rows ,]

48 ss.subset.test <- subsetDAG.FU[-ss.rows ,]

49 cox.fit <- coxph(Surv(time = FUtime , event = as.numeric(cens)) ~

50 Therapy + Rec , data = ss.subset.train , x=TRUE)

51 pred <- predictSurvProb(cox.fit ,times =60, newdata=ss.subset.test)
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52 ss.subset.test$X5YR.binary=ifelse(ss.subset.test$X5YR=="yes" ,1,0)
53 df <- as.data.frame(cbind(pred , X5YR.binary=ss.subset.test$X5YR.binary))
54

55 #Brier score computation

56 bs[i,1] <- sum((df$V1 -df$X5YR.binary)^2)/ss
57

58 }

59

60

61 #Brier score across bootstrap samples

62 bs

63 mean(bs) #0.078

64 sd(bs)

65 hist(bs ,xlab = "Brier Score", main="5-year survival")
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