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Abstract

Current deep learning methods rely on neural network architectures and training hy-
perparameters. For researchers and engineers without computer vision skills, finding
a good architecture is not easy. In this work, we apply differentiable architecture search
methods to conduct affordable architecture searches for image denoising. We search for
cell architecture by gradient-based optimization and network architecture by AutoML
methods such as grid search, random search and successive halving search. We further
perform BOHB hyperparameter optimization on the searched models. The searches for
overall architectures and training hyperparameters are fully automatic. The models we
searched achieved promising results on image processing datasets BSD68 and Set12.
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Chapter 1

Introduction

1.1 Neural Architecture Search

The success of deep learning over the last years further promotes the exploration of
well-designed deep neural networks. However, the capability of a model is influenced
by many factors such as architectural innovations, hyperparameter optimization, ac-
tivation and loss functions. Deep learning researchers utilize their knowledge to de-
sign dominant architectures with suitable hyperparameters, like the extraction of spa-
tial and channel information, multi-path information fusion, and the depth and width
of the network, which requires advanced expert knowledge and sufficient computing
resources. At the same time, a model without hyperparameter optimization can not
reflect its actual capability. Researchers and engineers anticipate carrying out these
processes automatically. Therefore, Neural Architecture Search (NAS), the strategy of
automating the design of neural networks, is a promising solution for automated ma-
chine learning.

Currently, NAS architectures have outperformed manually designed architectures on
perceptual tasks such as image classification [26, 37], object detection [37] or seman-
tic segmentation [6]. Common search space includes chain-structured neural networks
[13], multi-branch networks [13] incorporating skip connections to flow information
from multiple branches, and recently, cell-based search space [21, 23, 37] that allowing
to search for the micro-architecture and stack the searched micro-architecture to form
the resulting network. Among them, cell-based search space has the advantages of
reducing the search cost and the flexibility of transferring to different datasets. Differ-
ent searching strategies have been applied for NAS, like Bayesian optimization, evolu-
tionary algorithms (EA), reinforcement learning (RL), and gradient-based optimization
methods. Compared to other search strategies, gradient-based methods require less
computing resources and running time, which receive considerable attention and have
become a research hotspot in recent years.
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Figure 1.1: Examples of a noisy face image and the predicted clean image from PRID-
Net [36].

1.2 Image Denoising

Image denoising is a classic low-level vision task with multiple applications in the real
world. The aim is to recover the clean images from corrupted images with noises
brought from the environment or in the process of signal transmission, which is es-
sential for image processing, video analysis and provides support for high-level tasks
such as object recognition and autopilot. It is still a challenging question since edges
and textures may also be destroyed when removing the noise. Therefore the balance
between denoising and preserving details should be maintained in this task. Fig. 1.1
shows examples of a corrupted face picture and its denoising prediction via PRIDNet
[36]. In these examples, face details like eyelashes and eye canthus are well preserved
after denoising.

In the past few decades, prior-based models have achieved outstanding performance,
for instance, sparse models [24, 12, 11], Markov random field models [19, 17], nonlo-
cal self-similarity models [1, 2, 10, 24], while model-based methods have drawbacks of
involving complex optimization and many manually selected parameters [33]. At the
same time, convolutional neural networks have been exploited in many vision tasks
owing to the development of hardware and won success in many tasks, including im-
age denoising. Chapter 2 will introduce many representative deep learning algorithms
for image denoising tasks.

1.3 Motivation and Contribution

As one of the earliest works to apply NAS for image denoising, we would like to know
if NAS methods can also achieve favourable performance like those in classification and
segmentation tasks. Based on a differentiable architecture search algorithm, DARTS
[23], with relatively low computational cost and flexibility of transferring between dif-
ferent datasets, we would like to search for an excellent neural network automatically
that meets the following conditions:

• Fit the requirement of the image denoising task



1.3. Motivation and Contribution 3

• Experiment with affordable computational cost

• Automatic design of architectures and hyperparameters

We will use the differential architecture search method as the basis, integrated with ma-
chine learning methods including successive halving search, random search and grid
search to search for repetitive cell architecture and exterior network architecture. Fur-
ther, we will optimize the hyperparameters of searched architectures by taking advan-
tage of BOHB algorithm [14]. The process of finding architectures and tuning hyper-
parameters are completed automatically and has shown satisfactory results on image
processing datasets.
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Chapter 2

Background

Most NAS routines are like this: first, define the search space, then use search strategies
to find network structures, evaluate them, and conduct the following search round
based on feedback. The design of search space corresponds to the development of
deep neural networks. With the emergence of novel multi-path neural networks (e.g.,
ResNet, DenseNet), NAS researchers also began to consider more diverse structures
and connections in the search space. Meanwhile, many successful networks contain
repeating substructures, called cells or blocks; therefore, these structures have been
considered. Cell-based search has been proposed; only the cell architecture is searched,
and the overall network is formed by overlapping these cells. In this way, to reduce
the search space and the searched architecture is well-performed in migrating between
data sets.

Since most NAS methods have large search space, for some search strategies like evo-
lutionary algorithms and reinforcement learning with discrete search space, the model
evaluation typically involves the training of each sampled model, which leads to a
lengthy search procedure. Compared with these search strategies, differentiable archi-
tecture search has a lower computational cost.

2.1 Differentiable Architecture Search

We know that if the search space is continuous and the objective function is differen-
tiable, the gradient-based information could be applied for efficient search. Liu et al.
proposed DARTS [23] to search a cell with optimal structure. They treated a cell as
a directed acyclic graph containing several ordered nodes, and each node represents
implicit representations (feature maps), and each directed edge represents an operator.
The key trick of DARTS is to mix the candidate operators with the softmax function.
So that the search space becomes continuous and the objective loss function becomes
differentiable. They use a set of architecture weights to control the contribution of each
operator and apply gradient-based optimization methods to update the weights and
determine the optimal architecture. After searching, the mixed operations will be re-
placed by the operations with the largest weights and the resulting network is obtained.
This method finds state-of-the-art models for image classification, language modelling
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tasks and inspires many following works for further improvements and various appli-
cations.

Including DARTS, most differentiable NAS works focus on the cell-level architecture
search that manages hierarchical computing but manually design the outer network
structure that controls the spatial resolution change. For the image segmentation task
that is sensitive to the change of spatial resolution, Zhang et al. proposed Auto-Deeplab
[20] that searched the cell-level architecture as well as network-level architecture. In
addition to similar cell architecture search in [20], they also constructed a hierarchical
network-level search space and further softened the weights of network-level architec-
ture and applied the Viterbi algorithm to determine the network architecture. On the
other hand, differentiable NAS suffers from significant GPU memory cost issues when
searching on large-scale datasets. Many alternative methods (e.g., use proxy datasets
to search, designing smaller cells, training fewer iterations) have been widely applied.
However, they cannot guarantee the optimal solution for the target task. To address
it, Cai et al. developed ProxylessNAS [4], instead of using proxy datasets to search
architectures for large-scale datasets, they built the search space with parallel paths
and binarized the architecture parameters of each path. Therefore, they can activate
only one path during the training process, allowing the direct search of architectures
on the actual dataset with affordable GPU memory usage. Due to the flexibility, most
NAS works choose to search cell architectures on small datasets and directly transfer
them to larger datasets by stacking more cells. Regarding this, Chen et al. proposed
P-DARTS [7] to bridge the depth gap of the network between the search and evalua-
tion scenarios. It progressively increases the number of repetitive cells, simultaneously
reduces the number of operations by search space approximation, and utilizes search
space regularization to facilitate the exploitation of other operations other than skip-
connect to improve the model stability. Xu et al. proposed PC-DARTS [31] to relieve
the typical pressure of DARTS that requires significant memory and computing. It de-
veloped a channel sampling mechanism to utilize a proportion of channels for search-
ing operations of the network, further aided with edge normalization to stabilize the
performance of channel sampling.

2.2 Deep Learning for Image Denoising

Most deep learning methods for image denoising focus on the novel design of deep
neural networks, although few deep learning researchers explain how they find out
these architectures. There are some state-of-the-art deep learning algorithms for image
denoising. Zhang et al. proposed DnCNN [33], which designs a deep network for learn-
ing the mapping between nosing images and residual images (i.e. noise map), with the
utilization of residual learning and batch normalization to speed up the training and
boost denoising performance. Zhang et al. proposed FFDNet [34] with the tunable
noise level map and downsampled subimages as inputs to train a network, which is
more flexible to denoise images with different noise levels in a network, and achieve
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a good trade-off between noise removal and detail preservation. Plotz et al. [25] de-
signed neural nearest neighbours (N3) block based on continuous relaxation of KNN
to leverage the self-similarity information when building the neural network. Liu et al.
[22] improved non-local operation to leverage non-local self-similarity and integrated
the proposed non-local module into end-to-end training of recurrent networks. Zhang
et al. [35] designed residual dense block to extract local features and further combined
with dense feature fusion for processing these hierarchical features. Cha et al. proposed
FC-AIDE [5], a neural network containing several filters and with adaptive receptive
fields at each layer and obtained stronger and more robust adaptivity by introducing
a regularization method. Ulyanov et al. [29] proposed to take network architecture
as image prior, with random encoding as input and noisy image as a target, training
the network with weights that can derive clean image in the middle iterative process.
The method achieved satisfying results on different inverse problems, including image
denoising, inpainting and super-resolution.

2.3 Differentiable NAS for Image Denoising

So far, the only work that applies differentiable architecture search for image denoising
is proposed by Zhang et al. [32]. They also used cell sharing strategies and gradient-
based search algorithms but supplemented with candidate searching operations with
adaptive receptive fields to search the cell architecture. Unlike other networks that
fixed the width of cells by hand, in this work, they built the overall network with par-
allel supercells with different widths at each layer, assigned a set of parameters for
candidate paths and selected the best candidate path using the Viterbi decoding algo-
rithm. So the cell architectures and their widths are both searched automatically. The
main difference to our work we use machine learning methods to select both network
depth and width, and we further conduct hyperparameter optimization for selected
neural networks.
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Chapter 3

Methods

The ultimate goal of our work is to find a well-performed neural architecture for the
image denoising task. Given noisy images and clean images as inputs and targets (in
Fig. 3.1), we are supposed to search for good network architecture in addition to stan-
dard network weights.

Different from traditional deep learning methods for the image denoising task that
manually design the architectures of chain-structured neural networks, in this work,
we search the network consisting of repeated cells. We apply differentiable architecture
search to determine the micro-architecture, i.e., cell architecture, automatically. In the
process, we integrate several AutoML methods, including grid search, random search
and successive halving search, to optimize the macro-architecture hyperparameters, in-
cluding the width and depth of the network. After deriving the searched networks, we
perform hyperparameter optimization for learning rate, weight decay, and momentum
that significantly impact network performance.

The framework of neural architecture search is illustrated in Fig. 3.2. Our pipeline con-
sists of three primary stages: train search, train and test. In the stage of train search, we
construct the supernet by stacking repeated supercells, i.e., cells containing all kinds of
operations and connections, following gradient-based optimization methods in DARTS
[23] to derive the dominant micro-architecture (subcell architecture). Different from
[23] that focus on cell architecture search and only manually specify the outer net-
work structure, in our search stage, we also search for the best combination of macro-
architecture (the number and channel of cells) along with micro-architecture. We spec-
ify macro-architecture hyperparameters by grid search, random search and successive
halving search and pick the best combinations of micro-and macro-architecture after
searches. In the next train stage, we use the searched subcell structure and macro-
architecture obtained from previous searches to build the new model and perform hy-
perparameter optimization for the network before training the weights from scratch.
The trained model will be transferred to different testing sets to evaluate its denoising
performance in the test stage.
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Figure 3.1: Our work aims to search for an exemplary deep neural network architecture
with appropriate hyperparameters to recover clean images from noisy images. Noisy
images and clean images are used as inputs and targets to search neural network archi-
tecture.

Figure 3.2: Our method consists of three primary stages. In the stage of train search,
we construct the model with repeating cell structures and apply gradient-based opti-
mization methods to derive the optimal subcell architecture. Additionally, we apply
different search methods to determine the depth and width of the network. In the
next train stage, we build the model upon the searched cell architecture and macro-
architecture. Hyperparameter optimization for significant hyperparameters is per-
formed before training the model weights from scratch. In the last stage, we test the
model performance on several testing datasets.
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3.1 Micro-architecture Search

As shown in Fig. 3.2 (train search), the network we search on consists of repeating su-
percells. The micro-architecture search is to find a good subcell architecture from the up-
dating network. We define the search space within a supercell structure and search cell
architecture using a similar strategy as in DARTS [23]. Specifically, we build a supercell
that integrates all types of operations (e.g., convolution, skip-connect, none-connect)
and all connections between nodes. Fig. 3.3 (left) shows an example of a supercell,
which is a directed acyclic graph consisting of an ordered sequence of nodes, where
each node presents a feature map and each edge represents one operation. Each edge is
assigned with an architecture weight, and the architecture weights passing to the same
node are softmax to make the search space continue. Within a cell, the information is

transmitted between node i to node j with formula: ō(i,j)(x) = ∑o∈f
exp(α(i,j)o )

∑o′∈f exp(α(i,j)
o′ )

o(x),

where f is the operation set between two nodes, x is the feature map at node i, o(x) is
the feature map after operation o, and α

(i,j)
o is the architecture weight associated with

the operation o from node i to j. Fig. 3.3 (right) illustrates an example of feature map
flow from node 0 to node 1, there are three candidate operations (i.e., skip-connect, 3
× 3 convolution, max pooling), and after separate operations, three generated feature
maps are softmax to output the feature map at node 1.

Instead of sampling subnets from the supernet and evaluating each model, we only
have a one-shot supernet. We are assisted by a set of architecture weights to adjust the
contribution of each connection. The problem of searching neural architecture trans-
fers into finding a set of architecture weights that minimize the validation loss. The
searching dataset is split into training and validation sets. As shown in Algorithm 1,
after building the supernet and a set of architecture weights, we update architecture
weights on the validation set and standard network weights on the training set alterna-
tively so that the searched network are also trained to guarantee its performance. The
authors proposed an approximate scheme for evaluating architecture gradient (line 3)
to get rid of expensive inner optimization, where w is the current network weight, and
ξ is a learning rate for a step of internal optimization. After convergence of iterative
procedure, the cell architecture is discretized by selecting operations and connections
with the largest architecture weights. More details about weight optimization can be
referred from DARTS [23].

Algorithm 1: DARTS – Differentiable Architecture Search

1 Build a network with architecture weights α(i,j) for each edge (i, j);
2 while not converged do
3 1. Update architecture weights α by descending

5αLval(w− ξ5w Ltrain(w, α), α);
4 2. Update network weights w by descending5wLtrain(w, α);
5 end
6 Derive the cell architecture based on the updated α
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Figure 3.3: The left figure shows a cell architecture, and the right figure shows an ex-
ample of information flow between nodes. Each node represents a feature map, and
each edge is associated with an operation. The right figure illustrates information flow
from node 0 to node 1; we generate three feature maps after applying each operation to
the feature map at node 0. They are softmax with their associated architecture weights
to produce the feature map at node 1.

3.1.1 Image Denoising Search Space

Different from the image classification task tackled in DARTS [23] that only have sev-
eral categorical outputs, the image denoising task requires images as outputs. We did
not follow the pattern of [23] by inserting reduction cells (cells that reduce the spatial
resolution of features by two) between every two normal cells (cells that do not change
the feature spatial resolution) to form the network. We choose not to reduce the spa-
tial resolution of the images in order to preserve the detailed and low-level informa-
tion. Therefore we only use the patterns of normal cells to keep the spatial resolution
of images unchanged at each layer of the network and define the following candidate
operations in the cell search space:

• zero operation (no connection between nodes);

• identity operation (equivalent to skip connection);

• 3 × 3 convolution (with padding);

• 3 × 3 separable convolution (with padding);

• 3 × 3 convolution with dilation rate of 2 (with padding);

3.2 Macro-architecture Search

Previous differentiable architecture methods always fix the macro-architecture and only
search for the cell architecture. However, we argue that the hyperparameters of macro-
architecture like the number of cells and channels of cells should be included in the
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search stage since they are highly related to the network’s capacity (number of param-
eters of the network). Therefore we additionally specify these two related hyperpa-
rameters when building the models for search. We use strategies including grid search,
successive halving search, and random search to solve the problem.

3.2.1 Exhaustive Grid Search

We search the depth (the number of cells) and width (the channel of cells) of the overall
network in the train search stage and adopt the same macro-architecture in the train
and test stage. The grid of hyperparameter combinations is shown in Table 3.1, and the
number of channels ranges from 8 to 64, and the number of layers(cells) ranges from 1
to 10. Considering the practical usage and affordable training for models, we exclude
searching for models with 64 channels, 8 and 10 layers.

Channel
Layer 1 2 4 6 8 10

8 X X X X X X
16 X X X X X X
32 X X X X X X
64 X X X X

Table 3.1: Gird combinations of the number of channels and layers of candidate mod-
els.

In the train search stage, we apply grid search among these 22 candidate models. After
searches, 22 corresponding cell architectures are derived will be used in the following
training and testing stages.

3.2.2 Successive Halving Search

At the same time, we also employ successive halving search [16] for these models to
save the running time in the train search stage. The procedure starts from training all
models for several budgets (e.g., T epochs); based on the current validation loss, pick
half the best models and resume training them for twice previous budgets (e.g., 2T
epochs). Successively selecting half models and doubling the training time is continued
until obtaining final candidate models. There is a slight deviation of our implementa-
tion from the original SH setting. We do not account for the previous running budgets
when we start running selected configurations for twice budgets, so we relocate more
resources for promising configurations.

3.2.3 Expanded Random Search

For previous exhaustive grid search and successive halving search, we vary the num-
ber of cells and channels of the supernet and search architectures on 22 candidate mod-
els with the same training hyperparameter setting. Considering models with different
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Hyperparamter Range

num_cell [1, 2, 4, 6, 8, 10]
num_channel [8, 16, 32, 64]

netw_lr [0.001, 0.005, 0.025]
arch_lr [1e-4, 3e-4, 6e-4]

batch_size [24, 32, 40 , 48 , 64, 128, 256]

Table 3.2: Expanded search space involving five hyperparameters for macro-
architecture search. One hundred twenty-eight configurations are sampled within the
ranges to form non-repeating 128 candidates searched models.

macro-architecture, i.e., the number of cells and channels, the training hyperparame-
ters should be varied to search for good architecture. Therefore we expand the macro-
architecture search space for five selected factors: depth, width, batch_size, architecture
learning rate and weight learning rate. The ranges of these categorical hyperparameters
are shown in Table 3.2. Moreover, we sample unique 128 configurations for construct-
ing 128 searched models; corresponding 128 cell architectures will be derived after the
stage of train search.

3.3 Hyperparameter Optimization

After the train search stage, cell architectures with their combination of width and
depth of the network will be derived. We build the new models with the searched
architecture and train them on the training set. Typically, the performance of a deep
neural network is sensitive to the setting of hyperparameters. Therefore tuning hy-
perparameters of the network is a nontrivial step. In our work, before training the
searched models, we perform hyperparameter optimization for learning rate, the type
of optimizer (Adam or SGD), weight decay and momentum (only for SGD optimizer).

3.3.1 BOHB

BOHB [14] is an efficient and robust hyperparameter optimization algorithm that com-
bines the advantages of Bayesian Optimization (BO) and Hyperband (HB). It relies on
HB to determine the number of configurations and the associated budgets per run.
However, the speciality is to replace the random sampling of configurations at the be-
ginning of each iteration of HB with the model-based result of BO built upon existing
configurations. When the number of configurations needed for the budget is reached, a
successive halving process is performed. Reversely, the performance of configurations
under different budgets is used to update the BO model.

Hyperband

Hyperband [18] is an effective hyperparameter optimization method; by taking advan-
tage of successive halving, it can be applied for picking the best configurations without
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running entire budgets for each configuration. The algorithm of hyperband is given in
Algorithm 2, given the minimum budget bmin, the maximum budget bmax and η which
controls 1/η configurations retain in the next round, we calculate smax (smax + 1 is the
number of brackets) and cycle through all brackets with Hyperband. The number of
configurations and the initial budget of SH for the brackets is computed in lines 5 and
6, and SH procedures are continued until discovering the best configurations.

Algorithm 2: Pseudocode for Hyperband using SuccessiveHalving (SH)

1 Input : budgets bmin, bmax and η
2 Output : selected configurations
3 smax = logη

bmax
bmin

4 for s ∈ {smax, smax − 1, ..., 0} do
5 sample n = smax+1

s+1 · ηs configurations
6 run SH on them with ηs · bmax as initial budget
7 end

Bayesian Optimization

The Bayesian optimization of BOHB is similar to Tree Parzen Estimator (TPE). The sig-
nificant difference is that BOHB applies a multidimensional kernel density estimator
(KDE) instead of one-dimensional KDEs to better deal with the interaction of hyper-
parameters in the search space. In TPE, they require KDE to model two densities as
following:

l(x) = p(y < α|x, D) (3.1)

g(x) = p(y < α|x, D) (3.2)

In order to model effective KDEs, the minimum number of observations (Nmin) needed
for building the model is set, which is d+ 1 in experiments, where d is the dimension of
the search space. After generating the first Nmin + 2 random selecting configurations,
the number of best and worst observations are determined by:

Nb,l = max(Nmin, q · Nb) (3.3)

Nb,g = max(Nmin, Nb − Nb,l) (3.4)

Afterwards, these two sets of observations are used for fitting density distributions l(x)
and g(x).
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BOHB Algorithm

BOHB follows the general procedure of HB, sampling several configurations, allocating
initial budgets and running SH on them until reaching the maximum budgets. Instead
of a random sampling of HB at the beginning of iterations, initial BOHB configuration
selection is determined by the multidimensional KDE models of BO.

As shown in Algorithm 3, a small proportion of random configurations is added for
more exploration and prevents the model from falling into a local minimum (line 1).
Once at least Nmin + 2 configurations are generated and run, the Nb,l best and Nb,g worst
observations are divided and used for fitting KDEs models l(x) and g(x), respectively.
According to Equation 3.2, the sets of configurations x and corresponding optimization
targets y (loss or other metrics) are used to model these densities. Afterwards, Ns sam-
ples will be drawn from l(x) distribution but with bandwidths multiplied by a factor of
bw to promote exploration around promising configurations (line 7). The best sample
with highest ratio l(x)/g(x) among Ns samples is returned for HB and further evalua-
tion. Once reaching the maximum budget for each iteration, the configuration with the
best performance is augmented to data Db, i.e., the observations for budget b, and refit
the KDEs model for each budget. BO guides hyperparameter selection of HB, while the
results of HB are used for tuning the BO model.

Algorithm 3: Pseudocode for sampling in BOHB [14]

1 Input : observations D, fraction of random runs ρ , percentile q, number of samples
Ns, minimum number of points Nmin to build a model, and bandwith factor bw

2 Output : next configuration to evaluate
3 if rand() < ρ then return random configuration
4 b = argmax {Db : |Db| ≥ Nmin + 2}
5 if b = ∅ then return random configuration
6 fit KDEs: l(x) and g(x)
7 draw Ns samples according to l(x), but with all bandwidths multiplied by bw
8 return sample with highest ratio l(x)/g(x)
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Chapter 4

Experiments and Results

4.1 Dataset and Data Processing

Ideally, we are supposed to conduct searching and training of the architectures on the
training set. We follow [8, 33] to use the Train400 dataset with 400 grayscale images of
size 180 × 180 for training and clip the large image into small patches of size 40 × 40
to fit the memory of GPUs. However, direct searching on the complete training set is
computationally expensive, especially for 22 candidate models and those models with
large channels and more cells. Therefore we adopt MNIST and CIFAR100 as the proxy
sets to search the cell architecture before training the models on the Train400 training
dataset. Currently, Set12 and BSD68 from the Berkeley segmentation dataset are used
as our testing sets. Fig. 4.1 provides a visualization of these datasets.

For these datasets with clean images, we generate noisy images by adding additive
white gaussian noise with known noise level (e.g., σ = 25) and train the models with
noisy and clean images as the inputs and the targets, respectively.

CIFAR100 is a small dataset with a more realistic scenario than MNIST and visually
more similar to our training and testing sets. However, it is a colourful dataset, so
we convert it into grayscale by processing RGB channels with the formula: 0.299R +

0.587G + 0.114B. The visualization of CIFAR100 and transformed grayscale CIFAR100
can be seen from Fig. 4.2.

4.2 Evaluation Metrics

To quantify the denoising quality of images, we use two widely used metrics: Peak
Signal-to-noise Ratio (PSNR) and Structural Similarity Index (SSIM). In addition, we
use validation loss, i.e., Mean Square Error (MSE), as a criterion for selecting architec-
tures.
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Figure 4.1: Example of images from datasets used in our experiments: MNIST and
CIFAR100 are proxy datasets for searching the architecture. Train400 is our training
sets with 400 180 × 180 images. BSD68 and Set12 are testing sets with 68 and 12 images
of varied sizes.

Figure 4.2: CIFAR100 dataset visualization (left) and its transformed grayscale version
(right). The images look a bit fuzzy since they are reshaped to the size of 32 x 32 by
default.
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Given an m × n noise-free image X and its denoising approximation Y, the MSE is
defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[X(i, j)−Y(i, j)]2 (4.1)

PSNR is an engineering term that expresses the ratio of the maximum possible power
of a signal to the destructive noise power that affects its accuracy.

PSNR = 10 · log10 (
MAX2

X
MSE

) (4.2)

where MAXX is the maximum possible pixel value of the image.

SSIM is an index to measure the similarity of two digital images, and it is more in line
with the human eye’s judgment of the image quality.

luminance : l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (4.3)

contrast : c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (4.4)

structure : s(x, y) =
σxy + C3

σxσy + C3
, (4.5)

SSIM(x, y) = [l(x, y)]α [c(x, y)]β [s(x, y)]γ (4.6)

where µx, µy, are the mean of images X and Y, σx.σy are the standard deviation of im-
ages, and σxy is the covariance of images. C1, C2, C3 are small constants to assure nu-
merical stability when the denominators are close to zero at low luminance and contrast
regions. Following [30], they are set to 1e-4, 9e-4 and 4.5e-4, respectively. α, β, and γ

are parameters used for tuning the importance of luminations, contrast and structure
components. We set them all to one for simplification by following [30].
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Figure 4.3: Exhaustive grid search on 22 candidate models. The plot shows these mod-
els’ training loss (left) and validation loss (right) during searching. The model with six
layers and 64 channels has the smallest validation loss.

4.3 Experiments

4.3.1 Cell Architecture Search

Exhaustive Grid Search on 22 Candidate Models

We search the cell architecture on 22 candidate models with MNIST as the proxy. In
the train search stage, we train the architecture weights of the network and discretize
inner cell architecture from the network that has the minimum validation loss. Each
candidate model is trained (searched) for 40 epochs. The exhaustive training curves of
these models are shown in Fig. 4.3. The model with layer_6_channel_64 has the smallest
validation loss.

Same as Darts [23], we use SGD optimizer to update network weights with a learning
rate of 0.025 and momentum of 0.9; CosineAnnealingLR as the scheduler for network
weights; and Adam optimizer to update architecture weights with a learning rate of
3e-4 and weight decay of 1e-3.

Successive Halving Search on 22 Candidate Models

To speed up the searching process, we apply successive halving search on these can-
didate models on MNIST; the halving procedure is illustrated in Fig. 4.4. It starts
from searching on all candidate models, but successively half the number of models
at the end of 1st, 3rd, 7th, 15th, 31st epoch according to their validation loss at these
epochs and resume training of selected models. The hyperparameter setting is the same
as those in exhaustive grid search. The selected models are layer_6_channel_64 and
layer_4_channel_64. The implementation of our SH slightly deviates from the default
SH setting. We do not account for the previous running budget when running config-
urations for twice budgets. Therefore, more resources are allocated for configurations
before the selection.
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Figure 4.4: Successive halving search on 22 candidate models for fast searching. At the
end of the 1st, 3rd, 7th, 15th, 31st epoch, the half of models are preserved for resumed
training. The model with six layers and 64 channels is optimal at the stage of train
search.

Conclusion: The experiments of grid search and successive halving search lead to the
same result, that is, to select cell architecture searched on the layer_6_channel_64 model
for further training (if we only pick one cell architecture).

Expanded Random Search on 128 Candidate Models

For grid search and successive halving search, 22 candidate models share the same set
of training hyperparameters. We also run the experiments to expand the search space
and vary the hyperparameters of different networks in the search stage. We randomly
sample 128 unique configurations from the options of hyperparameters: number of
cells: [1, 2, 4, 6, 8, 10]; number of channels: [8, 16, 32, 64]; learning rate of networks:
[0.001, 0.005, 0.025]; learning rate of architectures: [1e-4, 3e-4, 6e-4]; batch_size: [24, 32,
40 , 48 , 64, 128, 256].

After sampling configurations, corresponding 128 candidate models are built for search.
Based on their smallest validation loss, shown in Fig. 4.5, we select the best five can-
didate models and the derived cell architectures with combinations of network macro-
architectures. The information of Top5 models, i.e., index of the selected model, setting
of hyperparameters, validation loss, training loss and which epoch generates the best
architecture among 40 iterations, is shown in Table 4.1.

4.3.2 Weight Training of 22 Searched Models

After an exhaustive grid search on candidate models, independent 22 inner cell ar-
chitectures are discovered. We keep the combination of width and depth of network
unchanged but replace the supercell with the discovered cell architecture to build the
new models. New models are trained from scratch on the Train400 training set. Fig. 4.6
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Figure 4.5: The minimum validation loss of expanded 128 models in the search stage.
Top5 candidate models with searched cell architectures are selected according to their
smallest validation loss.

Index Model Name Valid Loss Train Loss Epoch

2 ly_10_cn_32_bs_32_wlr_0.05_alr_0.0006 0.0001 0.0001 20
7 ly_8_cn_32_bs_40_wlr_0.05_alr_0.0003 0.0001 0.0002 38

14 ly_6_cn_64_bs_24_wlr_0.05_alr_0.0001 0.0001 0.0002 14
108 ly_10_cn_32_bs_32_wlr_0.05_alr_0.0001 0.0001 0.0002 19
120 ly_6_cn_64_bs_24_wlr_0.05_alr_0.0003 0.0001 0.0001 14

Table 4.1: The selected Top5 models with information. From left to right are the model
index among 128 models, the model names indicating the searched hyperparameters,
the smallest validation loss, the smallest training loss and which epoch generates the
best model.
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Figure 4.6: Exhaustive training on 22 candidate models. Twenty-two new models are
built with the searched cell architecture. After training for 140 epochs, we pick the final
model with the smallest validation loss for each model. The model with six layers and
64 channels has the smallest validation loss at the training stage.

shows the training curves of these models for 140 epochs. The model with six layers
and 64 channels has the smallest validation loss.

The setting of hyperparameters is the same as in DARTS [23], which uses SGD opti-
mizer, CosineAnnealingLR scheduler, a learning rate of 0.025, momentum of 0.9, and
weight decay of 3e-4.

4.3.3 Evaluation of 22 Searched Models

After training, 22 searched models are tested on Set12 and BSD68 datasets, Fig. 4.7
and Fig. 4.8 give an overview of their PSNR performance on these two datasets. The
number of channels groups the left figure, and the number of cells groups the right
figure. (The SSIM performance could be seen from Fig. A.1 and Fig. A.2.)

It could be discovered that the model with layer_6_channel_64 has the best test per-
formance, which is also the model that has the best performance in the train and train
search stage (both grid search and successive halving search). In addition, deeper mod-
els not always outperform shallower models (eg: model with layer_8_channel_8 and
layer_10_channel_8, or model with layer_8_channel_16 and layer_10_channel_16). The
performance of models has the same trend on the two datasets.

4.3.4 Correlation of Model Performance at Different Stages

In practice, it is not ideal for applying exhaustive grid search and thorough training
of all candidate models. Therefore we would like to investigate if it makes sense to
pick the best (or TopK) models from successive halving searches and only train these
models and any correlation between the searching and testing performance.

The correlation of models’ performance with MNIST as the proxy is illustrated in Fig. 4.9.
In each subplot, a dot represents a model, the top row shows the correlation of the train
search with the test, the middle row presents the train with the test, and the bottom row
shows the performance of the train against the train search. (There is only one subplot
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Figure 4.7: Test PSNR performance on Set12. The left figure groups models in terms
of the number of channels, and the right figure groups them by the number of layers.
Deeper models do not always perform better than shallower ones. For example, models
have eight layers and ten layers with eight channels and ten channels.

Figure 4.8: Test PSNR performance on BSD68. The left figure groups models in terms
of the number of channels, and the right figure groups them by the number of layers.
The performance of models has the same trend as in Set12.
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since we search and train the networks on one dataset but test them on two datasets).
The first row shows there is no solid linear correlation of performance at the stage of
search and test on both datasets. For example, models with higher validation loss at
the search stage may perform better after the training. However, the best model in the
search stage still maintains the best in evaluation. Results of employing CIFAR100 as
a proxy dataset further verified the statement. From the first row of Fig. 4.10, with CI-
FAR100 as the proxy, architecture searched on the model with the smallest validation
loss in the search stage only ranked 6th among these models in evaluation. However,
the model with the 2nd smallest validation loss in the search phase behaved best in
testing. In these two cases, the best model in evaluation is among the TopK models in
the search stage. However, the middle rows present a solid linear correlation of per-
formance at the train and test stage. One possible reason is that the models used in
the train and test stage are the same, while we use the supernet instead of the searched
subnet in the train search stage.

Conclusion: There is a performance gap between the search and evaluation scenarios,
the best model in the search stage is not always the best one in the testing stage. We
should be cautious of applying successive halving searches at the search stage. At least
TopK models should be taken into consideration for further training. Alternatively,
we can conduct a complete search on all candidate models and only apply successive
halving searches at the training stage.

4.3.5 Performance of Models with Different Proxies

The comparison of the performance of 22 candidate models with different proxies is
illustrated in Fig. 4.11. For some models, using CIFAR100 as a proxy performs better
than using MNIST, but the best model is searched on MNIST. One possible reason that
models searched on CIFAR100 does not overwhelm those searched on MNIST could be
the default scaling of images to 32 x 32, which blurred the pictures as shown in Fig. 4.2.
It is noted that CIFAR100 is commonly used for classification tasks that distinguish
a limited number of categories. Therefore, the default scaling may not significantly
impact the classification performance; however, in our task, blurring brings random
noise to the images, which might influence the performance of searched networks.

In addition to these two proxies, we also random sample 60000 clipped 40 × 40 patches
from the actual training set Train400 to search architectures. The comparison with the
two proxies above is provided in Fig. A.4. The subset of the training set does not show
a noticeable advantage over the other two proxies, which indicates that MNIST serves
as a good proxy.
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Figure 4.9: The correlation of model performance at different stages (with MNIST as
proxy). From top to bottom, it shows the performance of search vs test, train vs test,
and train vs search. Every dot represents a model, and the model with the smallest
validation loss at the search stage is the model with the best performance in evaluation.
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Figure 4.10: The correlation of model performance at different stages (with CIFAR100
as proxy). From top to bottom, it shows the performance of search vs test, train vs test,
and train vs search. Every dot represents a model, and the model with the 2nd smallest
validation loss at the search stage is the model with the best performance in evaluation.
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Figure 4.11: Test PSNR performance of models using CIFAR100 and MNIST as the
proxy dataset. The best model (C6_C64: model with six cells and 64 channels) is
searched on MNIST, while CIFAR100 also outperformed MNIST on some candidate
models.

4.3.6 Flexible Search and Training with Optimization

Default Weight Training of Top5 Models

As aforementioned, we adopt a more flexible search by varying the number of cells, the
number of channels, the learning rate of the network, the learning rate of architecture
and batch_size and build 128 supernets for architecture search. After deriving the best
five cell architectures from 128 searched models (Fig. 4.13), we build five new models
with the searched cell architectures and keep the same set of width and depth as in
searched models.

As before, we apply the default training hyperparameter setting in [23], i.e., SGD opti-
mizer, a learning rate of 0.025, momentum of 0.9, and weight decay of 3e-4, to train the
five models. The experiments are repeated five times, and the averaged test PNSR and
SSIM curves of models on Set12 during training iterations are given in Fig. 4.12. Final
evaluation metrics boxplots on Set12 and BSD68 are provided in Fig. 4.13. Model M14
has the best performance on two datasets with two evaluation metrics.

Training of Top5 Models with Optimization

At the same time, we also apply BOHB to optimize training hyperparameters before
weight training. Involved hyperparameters are learning rate, type of the optimizer
(SGD or Adam), weight decay and momentum (only applicable for SGD). Table 4.2
shows the designed search space for these hyperparameters. Optimizer is a categorical
hyperparameter, and others are uniform float hyperparameters.
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Figure 4.12: Averaged (five-run) PSNR and SSIM training curves of five models on
Set12. The setting of hyperparameters is the same as in [23]. Therefore we name it to
test PSNR and SSIM without optimization.

Figure 4.13: Boxplot of evaluation metrics on Set12 (top) and BSD68 (bottom) after
training models using the default setting of hyperparameters. The performance differ-
ence between models is not significant. M14 has the best performance without opti-
mization.
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Hyperparameter Range Default Value Log-Transform

Optimizer [Adam, SGD] - -
Learning Rate [1e-5, 1e-1] 1e-2 True
Weight Decay [1e-5, 1e-1] 1e-4 False

SGD-Momentum [0.0, 0.99] 0.9 False

Table 4.2: Search space of hyperparameters in the training stage.

BOHB allocates resources for sampled configurations based on its parameter settings.
Therefore we specify values of parameters including the min_budget, max_budget and
num_iterations based on the default setting (in Table 4.3). When we set the min_budget
of and max_budget to 3 and 27 epochs, the numbers of configurations ni and their
running resources ri could be seen from Table 4.4. It starts from sampling nine mod-
els (from the results of BO models) and running them for three epochs, then gradu-
ally successive halving the number of configurations and running more budgets, and
s represents an iteration. If we set the min_budget as 3, max_budget as 27 and the
num_iterations as 5 (setting abbreviation: 3_27_5), BOHB will train sampled models
following the sequence (s=2, s=1, s=0, s=2, s=1), and will sample 35 models in total.

Parameter Default Description

eta 3 1/eta of configurations are advanced to the next round of SH
min_budget 0.01 minimum budget of BOHB
max_budget 1 maximum budget of BOHB

min_points_in_model None minimum number of observations required for building a KDE
top_n_percent 15 percentage of obersevations that are considered as good
num_samples 64 number of samples to optimize the expected improvement

random_fraction 1/3 fraction of random configurations sampled without KDE prior
bandwidth_factor 3 samples from a widened l(x) with bandwidth multiplying by the factor
min_bandwidth 1e-3 minimum bandwidth of a KDE model

Table 4.3: Default parameter settings of the BOHB algorithm [14]. On top of which, we
specify the values of min_budget, max_budget and the num_iterations to be performed
in this run.

Fig. 4.14 shows examples of models training with SGD and Adam optimizers with dif-
ferent learning rates. In the left figure, there are experiments on model M2 with the
default hyperparameter setting in [23]; the default setting and the Xavier initialization
[15]; SGD with learning rate 3e-2; and SGD with a very small learning rate 3e-5. It can
be seen that hyperparameter settings significantly impact evaluation performance. The

s = 2 s = 1 s = 0
i ni ri ni ri ni ri

0 9 3 3 9 1 27
1 3 9 1 27
2 1 27

Table 4.4: The number of samples and resources allocated for BOHB with a minimum
budget of 3 and a maximum budget of 27.
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Figure 4.14: Test PSNR curves in the training stage on M2 with different optimizers
and hyperparameter settings. The left ones are optimized by SGD optimizer, and the
right ones are optimized by Adam optimizer.

Model M2 M7 M14 M108 M120

Number of Parameters 824738 659618 1965890 824738 1965890

Table 4.5: The number of parameters of five models.

right figure shows the experiments with BOHB optimized hyperparameters in different
parameter settings. In experiments, the algorithm always chooses Adam as the opti-
mizer due to its faster convergence speed than SGD within limited allocated resources.
However, Adam has the issue of learning only a few epochs (in Fig. 4.14 right). Consid-
ering the SGD optimizer with default hyperparameters has outperformed Adam, and
the SGD can learn continuously, we decide to remove the type of optimizer from our
search space. In the subsequent experiments, we only search training hyperparameters
for the SGD optimizer.

We consider the number of parameters of the models (Table 4.5) and corresponding
running time when specifying the parameters for BOHB optimization. For example,
the model M2 has 824738 parameters and requires 20 minutes to train an epoch on a
GeForce GTX 1080 Ti GPU. When setting the min_budget, max_budget, num_iterations
of BOHB to 3_27_5, 27 ∗ (3 + 2 + 1 + 3 + 2)/(3 ∗ 24) ≈ 4.13 GPU days are required
to complete the optimization. For the five models, we first set BOHB parameters to
3_27_5 to optimize hyperparameters. Fig. 4.15 records validation losses grouped by
budgets of each model during optimization. Each dot represents one model with a
sampled configuration in each subplot, and 35 configurations per model are sampled in
the process. The configuration with the smallest validation loss is selected for training
the corresponding model. After training them on the training set Train400, models are
evaluated on test datasets.

In addition to BOHB parameter setting 3_27_5, we also specify another set of parame-
ters as 3_27_15, which increases the number of iterations from 5 to 15, and the number
of sampled configurations of each model increases from 35 to 90. The optimization
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Figure 4.15: The observed validation losses of five models grouped by budget during
BOHB optimization with parameters 3_27_5. From left to right are losses of models
M2, M7, M14, M108 and M120.
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Figure 4.16: Comparison of test performance on Set12 before optimization (left), with
BOHB optimization in setting 3_27_5 (middle) and with BOHB optimization in setting
3_27_15 (right).

period of each model also increases, e.g., 11.25 GPU days for model M2. Evaluation
metrics boxplots of these models before and after BOHB optimization are provided in
Fig. 4.16 and Fig. 4.17. The left columns are the test results with the default training hy-
perparameters. The middle columns are the results of models with BOHB optimized
hyperparameters in setting 3_27_5. The right columns are the results trained with
BOHB optimized hyperparameters in setting 3_27_15. Comparing middle columns
with left columns, we could discover the optimized results are not as good as those
before optimization, indicating current searched configurations are not good enough.
Comparing BOHB optimized results in setting 3_27_15 with those optimized in setting
3_27_5, we see that providing more running time helped BOHB select better hyperpa-
rameter configurations for M14 and M7.

Furthermore, M14 with searched hyperparameters outperformed the model with hy-
perparameters stated in literature [23]. However, it cannot guarantee better configu-
rations for all five models, which we attribute to the limited allocated computing re-
sources. Even 90 configurations are sampled for each model. After allocating them
to three budgets, on average, only 30 configurations are used to model densities l(x)
and g(x), which may not be sufficient. We also provide the statistical evaluation per-
formance results in Table 4.6. Models with hyperparameters optimized from BOHB
setting 3_27_15 surpass the models with hyperparameters stated in literature [23].

4.4 Visualization

The visualization of some denoised images are provided in Fig. 4.18 and Fig. 4.19. The
left columns are our synthetic Gaussian noise images. The middle columns are the
denoised images from the network output. The right columns are original clean images
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Figure 4.17: Comparison of test performance on BSD68 before optimization (left), with
BOHB optimization in setting 3_27_5 (middle) and with BOHB optimization in setting
3_27_15 (right).

w/o opt w/ opt (3_27_5) w/ opt (3_27_15)

PSNR on Set12 29.820 ± 0.018 29.335 ± 0.221 29.893 ± 0.014

PSNR on BSD68 28.814 ± 0.007 28.481 ± 0.162 28.860 ± 0.003

SSIM on Set12 0.920 ± 0.000 0.910 ± 0.005 0.921 ± 0.000

SSIM on BSD68 0.892 ± 0.000 0.883 ± 0.005 0.893 ± 0.001

Table 4.6: Model evaluation performance on Set12 and BSD68 before and after BOHB
optimization with different settings. After BOHB optimization with setting 3_27_15,
the model performance slightly improves upon the setting in literature [23].
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Methods Ours BM3D WNNM EPLL MLP CSF TNRD DnCNN

BSD68 28.86 28.57 28.83 28.68 28.96 28.74 28.92 29.23

Table 4.7: PSNR results of different models on BSD68 and noisy images are with noisy
level 25.

of the datasets. The overall noise has been removed from the noisy images. Generated
denoised images preserve most details and textures in the source images. And the
image quality is high and clear. We also notice that small details are missing after
denoising in some examples, e.g., the peppers and house image.

4.5 Comparison with state-of-the-art

We compare the denoising performance of our model with several state-of-the-art gray-
scale Gaussian denoising algorithms, including block matching 3D (BM3D) [10], weighted
nuclear norm minimization (WNNM) [28], expected patch log likelihood (EPLL) [38],
multi-layer perception (MLP) [3], cascade of shrinkage fields (CSF) [27], trainable non-
linear reaction diffusion (TNRD) [9] and a deep neural network DnCNN [33]. From
Table 4.7, it can be seen that using our model results in 0.29 dB, 0.03 dB, 0.18 dB, 0.12
dB PSNR improvements over BM3D, WNNM, EPLL and CFS on BSD68. From Ta-
ble 4.8, our model shows 0.201 dB and 0.056 dB PSNR improvements over EPLL and
CFS on Set12.

We also notice that MLP, TNRD and DnCNN perform better on both datasets than
our model, in which MLP and DnCNN are deep learning networks and TNRD is a
nonlinear diffusion model. These models are built and trained on the training dataset
with the parameter or setting tuning relying on training data in experiments. While
in our work, we directly transfer the resulting network searched on the proxy dataset
to the training set for weight training, which may not mine as much training dataset
information as these methods do.
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Figure 4.18: Visualization of denoising performance on Set12.
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Figure 4.19: Visualization of denoising performance on BSD68.
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Methods Ours BM3D WNNM EPLL MLP CSF TNRD DnCNN

C.man 29.73 29.45 29.64 29.26 29.61 29.48 29.72 30.18

House 32.20 32.85 33.22 32.17 32.56 32.39 32.53 33.06

Peppers 30.32 30.16 30.42 30.17 30.30 30.32 30.57 30.87

Starfish 28.99 28.56 29.03 28.51 28.82 28.80 29.02 29.41

Monar. 29.91 29.25 29.84 29.39 29.61 29.62 29.85 30.28

Airpl. 28.85 28.42 28.69 28.61 28.82 28.72 28.88 29.13

Parrot 29.24 28.93 29.15 28.95 29.25 28.90 29.18 29.43

Lena 31.72 32.07 32.24 31.73 32.25 31.79 32.00 32.44

Barbara 28.91 30.71 31.24 28.61 29.54 29.03 29.41 30.00

Boat 29.78 29.90 30.03 29.74 29.97 29.76 29.91 30.21

Man 29.78 29.61 29.76 29.66 29.88 29.71 29.87 30.10

Couple 29.50 29.71 29.82 29.53 29.73 29.53 29.71 30.12

Average 29.893 29.969 30.257 29.692 30.027 29.837 30.055 30.436

Table 4.8: PSNR results of different models on Set12 and noisy images are with noisy
level 25.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

Unlike the chain-structured neural networks that are manually designed for the im-
age denoising task, in this work, we encode the search space in the cell architecture
and based on differentiable architecture search methods to search the operations and
connections in cell architectures.

Noticing the apparent impact of depth and width of the network to model performance,
we also incorporate the search of macro-architecture in the search stage by varying the
number of cells and channels when building the searched model. Grid search and suc-
cessive halving search for 22 candidate models are included in this stage. We discover
that these two methods lead to the same result, while successive halving search reduces
the searching cost. For these models, it is not the case that deeper models consistently
outperformed shallower ones. In addition, we compare the performance of models
when using different proxy datasets to search, and our results show that MNIST serves
as a better proxy than CIFAR100.

We also adopt a more flexible search by including depth, width, batch_size, the net-
work’s learning rate, the architecture’s learning rate into the macro search space, and
randomly sample 128 configurations to form the searched models. The Top5 models
are selected for training, and hyperparameter optimization is performed as well. We
compare the performance of models using the default hyperparameter setting in [23]
with those with optimized results from BOHB. BOHB promotes searching for better
configurations with more running time, although it is not guaranteed for every model.
When we run BOHB with min_budget of 3, max_budget of 27, num_iteration of 15,
the best model performance is slightly better than those with hyperparameter setting
in [23]. Lastly, our work has achieved promising results on classical image processing
datasets Set12 and BSD68.
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5.2 Limitations and Future Work

For neural architecture search, the computational cost is a typical issue, especially in
our case, the training set Train400 consists of images of 180 x 180, and some of the
searched models are also quite large. We choose to apply different proxy datasets in
the search stage and only use the training set in the training stage. However, it is
hard to distinguish if the searched architecture on a proxy dataset perfectly matches
the training set. We want to investigate how to use the information of training set in
the train search stage and preventing unnecessary long-term search. We think a direct
search on the training set can further boost the performance of our model, where we
can develop strategies to reduce the computational cost.

At the same time, in BOHB optimization, there are also parameters worth tuning, for
instance, min_budget, max_budget, num_iteration. Sampling more configurations will
promote better configurations, and setting larger budgets will lead to more stable re-
sults. While in our experiment, the maximum number of sampled configurations for
each model is 90 since it has spent 12 GPU days optimizing one model on a single
GeForce GTX 1080 Ti GPU. Tuning the suitable parameters of BOHB is our next step to
promote network performance.
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Appendices

Figure A.1: Test SSIM performance on Set12. The left figure groups models in terms
of the number of channels, and the right figure groups them by the number of layers.
Deeper models do not always perform better than shallower ones. For example, models
have eight layers and ten layers with eight channels and ten channels.
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Figure A.2: Test SSIM performance on BSD68. The left figure groups models in terms
of the number of channels, and the right figure groups them by the number of layers.
The performance of models has the same trend as in Set12.

Figure A.3: The performance of models on BSD68 using CIFAR100 and MNIST as the
proxy dataset. Best model C6_C64 (model with six cells and 64 channels) is searched
on MNIST, while CIFAR100 also outperformed MNIST on some candidate models.
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Figure A.4: The performance of models on Set12 using CIFAR100, MNIST and subset of
Train400 as the proxy dataset. The subset of Train400 is the collection of 60000 random
sampling patches from the training set. The best model searched on the Train400 subset
has almost the same performance as that on MNIST.
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