
Efficient conversion between vtrees

Diego van Egmond

Supervisors:
Dr. Alfons Laarman
Lieuwe Vinkhuijzen, MSc

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 30/07/2021

www.liacs.leidenuniv.nl

Abstract

Binary trees play a major role in many aspects of computer science. A lot of research has
been done in conversion between binary trees. Vtrees are full binary trees with unlabeled
internal nodes and labeled leaves. A vtree can be used in combination with a Boolean function
to obtain a canonical Sentential Decision Diagram (SDD). An SDD is a representation of
a Boolean function. It can be used for problems such as knowledge compilation, symbolic
verification methods and constraint programming. These problems are memory intensive, and
memory is a bottleneck. This problem can be solved by changing the vtree reduce the size of
the corresponding SDD. In this thesis, we consider the problem of converting one vtree to
another using only swaps and rotations. We propose two algorithms for this task, which we
call Algorithm 1 and Algorithm 2. Algorithm 1 converts the vtree to a left-linear tree, reorders
the leaves and finally changes the structure of the vtree to the desired structure. Algorithm 2
improves on this by recursively solving subtrees and using subtree reduction. Experiments
show that Algorithm 2 gives an average decrease in path length of at least 12.5% compared
to Algorithm 1, for vtree pairs with shared subtrees. We also find that these shared subtrees
occur in at least 15% of vtree pairs for any tree size. We characterize all situations in which
Algorithm 2 finds a shorter path than Algorithm 1.

2

Contents

1 Introduction 1

2 Related Work 3
2.1 Vtrees and SDDs . 3
2.2 Swaps and rotations . 5

2.2.1 Swaps . 5
2.2.2 Rotations . 5

2.3 Triangulations . 6
2.4 Conversion to left-linear trees . 6
2.5 The algorithm of Cleary and St. John . 6
2.6 Subtree reduction and chain reduction . 8
2.7 Internal changes . 11
2.8 The SDD package . 11

3 Algorithms and Functionalities 12
3.1 Operations . 12
3.2 Vtree Conversion Algorithms . 13

3.2.1 Vtree Conversion Algorithm 1 . 13
3.2.2 Vtree Conversion Algorithm 2 . 14

3.3 Vtree generation . 21
3.3.1 Mktrees 1 . 21
3.3.2 Mktrees 2 . 21
3.3.3 Mktrees 3 . 22
3.3.4 Mktrees 4 . 22

3.4 Shared subtree occurrence . 22
3.4.1 Mktrees 5 . 22

4 Experimental setup 23
4.1 Comparing the algorithms . 23

4.1.1 Random vtrees . 23
4.1.2 Designed vtrees . 24

4.2 Shared subtree occurrence . 25

5 Results 26
5.1 Comparing the algorithms . 26

5.1.1 Random trees . 26
5.1.2 Designed vtrees . 27

5.2 Shared subtree occurrence . 30

6 Conclusion 31

7 Future work 32

References 34

A Results 35
A.1 Algorithm output . 35

A.1.1 Output of Algorithm 1 . 35
A.1.2 Results of Algorithm 2 . 41

A.2 Average probability of shared subtree occurrence . 47

1 Introduction

Binary trees play a major role in many aspects of computer science. Converting from one tree to
another is a key part of many algorithms, such as when balancing binary trees. Examples of tree
balancing can be found in the paper of Baer and Schwab [BS77], and the paper of Pushpa and
Vinod [PV07].

Much research has been done on conversion between binary trees. Rotation distance, which is
the minimal number of operations needed in a conversion, is discussed by Cleary and St. John
in [CS09] and [CS10], and by Pallo in [Pal87]. Tarjan, Sleator and Thurston [DDST88] also show
visualizations of binary trees, such as triangulations. Culik and Wood [CIW82] look at tree similarity
measures.

A variable tree (vtree) is a full binary tree with unlabeled internal nodes and labeled leaves. The
labels of the leaves are equal to the set of variables used in a corresponding Boolean formula, and
each variable occurs in the vtree exactly once. Vtrees are used to create different Sentential Decision
Diagrams (SDDs) for a single Boolean function. For every combination of a Boolean function and a
vtree, there is one canonical SDD. Choi and Darwiche [CD13] define the SDD as “a representation
of a Boolean function”.

Choi and Darwiche [CD13] give examples of applications for the SDD, such as knowledge compilation
[CKD13] in the field of Artificial Intelligence. It was shown by Vinkhuijzen and Laarman [VL20] that
the SDD can also be useful for symbolic model checking, while it can be a significantly more compact
structure than the common Binary Decision Diagram (BDD). Another application of the SDD is
constraint programming, which is shown by Kisa, van den Broeck, Choi, and Darwiche [KVdBCD14].

Algorithms that make use of SDDs often have the problem that the amount of used memory grows
exponentially. This means that memory is often a bottleneck in these algorithms. Vinkhuijzen and
Laarman [VL20] show that the size of an SDD can be changed by modifying the vtree. This can
be seen in Figure 2 and Figure 3, which show two SDDs of different sizes for the same Boolean
function, as well as the corresponding vtrees. By reducing the memory needed by individual SDDs
we can run an algorithm with equal performance and less memory usage, or we can increase the
number of SDDs we use without the need for more memory. We can decrease the SDD size by
gradually changing the corresponding vtree. The SDD minimization algorithm of De Jong [dJ21]
has this bottleneck in the vtree conversion.

In this thesis, we consider the problem of converting one vtree to another. The allowed operations
are rotations and swaps, which are explained in Section 3.1. Cleary and St. John [CS10] have an algo-
rithm for converting an one unlabeled binary tree to another. This algorithm converts the initial tree
to a right-linear tree, and converts this right-linear tree to the desired target tree. However, the or-
der of the leaves is not changed. Since vtrees have labeled leaves, the order should be changed as well.

We propose two algorithms to convert one vtree to another. These algorithms therefore can be
directly implemented in the algorithm of De Jong ??. The algorithms are inspired by the algorithm
of Cleary and St. John [CS10]. We call them Algorithm 1 and Algorithm 2. Algorithm 1 starts by

1

converting the initial vtree to the left-linear tvree. After reaching the left-linear vtree, we reorder
the leaves using adjacent swaps. Finally, we convert the left-linear vtree to the target vtree. The
path from the left-linear vtree to the target vtree is found by converting the target vtree to the
left-linear tree and subsequently inverting this conversion path.

Algorithm 2 improves on Algorithm 1 by adding recursion and subtree reduction. We find a set
of variables for which there exists a subtree containing exactly those variables in both the initial
vtree and the target vtree. We call these subtrees a shared subtree. Algorithm 2 recursively finds
such shared subtrees, converts the shared subtree we find in the initial vtree to the shared subtree
we find in the target vtree, and finally reduces this shared subtree to a single leaf. This reduction
means we don’t change the subtree anymore, and we treat it as if it is a single leaf.

The first version of the algorithm and the recursive variant are implemented in C, making use of the
SDD package of Choi and Darwiche [CD18b]. To transform the initial vtree to a left-linear vtree, we
use the method in Algorithm 1. This method does not change the order of variables. Subsequently,
we use the method in Algorithm 2 to put the variables in the desired order. Finally, we reach the
target vtree by finding the path from the target vtree to the left-linear vtree, reversing this path
and following it with the tree we want to transform. The recursive variant looks for subtrees which
can be solved separately. When these subtrees are correct, they are treated as single nodes.

The result is that a transformation can be found between any pair of vtrees that share the same
variables. The recursive variant of the algorithm can find a subtree that can be solved independently
in at least 12.5% of randomly generated vtree pairs. The average length of the transformation path
is decreased in these cases by at least 15%. Both these statistics are greater for smaller vtrees, and
they are expected to be higher in real-world examples.

We also characterize all situations in which Algorithm 2 finds a shorter path than Algorithm 1.
This is shown in Lemma 8.

The thesis is structured as follows: Section 2 discusses previous work that is relevant to this thesis.
Section 3 discusses the heuristics we propose to make the algorithm of Cleary and St. John [CS10]
applicable on vtrees. Section 4 discusses the experimental setup we use to evaluate these heuristics.
Section 5 discusses the results of our experiments. Section 6 discusses the conclusion we draw from
the results. Finally, Section 7 proposes future work that is relevant to this research.

2

2 Related Work

2.1 Vtrees and SDDs

An SDD is a canonical representation of a Boolean function given a so-called vtree. A vtree is
a full binary tree with labeled leaves and unlabeled internal node. The labels of the leaves are
equal to the set of variables used in the corresponding Boolean function. See Figure 1a for an example.

Figure 1b shows the SDD representing the function f = (A ∧B) ∨ (B ∧ C) ∨ (C ∧D). This SDD
is created based on the vtree in Figure 1a. Each pair of squares represents an implication. The
node containing B and A represents the implication B → A. Similarly, the node containing ¬B
and ⊥ represents the implication ¬B → ⊥. Each round node represents a logical conjunction of
implications. The node containing 5 represents (D → C) ∧ (¬D → ⊥). The number in the rounds
node represents a subtree of the vtree. In the nodes below this round node, the variables in the left
subtree of the corresponding vtree node are always on the left side of the implications, and the
variables in the right subtree of the corresponding vtree node are always on the right side of the
implications. For the round nodes containing 2, the variable B can only occur on the left side, and
the variable A can only occur on the right side of the implications under these round nodes. The
full SDD represents the following Boolean function:

f(x) = (((B → A) ∧ (¬B → ⊥)) → >) ∧ (((¬B → ⊥) ∧ (B → ¬A)) → C) ∧ (¬B → ((D →
C) ∧ (¬D → ⊥)))

This is equal to the function f = (A ∧B) ∨ (B ∧ C) ∨ (C ∧D).

Figure 1: An SDD for f = (A ∧B) ∨ (B ∧ C) ∨ (C ∧D) and its corresponding vtree, taken from
[CD13]

Vinkhuijzen and Laarman show that the size of an SDD depends on the chosen vtree. Figure 2 and
Figure 3 show two SDDs which represent the same Boolean function, but which are constructed
based on different vtrees. The balanced vtree in Figure 2 produces a slightly smaller SDD than the
right-linear vtree in Figure 3.

3

Figure 2: An SDD and the vtree it is normalised to. Rectangles are SDD nodes, labelled with the
vtree node they are normalized to, taken from [VL20].

Figure 3: An SDD normalized to a right-linear vtree, taken from [VL20].

4

2.2 Swaps and rotations

Choi and Darwiche [CD13] define two operations on vtrees: rotation and swap. These operations
can be applied to internal nodes of a vtree to change its structure. Figure 4 and Figure 5 are both
from this paper.

2.2.1 Swaps

Applying a swap on a node means to swap its two children. This means that for this node, its left
child and its right child are swapped. If one of these children is an internal node, the whole subtree
is moved instead of just the single node. This subtree is the part of the tree, of which the root is
the internal node that is being moved. A swap on node x can be seen in Figure 4.

2.2.2 Rotations

The rotation operation comes in two symmetric variants: the left rotation and the right rotation.
The left rotation moves a node up in the tree, and moves the parent of this node down. The parent
of the node that is moved up will become its left child. Its original right child will stay its right
child, and its original left child will become the right child of the parent node that was moved
down. To make sure this is possible, the node that is moved up in the left rotation needs to be a
right child. Since the children of the node are moved during the operation, and we do not want our
leaves to become internal nodes, we conclude that rotations can only be done on internal nodes.

The right rotation is the inverse function of the left rotation. However, it is not a mirror image of
the left rotation. Since the right rotation on a node x is the inverse of a left rotation on node x,
and x is moved up by the left rotation, this means x is moved down by the right rotation. The
two variants of rotation can be seen in Figure 5. The operations rr vnode(x) and lr vnode(x) in
Figure 5 are the right rotation and left rotation respectively.

Figure 4: Swap on node x,
taken from [CD13]

Figure 5: Rotation on node x,
taken from [CD13]

5

2.3 Triangulations

A very useful property of binary trees, as explained by Sleator, Tarjan and Thurston [DDST88], is
that it can be visually represented as a polygon that is partitionized into triangles. Such a partition
of a polygon into triangles is called a triangulation. Figure 6 consists of four images.

The top left image shows a binary tree consisting of a root, the left subtree A of the root, and the
right subtree B of the root. The top right image shows how this tree is represented as a triangulation.
The root node is represented as an inverted triangle. The triangulation representing subtree A will
be attached to the left side of this triangle, and the triangulation representing subtree B will be
attached to the right side of this triangle. This will result in a triangulation with |A|+ 1 sides on
the left of the central triangle, and |B|+ 1 sides on the right of the central triangle. |A| and |B| are
the number of leaves in subtrees A and B respectively.

The bottom left image shows a detailed binary tree, and the bottom right image shows the corre-
sponding triangulation. The root node is node 6, so the label of the central triangle is 6. Node 6 has
a left child, labeled node 4. Therefore, the central triangle with label 6 has a triangle attached to its
left side, which is labeled 4. Node 4 has a left child, labeled node 3, and a right child, labeled node
5. Therefore, in the triangulation, the triangle with the label 4 has a triangle labeled 3 attached to
its left side, and a triangle labeled 5 attached to its right side. The same process takes place for
node 3 and node 2, and the final result is the equivalent triangulation.

The reason this visualization is useful, is because each rotation in a tree matches an operation done
in the corresponding polygon. This operation on the polygon is to remove one of the internal edges,
and replace it by the opposite diagonal of the now empty quadrilateral. One of these diagonal
swaps is shown in Figure 7. The important thing to notice, is that the outer edges can never be
changed or moved. Because of this, the numbers near the corners of the polygon are never changed,
which indicates that rotations can never change the order of any nodes or leaves. However, the
swap operation can change the order of the nodes and leaves. Since we want an algorithm to change
vtrees rather than unlabeled binary trees, we will need to use swaps to change the variable order.

2.4 Conversion to left-linear trees

A left-linear tree is a tree in which every internal node is a left child, with the exception of the root
node. Figure 8 shows that any full binary tree can be converted to a right-linear tree using only
right rotations. Similarly, any tree can be converted to a left-linear tree using only left rotations,
since the right rotation is the inverse function of the left rotation.

2.5 The algorithm of Cleary and St. John

Since all rotations are reversible operations, and every tree can be converted to a left-linear and
right-linear tree using only rotations, we can conclude that every structure can be reached from the
left-linear tree and from the right-linear tree. This idea is what inspired Cleary and St. John [CS10]
to develop a linear-time algorithm which can find a path between two unlabeled binary trees. This
algorithm first converts the initial tree to a right-linear tree. To find the path from this right-linear

6

Figure 6: Binary trees and their triangulations, taken from [DDST88]

Figure 7: A diagonal swap, taken from [DDST88]

7

tree to the target tree, we instead search for a path from the target tree to the right-linear tree.
We use the reversible property of tree rotations to reverse this path. This is now a path from the
right-linear tree to the target tree. To get the full path from the initial tree to the target tree, we
simply start by following the path from the initial tree to the right-linear tree, and subsequently
the path from the right-linear tree to the target tree. Since vtrees are also full binary trees with
unlabeled internal nodes, it is possible to use and expand on this idea. However, we need to add a
function to put the variables in the right order.

2.6 Subtree reduction and chain reduction

Cleary and St. John [CS09] introduce the techniques of subtree reduction and chain reduction,
which can be used to significantly reduce the size of unlabeled full binary trees, without changing
the information it contains.

When one is looking for a path between two trees, and there exists a subtree that occurs in both
trees, it is possible to collapse this subtree to a single leaf. An example of this is shown in Figure 9.
Subsequently, it is easier to find a path between the two trees. Any path between the reduced trees
that consists of only swaps and/or rotations is also a possible path between the original trees.

8

Figure 8: Tree transformation with only right rotations, showing all full binary trees with 5 leaves.
For readability, some trees are duplicated.

9

Chain reduction, which is shown in Figure 10, is a way to represent an internal chain of nodes as
an internal node. If this chain has a child on the left or right side, this child is attached to the new
internal node. If there is not a child on one of the sided of the chain, a leaf is added to this side of
the new internal node. In Figure 10, the chain only has a child on its right side, which means that
the reduced form of the chain is an internal node with the original right child and an added left
child. Any path between the reduced trees can also be applied to the original trees, if no swaps or
rotations were done that would move the reduced chain.

Figure 9: An example of subtree reduction, taken from [CS09]

Figure 10: An example of chain reduction, taken from [CS09]

10

2.7 Internal changes

The paper “On the rotation distance in the lattice of binary trees” by J. Pallo [Pal87] includes an
interesting example of how the order of steps does not always matter. This can be seen in Figure 11.
In this figure, it is shown that a left rotation on the parent of T2 and T3, followed by a change
within subtree T2 gives the same result as when these steps are done in the opposite order. The
change within subtree T2 is implied by the change from T2 to T2′. What this shows us, is that
rotations have no effect on the subtrees below it, and changes within subtrees also do not change
the structure of the rest of the tree.

Figure 11: Different step orders give the same result, taken from [Pal87]

2.8 The SDD package

We use the SDD package [CD18b] to implement all our algorithms. This library can create, save,
load and modify vtrees. The available operations to perform on vtrees are the left rotation, the
right rotation and the swap. The library also has functions to navigate the tree, and to create
a .dot-file corresponding to a vtree. This .dot-file can be used to create a .png-image. A more
detailed overview of this package can be found in the beginner manual [CD18a].

11

3 Algorithms and Functionalities

The purpose of the desired algorithm is to find a path between two vtrees. This algorithm should
take two vtrees as its input: the initial vtree and the target vtree. The output of the algorithm
is the path from the initial vtree to the target vtree. A path is a sequence of steps, where each
step is the application of one of the operations on an internal node. The operations we can use are
described in Section 3.1.

We implement two algorithms for this task, called Algorithm 1 and Algorithm 2. Algorithm 2 is
meant to improve on Algorithm 1. These algorithms are explained in Section 3.2.

To see the performance of the algorithms, we need a set of vtrees of different sizes to evaluate the
performance, and how it is related to the tree size. We will also want to compare the difference
between the two different algorithms. To do this, we require a set of random trees, and a set of
trees which are expected to give Algorithm 2 a clear advantage. To compare the algorithms to each
other, and see the effect of the tree size on the performance, we need a specific set of vtrees. The
generation of these trees is explained in Section 3.3.

Lastly, we also want to know how big the chance is that the improvement in Algorithm 2 will be
useful. To generate data to find this out, we use the function described in Section 3.4.

3.1 Operations

The operations we use in the algorithm are rotations and swaps. These are explained in Section 2.2.
The swaps are part of the SDD Package, and these can easily be implemented. However, left and
right rotations are only applicable in specific cases, and require a method to decide whether a left
rotation or a right rotation is needed. To solve this problem, we replace left rotations and right
rotations by up rotations.

The ”Rotate up” operation rotates a given target node up. Specifically, a left rotation is applied to
the target node if this target node is a right child, and a right rotation is applied to its parent if
the target node is a left child. This operation is illustrated in Figure 12.

Figure 12: The ”Rotate up” operation

12

3.2 Vtree Conversion Algorithms

3.2.1 Vtree Conversion Algorithm 1

The goal of the first algorithm is to simply find a path between a pair of two vtrees with the same
set of variables. This algorithm can be split up into three basic functions.

As seen in Section 2.4, any binary tree structure can be converted to and from the left-linear tree
using only rotations. We use this by converting both the initial vtree and the target vtree to the
left-linear tree. The pseudo code for this function is given in Algorithm 1.

Algorithm 1 Convert to left-linear tree

1: x← root node
2: while x is not a leaf do
3: if right child of x is an internal node then
4: x← right child of x
5: rotate up x
6: else
7: x← left child of x
8: end if
9: end while

This conversion to the left-linear tree will cost a maximum of n − 2 rotations for a tree with n
leaves. All the steps are saved, and for every rotation we also save whether the rotated node was
originally a left child or a right child.

The second step is to reorder the variables. Since we want the tree to remain a left-linear tree
during this sorting, we use the steps done in Figure 13. To swap B and C, we use three steps.
First, we rotate up the parent of the lower leaf, which is node 1. Second, we swap the two variables
we wanted to reorder. Finally, we reverse the change in the structure by rotating up node 2. The
exception is sorting the two leftmost variables, since that only takes one swap. The pseudo code
for this function is given in Algorithm 2. Since we can use only adjacent swaps, we will need a
maximum of (n− 1)! swaps. Since every swap costs 3 operations with the exception of the first two
variables, the maximum number of steps this reordering can take is 3 · (n− 1)!− 2 steps.

Figure 13: Swapping two variables in a left-linear tree

13

Algorithm 2 Reorder leaves in left-linear tree
1: i← 0
2: while i < number of variables do
3: x← leaf that should be in position i
4: while x is not in the right position do
5: Swap x with its left neighbour . As seen in Figure 13
6: end while
7: i← i + 1
8: end while

The third step is to take the path that was generated by the conversion of the target tree to a
left-linear tree, and reverse this path. To achieve this reversed path, we need to know if the rotated
nodes were left or right children. If a node we rotated was originally a left child, we can reverse
this by rotating up its current right child and vice versa. This reverse path is now a path from the
left-linear tree to the target tree.

Finally, we can concatenate the paths from these 3 steps to get the total path. The 3 paths represent:

1. Conversion to the left-linear tree

2. Reordering the variables

3. Conversion to the target tree

The output of the algorithm consists of the path. Every step consists of a type and a node id. The
type can be either a swap, a rotation from the left and a rotation from the right. Rotations from
the left and right are both up rotations, but the side implies whether the node was a left child or a
right child before the rotation. The node id is the number given to the internal node. The internal
nodes are numbered by inorder traversal so they stay consistent when rotations are done.

3.2.2 Vtree Conversion Algorithm 2

Based on Section 2.6 and Section 2.7, we know that it is possible to change subtrees without
affecting the rest of the tree, and that we could pack equal subtrees together to simplify the problem.
From these two conceptions we can deduce that it would be possible to solve subtrees first, and
consequently marking these subtrees to be treated as single leaves.

A good example of the advantage of Algorithm 2 is the conversion from vtree 2 5 01 to vtree 2 5 02.
These vtrees are shown in Figure 14 and Figure 15. These vtrees have a shared subtree with the
variables {B,C,E}.

When we want to find the path using Algorithm 1, we will end up with the following steps:

1. Rotate up node 5

2. Rotate up node 3

14

Figure 14: vtree 2 5 01

Figure 15: vtree 2 5 02

3. Swap on node 1

4. Rotate up node 1

5. Swap on node 3

6. Rotate up node 3

7. Rotate up node 3

8. Swap on node 5

9. Rotate up node 5

10. Rotate up node 5

In this path, the first two steps are to change the tree to a left-linear tree. Steps 3 moves the variable
C to the left of A. Steps 4, 5 and 6 are to move the variable B to the left of A. Subsequently, we
apply steps 7, 8 and 9 to move E to the left of A and reach the correct variable order. The last
step is to rotate up node 5 to get the right structure. This path is 10 steps long.

When we want to find the path between these same vtrees using Algorithm 2, we instead get the
following path:

1. Swap on node 1

15

2. Rotate up node 1

In this path, the shared subtree is already correct and does not need to be changed. Since the
subtree is equal, it can be treated as if it’s a single leaf. In essence, the the problem is now equivalent
to Figure 16, which is a much simpler problem.

Figure 16: Equivalent conversion with the shared subtree represented as the variable B

Algorithm 2 works as follows. Until the initial vtree is equal to the target vtree, this second version
of the algorithm repeatedly finds the first not yet solved shared subtree in the target vtree, solves
this subtree and finally marks it as a solved subtree. In this context, a shared subtree is a subtree
in the initial vtree, for which there exists a subtree in the target vtree that contains the same set of
variables in its leaves. These subtrees are found by checking every subtree with postorder traversal
using a recursive function. For every visited internal node, we check if the corresponding subtree is
a shared subtree. The final subtree to be solved will always be the full vtree, since every tree of
equal size shares the same set of variables.

We now give necessary and sufficient conditions which characterize the situations in which Algorithm
2 finds a shorter path than Algorithm 1, in Lemma 8. To this end, we first prove several lemmas.

Lemma 1. If there exists no shared subtree in the vtree pair, Algorithm 1 and Algorithm 2 will
produce the same conversion path.

Proof. Algorithm 2 is a recursive implementation of Algorithm 1 that repeatedly finds the smallest
shared subtree, converts this subtree in the initial vtree to the corresponding subtree in the target
vtree, and reduces this subtree to a single leaf. If there exists no shared subtree in the vtree pair,
Algorithm 2 will only convert the complete initial vtree to the target vtree. This means Algorithm
1 and Algorithm 2 will produce the same conversion path.

Lemma 2. The step to convert the an initial vtree to a left-linear vtree produces fewer operations
in Algorithm 2 than in Algorithm 1, if there exists a shared subtree whose root is not on the left
spine of the initial vtree.

Proof. Assume we want to find a conversion path for a vtree pair, in which there exists a shared
subtree whose root is not on the left spine of the initial vtree. This shared subtree has n leaves.

In Algorithm 1, the step to convert a vtree to a left-linear vtree will be done once. It will start at
the top, and bring every internal node above the shared subtree to the left spine. We define the

16

number of operations this takes as x1. After these operations, the root of the shared subtree will be
the right child of a node on the left spine.
Subsequently, Algorithm 1 will bring the shared subtree to the left spine. Since the root of the
shared subtree is a right child, rotating this node up will mean that both its children will both be
right children of nodes on the left spine. This means that, to bring the complete shared subtree to
the left spine, each of the internal nodes in this subtree will be rotated up. Any vtree with n leaves
has n− 1 internal nodes. Therefore, bringing a shared subtree with n leaves to the left spine will
cost n− 1 operations.
Finally, Algorithm 1 will bring the nodes below the shared subtree to the left spine. We define the
number of operations this takes as x2.
The step to convert a vtree to the left-linear vtree will produce a total of x1 +(n−1)+x2 operations
in Algorithm 1.

In Algorithm 2, the step to convert a vtree to a left-linear vtree will be done twice. The first time
we use this step, is when we independently convert the shared subtree to a left-linear vtree. It will
cost at most n− 2 operations to do this, because the shared subtree contains n− 2 internal nodes
under the root node. It will cost at least 0 operations, because it is possible for the subtree to
already be a left-linear vtree.
The second time Algorithm 2 uses the step to convert a vtree to a left-linear vtree, is after the
shared subtree has been reduced, to convert the complete initial vtree to a left-linear vtree. This
step will start by bringing every internal node above the reduced shared subtree to the left spine.
Just like in Algorithm 1, this takes x1 operations. After these operations, the reduced shared subtree
will be the right child of a node on the left spine. Since subtree reduction makes the algorithm treat
the shared subtree as a single leaf, no operations are done on this shared subtree.
Finally Algorithm 2 will bring the nodes below the shared subtree to the left spine. Just like in
Algorithm 1, this takes x2 operations.

The step to convert an initial vtree to the left-linear vtree will produce a total of at least 0 +x1 +x2

operations in Algorithm 2, and at most (n − 2) + x1 + x2. This means that the step to convert
the initial vtree to the left-linear vtree will produce at least 1 operation less, and at most n− 1
operations less in Algorithm 2 than in Algorithm 1.

Lemma 3. The step to convert an initial vtree to a left-linear vtree produces equally as many
operations in Algorithm 2 as in Algorithm 1, if there does not exist a shared subtree whose root is
not on the left spine of the initial vtree.

Proof. Lemma 1 shows that, if there exists no shared subtree in the vtree pair, Algorithm 1 and
Algorithm 2 function the same and generate the same conversion path. This means that, if there
exists no shared subtree in the vtree pair, the step to convert a vtree to a left-linear vtree will
produce the same steps for both algorithms as well.

Assume we want to find a conversion path for a vtree pair, in which there exists a shared subtree
whose root is on the left spine of the initial vtree.

In Algorithm 1, the step to convert a vtree to a left-linear vtree will be done once. It will start at
the top, and bring every internal node above the shared subtree to the left spine. We define the

17

number of operations this takes as x1. After these operations, the root of the shared subtree will be
the left child of a node on the left spine.
Subsequently, Algorithm 1 will bring the shared subtree to the left spine. Since the root of the
shared subtree is a left child, this will take the same number of operations as individually converting
the shared subtree to a left-linear vtree. We define the number of operations this takes as x2.
The step to convert a vtree to the left-linear vtree will produce a total of x1 + x2 operations in
Algorithm 1.

In Algorithm 2, the step to convert a vtree to a left-linear vtree will be done twice. The first time
we use this step, is when we independently convert the shared subtree to a left-linear vtree. This
will take x2 operations.
The second time Algorithm 2 uses the step to convert a vtree to a left-linear vtree, is after the
shared subtree has been reduced, to convert the complete initial vtree to a left-linear vtree. This
step will start by bringing every internal node above the reduced shared subtree to the left spine.
Just like in Algorithm 1, this takes x1 operations. After these operations, the reduced shared
subtree will be the leftmost child of the complete initial vtree, and the complete initial vtree will
be considered a left-linear vtree.
The step to convert an initial vtree to the left-linear vtree will produce a total of x2 + x1 operations
in Algorithm 2. This means that the step to convert the initial vtree to the left-linear vtree will
produce equally as many operations in Algorithm 2 as in Algorithm 1.

Lemma 4. The step to convert an initial vtree to a left-linear vtree produces fewer operations in
Algorithm 2 than in Algorithm 1, iff there exists a shared subtree whose root is not on the left spine
of the initial vtree.

Proof. Lemma 2 shows that, if there exists a shared subtree whose root is not on the left spine of
the initial vtree, the step to convert the a vtree to a left-linear vtree produces fewer operations in
Algorithm 2 than in Algorithm 1.
Lemma 3 shows that, if there does not exist a shared subtree whose root is not on the left spine
of the initial vtree, the step to convert a vtree to a left-linear vtree produces equally as many
operations in Algorithm 2 as in Algorithm 1.
This means that the step to convert an initial vtree to a left-linear vtree only produces fewer
operations in Algorithm 2 than in Algorithm 1, if there exists a shared subtree whose root is not
on the left spine of the initial vtree.

Lemma 5. The number of operations we use to convert a left-linear vtree to a target vtree is equal
to the number of operations we use to convert this target vtree to a left-linear vtree.

Proof. We obtain the conversion path from a left-linear vtree to a target vtree by determining
the path from the target vtree to the left-linear vtree, and reversing this path. We reverse a path
by taking the left-linear vtree and the conversion path, reversing the order of the operations and
finally replacing each operation by the operation with the inverse effect. This means that, if we
find a conversion path from a target vtree TT to a left-linear vtree TLL, whose path length is x, the
conversion path we find from the left-linear vtree TLL to the target vtree TT will also consist of x
operations.

18

Lemma 6. The step to convert a left-linear vtree to a target vtree produces fewer operations in
Algorithm 2 than in Algorithm 1, iff there exists a shared subtree whose root is not on the left spine
of the target vtree.

Proof. Lemma 4 shows that, in Algorithm 2, the step to convert an initial vtree to a left-linear
vtree produces fewer operations than Algorithm 1 iff there exists a shared subtree whose root is
not on the left spine of the initial vtree.
Lemma 5 shows that a conversion path from a left-linear vtree to a target tree consists of equally
as many operations as its reverse path.
These lemma’s show us that the step to convert a left-linear vtree to a target vtree also produces
fewer operations in Algorithm 2 than in Algorithm 1, iff there exists a shared subtree whose root is
not on the left spine of the target vtree.

Lemma 7. The step to reorder leaves in a left-linear vtree produces equally as many operations in
Algorithm 2 as in Algorithm 1, if there exists no shared subtree whose root node is not on the left
spine of both the initial vtree and the target vtree.

Proof. Lemma 1 shows that, if there exists no shared subtree in the vtree pair, Algorithm 1 and
Algorithm 2 function the same and generate the same conversion path. This means that, if there
exists no shared subtree in the vtree pair, the step to reorder leaves in a left-linear vtree will
produce the same steps for both algorithms as well.

Assume we want to find a conversion path for a vtree pair, in which there exists a shared subtree
with n leaves, whose root is on the left spine of both the initial vtree and the target vtree.

In Algorithm 1, the step to reorder leaves in a left-linear vtree will be done once. It will start by
finding the desired order of the variables, based on the target vtree. Algorithm 1 will repeatedly
take the leftmost variable from this ordered list of variables which is not yet in the correct position,
and find the corresponding leaf. Since the root of the shared subtree is on the left spine of the target
vtree, the first n variables in the desired variable order are the variables of the shared subtree. We
define the number of operations produced to put the first n leaves in the correct position as x1.
Since the shared subtree also has its root on the left spine of the initial vtree, no adjacent swaps
are done with any variables outside of the shared subtree until this point.
After these first n leaves are moved to the correct position, Algorithm 1 continues by moving all
remaining leaves to the correct position. We define the number of operations produced to reorder
these remaining leaves as x2.
If there exists a shared subtree whose root is on the left spine of both the initial vtree and the target
vtree, the step to reorder leaves in a left-linear vtree will produce a total of x1 + x2 operations in
Algorithm 1.

In Algorithm 2, the step to reorder leaves in a left-linear vtree will be done twice. The first time
we use this step, is when we independently reorder the variables of the shared subtree. This will
produce x1 operations.
The second time Algorithm 2 uses the step to reorder leaves in a left-linear vtree, is after the shared
subtree has been reduced, to reorder the leaves in the complete initial vtree. Since the reduced

19

shared subtree is treated as a single leaf which is already in the correct position, reordering the
variables will produce x2 operations.
If there exists a shared subtree whose root is on the left spine of both the initial vtree and the target
vtree, the step to reorder leaves in a left-linear vtree will produce a total of x1 + x2 operations in
Algorithm 2.

If we want to find a conversion path for a vtree pair, in which there is no shared subtree, the step
to reorder leaves in a left-linear vtree will produce the same steps for Algorithm 1 and Algorithm 2.

If we want to find a conversion path for a vtree pair, in which there is a shared vtree whose root
is on the left spine of both the initial vtree and the target vtree, the step to reorder leaves in a
left-linear vtree will produce x1 + x2 operations for both Algorithm 1 and Algorithm 2.

Therefore, if we want to find a conversion path for a vtree pair, in which there is not a shared vtree
whose root is not on the left spine of both the initial vtree and the target vtree, the step to reorder
leaves in a left-linear vtree will produce equally as many operations in Algorithm 2 as in Algorithm
1.

Lemma 8. Algorithm 2 produces a shorter path than Algorithm 1, iff there exists at least one
shared subtree, whose root is not on both the left spine of the initial vtree, and the left spine of the
target vtree.

Proof. Both Algorithm 1 and Algorithm 2 only use the steps to convert an initial vtree to a
left-linear vtree, to reorder variables in a left-linear vtree and to convert a left-linear vtree to a
target vtree.

Assume we want to find a conversion path for a vtree pair, in which there exists a shared subtree
whose root is not on the left spine of both the initial vtree and the target vtree.
We can conclude that at least one of the following is true. The initial vtree contains a shared
subtree whose root is not on the left spine, or the target vtree contains a shared subtree whose root
is not on the left spine.
Lemma 4 shows us that, if the initial vtree contains a shared subtree whose root is not on the left
spine, Algorithm 2 will find a way to reduce the full conversion path compared to Algorithm 1.
Lemma 6 shows us that, if the target vtree contains a shared subtree whose root is not on the left
spine, Algorithm 2 will find a way to reduce the full conversion path compared to Algorithm 1.
Therefore, we can conclude that if there exists a shared subtree whose root is not on the left spine of
both the initial vtree and the target vtree, Algorithm 2 will find a way to reduce the full conversion
path compared to Algorithm 1.

Assume we want to find a conversion path for a vtree pair, in which there does not exist a shared
subtree. Lemma 1 shows us that, in this situation, Algorithm 2 produces the same conversion path
as Algorithm 1.

Assume we want to find a conversion path for a vtree pair, in which there exists a shared subtree
whose root node is on the left spine of both the initial vtree and the target vtree.

20

Lemma 4 shows us that, in this situation, the step to convert an initial vtree to a left-linear vtree
produces equally as many operations for Algorithm 1 and Algorithm 1.
Lemma 7 shows us that, in this situation, the step to reorder variables in a left-linear vtree produces
equally as many operations for Algorithm 1 and Algorithm 1.
Lemma 6 shows us that, in this situation, the step to convert a left-linear vtree to a target vtree
produces equally as many operations for Algorithm 1 and Algorithm 1.
Since both algorithms consist of only these three steps, Algorithm 1 and Algorithm 2 produce
conversion paths consisting of an equal number of operations, when there exists a shared subtree
whose root is on the left spine of both the initial vtree and the target vtree.

From these arguments, we can conclude that Algorithm 2 reduces the length of the conversion path
compared to Algorithm 1, iff there exists at least one shared subtree, whose root is not on both the
left spine of the initial vtree, and the left spine of the target vtree.

3.3 Vtree generation

Since we will need a good data set to test the performance of our algoritms, as well as a single data
set to make sure all results are reliably consistent, we have to create a set of vtrees that can be
reused. To generate these vtrees, we have the function Mktrees 1. To make sure we can compare the
first and second version of the algorithm, we also want a separate set of vtrees which are expected to
give a better path when processed by the second algorithm. These vtrees are generated by Mktrees
2, Mktrees 3 and Mktrees 4.

3.3.1 Mktrees 1

The first tree generation function creates random vtrees using the random vtree generation function
of the SDD Package. The downside of this function is that it uses the time in seconds as a seed for
its random vtree generation. This means that when we want to generate many vtrees quickly, many
of these vtrees will be generated in the same second, and thus be equal. To solve this problem, a
function is added to check if a vtree is equal to one of the already generated vtrees. If this is the
case, the generation function will repeatedly be used until a new vtree is created. This means that
this tree generation can roughly create 1 vtree per second. Since we want only unique trees, the
limit of the number of generated trees is limited to the amount of unique possibilities.

3.3.2 Mktrees 2

To test the optimal conditions for the second vtree conversion algorithm, we use the function
Mktrees 2 to generate vtree pairs that share a subtree which is equal in structure and variable
order. To do this, we first generate a random vtree. In this vtree, we find the lowest leaf and move
up 2 nodes from this. To avoid any problems with small trees, the smallest tree generated by this
function has 5 leaves. This subtree is then marked, and 1000 random rotations or swaps are done
on random internal nodes that are not part of the chosen subtree. This way we end up with a new
tree that is completely different except for this subtree. Every tree that is generated to be random,
except for the first subtree of a size, is generated by picking a randomly chosen vtree from the

21

set of previously created vtrees, and applying the 1000 random operations without having to stay
outside of a certain subtree.

3.3.3 Mktrees 3

The Mktrees 3 function is a small change to Mktrees 2. In this function, the marked subtree is also
changed, but the set of variables in this subtree is kept the same. This means that two corresponding
vtrees will have the a shared subtree that contains the same set of variables, whereas the structure
of the subtree or the order of the variables aren’t necessarily equal.

3.3.4 Mktrees 4

Mktrees 4 is very similar to Mktrees 3, but with one big difference. The subtree for which we want
to keep the same variable set, is now not determined by finding the lowest leaf and going up by 2
nodes from there. Instead, we use a random number generator to pick any internal node other than
the root. This allows us to also get bigger shared subtrees, or subtrees in other parts of the vtree.

3.4 Shared subtree occurrence

3.4.1 Mktrees 5

Mktrees 5 is a function which works very similar to the previous 4 vtree generation functions.
However, no subtrees are selected to be kept, and every vtree but the first is generated by picking
a random previous vtree and applying 1000 randomly chosen operations on random internal nodes.
Instead of saving the generated vtrees to a file, Mktrees 5 instead checks for every pair of 2 vtrees
if they contain a shared subtree with the same variable set. For every number of variables, the
number of found shared subtrees is saved. After the function has been executed, a list will be given
with how often a shared subtree was found for each of the tree sizes.

22

4 Experimental setup

The algorithms and all additional functionalities from Section 3 are implemented in C, making use
of the SDD Package by A. Choi and A. Darwiche. The source code can be found in the GitHub
repository [vE21]. This code is used to test the performance of our algorithms, and to generate
vtrees for testing and evaluation.

4.1 Comparing the algorithms

4.1.1 Random vtrees

In order to test how well our algorithms perform on a set of random vtrees, we need to generate
such vtrees. To find out how this performance correlates to the number of variables in the vtrees,
we want to generate vtrees for multiple different variable counts. We use the Mktrees 1 function
from Section 1 to generate these random vtrees. We divide the set of generated vtrees into vtree
pairs. In each of these pairs, the first vtree will be used as the initial vtree, and the second vtree
will be used as the target vtree.

Since every pair consists of two vtrees with the same size, every vtree size should have an even
number of generated vtrees. Because the vtree generation only gives us unique vtrees, this means
that smaller vtrees will have fewer examples, and are therefore less test data.

The following amounts vtrees are created by Mktrees 1 for the different numbers of leaves:

Number of leaves Number of vtrees
2 2
3 4
4 10
5 10
10 20
20 40
30 60

Table 1: Number of vtrees generated by Mktrees 1

These vtrees are divided into vtree pairs, and for evaluation every pair gives the following output:

• Tree size, the number of leaves/variables in the vtrees

• Tree type, the function by which the vtree was generated

• Algorithm, the algorithm that processed the vtree pair

• Number of steps, the number of operations done to change the initial vtree to the target vtree

23

The number of steps is the evaluation metric for the performance of the algorithm, and a better
algorithm is expected to give us shorter paths (i.e. a lower number of steps). Since we process
each pair with both algorithms, we can compare the resulting path lengths between the algorithms.
From this comparison, we also find a difference and a difference ratio for each pair.

The difference is the number of steps Algorithm 2 does more than Algorithm 1. Since Algorithm 2 is
an improvement, we expect this value to be between 0 and a small negative number. The difference
ratio is the difference divided by the path length from Algorithm 1. This value is expected to be
between 0 and -1, since we expect Algorithm 2 to improve, but not to perform twice as well as
Algorithm 1.

4.1.2 Designed vtrees

The reason we also want to test on special types of vtrees, is because Algorithm 2 is expected to be
equal to Algorithm 1 in the general case, but improve on it in special cases. These special cases
are vtree pairs which have a shared subtree. A shared subtree means that the initial vtree has a
subtree with a set of variables, and another subtree in the target vtree can be found which has
the same set of variables. The structure and variable order of this subtree are not required to be
equal, only the set of variables. Three different types of such special vtree pairs can be generated
using the functions Mktrees 2, Mktrees 3 and Mktrees 4 from Section 3.3.2, Section 3.3.3 and
Section 3.3.4. To represent these types equally, each of the corresponding functions will create the
same number of vtrees for every vtree size. Since Mktrees 2 and Mktrees 3 can’t consistently create
shared subtrees in vtrees with less than 5 variables, the lowest number of variables to be used here
is 5. The synthestetic examples generated by these functions are probably worse than real-world
scenarios, which means that the actual performance of the tree manipulation algorithms is expected
to be better than the experimental results show. Table 2 shows the number of generated vtrees.

Number of variables Number of vtrees
5 2
10 20
20 40
30 60

Table 2: Number of vtrees generated by Mktrees 2, Mktrees 3 and Mktrees 4 each

Just like in Section 4.1.1, the vtrees are changed into pairs, and each pair is evaluated based on the
path length, the difference among algorithms and the difference ratio. This gives us 61 vtree pairs
for every one of the vtree types.

24

4.2 Shared subtree occurrence

Algorithm 2 is designed to improve on Algorithm 1 in the cases that the two vtrees have a shared
subtree. To find out what the difference between the two algorithms is, we don’t only want to know
how much better Algorithm 2 would perform in these special cases, but also what the probability
is that a random vtree pair is one of these special cases.

To find these results, we use the function Mktrees 5 from Section 3.4.1 to create 20000 vtrees for
each of the following variable counts: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50.
The vtrees will be divided into pairs, and instead of saving these vtrees, the function will give us
the number of pairs that contain a shared subtree. Since keeping 20000 vtrees in memory is a lot,
we instead use the Mktrees 5 function 10 times with 2000 vtrees each, and sum up the total for
each vtree size. Finally, this number is divided by 10000 to estimate the probability of any random
vtree pair having a shared subtree with the same set of variables.

25

5 Results

5.1 Comparing the algorithms

The results of the experiments can be found in Appendix A. The algorithms failed to produce a
path for some of the vtrees, but these missing data values appeared to occur at random vtree pairs.
Since we use all values to calculate averages, and most missing values appear on vtree types and
sizes that have many examples, the remaining data for these vtree sizes and types is still enough to
get an accurate estimate. However, since we do not have a lot of examples of vtrees with 5 variables
or less, the averages for these vtrees may be less accurate.
For every vtree pair with path length x1 from Algorithm 1, and path length x2 from Algorithm 2,
we calculate the difference and difference ratio as follows:

The difference is d = x2 − x1.
The difference ratio is r = d

x1
= x2−x1

x1
.

For the path lengths, the difference and the difference, the values are sorted by tree type and the
average is calculated for each tree size. This average value is plotted in Figure 17, Figure 19 and
Figure 22.

5.1.1 Random trees

The type 1 vtrees are the vtrees that were generated by Mktrees 1. When we compare the perfor-
mance of the algorithms in Figure 17, the we see that the black line is slightly below the gray line.
This means that, on average, the path found by Algorithm 2 is slightly shorter than the path found
by Algorithm 1. What we can also see, is that the spread of data points increases as the vtree we
test grows bigger.

Figure 17: Performance of the algorithms for vtrees of type 1

26

In Figure 18, we can see that the performance of the two algorithms is equal for the vtrees of 5 or
fewer variables. As we can see in the right graph, Algorithm 2 performs slightly better with the
vtrees of size 10, but this advantage of the second algorithm slightly decreases between the tree
sizes 10 and 30.

We see that Algorithm 2 performs slightly better than Algorithm 1. However, there was no
improvement on trees with 5 variables or less. This can be explained by two things. Firstly, it is
impossible for a vtree with 1 or 2 variables to contain a shared subtree, since the smallest shared
subtree can only occur in a vtree with 3 variables. A second explanation is that Algorithm 2 does
not necessarily perform better if the vtree pair has a shared subtree.

Figure 18: Difference (left) and difference ratio (right) of performance between the algorithms for
vtrees of type 1

5.1.2 Designed vtrees

The type 2, type 3 and type 4 vtrees are those generated by Mktrees 2, Mktrees 3 and Mktrees 4
respectively.

When we look at the performance of the algorithms on the type 2 and type 3 vtrees in Figure 19,
the main thing we see is that Algorithm 2 gives us a significantly shorter path than Algorithm
1. We also see that the performance of Algorithm 1 in these figures is roughly the same as its
performance on the type 1 vtrees, as seen in Figure 17.

When looking at the average difference between the algorithms in Figure 20, we see that it appears
to have a linear relation with the number of variables. Bigger trees lead to a bigger difference in
the generated path length. However, when looking at the average difference ratio between the
algorithms in Figure 21, the line through the average ratios looks like a reciprocal function whose
limit is around 15%. The advantage of Algorithm 2 relative to the path length decreases, but the

27

Figure 19: Performance between the algorithms for vtrees of type 2 (left) and type 3 (right)

step by which it decreases also gets exponentially smaller.

Figure 20: Difference in performance between the algorithms for vtrees of type 2 (left) and type 3
(right)

Algorithm 2 also performs better on type 4 vtrees, similar to the type 2 and type 3 vtrees. This
can be seen in Figure 22. However, the advantage of Algorithm 2 is slightly greater for this type of
vtree. This can also be seen in Figure 23, as the lines through the means are lower. The limit of the
line in the right graph of Figure 23 is greater than the 15% we have seen in Figure 21.

28

Figure 21: Difference ratio for performance between the algorithms for vtrees of type 2 (left) and
type 3 (right)

Figure 22: Performance of the algorithms for vtrees of type 4

29

Figure 23: Difference (left) and difference ratio (right) of performance between the algorithms for
vtrees of type 4

5.2 Shared subtree occurrence

Figure 24 shows the proportion of vtree pairs from Mktrees 5 that share a subtree with the same
set of variables. The values that are shown in this plot can be found in Table 5 from Appendix A.2.
In this figure, we see that this proportion is 0% for the trees with 1 or 2 variables, around 33% for
trees with 3 or 4 variables and slowly appears to approach a limit around 12.5%.

Figure 24: Probability of a shared subtree occurring in random vtree pairs

30

6 Conclusion

In this thesis, we have proposed two algorithms to convert one vtree to another. Algorithm 1
converts a vtree to a left-linear tree, reorders the variables and finally converts the vtree to the
target vtree. Algorithm 2 adds recursion by solving shared subtrees first, and using subtree reduction
to represent these subtrees as leaves.

We have shown that a path between 2 vtrees can always be found, because every vtree can be
converted to a left-linear vtree, and every variable order can be achieved by the variable reordering
step. We have also shown that the probability a shared subtree occurs in a pair of 2 randomly
generated vtrees is always greater than 12.5%, and that the average improvement of Algorithm 2
compared to Algorithm 1 in these cases is always greater than 15%. We can conclude this, because
both Figure 24 and the graphs in Figure 21 and Figure 23 showing the difference ratio approach
a non-zero limit around these values. However, since we expect vtree pairs we want to solve to
be more similar than 2 random vtrees, and also have bigger shared subtrees, we expect these
percentages to be higher in reality. Finally, we have shown in Lemma 8 that Algorithm 2 produces
a shorter path than Algorithm 1, iff there exists at least one shared subtree, for which the root is
not on both the left spine of the initial vtree, and the left spine of the target vtree.

31

7 Future work

To improve on this thesis, or to validate the conclusions, it would be good to repeat some of the
experiments with a larger set of vtrees. In these experiments, it could also be useful to make a
distinction between the number of rotations and the number of swaps. This information would be
useful in a situation where the cost of swaps and rotations is different.

Something that would be interesting to try, is to implement Algorithm 2 to recursively solve each
subtree twice: one time with the left-linear tree and another time with the right-linear tree. The
shortest of these two paths could be used as the solution of this subtree, and the final path could
then be a combination of the two methods.

It would also be possible to improve the variable reordering step of the algorithms. An example is
to iteratively select a variable from right to left in the desired variable order, find this variable in
the vtree we want to reorder, and move this variable into the desired position. With this method,
we take more advantage of the fact that, when we reorder variables in a left-linear tree, an adjacent
swap on the two leftmost variables costs 2 operations less than an adjacent swap in any other position.

Another possible way to improve the algorithm, is by testing if a conversion from a vtree a to
another vtree b produces a different number of steps than a conversion from vtree b to vtree a, and
how this knowledge could be used to increase the efficiency.

Finally, it would also be a good idea to change the algorithm by using a different evaluation metric
than the number of steps. An example of another possible metric would be the size of the largest
SDD corresponding to the vtrees. This metric may give different paths for the same pair of vtrees,
if the Boolean function to be represented by the SDD is different.

32

References

[BS77] J.-L. Baer and B. Schwab. A comparison of tree-balancing algorithms. Commun.
ACM, 20(5):322–330, May 1977.

[CD13] Arthur Choi and Adnan Darwiche. Dynamic minimization of sentential decision
diagrams. Proceedings of the AAAI Conference on Artificial Intelligence, 27(1), June
2013.

[CD18a] Arthur Choi and Adnan Darwiche. SDD Beginning-User Manual. Automated
Reasoning Group, UCLA, January 2018.

[CD18b] Arthur Choi and Adnan Darwiche. The sdd package. http://reasoning.cs.ucla.
edu/sdd, Jan 2018.

[CIW82] Karel Culik II and Derick Wood. A note on some tree similarity measures. Information
Processing Letters, 15(1):39–42, 1982.

[CKD13] Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling probabilistic graphical
models using sentential decision diagrams. In Linda C. van der Gaag, editor, Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, pages 121–132, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[CS09] Sean Cleary and Katherine St. John. Rotation distance is fixed-parameter tractable.
Information Processing Letters, 109(16):918–922, 2009.

[CS10] Sean Cleary and Katherine St. John. A linear-time approximation algorithm for
rotation distance. Journal of Graph Algorithms and Applications, 14(2):385–390,
2010.

[DDST88] Robert E. Tarjan Daniel D. Sleator and William P. Thurston. Rotation distance,
triangulations, and hyperbolic geometry. J. Amer. Math. Soc., 1(3), July 1988.

[dJ21] Rachel G. de Jong. A genetic algorithm for minimizing sentential decision diagrams
(unpublished), 2021.

[KVdBCD14] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic
sentential decision diagrams. In Fourteenth International Conference on the Principles
of Knowledge Representation and Reasoning, 2014.

[Pal87] Jean Pallo. On the rotation distance in the lattice of binary trees. Information
Processing Letters, 25(6):369–373, 1987.

[PV07] Suri Pushpa and Prasad Vinod. Binary search tree balancing methods: A critical
study. IJCSNS International Journal of Computer Science and Network Security,
7(8):237–243, 2007.

[vE21] Diego van Egmond. Bachelorproject. https://git.liacs.nl/s2243458/

bachelorproject, June 2021.

33

http://reasoning.cs.ucla.edu/sdd
http://reasoning.cs.ucla.edu/sdd
https://git.liacs.nl/s2243458/bachelorproject
https://git.liacs.nl/s2243458/bachelorproject

[VL20] Lieuwe Vinkhuijzen and Alfons Laarman. Symbolic model checking with sentential
decision diagrams. In Jun Pang and Lijun Zhang, editors, Dependable Software
Engineering. Theories, Tools, and Applications, pages 124–142, Cham, 2020. Springer
International Publishing.

34

A Results

A.1 Algorithm output

A.1.1 Output of Algorithm 1

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
10 vtree 1 10 01.vt vtree 1 10 02.vt 1 1 68
10 vtree 1 10 03.vt vtree 1 10 04.vt 1 1 88
10 vtree 1 10 05.vt vtree 1 10 06.vt 1 1 66
10 vtree 1 10 07.vt vtree 1 10 08.vt 1 1 59
10 vtree 1 10 09.vt vtree 1 10 10.vt 1 1 92
10 vtree 1 10 11.vt vtree 1 10 12.vt 1 1 57
10 vtree 1 10 13.vt vtree 1 10 14.vt 1 1 91
10 vtree 1 10 15.vt vtree 1 10 16.vt 1 1 66
10 vtree 1 10 17.vt vtree 1 10 18.vt 1 1 71
10 vtree 1 10 19.vt vtree 1 10 20.vt 1 1 103
20 vtree 1 20 01.vt vtree 1 20 02.vt 1 1 357
20 vtree 1 20 03.vt vtree 1 20 04.vt 1 1 329
20 vtree 1 20 05.vt vtree 1 20 06.vt 1 1 326
20 vtree 1 20 07.vt vtree 1 20 08.vt 1 1 329
20 vtree 1 20 09.vt vtree 1 20 10.vt 1 1 322
20 vtree 1 20 11.vt vtree 1 20 12.vt 1 1 305
20 vtree 1 20 13.vt vtree 1 20 14.vt 1 1 255
20 vtree 1 20 15.vt vtree 1 20 16.vt 1 1 379
20 vtree 1 20 17.vt vtree 1 20 18.vt 1 1 278
20 vtree 1 20 19.vt vtree 1 20 20.vt 1 1 335
20 vtree 1 20 21.vt vtree 1 20 22.vt 1 1 291
20 vtree 1 20 23.vt vtree 1 20 24.vt 1 1 388
20 vtree 1 20 25.vt vtree 1 20 26.vt 1 1 408
20 vtree 1 20 27.vt vtree 1 20 28.vt 1 1 328
20 vtree 1 20 29.vt vtree 1 20 30.vt 1 1 361
20 vtree 1 20 31.vt vtree 1 20 32.vt 1 1 283
20 vtree 1 20 33.vt vtree 1 20 34.vt 1 1 370
20 vtree 1 20 35.vt vtree 1 20 36.vt 1 1 277
20 vtree 1 20 37.vt vtree 1 20 38.vt 1 1 322
20 vtree 1 20 39.vt vtree 1 20 40.vt 1 1 237
2 vtree 1 2 01.vt vtree 1 2 02.vt 1 1 1

35

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
30 vtree 1 30 01.vt vtree 1 30 02.vt 1 1 567
30 vtree 1 30 03.vt vtree 1 30 04.vt 1 1 746
30 vtree 1 30 05.vt vtree 1 30 06.vt 1 1 720
30 vtree 1 30 07.vt vtree 1 30 08.vt 1 1 736
30 vtree 1 30 09.vt vtree 1 30 10.vt 1 1 692
30 vtree 1 30 11.vt vtree 1 30 12.vt 1 1 613
30 vtree 1 30 13.vt vtree 1 30 14.vt 1 1 507
30 vtree 1 30 15.vt vtree 1 30 16.vt 1 1 760
30 vtree 1 30 17.vt vtree 1 30 18.vt 1 1 572
30 vtree 1 30 19.vt vtree 1 30 20.vt 1 1 787
30 vtree 1 30 21.vt vtree 1 30 22.vt 1 1 631
30 vtree 1 30 23.vt vtree 1 30 24.vt 1 1 770
30 vtree 1 30 25.vt vtree 1 30 26.vt 1 1 616
30 vtree 1 30 27.vt vtree 1 30 28.vt 1 1 544
30 vtree 1 30 29.vt vtree 1 30 30.vt 1 1 886
30 vtree 1 30 31.vt vtree 1 30 32.vt 1 1 651
30 vtree 1 30 33.vt vtree 1 30 34.vt 1 1 577
30 vtree 1 30 35.vt vtree 1 30 36.vt 1 1 835
30 vtree 1 30 37.vt vtree 1 30 38.vt 1 1 683
30 vtree 1 30 39.vt vtree 1 30 40.vt 1 1 605
30 vtree 1 30 41.vt vtree 1 30 42.vt 1 1 598
30 vtree 1 30 43.vt vtree 1 30 44.vt 1 1 615
30 vtree 1 30 45.vt vtree 1 30 46.vt 1 1 579
30 vtree 1 30 47.vt vtree 1 30 48.vt 1 1 717
30 vtree 1 30 49.vt vtree 1 30 50.vt 1 1 814
30 vtree 1 30 51.vt vtree 1 30 52.vt 1 1 700
30 vtree 1 30 53.vt vtree 1 30 54.vt 1 1 639
30 vtree 1 30 55.vt vtree 1 30 56.vt 1 1 720
30 vtree 1 30 57.vt vtree 1 30 58.vt 1 1 696
30 vtree 1 30 59.vt vtree 1 30 60.vt 1 1 717
3 vtree 1 3 01.vt vtree 1 3 02.vt 1 1 1
3 vtree 1 3 03.vt vtree 1 3 04.vt 1 1 1
4 vtree 1 4 01.vt vtree 1 4 02.vt 1 1 6
4 vtree 1 4 03.vt vtree 1 4 04.vt 1 1 9
4 vtree 1 4 05.vt vtree 1 4 06.vt 1 1 6
4 vtree 1 4 07.vt vtree 1 4 08.vt 1 1 4
4 vtree 1 4 09.vt vtree 1 4 10.vt 1 1 9
5 vtree 1 5 01.vt vtree 1 5 02.vt 1 1 18
5 vtree 1 5 03.vt vtree 1 5 04.vt 1 1 11
5 vtree 1 5 05.vt vtree 1 5 06.vt 1 1 21
5 vtree 1 5 07.vt vtree 1 5 08.vt 1 1 17
5 vtree 1 5 09.vt vtree 1 5 10.vt 1 1 21

36

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
10 vtree 2 10 01.vt vtree 2 10 02.vt 2 1 98
10 vtree 2 10 03.vt vtree 2 10 04.vt 2 1 62
10 vtree 2 10 05.vt vtree 2 10 06.vt 2 1 50
10 vtree 2 10 07.vt vtree 2 10 08.vt 2 1 85
10 vtree 2 10 09.vt vtree 2 10 10.vt 2 1 63
10 vtree 2 10 11.vt vtree 2 10 12.vt 2 1 45
10 vtree 2 10 13.vt vtree 2 10 14.vt 2 1 44
10 vtree 2 10 17.vt vtree 2 10 18.vt 2 1 55
10 vtree 2 10 19.vt vtree 2 10 20.vt 2 1 82
20 vtree 2 20 01.vt vtree 2 20 02.vt 2 1 315
20 vtree 2 20 05.vt vtree 2 20 06.vt 2 1 370
20 vtree 2 20 07.vt vtree 2 20 08.vt 2 1 284
20 vtree 2 20 09.vt vtree 2 20 10.vt 2 1 319
20 vtree 2 20 11.vt vtree 2 20 12.vt 2 1 330
20 vtree 2 20 13.vt vtree 2 20 14.vt 2 1 264
20 vtree 2 20 15.vt vtree 2 20 16.vt 2 1 278
20 vtree 2 20 17.vt vtree 2 20 18.vt 2 1 304
20 vtree 2 20 19.vt vtree 2 20 20.vt 2 1 297
20 vtree 2 20 21.vt vtree 2 20 22.vt 2 1 272
20 vtree 2 20 23.vt vtree 2 20 24.vt 2 1 361
20 vtree 2 20 25.vt vtree 2 20 26.vt 2 1 341
20 vtree 2 20 27.vt vtree 2 20 28.vt 2 1 277
20 vtree 2 20 29.vt vtree 2 20 30.vt 2 1 367
20 vtree 2 20 31.vt vtree 2 20 32.vt 2 1 240
20 vtree 2 20 33.vt vtree 2 20 34.vt 2 1 371
20 vtree 2 20 35.vt vtree 2 20 36.vt 2 1 350
20 vtree 2 20 37.vt vtree 2 20 38.vt 2 1 281
20 vtree 2 20 39.vt vtree 2 20 40.vt 2 1 393
30 vtree 2 30 03.vt vtree 2 30 04.vt 2 1 764
30 vtree 2 30 05.vt vtree 2 30 06.vt 2 1 647
30 vtree 2 30 07.vt vtree 2 30 08.vt 2 1 617
30 vtree 2 30 09.vt vtree 2 30 10.vt 2 1 640
30 vtree 2 30 11.vt vtree 2 30 12.vt 2 1 528
30 vtree 2 30 13.vt vtree 2 30 14.vt 2 1 799
30 vtree 2 30 15.vt vtree 2 30 16.vt 2 1 487
30 vtree 2 30 17.vt vtree 2 30 18.vt 2 1 699
30 vtree 2 30 19.vt vtree 2 30 20.vt 2 1 626
30 vtree 2 30 21.vt vtree 2 30 22.vt 2 1 506
30 vtree 2 30 23.vt vtree 2 30 24.vt 2 1 674
30 vtree 2 30 25.vt vtree 2 30 26.vt 2 1 536
30 vtree 2 30 27.vt vtree 2 30 28.vt 2 1 679
30 vtree 2 30 29.vt vtree 2 30 30.vt 2 1 782

37

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
30 vtree 2 30 31.vt vtree 2 30 32.vt 2 1 696
30 vtree 2 30 33.vt vtree 2 30 34.vt 2 1 799
30 vtree 2 30 35.vt vtree 2 30 36.vt 2 1 697
30 vtree 2 30 37.vt vtree 2 30 38.vt 2 1 475
30 vtree 2 30 39.vt vtree 2 30 40.vt 2 1 630
30 vtree 2 30 41.vt vtree 2 30 42.vt 2 1 798
30 vtree 2 30 43.vt vtree 2 30 44.vt 2 1 762
30 vtree 2 30 45.vt vtree 2 30 46.vt 2 1 635
30 vtree 2 30 47.vt vtree 2 30 48.vt 2 1 591
30 vtree 2 30 49.vt vtree 2 30 50.vt 2 1 780
30 vtree 2 30 51.vt vtree 2 30 52.vt 2 1 528
30 vtree 2 30 53.vt vtree 2 30 54.vt 2 1 678
30 vtree 2 30 55.vt vtree 2 30 56.vt 2 1 896
30 vtree 2 30 57.vt vtree 2 30 58.vt 2 1 538
30 vtree 2 30 59.vt vtree 2 30 60.vt 2 1 651
5 vtree 2 5 01.vt vtree 2 5 02.vt 2 1 10
10 vtree 3 10 01.vt vtree 3 10 02.vt 3 1 63
10 vtree 3 10 03.vt vtree 3 10 04.vt 3 1 118
10 vtree 3 10 05.vt vtree 3 10 06.vt 3 1 73
10 vtree 3 10 07.vt vtree 3 10 08.vt 3 1 106
10 vtree 3 10 09.vt vtree 3 10 10.vt 3 1 77
10 vtree 3 10 13.vt vtree 3 10 14.vt 3 1 92
10 vtree 3 10 15.vt vtree 3 10 16.vt 3 1 59
10 vtree 3 10 17.vt vtree 3 10 18.vt 3 1 56
10 vtree 3 10 19.vt vtree 3 10 20.vt 3 1 92
20 vtree 3 20 05.vt vtree 3 20 06.vt 3 1 258
20 vtree 3 20 07.vt vtree 3 20 08.vt 3 1 322
20 vtree 3 20 11.vt vtree 3 20 12.vt 3 1 201
20 vtree 3 20 13.vt vtree 3 20 14.vt 3 1 260
20 vtree 3 20 17.vt vtree 3 20 18.vt 3 1 303
20 vtree 3 20 19.vt vtree 3 20 20.vt 3 1 257
20 vtree 3 20 21.vt vtree 3 20 22.vt 3 1 228
20 vtree 3 20 27.vt vtree 3 20 28.vt 3 1 292
20 vtree 3 20 29.vt vtree 3 20 30.vt 3 1 350
20 vtree 3 20 31.vt vtree 3 20 32.vt 3 1 332
20 vtree 3 20 33.vt vtree 3 20 34.vt 3 1 382
20 vtree 3 20 35.vt vtree 3 20 36.vt 3 1 305
20 vtree 3 20 39.vt vtree 3 20 40.vt 3 1 308

38

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
30 vtree 3 30 01.vt vtree 3 30 02.vt 3 1 873
30 vtree 3 30 03.vt vtree 3 30 04.vt 3 1 773
30 vtree 3 30 07.vt vtree 3 30 08.vt 3 1 616
30 vtree 3 30 09.vt vtree 3 30 10.vt 3 1 718
30 vtree 3 30 11.vt vtree 3 30 12.vt 3 1 657
30 vtree 3 30 13.vt vtree 3 30 14.vt 3 1 662
30 vtree 3 30 15.vt vtree 3 30 16.vt 3 1 560
30 vtree 3 30 21.vt vtree 3 30 22.vt 3 1 882
30 vtree 3 30 23.vt vtree 3 30 24.vt 3 1 659
30 vtree 3 30 25.vt vtree 3 30 26.vt 3 1 579
30 vtree 3 30 27.vt vtree 3 30 28.vt 3 1 677
30 vtree 3 30 29.vt vtree 3 30 30.vt 3 1 573
30 vtree 3 30 31.vt vtree 3 30 32.vt 3 1 630
30 vtree 3 30 35.vt vtree 3 30 36.vt 3 1 645
30 vtree 3 30 37.vt vtree 3 30 38.vt 3 1 874
30 vtree 3 30 39.vt vtree 3 30 40.vt 3 1 654
30 vtree 3 30 41.vt vtree 3 30 42.vt 3 1 792
30 vtree 3 30 45.vt vtree 3 30 46.vt 3 1 588
30 vtree 3 30 47.vt vtree 3 30 48.vt 3 1 770
30 vtree 3 30 49.vt vtree 3 30 50.vt 3 1 834
30 vtree 3 30 51.vt vtree 3 30 52.vt 3 1 780
30 vtree 3 30 53.vt vtree 3 30 54.vt 3 1 689
30 vtree 3 30 55.vt vtree 3 30 56.vt 3 1 869
30 vtree 3 30 57.vt vtree 3 30 58.vt 3 1 725
5 vtree 3 5 01.vt vtree 3 5 02.vt 3 1 13
10 vtree 4 10 03.vt vtree 4 10 04.vt 4 1 66
10 vtree 4 10 05.vt vtree 4 10 06.vt 4 1 59
10 vtree 4 10 09.vt vtree 4 10 10.vt 4 1 81
10 vtree 4 10 11.vt vtree 4 10 12.vt 4 1 65
10 vtree 4 10 15.vt vtree 4 10 16.vt 4 1 108
10 vtree 4 10 17.vt vtree 4 10 18.vt 4 1 99
20 vtree 4 20 03.vt vtree 4 20 04.vt 4 1 377
20 vtree 4 20 05.vt vtree 4 20 06.vt 4 1 373
20 vtree 4 20 07.vt vtree 4 20 08.vt 4 1 255
20 vtree 4 20 09.vt vtree 4 20 10.vt 4 1 462
20 vtree 4 20 11.vt vtree 4 20 12.vt 4 1 273
20 vtree 4 20 13.vt vtree 4 20 14.vt 4 1 272
20 vtree 4 20 15.vt vtree 4 20 16.vt 4 1 389
20 vtree 4 20 17.vt vtree 4 20 18.vt 4 1 349
20 vtree 4 20 19.vt vtree 4 20 20.vt 4 1 294

39

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
20 vtree 4 20 23.vt vtree 4 20 24.vt 4 1 348
20 vtree 4 20 25.vt vtree 4 20 26.vt 4 1 303
20 vtree 4 20 27.vt vtree 4 20 28.vt 4 1 331
20 vtree 4 20 29.vt vtree 4 20 30.vt 4 1 378
20 vtree 4 20 35.vt vtree 4 20 36.vt 4 1 323
20 vtree 4 20 37.vt vtree 4 20 38.vt 4 1 354
20 vtree 4 20 39.vt vtree 4 20 40.vt 4 1 339
30 vtree 4 30 01.vt vtree 4 30 02.vt 4 1 735
30 vtree 4 30 03.vt vtree 4 30 04.vt 4 1 1003
30 vtree 4 30 05.vt vtree 4 30 06.vt 4 1 690
30 vtree 4 30 07.vt vtree 4 30 08.vt 4 1 657
30 vtree 4 30 09.vt vtree 4 30 10.vt 4 1 760
30 vtree 4 30 11.vt vtree 4 30 12.vt 4 1 793
30 vtree 4 30 13.vt vtree 4 30 14.vt 4 1 729
30 vtree 4 30 15.vt vtree 4 30 16.vt 4 1 580
30 vtree 4 30 17.vt vtree 4 30 18.vt 4 1 772
30 vtree 4 30 19.vt vtree 4 30 20.vt 4 1 626
30 vtree 4 30 21.vt vtree 4 30 22.vt 4 1 833
30 vtree 4 30 25.vt vtree 4 30 26.vt 4 1 552
30 vtree 4 30 31.vt vtree 4 30 32.vt 4 1 680
30 vtree 4 30 35.vt vtree 4 30 36.vt 4 1 765
30 vtree 4 30 37.vt vtree 4 30 38.vt 4 1 745
30 vtree 4 30 39.vt vtree 4 30 40.vt 4 1 792
30 vtree 4 30 43.vt vtree 4 30 44.vt 4 1 699
30 vtree 4 30 45.vt vtree 4 30 46.vt 4 1 467
30 vtree 4 30 47.vt vtree 4 30 48.vt 4 1 564
30 vtree 4 30 49.vt vtree 4 30 50.vt 4 1 708
30 vtree 4 30 53.vt vtree 4 30 54.vt 4 1 781
30 vtree 4 30 55.vt vtree 4 30 56.vt 4 1 634
30 vtree 4 30 57.vt vtree 4 30 58.vt 4 1 652
30 vtree 4 30 59.vt vtree 4 30 60.vt 4 1 577
5 vtree 4 5 01.vt vtree 4 5 02.vt 4 1 17

Table 3: Output of Algorithm 1

40

A.1.2 Results of Algorithm 2

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
10 vtree 1 10 01.vt vtree 1 10 02.vt 1 2 68
10 vtree 1 10 03.vt vtree 1 10 04.vt 1 2 88
10 vtree 1 10 05.vt vtree 1 10 06.vt 1 2 66
10 vtree 1 10 07.vt vtree 1 10 08.vt 1 2 59
10 vtree 1 10 09.vt vtree 1 10 10.vt 1 2 92
10 vtree 1 10 11.vt vtree 1 10 12.vt 1 2 57
10 vtree 1 10 13.vt vtree 1 10 14.vt 1 2 91
10 vtree 1 10 15.vt vtree 1 10 16.vt 1 2 55
10 vtree 1 10 17.vt vtree 1 10 18.vt 1 2 71
10 vtree 1 10 19.vt vtree 1 10 20.vt 1 2 83
20 vtree 1 20 01.vt vtree 1 20 02.vt 1 2 319
20 vtree 1 20 03.vt vtree 1 20 04.vt 1 2 329
20 vtree 1 20 05.vt vtree 1 20 06.vt 1 2 326
20 vtree 1 20 07.vt vtree 1 20 08.vt 1 2 329
20 vtree 1 20 09.vt vtree 1 20 10.vt 1 2 322
20 vtree 1 20 11.vt vtree 1 20 12.vt 1 2 305
20 vtree 1 20 13.vt vtree 1 20 14.vt 1 2 213
20 vtree 1 20 15.vt vtree 1 20 16.vt 1 2 379
20 vtree 1 20 17.vt vtree 1 20 18.vt 1 2 278
20 vtree 1 20 19.vt vtree 1 20 20.vt 1 2 335
20 vtree 1 20 21.vt vtree 1 20 22.vt 1 2 291
20 vtree 1 20 23.vt vtree 1 20 24.vt 1 2 331
20 vtree 1 20 25.vt vtree 1 20 26.vt 1 2 408
20 vtree 1 20 27.vt vtree 1 20 28.vt 1 2 328
20 vtree 1 20 29.vt vtree 1 20 30.vt 1 2 361
20 vtree 1 20 31.vt vtree 1 20 32.vt 1 2 283
20 vtree 1 20 33.vt vtree 1 20 34.vt 1 2 370
20 vtree 1 20 35.vt vtree 1 20 36.vt 1 2 236
20 vtree 1 20 37.vt vtree 1 20 38.vt 1 2 322
20 vtree 1 20 39.vt vtree 1 20 40.vt 1 2 237
2 vtree 1 2 01.vt vtree 1 2 02.vt 1 2 1

41

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
30 vtree 1 30 01.vt vtree 1 30 02.vt 1 2 567
30 vtree 1 30 03.vt vtree 1 30 04.vt 1 2 746
30 vtree 1 30 05.vt vtree 1 30 06.vt 1 2 720
30 vtree 1 30 07.vt vtree 1 30 08.vt 1 2 736
30 vtree 1 30 09.vt vtree 1 30 10.vt 1 2 692
30 vtree 1 30 11.vt vtree 1 30 12.vt 1 2 613
30 vtree 1 30 13.vt vtree 1 30 14.vt 1 2 487
30 vtree 1 30 15.vt vtree 1 30 16.vt 1 2 760
30 vtree 1 30 17.vt vtree 1 30 18.vt 1 2 552
30 vtree 1 30 19.vt vtree 1 30 20.vt 1 2 787
30 vtree 1 30 21.vt vtree 1 30 22.vt 1 2 631
30 vtree 1 30 23.vt vtree 1 30 24.vt 1 2 770
30 vtree 1 30 25.vt vtree 1 30 26.vt 1 2 616
30 vtree 1 30 27.vt vtree 1 30 28.vt 1 2 544
30 vtree 1 30 29.vt vtree 1 30 30.vt 1 2 849
30 vtree 1 30 31.vt vtree 1 30 32.vt 1 2 651
30 vtree 1 30 33.vt vtree 1 30 34.vt 1 2 577
30 vtree 1 30 35.vt vtree 1 30 36.vt 1 2 835
30 vtree 1 30 37.vt vtree 1 30 38.vt 1 2 683
30 vtree 1 30 39.vt vtree 1 30 40.vt 1 2 605
30 vtree 1 30 41.vt vtree 1 30 42.vt 1 2 598
30 vtree 1 30 43.vt vtree 1 30 44.vt 1 2 615
30 vtree 1 30 45.vt vtree 1 30 46.vt 1 2 579
30 vtree 1 30 47.vt vtree 1 30 48.vt 1 2 717
30 vtree 1 30 49.vt vtree 1 30 50.vt 1 2 814
30 vtree 1 30 51.vt vtree 1 30 52.vt 1 2 700
30 vtree 1 30 53.vt vtree 1 30 54.vt 1 2 639
30 vtree 1 30 55.vt vtree 1 30 56.vt 1 2 720
30 vtree 1 30 57.vt vtree 1 30 58.vt 1 2 650
30 vtree 1 30 59.vt vtree 1 30 60.vt 1 2 717
3 vtree 1 3 01.vt vtree 1 3 02.vt 1 2 1
3 vtree 1 3 03.vt vtree 1 3 04.vt 1 2 1
4 vtree 1 4 01.vt vtree 1 4 02.vt 1 2 6
4 vtree 1 4 03.vt vtree 1 4 04.vt 1 2 9
4 vtree 1 4 05.vt vtree 1 4 06.vt 1 2 6
4 vtree 1 4 07.vt vtree 1 4 08.vt 1 2 4
4 vtree 1 4 09.vt vtree 1 4 10.vt 1 2 9
5 vtree 1 5 01.vt vtree 1 5 02.vt 1 2 18
5 vtree 1 5 03.vt vtree 1 5 04.vt 1 2 11
5 vtree 1 5 05.vt vtree 1 5 06.vt 1 2 21
5 vtree 1 5 07.vt vtree 1 5 08.vt 1 2 17
5 vtree 1 5 09.vt vtree 1 5 10.vt 1 2 21

42

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
10 vtree 2 10 01.vt vtree 2 10 02.vt 2 2 58
10 vtree 2 10 03.vt vtree 2 10 04.vt 2 2 46
10 vtree 2 10 05.vt vtree 2 10 06.vt 2 2 34
10 vtree 2 10 07.vt vtree 2 10 08.vt 2 2 46
10 vtree 2 10 09.vt vtree 2 10 10.vt 2 2 37
10 vtree 2 10 11.vt vtree 2 10 12.vt 2 2 30
10 vtree 2 10 13.vt vtree 2 10 14.vt 2 2 24
10 vtree 2 10 17.vt vtree 2 10 18.vt 2 2 33
10 vtree 2 10 19.vt vtree 2 10 20.vt 2 2 54
20 vtree 2 20 01.vt vtree 2 20 02.vt 2 2 269
20 vtree 2 20 05.vt vtree 2 20 06.vt 2 2 288
20 vtree 2 20 07.vt vtree 2 20 08.vt 2 2 244
20 vtree 2 20 09.vt vtree 2 20 10.vt 2 2 291
20 vtree 2 20 11.vt vtree 2 20 12.vt 2 2 266
20 vtree 2 20 13.vt vtree 2 20 14.vt 2 2 218
20 vtree 2 20 15.vt vtree 2 20 16.vt 2 2 218
20 vtree 2 20 17.vt vtree 2 20 18.vt 2 2 246
20 vtree 2 20 19.vt vtree 2 20 20.vt 2 2 245
20 vtree 2 20 21.vt vtree 2 20 22.vt 2 2 220
20 vtree 2 20 23.vt vtree 2 20 24.vt 2 2 291
20 vtree 2 20 25.vt vtree 2 20 26.vt 2 2 277
20 vtree 2 20 27.vt vtree 2 20 28.vt 2 2 199
20 vtree 2 20 29.vt vtree 2 20 30.vt 2 2 291
20 vtree 2 20 31.vt vtree 2 20 32.vt 2 2 206
20 vtree 2 20 33.vt vtree 2 20 34.vt 2 2 319
20 vtree 2 20 35.vt vtree 2 20 36.vt 2 2 274
20 vtree 2 20 37.vt vtree 2 20 38.vt 2 2 215
20 vtree 2 20 39.vt vtree 2 20 40.vt 2 2 271
30 vtree 2 30 03.vt vtree 2 30 04.vt 2 2 596
30 vtree 2 30 05.vt vtree 2 30 06.vt 2 2 583
30 vtree 2 30 07.vt vtree 2 30 08.vt 2 2 541
30 vtree 2 30 09.vt vtree 2 30 10.vt 2 2 464
30 vtree 2 30 11.vt vtree 2 30 12.vt 2 2 459
30 vtree 2 30 13.vt vtree 2 30 14.vt 2 2 649
30 vtree 2 30 15.vt vtree 2 30 16.vt 2 2 403
30 vtree 2 30 17.vt vtree 2 30 18.vt 2 2 599
30 vtree 2 30 19.vt vtree 2 30 20.vt 2 2 538
30 vtree 2 30 21.vt vtree 2 30 22.vt 2 2 442
30 vtree 2 30 23.vt vtree 2 30 24.vt 2 2 622
30 vtree 2 30 25.vt vtree 2 30 26.vt 2 2 439
30 vtree 2 30 27.vt vtree 2 30 28.vt 2 2 591
30 vtree 2 30 29.vt vtree 2 30 30.vt 2 2 676

43

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
30 vtree 2 30 31.vt vtree 2 30 32.vt 2 2 572
30 vtree 2 30 33.vt vtree 2 30 34.vt 2 2 679
30 vtree 2 30 35.vt vtree 2 30 36.vt 2 2 609
30 vtree 2 30 37.vt vtree 2 30 38.vt 2 2 393
30 vtree 2 30 39.vt vtree 2 30 40.vt 2 2 560
30 vtree 2 30 41.vt vtree 2 30 42.vt 2 2 710
30 vtree 2 30 43.vt vtree 2 30 44.vt 2 2 621
30 vtree 2 30 45.vt vtree 2 30 46.vt 2 2 477
30 vtree 2 30 47.vt vtree 2 30 48.vt 2 2 515
30 vtree 2 30 49.vt vtree 2 30 50.vt 2 2 662
30 vtree 2 30 51.vt vtree 2 30 52.vt 2 2 413
30 vtree 2 30 53.vt vtree 2 30 54.vt 2 2 608
30 vtree 2 30 55.vt vtree 2 30 56.vt 2 2 790
30 vtree 2 30 57.vt vtree 2 30 58.vt 2 2 474
30 vtree 2 30 59.vt vtree 2 30 60.vt 2 2 581
5 vtree 2 5 01.vt vtree 2 5 02.vt 2 2 2
10 vtree 3 10 01.vt vtree 3 10 02.vt 3 2 46
10 vtree 3 10 03.vt vtree 3 10 04.vt 3 2 81
10 vtree 3 10 05.vt vtree 3 10 06.vt 3 2 51
10 vtree 3 10 07.vt vtree 3 10 08.vt 3 2 72
10 vtree 3 10 09.vt vtree 3 10 10.vt 3 2 48
10 vtree 3 10 13.vt vtree 3 10 14.vt 3 2 43
10 vtree 3 10 15.vt vtree 3 10 16.vt 3 2 42
10 vtree 3 10 17.vt vtree 3 10 18.vt 3 2 44
10 vtree 3 10 19.vt vtree 3 10 20.vt 3 2 62
20 vtree 3 20 05.vt vtree 3 20 06.vt 3 2 142
20 vtree 3 20 07.vt vtree 3 20 08.vt 3 2 283
20 vtree 3 20 11.vt vtree 3 20 12.vt 3 2 172
20 vtree 3 20 13.vt vtree 3 20 14.vt 3 2 212
20 vtree 3 20 17.vt vtree 3 20 18.vt 3 2 237
20 vtree 3 20 19.vt vtree 3 20 20.vt 3 2 199
20 vtree 3 20 21.vt vtree 3 20 22.vt 3 2 194
20 vtree 3 20 27.vt vtree 3 20 28.vt 3 2 228
20 vtree 3 20 29.vt vtree 3 20 30.vt 3 2 296
20 vtree 3 20 31.vt vtree 3 20 32.vt 3 2 280
20 vtree 3 20 33.vt vtree 3 20 34.vt 3 2 299
20 vtree 3 20 35.vt vtree 3 20 36.vt 3 2 241
20 vtree 3 20 39.vt vtree 3 20 40.vt 3 2 262

44

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
30 vtree 3 30 01.vt vtree 3 30 02.vt 3 2 759
30 vtree 3 30 03.vt vtree 3 30 04.vt 3 2 686
30 vtree 3 30 07.vt vtree 3 30 08.vt 3 2 556
30 vtree 3 30 09.vt vtree 3 30 10.vt 3 2 646
30 vtree 3 30 11.vt vtree 3 30 12.vt 3 2 580
30 vtree 3 30 13.vt vtree 3 30 14.vt 3 2 605
30 vtree 3 30 15.vt vtree 3 30 16.vt 3 2 490
30 vtree 3 30 21.vt vtree 3 30 22.vt 3 2 774
30 vtree 3 30 23.vt vtree 3 30 24.vt 3 2 600
30 vtree 3 30 25.vt vtree 3 30 26.vt 3 2 534
30 vtree 3 30 27.vt vtree 3 30 28.vt 3 2 573
30 vtree 3 30 29.vt vtree 3 30 30.vt 3 2 438
30 vtree 3 30 31.vt vtree 3 30 32.vt 3 2 505
30 vtree 3 30 35.vt vtree 3 30 36.vt 3 2 568
30 vtree 3 30 37.vt vtree 3 30 38.vt 3 2 659
30 vtree 3 30 39.vt vtree 3 30 40.vt 3 2 564
30 vtree 3 30 41.vt vtree 3 30 42.vt 3 2 679
30 vtree 3 30 45.vt vtree 3 30 46.vt 3 2 430
30 vtree 3 30 47.vt vtree 3 30 48.vt 3 2 692
30 vtree 3 30 49.vt vtree 3 30 50.vt 3 2 721
30 vtree 3 30 51.vt vtree 3 30 52.vt 3 2 650
30 vtree 3 30 53.vt vtree 3 30 54.vt 3 2 607
30 vtree 3 30 55.vt vtree 3 30 56.vt 3 2 768
30 vtree 3 30 57.vt vtree 3 30 58.vt 3 2 632
5 vtree 3 5 01.vt vtree 3 5 02.vt 3 2 4
10 vtree 4 10 03.vt vtree 4 10 04.vt 4 2 56
10 vtree 4 10 05.vt vtree 4 10 06.vt 4 2 26
10 vtree 4 10 09.vt vtree 4 10 10.vt 4 2 60
10 vtree 4 10 11.vt vtree 4 10 12.vt 4 2 57
10 vtree 4 10 15.vt vtree 4 10 16.vt 4 2 72
10 vtree 4 10 17.vt vtree 4 10 18.vt 4 2 72
20 vtree 4 20 03.vt vtree 4 20 04.vt 4 2 202
20 vtree 4 20 05.vt vtree 4 20 06.vt 4 2 199
20 vtree 4 20 07.vt vtree 4 20 08.vt 4 2 185
20 vtree 4 20 09.vt vtree 4 20 10.vt 4 2 304
20 vtree 4 20 11.vt vtree 4 20 12.vt 4 2 247
20 vtree 4 20 13.vt vtree 4 20 14.vt 4 2 249
20 vtree 4 20 15.vt vtree 4 20 16.vt 4 2 313
20 vtree 4 20 17.vt vtree 4 20 18.vt 4 2 314
20 vtree 4 20 19.vt vtree 4 20 20.vt 4 2 271

45

Tree size Filename 1 Filename 2 Tree type Algorithm Number of steps
20 vtree 4 20 23.vt vtree 4 20 24.vt 4 2 317
20 vtree 4 20 25.vt vtree 4 20 26.vt 4 2 236
20 vtree 4 20 27.vt vtree 4 20 28.vt 4 2 274
20 vtree 4 20 29.vt vtree 4 20 30.vt 4 2 264
20 vtree 4 20 35.vt vtree 4 20 36.vt 4 2 233
20 vtree 4 20 37.vt vtree 4 20 38.vt 4 2 291
20 vtree 4 20 39.vt vtree 4 20 40.vt 4 2 322
30 vtree 4 30 01.vt vtree 4 30 02.vt 4 2 683
30 vtree 4 30 03.vt vtree 4 30 04.vt 4 2 930
30 vtree 4 30 05.vt vtree 4 30 06.vt 4 2 664
30 vtree 4 30 07.vt vtree 4 30 08.vt 4 2 387
30 vtree 4 30 09.vt vtree 4 30 10.vt 4 2 694
30 vtree 4 30 11.vt vtree 4 30 12.vt 4 2 735
30 vtree 4 30 13.vt vtree 4 30 14.vt 4 2 359
30 vtree 4 30 15.vt vtree 4 30 16.vt 4 2 496
30 vtree 4 30 17.vt vtree 4 30 18.vt 4 2 512
30 vtree 4 30 19.vt vtree 4 30 20.vt 4 2 501
30 vtree 4 30 21.vt vtree 4 30 22.vt 4 2 468
30 vtree 4 30 25.vt vtree 4 30 26.vt 4 2 511
30 vtree 4 30 31.vt vtree 4 30 32.vt 4 2 425
30 vtree 4 30 35.vt vtree 4 30 36.vt 4 2 600
30 vtree 4 30 37.vt vtree 4 30 38.vt 4 2 614
30 vtree 4 30 39.vt vtree 4 30 40.vt 4 2 685
30 vtree 4 30 43.vt vtree 4 30 44.vt 4 2 537
30 vtree 4 30 45.vt vtree 4 30 46.vt 4 2 414
30 vtree 4 30 47.vt vtree 4 30 48.vt 4 2 449
30 vtree 4 30 49.vt vtree 4 30 50.vt 4 2 363
30 vtree 4 30 53.vt vtree 4 30 54.vt 4 2 744
30 vtree 4 30 55.vt vtree 4 30 56.vt 4 2 582
30 vtree 4 30 57.vt vtree 4 30 58.vt 4 2 584
30 vtree 4 30 59.vt vtree 4 30 60.vt 4 2 548
5 vtree 4 5 01.vt vtree 4 5 02.vt 4 2 10

Table 4: Output of Algorithm 2

46

A.2 Average probability of shared subtree occurrence

Number of variables Proportion of vtrees
1 0.0
2 0.0
3 0.3341
4 0.3372
5 0.3012
6 0.2747
7 0.244
8 0.2281
9 0.2036
10 0.1916
15 0.159
20 0.1487
25 0.1409
30 0.1396
35 0.1374
40 0.1309
45 0.1265
50 0.1325

Table 5: Proportion of vtrees that contains at least one shared subtree, by tree size

47

	Introduction
	Related Work
	Vtrees and SDDs
	Swaps and rotations
	Swaps
	Rotations

	Triangulations
	Conversion to left-linear trees
	The algorithm of Cleary and St. John
	Subtree reduction and chain reduction
	Internal changes
	The SDD package

	Algorithms and Functionalities
	Operations
	Vtree Conversion Algorithms
	Vtree Conversion Algorithm 1
	Vtree Conversion Algorithm 2

	Vtree generation
	Mktrees 1
	Mktrees 2
	Mktrees 3
	Mktrees 4

	Shared subtree occurrence
	Mktrees 5

	Experimental setup
	Comparing the algorithms
	Random vtrees
	Designed vtrees

	Shared subtree occurrence

	Results
	Comparing the algorithms
	Random trees
	Designed vtrees

	Shared subtree occurrence

	Conclusion
	Future work
	References
	Results
	Algorithm output
	Output of Algorithm 1
	Results of Algorithm 2

	Average probability of shared subtree occurrence

