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Abstract

The use of mobile smartphones have risen all over the world, and are increasingly used to
store personal data. Due to the popularity, mobile malware has also been on the rise, and it is
thus important that security researchers propose new techniques to detect mobile malware. In
this thesis, we investigate how the features of an Android application can be used to predict
the maliciousness of the application.

The application features are sourced from Koodous, a collaborative platform aimed at research
towards Android malware. The maliciousness of an applications is determined by the rating it
was given by users on Koodous.

First, the Koodous data set is investigated on how the features within it differ between
applications. These features are later used in two machine learning models, to determine
if it is possible to correctly predict whether an application will get a positive or negative rating.

Under the best circumstances, the models reach an accuracy of 98.8% and an F1 score
of 98.8%. We can conclude from these results that it is possible to predict the ratings given
to applications on Koodous. Under different circumstances (limited feature set or a smaller
balanced data set), the accuracy is between 61.1% and 98.5%. Classifying using a neural
network model always performed equal to or better than classifying with a random forest model.

The results from this thesis can be used to further improve the classification of malicious
applications before the code of an application is analyzed for malicious behavior. Furthermore,
classification using these features could also point towards malicious applications that have
not been identified as such.
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1 Introduction

The use of smartphones has been rising all around the world, with a report estimating that 70% of
the global population will have access to mobile services by 2025 [GSM21]. Mobile devices have
also increasingly been used to store important information, with half of American respondents
storing personal data on their smartphones [Bit17].

Android is the most popular mobile operating system, with a market share of around 73% [O’D21].
Largely because of its size, Google’s operating system is a big target for malicious actors. According
to a report from F-Secure, more than 99% of all mobile malware are designed for Android, and around
8% of all malware detected across all operating systems target the Android operating system [F-S17].

When applications are stored on an app store that comes pre-installed on Android devices (like
Google Play or Samsung’s Galaxy Store), there are additional checks if the apps are in any way
malicious of nature. The Android operating system allows users to install apps from outside
pre-installed app stores, and the applications outside these app stores have not necessarily been
checked for malicious behavior. The aim is therefore to help improve the classification of Android
applications, by investigating if it is possible to discriminate between malicious and benign apps
using the application its features.

Our source for the application features is Koodous, a platform for collaborative research into
malware on Android, where users can rate applications positively (indicating a benign app) or
negatively (indicating a malicious app). Koodous itself could also benefit from this information,
prioritizing the (manual or automatic) examination for these applications. More information about
Koodous can be found in section 2.1.

1.1 Research questions

For this research, we want to find out how the features of an application can be used to identify
malicious apps. In this paper, we aim to answer the following research questions:

Research questions

What are the app features that can be collected from the crowdsourcing mobile malware platform
Koodous?

In what way can these features be used to predict if an application will have a positive or negative
rating on Koodous?

1.2 Thesis overview

This chapter includes the introduction to the thesis. Section 2 explains the background of this
topic. Section 4 talks about some of the features available in the data set that will be used. Section
5 gives more information about the model that will be used for classification. Section 7 gives a
conclusion to this thesis. Section 7.1 gives possible topics for further research.
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2 Background

2.1 Koodous

Koodous is a collaborative platform for Android malware research.1 Platform users can upload new
applications to the website, resulting in an extensive application data set. Koodous lists a set of
features for each platform hosted on the platform (see 2.2).

Users can rate applications either positively (+1) or negatively (−1), with the total rating of
an application being the cumulative of all ratings. Users can also leave comments to share insights
about a specific application.

It is unlikely that the applications stored on Koodous have the same proportion of benign and
malicious apps compared to other Android markets, like Google Play. Koodous defines itself as a
platform for malware research, where anybody can submit applications to receive a community
verdict whether the app is malicious or not. Most Android users install applications from secured
app stores on their smartphones [KCB20], so a user is interested in the information on Koodous
when they have doubts about the safety of an application that they got from an unreliable source.

2.1.1 Koodous API

Koodous offers an API (Application Programming Interface), which makes it easy to retrieve
information about APKs (the file type for Android applications) stored on Koodous2. For this
thesis, this API was used to retrieve all the features stored of applications.

Table 1 lists the different application features available in the data set, and their respective
data types and descriptions.

1https://koodous.com/
2https://docs.koodous.com/rest-api/getting-started/
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Application
feature

Data type Description Source

Creation times-
tamp

Integer Timestamp when the application was
uploaded to Koodous (Epoch time).

Assigned by Koodous.

Rating Integer The rating given to an application. Assigned by users on
Koodous.

App icon Image Icon shown on the installed device. Property of the application.
MD5 Hash key Key resulting from hashing with MD5 Property of the application.
SHA1 Hash key Key resulting from hashing with SHA-1 Property of the application.
SHA256 Hash key Key resulting from hashing with SHA-

256
Property of the application.

App name Text Name shown on the installed device. Property of the application.
Package name Text Package name used for the application. Property of the application.
Organization
name

Text Organization name stored in the certifi-
cate of the application.

Property of the application.

Version Text This is the version shown to the user,
and has no naming convention.

Property of the application.

App size Integer Size of the application in bits. Property of the application.
analyzed-flag Boolean Shows if Koodous has created an analy-

sis report of the application.
Assigned by Koodous.

trusted-flag Boolean Shows if the application has been
whitelisted by Koodous.

Assigned by Koodous.

detected-flag Boolean Shows if the application has been de-
tected to be malicious by Koodous.

Assigned by Koodous.

corrupted-flag Boolean Shows if the APK will be able to be
executed correctly.

Assigned by Koodous.

on devices-flag Boolean Shows if the application is (or was) in-
stalled on some device.

Assigned by Koodous.

Table 1: All features available in the Koodous API

2.2 Application features

Application features describe a certain characteristic of an application. Some of the information in
table 1 are properties of the application itself, and some are assigned by Koodous (e.g. the rating
or the analyzed-flag). The last column in each row indicates this.

Applications (or their APK files) do not have to be downloaded to get their application fea-
tures using the Koodous API. Koodous stores the application features separately from the APKs,
allowing us to only retrieve this information using the API.

The rating given to an application is assigned by users, and we will use it as a measure of
potential maliciousness of an app (the lower the rating, the more malicious the app). Users can
use any source of information they want to give a rating. They could use other online information
sources or platforms, or download the application and analyze it locally.
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2.3 Detailed information about application features

2.3.1 Package name

A package name is used to uniquely identify an app to the Android system. It is also used to
uniquely identify an app in the Google Play Store.3

Formally, the identifier used to identify an application outside of the code is called an appli-
cation ID. However, since most research uses the ’package name’ term, this term will also be used
in this thesis. The data set from Koodous used in this research also refers to the application IDs as
package names.

Trying to install an app with the same package name on an Android device, will result in the
system attempting to update the older app. This will fail if the developer of the already-installed
app differs from the new app. The package name will need to stay the same between different
versions of the same app, or else the app will not be able to be updated4.

The first official programming language for creating apps for Android was Java. The package
names used in Android apps therefore use the same naming convention as Java uses in naming their
packages. The Java documentation advises companies to use the reversed domain name as a package
name, so the top-level domain (com, ru, org) is at the front. This way, the Java package name
gets more specific the more segments the name has, with the most specific function name at the end5.

The Java package naming convention is most often also used for the package name. Applica-
tions do not necessarily need to use this naming convention, but there are some more restrictive
rules Android applications are required to follow in their package names. First, the package name
needs to consist of two or more segments, with one or more dots in between. Second, each segment
needs to start with a letter. Third, all characters can only be letters, numbers, underscores or dots
(indicating a segment)6.

We will refer to the top-level domains as TLDs. We will investigate whether the TLD at the
beginning of a package name can help to discriminate between apps rated positively and apps rated
negatively on Koodous.

2.3.2 Organization name

The organization name of an application is retrieved from within the certificate each application
is signed with. The information in this certificate is not necessarily complete, and is also not
necessarily truthful. This results in some applications falsely claiming they are from Google, or
applications that do not give any name for the organization at all. App stores can have additional
requirements, requiring developers to have a certificate with genuine information.

3https://developer.android.com/studio/build/application-id
4https://developer.android.com/studio/build/application-id
5https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
6https://developer.android.com/studio/build/application-id.html
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We will investigate whether the organization name of an application to investigate if it can
help to discriminate between apps that have a positive rating and apps that have a negative rating
on Koodous.

2.3.3 Version

The versions of the apps is not used in this thesis. This is mainly due to the variation between
different app versions, since there is not any specified way these version should be given. The
Android documentation further clarifies that the version name “has no purpose other than to be
displayed to users.“7

2.3.4 App name

The application names are also unused in this thesis. Similar to the use of the version, the name of
an application has little structure and there are too many possible interpretations and formats.

7https://developer.android.com/studio/publish/versioning
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3 Related work

In this thesis, we focus on classifying whether an Android application has a positive or negative
rating on Koodous. A positive rating (including zero) indicates a benign app, and a negative rating
indicates a malicious app. In the following paragraphs, we look at papers that use different static
classification techniques to classify Android applications into malicious or benign apps. We will
also look at some studies that have used the same Koodous data set.

A paper by Arp et al. [ASH+14] uses a wide assortment of application features to detect if
an application is likely to be malicious, ranging from application permissions to hardware compo-
nents that are used in the app. The goal of the paper is to create a static analysis method that is
able to correctly and efficiently classify applications as malicious or benign, and for it to explain its
detection results. This method detects 94% of malware samples with a false positive rate of 1%.
The authors used the MobileSandbox data set, and have published a version of this data set with
the extracted application features.

A paper by Wang et al. [WCY+20] takes a more specified feature set, and only uses the URLs that
are visited by the applications. The URLs are segmented and fed into a multi-view neural network.
While the amount of features is limited, the model outperforms most virus scanners on a ’wild’
data set (a data set with new applications collected from Android app markets)

Another application of static analysis is the use of requested permission names in Android ap-
plications, in a paper by Milosevic and Dehghantanha [MDC17]. Malicious applications tend to
use certain permission to access files that a normal application would not need to access. This
approach reached an accuracy of 89%, by using a combination (’ensemble learning’) of support
vector machines, logistic regression and random forest.

In a paper by Zhu and Dimitras [ZD16], a new system called ’FeatureSmith’ is proposed for
generating application features from scientific papers. Sentences from these documents containing
the names from malware families are captured and the described behavior is extracted. Using these
behavior patterns to see whether an app has actual malicious behavior achieves a true positive rate
of 92.5%, and a false positive rate of 1%. This system can speed up the evaluation process of an
application’s code, by prioritizing the most-common indicators of malicious code.

A paper by Chakraborty, Pierazzi and Subrahmanian [CPS17] uses the Drebin data set men-
tioned earlier to create a classification and clustering algorithm called EC2. The algorithm aims
to identify Android applications, and cluster them into families of known and unknown malware
families. This research uses the Koodous data set to evaluate the results of the algorithm.

Lastly, a paper by Aktas and Sen [AS18] also makes use of the Koodous data set. The ap-
plications from Koodous (in combination with apps from APKPure) are used to create a new
mobile malware data set focusing on update attacks, called UpDroid. Different familial classification
techniques were utilized to correctly classify the malware family for each application.

The research on Android malware detection is very large, and it is therefore not possible to

9



mention all the papers that contributed to this area. A literature review by Pan et al. [PGFF20]
focuses on malware detection using static analysis, and notes that the most commonly used features
in studies are permissions, API calls and intents, none of which are used in this thesis. Another
survey by Odusami et al. [OAAM+18] also discusses Android malware detection, but analyzes
dynamic and machine learning approaches too. A survey by Tam et al. [TFA+17] focuses more on
tactics used by Android malware to avoid detection and analysis.

Finally, the topic of this thesis slightly differs from detecting malware, as we will use appli-
cation features from the Koodous data set to predict the app rating given by users on Koodous.
We make the assumption that the app rating has a strong correlation with the maliciousness of an
application, but it is still a different metric. We will thus use the rating as a ’proxy variable’ to the
actual maliciousness of an application. To the best of our knowledge, no other researchers have
looked at this specific topic.
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4 Data exploration

A total of 54,819,127 apps are used in this research, approximately 69.9% of the total Koodous
data set. These applications range in submission date between August 2017 and February 2021.
As of writing, 24.8% of the applications on Koodous is older than this, while 5.1% is newer. The
features of the applications were collected between February 2021 and June 2021.

The mean rating for all applications in the data set is -0.612, with a standard deviation of
1.054. The mean rating for all applications is slightly negative. This indicates that users on the
platform tend to vote negatively more often than positively.

The median rating is 0. This makes sense, because an application starts without any ratings
and thus begins at a cumulative rating of zero.

4.1 Package name

Table 2 shows the ten most common package names in the data set. The table is sorted with the
most common package name at the top.

Package name Occurrences (% of total) Mean rating (st. dev.)
1. ch.nth.android.contentabo l01 sim univ 550858 (1.005%) -2.163 (0.689)
2. com.baidu.haokan 230888 (0.421%) -0.039 (0.281)
3. cm.aptoide.pt 213740 (0.390%) -0.128 (0.512)
4. com.tencent.mobileqq 83311 (0.152%) -0.279 (0.724)
5. pob.xyz 81388 (0.148%) -1.823 (1.195)
6. com.anaconda.brave 66292 (0.121%) -1.989 (0.385)
7. com.lushi.zhuanbao 63314 (0.115%) -2.252 (1.291)
8. com.android.systemui 62120 (0.113%) -0.008 (0.130)
9. com.android.xq.noiconads 59786 (0.109%) -1.946 (0.510)

10. com.fanhua.box 58229 (0.106%) -0.814 (1.020)

Table 2: Ten most common package names

Table 3 lists the amount of package names with and without using top-level domains (TLDs) at
its beginnings.

Occurrences (% of total) Mean rating (st. dev.)
TLDs 49,203,841 (89.8%) -0.580 (1.038)
No TLDs 5,615,286 (10.2%) -0.891 (1.151)
Total 54,819,127 (100.0%) -0.635 (1.053)

Table 3: Use of TLDs at the start of package names

Tables 4 and 5 show the ten most common package names for package names starting with TLDs
and non-TLDs respectively, with the amount of occurrences and mean ratings for each package
name beginning.
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Package name beginning Occurrences (% of total) Mean rating (st. dev.)
1. com 17,600,697 (32.107%) -0.577 (1.038)
2. org 280,684 (0.512%) -0.523 (1.007)
3. net 244,205 (0.445%) -0.655 (1.065)
4. cn 158,174 (0.289%) -0.814 (1.130)
5. de 139,164 (0.254%) -0.199 (0.685)
6. kr 127,915 (0.233%) -0.047 (0.323)
7. br 118,956 (0.217%) -0.340 (0.863)
8. jp 115,311 (0.210%) -0.328 (0.845)
9. io 113,934 (0.208%) -0.245 (0.700)

10. bs 109,375 (0.200%) -0.002 (0.060)

Table 4: Ten most common TLDs used as package name beginnings

Package name beginning Occurrences (% of total) Mean rating (st. dev.)
1. appinventor 219,620 (0.401%) -0.654 (0.967)
2. air 121,086 (0.221%) -0.640 (1.094)
3. trustgo 55,524 (0.101%) -2.346 (0.942)
4. aire 51,945 (0.095%) 0.000 (0.010)
5. theme 34,233 (0.062%) -0.113 (0.474)
6. aimoxiu 32,289 (0.059%) -0.360 (0.885)
7. minuhome 31,940 (0.058%) 0.000 (0.000)
8. wxbit 29,566 (0.054%) -0.022 (0.218)
9. seC 26,927 (0.049%) -2.206 (0.636)

10. ThemeZilla 26,082 (0.048%) 0.000 (0.000)

Table 5: Ten most common non-TLDs used as package name beginnings

While the package names shown in table 2 represent only a small part of the whole data set (only
a few percent), it shows that there exists some difference in mean ratings between different package
names. These differences are to be expected, because a specific package name tends to refer to one
specific application. For instance, a paper from Li et al. (2017) uses the package name to identify
applications that have been used for ’piggybacking’ (“unpack a benign, preferably popular, app
and then graft some malicious code on it before repackaging it and distributing it for free”) [LLB+17].

Package names starting with a valid top-level domain (TLD) occur more often (around 89.0% of
the total data set) than package names not starting with a TLD. Package names starting with a
TLD also have a higher average rating (-0.580 compared to -0.891).
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Figure 1: Box plots showing rating distribution of package name beginnings (from table 4). The
whiskers indicate the 0th and 100th percentile, while the box shows the 25th, 50th (orange median
line) and 75th percentile. The green horizontal line is the mean rating for a category. Due to the
values being integers, some elements of the box plots are likely to overlap.

Furthermore, some top-level domains indicate an application with a lower mean rating. As we
can see in table 4, the two lowest rated TLDs out of the ten most common are cn and net. These
TLDs have a mean rating of respectively -0.869 and -0.655.

There are also some TLDs with a higher rating, namely bs and de. These TLDs have a mean
rating of respectively -0.002 and -0.239. The TLD .bs has a very low standard deviation, while
the TLD .de has a higher standard deviation.

In a paper from Messabi et al. [MAY+18], a list was created with suspicious top-level domains.
Only one of the TLDs mentioned in that paper is present in our ten most common TLDs, namely cn.
Limited to the ten most common TLDs used as package name beginnings in table 4, applications
with this package name beginning have the lowest mean rating.

There is the possibility of geograhical biases in the data set, based on the country the top-
level domains refer to. For example, the main Koodous website is only available in the English
languge, which could negatively bias applications from countries without a large enough population
that speak English. More research is needed using other data sets to get more insight about the
presence of (geographical) bias.
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Figure 2: Box plots showing rating distribution of package name beginnings (from table 5).

Three of the ten most common non-TLDs used at the beginning of package names all have a
mean rating and standard deviation at (or very close to) zero. A manual check on the website of
Koodous (where the amount of users who have voted on the rating of an application is shown)
confirms that this is most of the applications do not have any votes. This is probably because
these non-TLDs refer to a specific type of application (e.g. theme and ThemeZilla referring to
device themes), with some types of application being more accessible to users than other. Thus, no
conclusions can necessarily be drawn based on these package name begins, because the applications
they belong to have not been rated enough.

4.2 App size

The average size of applications in the data set is 12.390 Mb, with a standard deviation of 19.149 Mb.

Table 6 shows the amount of applications in different size ranges, and their mean ratings in
that range.
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App size Occurrences (%) Mean rating (st. dev)
0 - 2.5 Mb 18,956,457 (34.580%) -0.848 (1.174)
2.5 - 5 Mb 9,498,510 (17.327%) -0.888 (1.151)
5 - 10 Mb 8,789,243 (16.033%) -0.422 (0.906)
10 - 15 Mb 4,896,989 (8.933%) -0.454 (0.967)
15 - 20 Mb 3,248,423 (5.926%) -0.333 (0.829)
20 - 25 Mb 2,201,620 (4.016%) -0.243 (0.704)
25 - 50 Mb 4,771,238 (8.704%) -0.234 (0.695)
>50 Mb 2,456,647 (4.481%) -0.155 (0.581)

Table 6: Amount of applications and mean rating per app size

The mean rating of app sizes is the lowest of applications between 2.5 and 5 Megabits, whereas
the highest mean rating is of applications over 50 Megabits. The standard deviation is the smallest
for the biggest applications (larger than 50 Megabits), and biggest for the applications smaller than
2.5 Megabits.

Figure 3: Box plots showing rating distribution of app sizes (from table 6).

First, it is possible that the larger an application becomes, the less votes it will get. This
would mean that the rating would stay nearer the zero than smaller applications. The data set
unfortunately does not include the amount of votes on an application, so we can not conclusively
state whether this is the case.

Second, the size of an application might be an indication of another variable that is not in
the data set (a ’proxy variable’). Unfortunately, the data set does not have any comparable or
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more specific variables relating to the app size, so it can not be said that the app size is a proxy
variable based on the current data set.

4.3 Certificates

Table 7 shows the ten most common organization names used in the certificates of the applications.

Organization name Occurrences (% of total) Mean rating (st. dev.)
1. Google Inc. 5,572,252 (10.165%) -0.021 (0.217)
2. Android 5,376,286 (9.807%) -0.917 (1.161)
3. Samsung Corporation 4,247,683 (7.749%) -0.001 (0.051)
4. <empty organization name> 3,665,931 (6.687%) -0.732 (1.064)
5. Unknown 1,660,298 (3.029%) -1.429 (1.266)
6. AppInventor for Android 585,948 (1.069%) -0.418 (0.825)
7. Huawei 453,149 (0.827%) -0.004 (0.094)
8. CN 390,019 (0.711%) -2.042 (1.190)
9. Andromo.com L=Winnipeg 287,427 (0.524%) -0.004 (0.099)

10. www.hao123.com 233,208 (0.425%) -0.042 (0.299)

Table 7: Ten most common organization names

The mean ratings in table 7 vary between −0.001 and −2.042. The API does not give any
information about the amount of votes for an application, but a manual check on the website
of Koodous showed that most of the applications for the organization names with mean ratings
around zero did not have any votes. This makes it likely that these applications have a rating and
standard deviation around zero because they have not been voted on (instead of the application
deliberately being rated higher).
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Figure 4: Box plots showing rating distribution of organizations (from table 7).

The fourth most common organization name used in the certificates of the applications is an
empty value (indicated as <empty company name>). It is not mandatory to fill in any value to
create a certificate for an application (as mentioned earlier in section 2.3.2). Some app stores do
require applications to have a valid organization name in their certificate.8

“CN“, the eight most common name organization name used is likely to be the result of a wrongly
formatted certificate for the application. It refers to an earlier identifier of the certificate called the
’Common Name’.

The ninth most common organization name in table 7 is “Andromo.com L=Winnipeg“. This
organization name refers to a website used to create Android applications without having to write
code.9 Due to a single missing comma, the ’Locality’ identifier is also included in the organization
name.

4.4 App icon

Table 8 lists the amount of applications that do and do not have an icon stored for it.
Applications that do have an icon have a lower mean rating (−0.759 with a standard deviation

of 1.125) than applications that do not have an icon (−0.113 with a standard deviation of 0.516).
Applications with an icon are however more common (77.3% compared to 22.7%).

There are multiple possible explanations for this difference in the mean ratings between the

8https://developer.android.com/studio/publish/app-signing
9andromo.com
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Occurrences (% of total) Mean rating (st. dev.)
App icon 42,375,706 (77.3%) -0.759 (1.125)
No app icon 12,443,421 (22.7%) -0.113 (0.516)
Total 54,819,127 (100.0%) -0.635 (1.053)

Table 8: Use of app icons

two categories. First, applications without an icon might be work-in-progress, and thus might not
have an icon yet. The app still being developed could indicate that there currently is not any
malicious behavior.

Second, it is possible that applications that do not have an icon are less likely to be voted
on. Apps without icons can also be widgets, or have been packaged incorrectly. In these cases,
users have less information to use when giving a rating, and thus might withhold to vote. This
would also explain the lower standard deviation for the category of applications without an icon.
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5 Classification models

5.1 Task

The task for the model is to predict the rating of an application, based on its features. Since users
are likely to only care whether the application is rated positively or negatively, the model will only
have to predict whether the rating of an application is positive (rating of zero or higher) or negative
(rating lower than zero). In the context of this thesis, the negative class indicates if an application
is malicious and the positive class indicates if an application is benign. This is a classification task.

5.2 Features

The features that are used in the model are listed in table 9.

Application feature Data type Description Source
Creation timestamp Integer Timestamp when the application was

uploaded to Koodous (Epoch time).
Assigned by Koodous.

Availability of app
icon

Boolean Indicates if there is an icon available for
the app.

Property of the appli-
cation.

App size Integer Size of the application in bits. Property of the appli-
cation.

TLD-flag Boolean Indicates if the first segment of the ap-
plication’s package name is a top-level
domain.

Property of the appli-
cation.

Organization name
variables

Boolean One-hot encoded variables for the ten
most common organization names (see
section 5.2.2).

Property of the appli-
cation.

Package name begin-
nings variables

Boolean One-hot encoded variables for the ten
most common TLDs and non-TLDs
used as package name beginnings (see
section 5.2.2).

Property of the appli-
cation.

analyzed-flag Boolean Shows if Koodous has created an analy-
sis report of the application.

Assigned by Koodous.

trusted-flag Boolean Shows if the application has been
whitelisted by Koodous.

Assigned by Koodous.

detected-flag Boolean Shows if the application has been de-
tected to be malicious by Koodous

Assigned by Koodous.

corrupted-flag Boolean Shows if the APK will be able to be
executed correctly.

Assigned by Koodous.

on devices-flag Boolean Shows if the application is (or was) in-
stalled on some device.

Assigned by Koodous.

Table 9: All features used in the classification model

5.2.1 Feature sets

The last column in the table indicates if the value of a feature is inherent to the application, or if
the value is assigned by Koodous (similar to table 1). We will use two different sets of features:
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one with all features and one with only the features that are a property of the application.

Limiting the amount of application features the model is allowed to use can give more information
about how accurately different combinations of features can predict the class of an application.
Additionally, this will also help to evaluate the model when the application features are not de-
termined by Koodous. This would help to know more about the maliciousness of an application
before uploading it to Koodous.

5.2.2 One-hot encoded variables

To use the information from the most common package name beginnings (TLD and non-TLD)
and most common organization names (tables 4, 5 and 7), we decided to add them as categorical
variables. With these categorical variables, the model will be able to use the knowledge it has
about these variables to improve the classification of all applications.

For each category there are ten variables, making a total of thirty variables. One-hot encod-
ing is used for these variables, meaning that the column that corresponds with the same package
name beginning or organization name as the application will have a 1 to indicate. For example, if
an application has the same organization name as one of the ten most common organization names,
that column will show a 1 and a 0 is shown for all other one-hot encoded organization columns.

5.2.3 Normalization

The timestamp and the app size features in the data set are normalized before they are used in
the neural network model or in the random forest model. This is to prevent adverse effects during
the convergence of the neural network. The features are scaled using the normalize function in
sklearn.

5.3 Balancing the data set

As noted earlier, the applications are skewed towards positive applications (73.1% of the total data
set). To prevent the model from being biased in giving the correct classification, we will run the
same models with a balanced data set and show these results alongside the unbalanced data set.
The data set is balanced by undersampling the larger (in this case: positive) class.

5.4 Classifiers

The classifiers used for the models are a neural network (using Keras, which is based on Tensorflow
2) and the random forest classifier (using the scikit-learn library).

The neural network used in this thesis is a multilayer perceptron, a type of artificial neural
network. This neural network has three layers: an input layer, a hidden layer and an output layer.
The input layer receives all the features, and the output layer. The neural network is optimized
using the Adam optimizer (described in [KB14]), and uses the SparseCategoricalCrossentropy

as the loss function.
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The hyperparameters used for the random forest classifier are n estimators = 15 and max depth =
6. These parameters were chosen to lower the processing time needed to obtain results. Additionally,
since there are continuously applications being added and rated on Koodous, this would improve
the time needed to create a new model using the information from the newer applications.

Using these two models simultaneously allows us to achieve high accuracies, but also to eval-
uate the classification better. In addition, the random forest model has the extra benefit of allowing
us to retrieve the feature importances.
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6 Results

Table 10 shows the accuracy and F1 scores from the neural network model. The table shows which
feature set has been used (all features, or only the features that are a property of the application)
and if the data set has been balanced beforehand.

The accuracy score is how many correct predictions the model made out of all predictions in
percentage. The best accuracy score is 1 (all predictions are correct), and the worst accuracy
score is 0 (none of the predictions are correct. The F1 score is a weighted average of the precision
(percentage of correct class predictions across all predictions of that class) and the recall (percentage
of how many instances of a class have been correctly predicted). The best possible value for the F1
score is also 1 (perfect precision and recall), with the worst value also being 0 (precision and recall
are both zero).

Feature set Balanced Unbalanced

All features
Accuracy: 0.9878 Accuracy: 0.9850
F1 score: 0.9878 F1 score: 0.9798

Without features
assigned by Koodous

Accuracy: 0.6231 Accuracy: 0.7723
F1 score: 0.5767 F1 score: 0.5037

Table 10: Accuracy and F1 score of the neural network model for each combination of feature set
and balanced or unbalanced data set.

The neural network model with all features is more accurate when it is balanced than when it
is unbalanced (98.8% and 98.5%). The F1 score is also higher with the balanced data set with all
features (98.8% compared to 98.0%).

The opposite is true for the model using the limited data set (without the features assigned
by Koodous), where the accuracy is lower for the balanced data set (62.3% compared to 77.3%).
The F1 score is still higher for the balanced data set than for the unbalanced data set (57.7%
compared to 50.1%).

Feature set Balanced Unbalanced

All features
Accuracy: 0.9878 Accuracy: 0.9850
F1 score: 0.9878 F1 score: 0.9798

Without features
assigned by Koodous

Accuracy: 0.6105 Accuracy: 0.7624
F1 score: 0.5438 F1 score: 0.4395

Table 11: Accuracy and F1 score of the random forest model for each combination of feature set
and balanced or unbalanced data set.

The random forest model with all features performs similarly to the neural network model
network, with the same (rounded) values being reached for both the accuracy scores and the F1
scores. It is more accurate when it is balanced than when it is unbalanced (98.8% compared to
98.5%), and it also has a higher F1 score for the balanced data set (98.8% compared to 98.0%).
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Without the features assigned by Koodous, the random forest achieves similar (but slightly
lower) accuracy scores (61.1% for the balanced data set, 76.2% for the unbalanced dataset). There
is a bigger difference between the F1 scores of the neural network model and the random forest
model for the data set with a limited amount of features, but the F1 score for the balanced data
set is still larger (54.4% compared to 44.0%).

6.1 Feature importances

In this section of the thesis, we will investigate the feature importances from the random forest
model. Table 12 only includes the features that are not one-hot encoded.

The table shows which feature set has been used (all features, or only the features that are
a property of the application) and if the data set has been balanced beforehand. The importance is
shown in brackets behind each feature.

Feature set Balanced Unbalanced

All features

1. detected (0.76558) 1. detected (0.62180)
2. on devices (0.06329) 2. on devices (0.10355)
3. analyzed (0.00528) 3. corrupted (0.00930)
4. is tld (0.00098) 4. analyzed (0.00412)
5. corrupted (0.00038) 5. is tld (0.00113)
6. trusted (<0.00010) 6. trusted (<0.00010)
7. app size (<0.00010) 7. app size (<0.00010)
8. timestamp and has icon (0.00000) 8. timestamp and has icon (0.00000)

Only features that are
properties of the application

1. is tld (0.01620) 1. is tld (0.03163)
2. app size (<0.00010) 2. app size (<0.00010)
3. has icon (0.00000) 3. has icon (0.00000)

Table 12: Feature importances for all features, excluding one-hot encoded features

The lower two features in the balanced and unbalanced data set for the limited set of features
have importances of zero. As we can see later in the results, this is due to the one-hot encoded
features being more important in identifying the correct class when there are less features.

In table 13, the most important one-hot encoded variables are listed. This list shows which
companies are the most influential in determining the correct classifications for the applications in
the data set.
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Feature set Balanced Unbalanced

All features

1. Google Inc. (0.07764) 1. Google Inc. (0.07198)
2. Samsung Corporation (0.02803) 2. Samsung Corporation (0.06640)
3. www.hao123.com (0.01805) 3. Unknown (0.03362)
4. <empty organization name> (0.00922) 4. CN (0.02184)
5. Huawei (0.00905) 5. <empty organization name> (0.02030)
6. Unknown (0.00828) 6. www.hao123.com (0.01130)
7. CN (0.00565) 7. Android (0.00840)
8. Andromo.com L=Winnipeg (0.00146) 8. Andromo.com L=Winnipeg (0.00443)
9. Android (0.00061) 9. Huawei (0.00344)
10. AppInventor for Android (<0.00010) 10. AppInventor for Android (<0.00010)

Only features that are
properties of the application

1. Samsung Corporation (0.25862) 1. Samsung Corporation (0.24017)
2. Google Inc. (0.19983) 2. Google Inc. (0.20053)
3. Unknown (0.09460) 3. Unknown (0.12590)
4. Huawei (0.08041) 4. <empty organization name> (0.09451)
5. www.hao123.com (0.07002) 5. Huawei (0.06629)
6. <empty organization name> (0.06517) 6. CN (0.05600)
7. CN (0.05098) 7. www.hao123.com (0.03933)
8. Andromo.com L=Winnipeg (0.03193) 8. Android (0.02907)
9. Android (0.02812) 9. Andromo.com L=Winnipeg (0.02353)
10. AppInventor for Android (0.00406) 10. AppInventor for Android (0.00069)

Table 13: Feature importances for one-hot encoded organization name features

Table 14 lists the most important package name beginnings for each combination of feature set
and balanced or unbalanced.
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Feature set Balanced Unbalanced

All features

1. bs (0.00279) 1. com (0.00719)
2. kr (0.00146) 2. seC (0.00541)
3. com (0.00101) 3. net (0.00176)
4. appinventor (0.00062) 4. bs (0.00163)
5. net (0.00030) 5. jp (0.00106)
6. SeC (0.00023) 6. air (0.00071)
7. cn (<0.00010) 7. cn (0.00018)
8. io (<0.00010) 8. aire (0.00013)
9. org (<0.00010) 9. org (0.00013)
10. jp (<0.00010) 10. appinventor (0.00012)
11. de (<0.00010) 11. io (<0.00010)
12. air (<0.00010) 12. de (<0.00010)
13. br (<0.00010) 13. br (<0.00010)
14. theme (<0.00010) 14. theme (<0.00010)
15. minuhome (<0.00010) 15. kr (<0.00010)
16. trustgo (<0.00010) 16. minuhome (<0.00010)
17. aimoxiu (<0.00010) 17. trustgo, aimoxiu, wxbit and

ThemeZilla (0.00000)18. wxbit (<0.00010)
19. aire and ThemeZilla (0.00000)

Only features that are
properties of the application

1. com (0.02398) 1. com (0.04205)
2. bs (0.01977) 2. SeC (0.01512)
3. jp (0.01683) 3. bs (0.00966)
4. SeC (0.01280) 4. jp (0.00664)
5. de (0.00707) 5. kr (0.00408)
6. br (0.00610) 6. br (0.00306)
7. kr (0.00314) 7. appinventor (0.00254)
8. air (0.00289) 8. aimoxiu (0.00184)
9. theme (0.00275) 9. aire (0.00167)
10. io (0.00142) 10. org (0.00142)
11. aimoxiu (0.00091) 11. net (0.00116)
12. appinventor (0.00066) 12. theme (0.00072)
13. net (0.00057) 13. io (0.00070)
14. org (0.00056) 14. minuhome (0.00060)
15. aire (0.00050) 15. cn (0.00053)
16. cn (0.00011) 16. air (0.00039)
17. minuhome (<0.00010) 17. wxbit (0.00011)
18. trustgo (<0.00010) 18. de (<0.00010)
19. wxbit and ThemeZilla (0.00000) 19. trustgo and ThemeZilla (0.00000)

Table 14: Feature importances for one-hot encoded package name beginning features

The importance values of the package name beginnings are very low. This is likely due to the
fact that most of these package name beginnings cover only a small percentage of the total data
set, with the exception of the com TLD (as can be seen in tables 4 and 5).
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6.2 Discussion and analysis

Looking at the scores in tables 10 and 11, we can conclude that it is possible to accurately predict
whether a rating is positive or negative given all the application features. The neural network
slightly outperforms or equals the random forest for all scores using the full data set.

Looking at the same results, balancing has a large impact on the models. The accuracy score of
both the neural network model and the random forest model increase with 15%, but the F1 score
lowers with 7% for the neural network model and 10% for the random forest model. This indicates
that the models are less likely to be successful in balanced data sets, where it has relatively less
information about the malicious applications.

To further investigate where the neural network model fails, we will use the confusion matrix of the
neural network with the limited feature set without balancing (table 15) and with balancing (table
16).

Predicted negative class Predicted positive class
True negative class 2.94% 20.98%
True positive class 1.74% 74.34%

Table 15: Confusion matrix of unbalanced neural network model with limited feature set (without
features assigned by Koodous)

Predicted negative class Predicted positive class
True negative class 47.73% 2.29%
True positive class 35.35% 14.63%

Table 16: Confusion matrix of balanced neural network model with limited feature set (without
features assigned by Koodous)

As we can see from the first of the two confusion matrixes, the neural network model for the
unbalanced data set mostly predicts that applications are part of the positive class (rating of zero
or more). This makes sense, since most applications have a positive rating. The opposite is true
for the neural network model when the data set is balanced, where the model mostly predicts
that applications have a negative class (rating lower than zero). The neural network model using
the limited data set is thus not accurate enough to confidently say whether an application has a
positive or negative rating, but can definitely help with the prioritization of having application
scanned for malicious behavior.

Looking at the results from the feature importances (table 12), the detected-flag was the most
important to classify the rating of applications. This makes sense, because this flag shows if an
application is found to be malicious by Koodous. The first feature that is not assigned by Koodous
is is tld, indicating whether the beginning of a package name is a top-level domain, with the other
two features being of little or no importance.
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All three most important features for the random forest model using the full data set are as-
signed by Koodous. This makes it likely that these features are the most valuable for correct
classification, which reflects the difference found between the accuracy and F1 scores for the full
and limited data sets in tables 10 and 11. Another possible explanation is that users voting on
Koodous pay extra attention to the values given by Koodous instead of the values inherent to an
application.

Continuing to the feature importances for the organization features, there is similar ranking
across all combinations of feature sets and balanced or unbalanced. The only organization names
to always be in the top three are Google Inc. and Unknown. These two organization names are
thus the most important overall when classifying applications. Google Inc. is the most popular
organization name in table 7, and the feature importance is therefore also consistent with the
common the organization name is. Other organization names that are not as common in the data
set, rank lower in the feature importances (table 13).

The organization name Unknown however is only the fifth most common organization name. It
is likely that the low mean rating of Unknown (-1.429, around 0.8 lower than the overall average
rating) increases the importance.

Next, we will discuss the feature importances for the package name beginnings. The only package
name beginning that occurs in the top three for all model combinations is com. This is understand-
able, since it is by far the most common package name beginning, occurring with 32.1% of the total
dataset (the next most-common package name beginning is only 0.5%). The feature importances
of all package name beginnings however are not large enough, and are unlikely to have a sizeable
impact on the classification of applications.

The first limitation of this research is the use of the data set. The data set itself is likely to
be negatively skewed towards malicious Android applications compared to app markets like Google
Play. Second, we have not used the whole data set available on Koodous. Both of these reasons
could impact the classification.

Furthermore, as mentioned earlier, we do not have a way to distinguish applications that have not
been rated and applications that are purposefully left at a rating of zero. By also including both
these applications into the positive class, these might impact the classification of the apps. Only
the Koodous API was used in this research, and the inclusion of a web scraper that retrieves the
amount of votes from the website could allow us to only include apps that have received votes.
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7 Conclusion

Our goal for this thesis was to investigate how the features of an application can help to correctly
identify malicious Android apps. Our first research question therefore was: “What are the app
features that can be collected from the crowdsourcing mobile malware platform Koodous?” During
the data exploration phase of this research (section 4), the different features that are available
in the Koodous API were investigated and how these features could be used to predict what the
rating of an application would be.

The second research question was: “In what way can these features be used to predict if an
application will have a positive or negative rating on Koodous?” We took a machine learning
approach to this problem, using a neural network model and a random forest model to see if it is
possible to predict the rating of an application based on its features. Using all features, an accuracy
of 98.8% could be reached, with an F1 score of 98.8% (with both a balanced or an unbalanced
data set). This shows us that it is possible to predict whether the rating of an application will be
positive or negative using machine learning.

7.1 Further research

7.1.1 Bias in the Koodous data set

For any data set, it is possible that there are biases present. This thesis was restricted to the
Koodous data set, a data set where effectively everyone can vote on an application, without looking
at the data from other sources. A suggestion for further research is to look into the possible biases
that are available in the data set.

7.1.2 Additional application features

The data set from Koodous used has a limited amount of features available, and differs from the
possible features that the end-user will see when installing from other sources, like pre-installed
app stores. As a further research suggestion, a model with more features from different sources is
likely to improve the classification of apps.

7.1.3 Use of image classification

In table 8, the mean ratings between apps with and without icons are shown. Since the focus of
this thesis was on explainable application features, no deep learning methods were used to analyze
the app icons. Further research could use the icons in a more qualitative way, using deep learning
to predict the ratings of applications on Koodous.
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