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Abstract

The goal of the research was to create a protein-protein interaction (PPI) network from the
COSMIC Cancer Gene Census and to find a connection between the different hallmarks in
the Census and overrepresented pathways in a PPI network. The expression of hallmarks
is a direct result of somatic mutations in DNA. Understanding the concepts of the cancer
hallmarks and connections between them at a data level, from a perspective of functional
involvement of hallmark annotated genes in different or equivalent pathways, could help us
infer new hallmark annotations from existing data and may illuminate connections between
hallmarks. Therefore multiple sources of pathway data were overlayed onto the network.
Data on cancer gene prevalence in enriched pathways per hallmark was generated. Integrating
this data into the PPI network and comparing this data mutually per hallmark enabled
comparison between genes and how deeply they are involved in pathways that are connected
to each hallmark.
It was found that a collection of highly connected genes seem to be involved in the expression
of multiple if not all hallmarks. Separate hallmarks may not be expressed through entirely
separate pathways within a cell. The expression of all different hallmarks is to some extent
interconnected through a subset of genes, which are significantly enriched in different
pathways connected to different hallmarks.
By analysing the (lack of) overlap of gene prevalence of genes annotated with different
hallmarks, in combination with the generated pathway scores, it was attempted to infer
some predictions for new hallmark annotations.
Another challenge was to create a clear and intuitive visualization of the data in the network.
A pathway enriched PPI Cytoscape network was produced along with the network analysis
results and some Python code.
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1 Introduction

1.1 The Hallmarks of Cancer

It can be stated that cancer consists of abnormal cells which divide in an uncontrolled way. This
however is an oversimplified rendering of many complex processes. In order to summarise the
complexities of carcinogenesis and the multi-factorial aetiology of cancer in general, a collection
of six hallmarks were proposed D. Hanahan and R. Weinberg[7]. In 2011, four more hallmarks
were added to the list to establish a total of ten hallmarks [6]. Each hallmark can be interpreted
as a principle by which cancer cells prevail abnormally. Twenty years later, this study has become
a true landmark. Before this publication the field of cancer research was collection of individual
findings that were not connected to any underlying principles. From this publication on, many
cancer research findings have been placed in the context of the hallmarks concept. The hallmarks
of cancer are now a widely accepted concept within the field of cancer research.

The list of ten hallmarks include: proliferative signaling, suppression of growth, escaping immunic
response to cancer, cell replicative immortality, tumour promoting inflammation, invasion and
metastasis, angiogenesis, genome instability and mutations, escaping programmed cell death,
change of cellular energetics.
These hallmarks are shared in common by practically all cancer cells. Figure 1 shows a visualization
and overview of the hallmarks which are all summarised on the next page.

Figure 1: A visual representation of the 10 hallmarks [7].
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Sustaining proliferative signaling
When a cell is not dependent on external growth signals, but has self-sufficiency in providing
growth signals instead.

Evading growth suppressors
Tumour suppressor genes provide anti-growth signals to prevent cells from growing and replicating
uncontrollably. Cancer cells can be insensitive to these inhibitory signals.

Escaping immunic response to cancer
The immune system is capable of inducing apoptosis of damaged cells. Cancer cells however, are
unaffected by the immune system. Cancer cells often exist in an equilibrium between uncontrolled
proliferation and immunic inhibition of growth [12] [16]. During this period of equilibrium a
cancer cell can either adapt sufficiently, or later succumb to the T-cells of the immune system.

Cell replicative immortality
Healthy cells have a natural maximum limit to their number of divisions, determined by telomere
length. This limit is called the Hayflick limit [22]. As a result of overexpression, cancer cells have
an increased activity of telomerase [23]. Telomerase adds a telomere repeat sequence to the 3’
end of the telomere. This enables cancer cells to replicate unlimitedly without dying.

Tumour promoting inflammation
This hallmark has also been characterized as an enabling hallmark. There is a large body of
evidence indicating that chronic inflammation can be a starting point for cells to become cancerous
[20]. Inflamed tissue produces chemokines and cytokines among other components which can
enhance carcinogenesis [20]. This can contribute to enabling more hallmark capabilities in a cell.
Cancer cells can use inflammatory components for their own proliferation [10].

Invasion and metastasis
Cancer cells are capable of spreading through the body and form secondary tumours in different
parts of the body by invading healthy tissue.

Angiogenesis
Cancer cells are capable of inducing the growth of new blood vessels. These new blood vessels
will then enable the growth of more cancer cells.

Genome instability and mutations
This hallmark has also been characterized as an enabling hallmark. Genomic instability in
cancer cells can result in random mutations including chromosomal translocations, deletions,
duplications, and inversions. In rare occasions, these mutations can result in cells acquiring
hallmark capabilities.
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Escaping programmed cell death
When the DNA of a cell has been damaged, the tumor-suppressor protein p53 accumulates in
order to promote the apoptosis of the cell [1]. This is a form of programmed cell death. There
are different mechanisms that allow cancer cells to avoid apoptosis capable of bypassing this
self-destruction mechanism. Genome instability can result in a mutation in the P53 gene with an
non-coding gene as result. P53 expression is often reduced or even absent in cancer cells [25].

Change of cellular energetics
A cancer cell is capable of changing its metabolic system. A healthy cell usually generated its
energy from cellular respiration with breaking down glucose as its main source of energy. Cancer
cells however often rely on other forms of deregulated cellular energetics. Most cancer cells depend
on aerobic glycolysis instead, also known as the Warburg effect [27]. Some cancer cells show
increased consumption of and dependence on glutamine, which is also a promoting factor of cell
proliferation [4].

1.2 COSMIC Cancer Gene Census

The COSMIC (Catalogue Of Somatic Mutations In Cancer) Cancer Gene Census[24] database
contains a list of genetic mutations which are considered to have a causal relation to carcinogenesis.
The list currently contains 723 different genes, manually curated from over 26 000 peer reviewed
scientific publications. In order to add a general description of the function of genes, the curators
of this database are continuously trying to add hallmark annotations by reviewing experimental
evidence of functional involvement. The Cancer Gene Census is an ongoing effort and updates
may be released at any time.

The Census is divided in Tier 1 genes and Tier 2 genes. Tier 1 genes have documented evidence
that shows activity relevant to cancer. Tier 2 genes have a strong indication of playing a role in
carcinogenesis, but with a smaller body of evidence. Most of these genes are connected to one or
multiple hallmarks which describe their role in carcinogenesis based on high-confidence scientific
publications. The database also mentions if the gene-product either promotes or suppresses
a process related to cancer. All genes in the Census have been causally implicated in cancer,
meaning that most genes should probably be linked to at least one hallmark. The fact that not
all Census genes have been annotated with a hallmark will be one of the points of interest in
this thesis. All current hallmark annotations have been assigned after careful manual curation
of scientific papers, which requires great effort. Through network analysis, it may be possible
to speed up this process by inferring new hallmark predictions from previously assigned hallmarks.

1.3 Protein-protein Interaction Networks

Proteins are responsible for a wide range of functions within a cell. Often a single protein does
not have any function within a cell until the protein interacts with one or more other proteins.
These interactions are physical contacts between two or more proteins as a result of biophysical
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conditions.
In a protein-protein interaction network (PPI network), gene products are represented by nodes
and (possible) interactions are represented by edges. Interactions often have a evidence-score,
describing the probability of the interaction. PPI networks are by definition highly interconnected
and have a small diameter. This means that the distance from any given node to any other node
is usually not bigger than six steps. This is also known as a small-world network. It must be
mentioned that all data representing protein-protein interactions is to some degree noisy, as these
molecular interactions can not simply be represented by a binary 1 or 0. Therefore PPI networks
are always undirected weighted graphs.

The tendency for two proteins to form an interaction with each other is called the binding
affinity. Because of gene mutations, the binding site of proteins may be altered in such a way
that interactions that could happen before are no longer possible. In other words, the binding
affinity of the resulting gene products may be affected by these genetic mutations.
It can be very useful to study these PPI networks in order to discover which proteins are most
prominently involved in certain biological pathways. Protein function can be determined through
experiments, but can also be predicted with computational approaches involving PPI networks
[18]. PPI networks can also help bring to light new pathways and protein complexes within a cell.

Protein-protein-interaction data can be produced by both computational and experimental
methods. The most used experimental methods are the yeast two-hybrid protein-fragment com-
plementation assay and affinity purification - mass spectrometry. Computational prediction of
PPI’s is usually based on existing experimental PPI data. However, machine learning methods
have proven that de novo PPI prediction, without the use of previous experimental data, can be
a legitimate approach for finding new PPI’s. [8]

1.4 Pathway Enrichment

A biological pathway can be described as a sequence of interactions or chemical reactions between
genes, proteins, or other molecules within a cell. These pathways will often result in a new cellular
state. A new molecular product such as a new protein could be produced, or a yet existing
molecule could be modified as a result of the chemical interactions within a pathway. Biological
pathways can either occur within a single cell, but they can also be part of a larger intercellular
mechanism. Pathways are mostly discovered through laboratory studies.
There are different kind of biological pathways, including metabolic pathways, gene regulation
pathways, and signal transduction pathways. It is expected to find different kinds of pathways to
be related to our Cosmic Cancer Gene data set, as metabolic processes, gene regulation, and
signal transduction can all play a role in the development of cancer [28].

The approach of pathway enrichment analysis is not only useful for cancer research, it can help
us understand which exact processes in the cell are responsible for the development of diseases in
general. Identifying which step of a a pathway compromises the healthy state of a cell can help
us find drug targets for the development of new treatments [2]. Genetic alterations in signaling
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pathways involved in cell growth, apoptosis, or the cell-division cycle have often been topics of
research, with the goal of discovering new drug targets [9].
Pathway enrichment results will usually be in the form of a list of pathways that are overrepre-
sented in the queried list of genes. Each returned pathway has a P-value which describes how
likely that pathway could be connected to the gives list of genes by chance. A p-value of 0.05 is
usually considered as the threshold by which the enrichment of a pathway can be considered
statistically significant. Each pathway entry will contain a list of gene products which are involved
in said pathway. Such enrichment can result in functionally redundant pathways, which means
that trimming of some pathway data may be required. One of the goals for this thesis was to
summarize our gene list into a collection of overrepresented biological pathways. This data can
then be used for further analysis.

1.5 Network Generation and Analysis Tools

1.5.1 Cytoscape

All network analysis, network visualization, and data integration was done in the software
environment of the Cytoscape application [15] [21]. Cytoscape is an open source, Java based
application for Windows/Linux/MacOS which can be used to visualise and analyse molecular
interaction networks. Cytoscape can be used in combination with third party tools which can be
downloaded from the Cytoscape App Store. All work was done in Cytoscape version 3.8.2.

1.5.2 STRINGapp and PPI networks

The STRINGapp plugin was used to generate the PPI network from the Cosmic Cancer Census
Genes list. STRINGapp [17] is a Cytoscape application and serves to incorporate data from
the STRING database [29] in order to retrieve and visualise PPI networks. STRINGapp was
chosen over other similar applications for its database which is curated from five different sources.
Furthermore, the implementation of a ’score cutoff value’ can help reduce the amount of noisy
data when generating the PPI network.
The STRING database is a protein-protein interaction database which uses both experimentally
inferred and computationally predicted data. All interactions are annotated with a confidence
score which quantifies their reliability.

Interactions in the STRING database are derived from the following five sources:

• Genomic Context Predictions

• High-throughput Lab Experiments

• (Conserved) Co-Expression

• Automated Textmining

• Previous Knowledge in databases (IntAct, BioGRID)
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When running any query, a confidence cutoff score can be configured. A higher confidence
score threshold results in a more specific network with fewer nodes and edges with a higher
confidence score, whereas a lower confidence score threshold allows more nodes and edges with
lower confidence scores to be generated.
The evidence for each interaction is divided in seven components:

• fusion evidence

• neighborhood evidence

• cooccurrence evidence

• experimental evidence

• textmining evidence

• database evidence

• coexpression evidence.

1.5.3 g:Profiler and Enrichment map

g:Profiler’s [19] g:GOSt is a web based application which can discover statistically significantly
enriched biological processes (such a pathways) from a list of genes. g:Profiler uses a broad array
of different data sources which a user can choose from. The supported data sources for pathway
enrichment are Reactome, KEGG, and Wikipathways. The typical g:Profiler enrichment analysis
result is a list of enriched pathways. The statistical significance for each pathway is included as a
P-value. Furthermore, g:Profiler’s [19] g:Convert was used, which can convert pathway term id’s
to a list of involved genes.
EnrichmentMap [14] is a Cytoscape plugin which allows analysis and visualization of enrichment
data. EnrichmentMap can produce a network from enrichment data and calculates the overlap
between different enriched terms. In a Cytoscape network generated by EnrichmentMap each
node represents an enriched pathway. Each edge represents an overlap of genes between two
different enriched pathways. The generated Cytoscape network helps to filter and visualize the
data generated by g:Profiler. In this thesis. EnrichmentMap was only used for data integration
purposes.

1.5.4 Omics Visualizer

Omics Visualizer [13] is a Cytoscape plugin which allows for visual representation of data in the
shape of pie charts and donut charts on nodes.
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1.6 Data Resources

Protein-protein interaction data source:

STRING database v11.0 [26]

Multiple pathway data sources were used for the pathway enrichment. Data from the following
databases was used:

KEGG, version: FTP Release 2020-09-07

Reactome, version: annotations: BioMart, classes from version 2020-10-12

WikiPathways, version: 2020-10-10

1.7 Research Question

The goal of this thesis was to add structure to the generated PPI network of cancer genes from
the COSMIC Cancer Gene Census by integrating biological pathway data and to try to infer
possible predictions for hallmark annotations from this newly introduced structure. This involved
analysis of over-represented pathways within the PPI network. Multiple sources of pathway data
were overlayed on the network.

Finding a connection between the different hallmarks in the Census and over represented pathways
in the PPI network may help us understand to what extent the distribution of hallmarks depends
on biological mechanisms. It may be possible to connect unannotated genes to a hallmark by
enriching the network with pathway data and then applying different methods of network analysis.
Another challenge was to create a clear and intuitive visualization of the network.

The work done for this thesis is centered around the following research question:

Can we identify cancer hallmark structures by integrating pathway data in a PPI-
network?

Enriching the PPI network with pathway data will allow us to comprehend how the hallmarks
are distributed over different overrepresented pathways that are involved in cancer. It will be
interesting to investigate whether or not the actual distribution of hallmarks meets the hypotheti-
cal expectations. For example, it would be expected that genes annotated with the ’Angiogenesis’
hallmark would be overrepresented in certain signal transduction pathways connected to angio-
genesis. Another example is that it would be expected to see the ’escaping programmed cell
death’ hallmark overrepresented in pathways that are involved with regulation of TP53 activity.
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2 Methods

A summarizing workflow diagram can be found in figure 3.

2.1 Network generation

Using the curated list of genes from the COSMIC Cancer Gene Census we can create a PPI
network which can be interpreted as a subset of the protein interactome of all cancers. To generate
the PPI network the unranked gene list from the Cosmic Cancer Gene Census was queried using
the ’STRING protein query’ function. The goal was to generate a network with a justifiable
trade-off between retrieving high confidence interactions with low selectivity and lower confidence
interaction with high sensitivity. Default cutoff value is 0.5. The goal was to minimize the amount
of noisy interactions without eliminating too much data needed for analysis. For this thesis, a
lower coverage with higher confidence interactions and less false positives is desired. Multiple
PPI networks were generated with different confidence cutoff scores.

Below a table can be seen with different score cut-off value resulting in different network sizes
and interconnectivity between nodes.

Confidence cutoff Number of interactions

0.4 14884

0.5 9948

0.6 7062

0.65 6197

0.7 5375

The fusion evidence score for interactions is derived from fused proteins in other species. We
may want to avoid interactions with a substantial fusion evidence score as we are only interested
in interactions that occur in Homo Sapiens. It was found that the amount of fusion evidence
annotated in the PPI network for any confidence cutoff was negligible. Therefore the amount of
fusion evidence was not taken into account for selecting the confidence cutoff score.

A higher than default cutoff score of 0.65 eliminates 8687 interactions compared to when a confi-
dence score of 0.4 is used. Going up to 0.7 removes another 822 interactions which would be 14.2%
of the total set of interactions. A further small step up in cutoff score would result in a substantially
smaller data set without adding much validity to the data Therefore a middle ground was found
at 0.65. This cutoff score resulted in 50 unconnected nodes, as can be seen at the bottom of figure 6.
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The generated PPI network contains 717 nodes, whereas the Census contains 723 entries. This
is because the following 6 genes could not be mapped to any matching gene product by the
STRINGapp application:

• HMGN2P46

• IGK

• MRTFA

• TENT5C

• TRB

• TRD

Furthermore, multiple possible identifiers were found for 6 other genes. By considering the known
synonyms and genomic locations, the correct gene product identifiers were selected.

2.2 Adding Hallmark annotations to the PPI network

The Cancer Gene Census Hallmarks Of Cancer.csv file was downloaded from the COSMIC
website. Ten new columns were created of which each column contains the name of one of the
ten hallmarks. The HALLMARK column was then split per hallmark and added to the new 10
separate hallmarks columns. As the file contains multiple entries per gene (individual entries for
individual hallmarks annotated to the same gene), all separate hallmark annotations had to be
mapped to a single gene. This was done by using the pivot tables functionality of OpenOffice
Calc. In the pivot table setup, ’GENE NAME’ was added to the ’Rows’ field, and any of the
separated hallmark columns was added to the ’Data’ field. The result was then sent to a new
worksheet. A small snippet of the resulting file can be seen in figure 2 below.

Figure 2: Pivot Table Result.
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Above result consists of a column of all COSMIC cancer genes without duplicates, and another
column with a number representing how often that hallmark annotation occurred in the Can-
cer Gene Census Hallmarks Of Cancer.csv for a given gene. All number entries in the second
column were then changed to True and the full column was then copied over to the final .csv file
with all other hallmark annotations. All remaining empty fields were set to False. This file was
then imported to the STRING PPI network in Cytoscape, with the gene name as key/shared
column. This data integration enabled boolean filtering on hallmark characteristics in Cytoscape.
This process was repeated for each of the hallmarks, and also for Tumour Suppressor Gene, Fusion
Gene, and Oncogene annotations. The resulting file can be found in the the GitLab repository.
This file was then imported into the generated PPI network in Cytoscape, essentially adding all
hallmark annotations to the network.

2.3 Elemental Network Topology and Hallmark Metrics Analysis

The first step was to look at some of the basic network topology. Using a native Cytoscape
application called NetworkAnalyser [3], elemental network metrics were analysed.
To get a general sense of the connectivity of the network, the closeness centrality, betweenness
centrality, and clustering coefficient, and other metrics were calculated by using the NetworkAna-
lyzer application. This was done for each individual node from which full network averages were
calculated.

The betweenness centrality is a measure that reflects the amount connections between other
nodes that flow through a given node, and is calculated as follows:

The closeness centrality is a measure that reflects how close a node is to all other reachable
nodes in the network, and is calculated as follows:

The clustering coefficient describes how close a node and its neighbours are to forming a
clique. A clique is a maximally connected subgraph, e.g. a subgraph in which each node has an
edge to all other nodes. The clustering coefficient is calculated as follows:
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2.3.1 Global Network Metrics

The network density value describes the normalized average number of neighbors, therefore
being a value between 0 and 1.

The characteristic path length value describes the average shortest path length and is there-
fore the average expected distance between two random nodes in the network.

The network centralization value describes how central the most central node is compared
the to the centrality of all other nodes. In other words, the proportion of connectivity between
central nodes and lesser connected nodes.

2.3.2 Network Hubs

To find out which genes play a most prominent role, the hubs of the network were identified by
looking at the centrality analysis results. The hubs of a network were identified by a combination
of betweenness, closeness, and degree, i.e. the nodes with the most connections to other nodes.
Top ten lists were determined for these three metrics. All unique genes from those lists were then
identified as the hubs of the network, resulting in a set of 14 nodes.

2.4 Pathway Enrichment

2.4.1 Data Curation

The next step was to summarize the cancer gene list into a collection of over represented biological
pathways.
For each hallmark, the list of genes annotated with that hallmark was queried in g:Profiler’s
g:GOSt application for functional profiling. All but the following settings were left on default:

Organism: Homo Sapiens

Data sources: No electronic GO annotations, KEGG, Reactome, WikiPathways

For some gene identifiers, multiple Ensembl GeneID’s (ENSG) were found by g:Profiler, which
allows an option to select the genes with the most GO annotations. Using this option results in an
incorrect selection of multiple gene identifiers. Therefore, these gene identifiers were compared to
the gene identifiers in the COSMIC Cancer Gene Census to ensure the correct genes were selected.
The query results were then downloaded as .CSV and .GEM files for each of the hallmarks (gene
list query). The query URLs can be found in 2.5.1.

Using the EnrichmentMap application within Cytoscape was used to generate pathway networks
from the g:Profiler results .GEM files. This was done for all ten files for each hallmark. All
settings were left on default. These EnrichmentMap networks were only generated as a means of
adding the full g:Profiler results to the Cytoscape network file and increasing the completeness of
data in the network file. No further research was done on these EnrichmentMap networks.
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The third column in the .CSV files contains the Pathways term id´s. This full column (minus the
column name) was copied into g:Profiler’s g:Convert application in order to retrieve all genes
that are involved in these pathways (pathway query). The query URLs can be found in 2.5.1.
The results were downloaded as .CSV files. The third column of these .CSV files contains the
occurences for all genes in all retrieved pathways.

2.4.2 Data Integration

A small Python script was written to help integrate the g:Profiler pathway data into the
STRINGapp PPI network. The code of the Python program can be found in the appendix 6.1,
as well as in the GitLab repository. This program calculates the occurrences of per gene from a
file containing a list of genes. These occurrences are then sorted from high to low. After this the
number of occurrences are normalized to a value between 0 and 1. The output of the program is
a text file with list of the gene names and normalized scores of their occurrences, separated by a
comma. The program also plots this data in a bar graph.

Using the following pipeline, the full list of occurring genes was used as input for the prevalence.py
script for calculating normalized prevalence scores and generating the prevalence graphs:

cut -d ’,’ -f3 Angiogenesis.csv | cut -c 2- | sed ’s/.$//’ | Python3 prevalence.py

This process was repeated for all ten hallmark g:Profiler results. The resulting text files with
normalized prevalence scores were then imported into Cytoscape.

2.4.3 Pathways In Cancer (KEGG:5200)

The ’Pathways in cancer’ (KEGG:5200) is one of the most enriched pathways in all g:Profiler
queries. Comparing the included genes of this pathway to our network could possibly bring
forth new insights. Therefore this pathway was overlayed onto the network to compare with the
PPI network and to see if there are any anomalies. In order to integrate this data, a column
was added to include which genes are involved in the KEGG pathway ’Pathways In Cancer’
(hsa05200/KEGG:5200).

2.5 Network Visualization

The colours that are automatically added to all nodes by the STRINGapp application on genera-
tion of the network are arbitrary. Therefore all node colours were changed to black with a white
font for a more clear visualization. For all network visualizations, the node size is mapped to
the degree of the node. The hubs as determined in 3.1 were visualized with a red border. The
resulting visualization of the network can be seen in figure 7.

To get an overview of all genes that have a significant prevalence in the pathways connected to
one or more of the ten hallmarks, a subnetwork was created using a node filter in Cytoscape.
This filter selects all genes that have a pathway prevalence score >0.5 for at least one hallmark.
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A visualization of the resulting subnetwork can be seen in figure 10 in the results section. From
here on, this subnetwork will be referred to as the ’pathway score >0.5’ subnetwork. An image of
this subnetwork can be seen in 10. Omics Visualizer [13] was then used to create the split donut
and pie chart visualizations of the hallmark annotations and pathway scores. This was done for
the complete network as well as multiple subnetworks.

Adding the pathway scores to the network enabled visualization of these scores corresponding
to the visualization of the hallmarks. The pathway scores were visualized in a split donut chart
corresponding to the legend in figure 8. The pathway scores are mapped to a colour gradient
from white to red, where white resembles the lowest possible score and becomes more red as the
score increases. This enabled easy comparison of hallmark annotation and associated pathway
scores. The resulting visualization can be seen in figure 11.
The Compound Spring Embedder (CoSE) [5] layout was applied to all networks. CoSE is an
algorithm for force-directed graph drawing which results in a layout in which the number of
crossing edges is minimized and where all edges are of approximately equal length. This results
in a visually pleasing layout in which connected nodes are placed closely together.
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2.5.1 Query URLs

The queries that were ran and their results can be accessed through the following links:

Angiogenesis:
Gene list query: https://biit.cs.ut.ee/gplink/l/_Z9C3hqoT-
Pathway query: https://biit.cs.ut.ee/gplink/l/AZlhzsT8RL

Cell Replicative Immortality:
Gene list query: https://biit.cs.ut.ee/gplink/l/wsj82QVlSi
Pathway query: https://biit.cs.ut.ee/gplink/l/AZlhzsT8RL

Change of Cellular Energetics:
Gene list query: https://biit.cs.ut.ee/gplink/l/DHUmKedMTS
Pathway query: https://biit.cs.ut.ee/gplink/l/L80R7JL0TO

Escaping Immune Response:
Gene list query: https://biit.cs.ut.ee/gplink/l/uPBcgd6ER_
Pathway query: https://biit.cs.ut.ee/gplink/l/nZoKGvHVQV

Escaping Programmed Cell Death:
Gene list query: https://biit.cs.ut.ee/gplink/l/wk0rbfi1Qw
Pathway query: https://biit.cs.ut.ee/gplink/l/yfwIK3egS6

Genome Instability and Mutations:
Gene list query: https://biit.cs.ut.ee/gplink/l/vNllutJ_RA
Pathway query: https://biit.cs.ut.ee/gplink/l/QRJj6CRVRY

Invasion and Metastasis:
Gene list query: https://biit.cs.ut.ee/gplink/l/OUt1518XTh
Pathway query: https://biit.cs.ut.ee/gplink/l/z2PLcCNOQX

Proliferative Signaling:
Gene list query: https://biit.cs.ut.ee/gplink/l/VFDInpBoS4
Pathway query: https://biit.cs.ut.ee/gplink/l/Ct_XekRMR7

Suppression of Growth:
Gene list query: https://biit.cs.ut.ee/gplink/l/mZSttq9mTx
Pathway query: https://biit.cs.ut.ee/gplink/l/9Gk2V3aGS5

Tumour Promoting Inflammation:
Gene list query: https://biit.cs.ut.ee/gplink/l/Da-v6WC_Ss
Pathway query: https://biit.cs.ut.ee/gplink/l/ZUnEyQM6S0
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2.6 Workflow Diagram

Figure 3: Workflow diagram of network generation, data curation, and data integration.
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3 Results

3.1 Network Topology and Hallmark Metrics

For the analysis of basic network parameters, the Cytoscape plugin ’NetworkAnalyser’ was used.

The 10 nodes with the highest degree can be found in the table below. These 10 genes are
connected to 66 hallmark annotations, which indicates that a lot of research in the context of
cancer has already been done on these genes.

Gene Name Degree

1. TP53 187

2. AKT1 135

3. HRAS 119

4. EP300 118

5. MYC 115

6. STAT3 111

7. PIK3CA 107

8. SRC 101

9. MAPK1 98

10. KRAS 97

The top 10 genes with highest betweenness
can be found in the table below, rounded to
three decimals.

Gene Name Betweenness

1. TP53 0.148

2. EP300 0.053

3. AKT1 0.047

4. MYC 0.037

5. CTNNB1 0.036

6. STAT3 0.032

7. MAPK1 0.031

8. EGFR 0.030

9. HRAS 0.030

10. JUN 0.027

The top 10 genes with highest closeness can
be found in the table below, rounded to three
decimals.

Gene Name Closeness

1. TP53 0.545

2. AKT1 0.505

3. MYC 0.502

4. HRAS 0.496

5. EP300 0.494

6. CTNNB1 0.488

7. PTEN 0.486

8. STAT3 0.486

9. KRAS 0.484

10. EGFR 0.482
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After removing duplicates from the above three tables, the hubs of the network were established
as follows:

• AKT1

• CTNNB1

• EGFR

• EP300

• HRAS

• JUN

• KRAS

• MAPK1

• MYC

• PIK3CA

• PTEN

• SRC

• STAT3

• TP53

Of these 14 hubs, 3 have not been annotated with any hallmarks (JUN, SRC, STAT3). There-
fore the focus for new hallmark predictions will be on these three genes.

The betweenness values and closeness values of all nodes were plotted against each other in a
scatter plot as seen in figure 4.

Figure 4: Scatterplot of all nodes Betweenness values and Closeness values.

When fitting a linear regression model using the least squares method, this does not result in an
accurate model. There appears to be some positive exponential correlation between these two
measures. The same was found when plotting the degree against closeness, and when plotting
degree against betweenness. This indicates these three measures are closely related and can all
tell us something about the hubs of the network. This can also be concluded from the fact that
there exists substantial overlap between the top 10 genes of these measures.
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The table below shows an overview of the distribution of all hallmark annotations in both the
full network and the ’pathway score >0.5’ subnetwork.

Hallmark # of annotations % of total % in subnetwork

Angiogenesis 50/717 6.97% 33.33%

Cell Replicative Immortality 39/717 5.44% 23.81%

Change of Cellular Energetics 45/717 6.28% 28.57%

Escaping Immune Response 22/717 3.07% 21.43%

Escaping Programmed Cell Death 153/717 21.34% 61.90%

Genome Instability and Mutations 75/717 10.46% 33.33%

Invasion and Metastasis 155/717 21.62% 64.29%

Proliferative Signaling 129/717 17.99% 42.86%

Suppression of Growth 87/717 12.13% 30.95%

Tumour Promoting Inflammation 21/717 2.93% 9.52%

Genes can be annotated with multiple hallmarks. A total of 272 genes has been annotated with
one or more hallmarks. There is a total of 50 genes which have no connected edges, meaning
they are not connected to the network. These 50 genes (7% of all genes) which are not connected
to the network only contain 1,68% of all hallmark annotations within the network.This means
that relatively not much hallmark annotation data is ’lost’.
Figure 5 shows an overview of overlapping annotations between all hallmarks. The bottom row
should be read first, e.g. 20.0% of genes annotated with the ’Angiogenesis’ hallmark are also
annotated with the ’Cell Replicative Immortality’ hallmark. The first thing to notice is the high
percentage of overlap between all hallmarks and the ’Escaping Programmed Cell Death’ and
’Invasion and Metastasis’ hallmarks. These are also the most annotated hallmarks, it can be
concluded that these are the most dominant hallmarks in the network.

Figure 5: Hallmarks overlap heatmap.
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3.2 Generated Network and Visualization

A snapshot of the PPI network as generated by STRINGapp can be seen in figure 6. The first
observation is that there exist 50 nodes without outgoing edge and are therefore unconnected to
the central network. The network shows a periphery where nodes have a lower degree compared
to the center of the network which is more dense. The main network properties can be found in
3.3.

Figure 6: Unedited PPI network as produced by STRINGapp.
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Figure 7 shows the hubs of the network with a red border. The hubs were determined by
betweenness, closeness, and degree and are therefore located centrally in the network. This
slightly zoomed in image also captures the many edges and high connectivity of the network.

Figure 7: The PPI network as visualized in Cytoscape. The hubs as determined by centrality
analysis in 3.1 are visualized with a red border.
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Next, using Omics Visualizer plugin [13], the hallmark annotations were visualized in a pie chart
within each node. A red slice represents a hallmark annotation, corresponding to the legend in
figure 8. The resulting visualization can be seen in figure 8 on the next page.

Figure 8: Hallmark annotation and pathway score distribution in the pie charts/donut charts as
visualized on the nodes in figure 9.
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Figure 9 shows the hallmark annotations visualized on the nodes. The are noteworthy differences
in annotations between the hub genes. There exist three hub genes without any hallmarks
annotations (JUN, SRC, STAT3). It would be very unlikely for hubs to not be involved in the
expression of any hallmark. It seems that some annotations are missing for these central genes.
The other hubs that have been annotated with at least one hallmark have an average number of
6.27 (69/11) hallmark annotations, whereas all non-hub genes have an average number of 2.85
(775/272) hallmark annotations. Thus, assuming that JUN, SRC, STAT3 are indeed missing one
or multiple hallmark annotations, hub genes are structurally annotated with more hallmarks
than non-hub genes. This could be because hubs in general are involved in a high number of
hallmarks. Bias could also be part of the explanation for this discrepancy, as hub genes may
have been more intensively researched. This would mean that there is naturally a larger body of
evidence to be found for possible hallmark annotations for hub genes.

Figure 9: Hallmark annotations visualized. A red pie segment represents a hallmark annotation
corresponding to the pie chart in figure 8.
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After the pathway scores were added to the network, a subnetwork was created by using a node
filter which selects all genes that have a pathway prevalence score >0.5 for at least one hallmark.
This results in an overview of genes that are significantly involved in pathways that are connected
to at least one of the ten hallmarks. The resulting subnetwork can be seen in figure 10 below.
The interpretation of this subnetwork can be found in 3.3.

Figure 10: Subnetwork of genes which have a pathway score of >0.5 for at least one of the
hallmarks.
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3.3 Pathway Enrichment Results

The network statistics resulting from NetworkAnalyser are compared in the table below. The
subnetwork consists of genes that have a pathway score >0.50 for any hallmark.

Full Network Subnetwork: Pathway score >0.50

Network Size 717 42

Network Diameter 8 3

Network Radius 4 2

Clustering Coefficient 0,414 0,698

Network Density 0,028 0,469

Characteristic Path Length 2,885 1,544

Network Centralization 0,254 0,378

Average degree 18,582 19,238

From these statistics it can be concluded that the subnetwork containing only genes with at
least one pathway score >0.5 forms a denser and more strongly interconnected network than the
full PPI network. This indicates that there exists substantial evidence for interactions between
genes annotated with different hallmarks. The table below also shows that the genes that were
identified as hubs in the full PPI network, are mostly still the most connecting genes in the
subnetwork as well. This shows that the hub genes are an important bridging factor for these
interactions between genes annotated with different hallmarks, and that the hub genes themselves
are connected to genes with different hallmark annotations.

Top 15 Genes by Degree in Subnetwork

Gene Name Degree Hub in full PPI network?

AKT1 34 Yes

HRAS 32 Yes

TP53 32 Yes

MYC 31 Yes

PTEN 30 Yes

KRAS 29 Yes

SRC 28 Yes

CTNNB1 27 Yes

MAPK1 27 Yes

CCND1 26 No

PIK3CA 26 Yes

CASP3 23 No

EGFR 23 Yes

JUN 23 Yes
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Figure 11 shows the collection of genes which have a pathway score >0.5 for at least one gene,
with added pathway score visualization as described in 2.5. There are multiple genes (AKT2,
AKT3, MAP2K1, MAP2K2) which have considerably raised pathway scores but have not been
annotated with any hallmark. There are also genes with annotations for hallmarks for which these
genes have a relatively low pathway score (LEF1, APC, AXIN1). This means that a hallmark
annotation does not always correspond with a high pathway score for that hallmarks. Vice versa,
a low pathway score for a certain hallmark does not necessarily mean that no annotation for that
hallmark exists.
Furthermore it is worth noting that many hub genes have significantly elevated pathway scores
for multiple or even all hallmarks. This could indicate that these genes play a central role in
the expression of multiple or even all hallmarks, in which case these genes would be primary
catalysts for carcinogenesis in general.
The gene prevalence graphs, which can be found in the appendix 6.2, show which genes are
the most prevalent in pathways connected to a certain hallmark. The graphs show the top 30
genes in terms of prevalence in overrepresented pathways queried from the subset of COSMIC
genes annotated with a certain hallmark. There is a difference in composition and placement
of the top 30 genes per hallmark. This indicates that different genes can play a more or lesser
prominent role in the expression of certain hallmarks than in other hallmarks. More notable
are the considerable similarities. Many genes are in the top 30 prevalence for multiple or even
all hallmarks. These include some of the hub genes (AKT1, HRAS, TP53, PIK3CA, MAPK1,
KRAS, PIK3R1), but also some non-hub genes (RAF1, NRAS, MTOR, RAC1 PIK3CB, PIK3R1,
AKT2, AKT3, MAP2K2, MAP2K1). This could mean that the latter are maybe not hub genes
from a centrality analysis point of view, but are hub-genes from a hallmark point of view as they
have strong presence in pathways connected to different hallmarks.
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Figure 11: The same set of genes as shown in figure 10, with a visual representation of the
hallmark annotations and pathway scores.
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Another interest was to see if there are any genes with a substantially high pathway score for
a certain hallmark, that are not annotated with this hallmark. Per hallmark, it was derived
which genes that are not annotated with a certain hallmark, do have a pathway score >0.75 for
that hallmark. This threshold was chosen in order to identify genes with a strong indication of
involvement for some hallmark. The list can be seen below:

Angiogenesis

Gene Name Pathway Score

MAP2K1 0.7829

MAPK1 0.9314

NRAS 0.8514

PIK3R1 0.9829

Genome Instability and Mutation

Gene Name Pathway Score

MAPK1 0.9522

PIK3R1 0.9474

PIK3CA 0.9139

NRAS 0.8469

Cell Replicative Immortality

Gene Name Pathway Score

AKT1 0.9877

AKT2 0.8395

AKT3 0.8148

CCND1 0.8519

CDKN1A 0.8395

HRAS 0.8765

MAP2K1 0.7531

MAPK1 0.8889

PIK3CA 0.8889

PIK3CB 0.8148

Suppression of Growth

Gene Name Pathway Score

MAPK1 0.8507

CCND1 0.791

CDKN1A 0.8657

MYC 0.8507

Escaping Immune Response

Gene Name Pathway Score

AKT1 0.9886

MAPK1 0.9886

AKT3 0.75

CCND1 0.75

AKT2 0.7727

PIK3R1 0.8977

PIK3CA 0.8409

MAP2K1 0.8068

KRAS 0.7614

RAF1 0.8182

NRAS 0.7727

PIK3CB 0.7727

Escaping Programmed Cell Death

Gene Name Pathway Score

PIK3R1 0.8837

MAP2K1 0.7581

Proliferative Signaling

Gene Name Pathway Score

MAPK1 0.8714

PIK3R1 0.8667

Tumour Promoting Inflammation

Gene Name Pathway Score

AKT1 0.8667

MAPK1 0.9667

PIK3R1 0.75

MAP2K1 0.85

RAF1 0.85

MAP2K2 0.7667

NRAS 0.9
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Invasion and Metastasis:
None

Change of Cellular Energetics:
None

On 45 occasions a gene has a pathway score >0.75 for a certain hallmark, without being annotated
with that hallmark. These tables could be leading for future hallmark annotation predictions.

3.4 Unannotated Genes in Subnetwork

The following genes are included in the ’pathway score >0.5’ subnetwork, but have no single
hallmark annotation:

• AKT2

• AKT3

• BAX

• CASP3

• CDKN1A

• JUN

• MAP2K1

• MAP2K2

• MDM2

• SRC

It would be somewhat unexpected to see 10 unannotated genes in this subnetwork, considering
their significant involvement in pathways for at least one hallmark. Most of these genes have
remarkably high pathway scores for multiple hallmarks, most notable being AKT2, AKT3,
MAP2K1, MAP2K2, CDKN1A. It seems therefore that a lot of hallmarks annotations are
missing.

3.5 Pathways In Cancer

Out of the 272 genes that have been annotated with one or more hallmarks, 187 genes are not
connected to KEGG:5200. In other words, only 85/272 annotated genes occur in the pathway.
This reveals that this pathway, as a general gene and pathway collection for cancer, is not
complete. This could be because not all hallmarks are (equally) represented in the pathway.
On the other hand, 13 of the 14 hubs are included in the pathway, indicating that these hubs
seem to escape this hallmark selectivity found in Pathways In Cancer. Combining this with
the observation of high pathway scores for many hallmarks, and with the plethora of hallmark
annotations for multiple hubs, it seems that the hubs play a more central role amid the pathways
involved in different hallmarks.

28



3.6 Hallmark predictions for unannotated hubs.

3.6.1 The SRC gene

The SRC gene is one of the hub genes which does not have any hallmarks annotated. Consider-
ing its betweenness, closeness, degree, and the fact that is is part of the ’pathway score >0.5
subnetwork’, it is highly unlikely for this gene to not be involved in the expression of any of the
hallmarks. The SRC gene has been brought in connection with cancer through its involvement in
signal conduction [11].

The SRC gene has the following pathway scores:

SRC pathway scores

Angiogenesis 0.5029

Cell Replicative Immortality 0.358

Change of Cellular Energetics 0.437

Escaping Immune Response 0.5682

Escaping Programmed Cell Death 0.4884

Genome Instability and Mutation 0.4833

Invasion and Metastasis 0.4833

Proliferative Signaling 0.4571

Suppression of Growth 0.3284

Tumour Promoting Inflammation 0.4333

In figure 12, the ’Pathways in cancer’ (KEGG:5200) has been visualized in the ’pathway score
>0,5’ subnetwork. The first observation is that the SRC gene is the only gene that is not involved
in the ’Pathways in cancer’ pathway. Furthermore, the SRC gene has not been annotated with any
hallmarks. There exists edges between SRC and 28 of 41 other genes in the subnetwork, showing
high interconnectivity in the subnetwork. The highest pathway scores for SRC are Angiogenesis
(0.5029) and Escaping Immune Response (0.5682). The prevalence of annotations of these two
hallmarks in genes connected to the SRC gene was examined:

• 13/28 (46.4%) genes connected to SRC have been annotated with the Angiogenesis hallmark,
whereas only 6.97% of genes in the full network have been annotated with this hallmark

• 8/28 (28.6%) genes connected to SRC have been annotated with the Escaping Immune
Response hallmark, whereas only 3.07% of genes in the full network have been annotated
with this hallmark

The SRC gene product exhibits significant interaction with other gene products annotated
with these two hallmarks. In the subnetwork, 14/42 (33.33%) genes have been annotated with
Angiogenesis, and 9/42 (21.43%) have been annotated with Escaping Immune Response. This
means that the SRC gene is connected to 13/14 genes annotated with Angiogenesis and 8/9
genes annotated with Escaping Immune Response in the subnetwork. It can be concluded that
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these hallmarks are strongly enriched in genes connected to the SRC gene.

The pathway scores and considerably enriched connections to genes with these two hallmarks
provide multiple arguments for the involvement of SRC in these hallmarks. These observations
can be interpreted as a indication that the SRC gene is involved in the expression of these two
hallmark characteristics, which will be the final prediction.

Figure 12: The ’pathway score >0.5’ subnetwork. Genes involved in the ’Pathways In Cancer’
pathway (KEGG:5200) are visualized with a yellow label. Others with a white label. All edges
connected to the SRC gene are highlighted in red.
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3.6.2 The STAT3 gene

The ’pathway score >0.5’ subnetwork contains 13 of the 14 hubs. The STAT3 gene is the only
hub gene which is not included in the ’pathway score >0.5’ subnetwork. STAT3 does however
have pathway scores for multiple pathways which approach the threshold score of 0.5 as seen in
the table below. The pathway scores for Escaping Immune Response and Tumour Promoting
Inflammation are very close to the threshold score of 0,5. This shows that the STAT3 gene was
only just not included in the subnetwork, because of the decision for the cutoff value.

STAT3 pathway scores

Angiogenesis 0.4171

Cell Replicative Immortality 0.4074

Change of Cellular Energetics 0.3926

Escaping Immune Response 0.4773

Escaping Programmed Cell Death 0.4

Genome Instability and Mutation 0.3876

Invasion and Metastasis 0.3876

Proliferative Signaling 0.3875

Suppression of Growth 0.3881

Tumour Promoting Inflammation 0.4833

STAT3 is involved in the ’Pathways In Cancer’ pathway (KEGG:5200), but has no hallmark
annotations. However, with a degree of 111 in the full PPI-network, it is the 6th most connected
node. Of those 111 genes connected to STAT3, 59 have been annotated with some hallmark
(53.15%), whereas 272/717 (37.94%) of genes in the full network have been annotated with one
or multiple hallmarks. This shows that the STAT3 gene is significantly more connected with
genes annotated with at least one hallmark. This could be an indicator that the STAT3 is also
involved in the expression of certain hallmarks and that possibly STAT3 is lacking one or multiple
hallmark annotations.

Looking at the genes connected to STAT3, 10/111 (9%) have been annotated with Tumour
Promoting Inflammation, whereas only 21/717 (2.93%) of genes in the full network are annotated
with this hallmark. Furthermore, 15/111 (13.5%) of the genes connected to STAT3 are annotated
with Escaping Immune Response, whereas only 22/717 (3.07%) of genes in the full network are
annotated with this hallmark. In other words, the STAT3 genes is connected to 10/21 genes
annotated with Tumour Promoting Inflammation, and to 15/22 genes annotated with Escaping
Immune Response. This shows that the STAT3 gene is considerably more connected with genes
annotated with these two hallmarks. Combining these observations, it is predicted that this
hallmark should be annotated with the Tumour Promoting Inflammation and Escaping Immune
Response hallmarks.
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3.6.3 The JUN gene

The JUN gene has the following pathway scores:

JUN pathway scores

Angiogenesis 0.4686

Cell Replicative Immortality 0.4321

Change of Cellular Energetics 0.4

Escaping Immune Response 0.5227

Escaping Programmed Cell Death 0.4558

Genome Instability and Mutation 0.4593

Invasion and Metastasis 0.4593

Proliferative Signaling 0.4

Suppression of Growth 0.4478

Tumour Promoting Inflammation 0.4333

For JUN, there is one pathway score that is somewhat higher than all others. The highest
pathway score is 0.5227 for Escaping Immune Response. All other pathway scores are within the
narrow range of 0.4 and 0.4686, indicating that the JUN gene might play a more general role
in carcinogenesis. The JUN gene is connected to 7 out of 9 genes that are annotated with the
Escaping Immune Response hallmark in the subnetwork.
All 23 nodes connected to JUN are also connected to TP53 and MYC. Furthermore, 21/23 genes
are connected to AKT1, and 20/23 to CCND1. TP53, MYC, AKT1, and CCND1 are all genes
with raised pathway scores for all hallmarks. This makes it difficult to assign a plausible hallmark
prediction for Escaping Immune Response, as JUN interacts with many other genes with differing
hallmark annotations, and has lesser substantial pathway score anomalies.
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4 Conclusions

There is a collection of genes with a raised pathway score for multiple or even all hallmarks.
This could indicate that these genes play a central role in the expression of multiple or even
all hallmarks, and thus a central role in carcinogenesis in general. This collection of genes with
high pathway scores for multiple hallmarks includes many of the hubs of the network that were
identified through centrality analysis. Some genes with high pathway scores for multiple hallmarks
were not identified as a hub through centrality analysis. Nonetheless, these genes could still be
considered hubs from a cancer induction point of view.

On average, the hubs are annotated with significantly more hallmarks than non hub-genes (6.27
versus 2.85). Furthermore, the subnetwork containing only genes with at least one pathway
score>0.5 forms a denser and more strongly interconnected network than the full PPI network.
This indicates that there exists significant evidence for interactions between genes annotated
with different hallmarks, mainly for the hubs of the network.

High pathway scores for certain unannotated genes with a high connectivity are an indication
for missing hallmark annotations, for which some predictions have been made. The different
g:Profiler Pathway Enrichment queries resulted in different scores per hallmark, confirming that
genes can be more strongly involved in some hallmarks than in others. On the other hand, the
top 30 gene prevalence graphs per hallmark also show many recurring genes, including many
of the hubs. This could mean that separate hallmarks may not be expressed through entirely
separate pathways within a cell. The expression of all different hallmarks in conjunction, with
a cancerous cell as a result, may to some extent be connected through a limited collection of
highly interconnected genes.

Additionally, some hallmark predictions were done for unannotated hub genes. Three of the
identified hub genes have not been annotated with any hallmark. Considering their centrality
statistics indicating a high connectivity, and considering the pathway scores, it would be very
unlikely for these hubs to not be involved in the expression of any hallmark. Based on their
pathway scores and the distribution of hallmarks of neighbouring genes, a few hallmark predictions
were done. This analysis resulted in the following predictions:

• SRC: Angiogenesis + Escaping Immune Response

• STAT3: Tumour Promoting Inflammation + Escaping Immune Response

Summarizing, a collection of highly connected genes seem to be involved in the expression of
multiple if not all hallmarks. Therefore a distinction should be made between genes that are
involved in the expression of a few hallmarks and genes that are involved in the expression of
an abundance of hallmarks. Separate hallmarks may not be expressed through entirely separate
pathways within a cell. The expression of all different hallmarks is to some extent interconnected
through a subset of genes, which are significantly enriched in different pathways connected to
different hallmarks.
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5 Discussion and Further Research

Hallmark Annotation Bias

Only hallmark annotated genes were used for retrieval of pathway data. This means that any
conclusions and predictions were indirectly inferred from previously assigned annotations. All
inference is based on known hallmarks annotations. Known hallmark annotations may favor certain
genes or hallmarks, and this could create a bias. Because only ’known’ data and annotations
were used, this may reinforce the narrative of findings that have already been done.

Pathway Score Bias

For the calculation of the pathway scores, each gene occurrence in a pathway for a hallmark was
weighed equally. There are however very general pathways such as ’Pathways In Cancer’, and
more specific pathways such as ’MAPK signaling pathway’. Some of these more specific pathways
may be better describers of the functional expression of a certain hallmark. Gene occurrences in
pathways that are more strongly correlated to a hallmark should maybe therefore be weighed
higher in the calculation of pathway scores. This however introduces a problem of arbitrariness.
It would be hard to decide which pathways should be considered more representative of the
expression of a certain hallmark, and it would be even harder to then assign scores to these
different pathways. A possible method to be more selective in pathway enrichment would be to
only use pathways that are proven to have some connection to the hallmark.
Furthermore, each pathway has an assigned P-value describing the significance of the enriched
pathway in the queried gene list. Gene occurences in pathways with a lower P-value should maybe
be valued higher compared to gene occurences in pathways with a higher P-value.

Analysis of Hub Genes

The definition of a hub gene from a hallmark point of view should maybe be expanded. There is
a collection of genes that have raised pathway scores for multiple or all hallmark, which were not
identified as hub genes. However, if these genes are involved in the expression of all hallmarks, it
could mean that they play a central role in the expression of all these hallmarks and therefore a
central role in carcinogenesis in general. Therefore these genes could be considered hubs, not from
a network topology point of view, but from a cancer induction point of view. Another possibility
is that more centrality measures (Stress / Clustering Coefficient) should have been considered for
the identification for hubs. This could have possibly led to a greater number of hubs and may
have included more genes that have raised pathway scores for all hallmarks.
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Future Research

Future research could consist of trying a method for weighing gene occurrences in different
pathways. This may produce more accurate pathway scores. Another possibility would be to do
a more exact analysis of which hallmarks are expressed through which pathways. Being able to
better distinguish which combinations of pathways are responsible for the expression of which
hallmark could also help us calculate more accurate pathway scores, by having a more specific
pathway selection per hallmark.
It could also be interesting to revisit this thesis at a later time, when more hallmark annotations
have been added to the Cosmic Cancer Gene Census. Comparing these new hallmark annotations
to the predictions in this thesis could also either validate or disprove the method of using pathway
scores for predicting new hallmarks annotations. Genes that have a high pathway score for a
certain hallmarks but are currently unannotated with that hallmark would also be of particular
interest.
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6 Appendix

6.1 Python code for generating pathway scores.

1 #!/ usr/bin/python

2

3 import sys

4 from collections import Counter

5 import matplotlib.pyplot as plt

6

7 def main ():

8 genelist = sys.stdin.read()

9 # with open (" Angiogenesis.txt", "r") as myfile:

10 # genelist = myfile.read (). replace ("\n", ",")

11 # genelist = genelist.replace ("][" , ","). replace(

12 # "[" ,""). replace ("]", ""). replace (’"’,"")

13

14 genelist = genelist.split(’\n’)

15 totalNrOfGenes = str(len(genelist ))

16 numberOfUniqueGenes = str(len(set(genelist )))

17 countedArray = Counter(genelist)

18

19 x = countedArray.most_common ()

20 listedx = list(x) # use list because tuples are immutable

21 arraySize = len(listedx)

22

23 # calculate range of occurence data for normalization step

24 maxValue = listedx [0]

25 maxValue = maxValue [1] +1 # -1 to prevent ’1’ values after normalization

26 minValue = listedx[arraySize -1]

27 minValue = minValue [1] -1 # +1 to prevent ’0’ values after normalization

28

29 # normalized formula: (x-min(x))/( max(x)-min(x)), rounded to 4 decimals

30

31 f = open(" TumourPromotingInflammation_Normalized.txt", "a")

32 f.write (" display name , TumourPromotingInflammation_Pathway_Score" + ’\n’)

33 for gene in range(len(listedx )):

34 normalized = round (( listedx[gene ][1]- minValue )/( maxValue -minValue), 4)

35 listedx[gene] = (listedx[gene ][0], normalized)

36 testje = ’,’.join(map(str , listedx[gene ]))

37 f.write(testje + ’\n’)

38 f.close ()

39

40 listedx = listedx [:30] # only use top 30 most prevalent genes for graph generation

41

42 plt.bar(*zip(* listedx ))

38



43 plt.text (0.65 ,0.95 ," Number of gene entries: " + totalNrOfGenes ,

44 horizontalalignment=’center ’,verticalalignment=’center ’,

45 transform = plt.gca(). transAxes)

46 plt.text (0.65 ,0.9 ," Number of unique genes: " + numberOfUniqueGenes ,

47 horizontalalignment=’center ’,verticalalignment=’center ’,

48 transform = plt.gca(). transAxes)

49 plt.xticks(rotation =90,ha=’center ’, fontsize =9)

50 plt.title(’Top 30 gene prevalence in TumourPromotingInflammation pathways ’)

51 plt.xlabel(’Gene name ’)

52 plt.ylabel(’Prevalence (normalized )’)

53 plt.tight_layout ()

54 plt.show()

55

56 if __name__ == "__main__ ":

57 main()

39



6.2 Gene prevalence graphs
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