
Master Computer Science

Machine Learning on diagnostic imaging data

of systemic sclerosis patients based on lower-

dimensional image representations

Name: Andreea Dincu
Student ID: s2560623

Date: 28/09/2021

Specialisation: Data Science

1st supervisor: Prof.dr.ir. F.J. Verbeek
2nd supervisor: Dr. L. Cao and Dr. V. van Duinen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Systemic sclerosis or Scleroderma is a rheumatic autoimmune disease, characterized by

blood vessel abnormalities, and skin and internal organs fibrosis. Due to the complex

and varied symptoms that define the disorder, the therapeutic scheme applied to each

patient has to be highly personalized. In this work, we explore ways of detecting similarly

developed cases, with the potential of helping with the design of individual treatments. Our

input data contain high-dimensional fluorescent cellular images of endothelial cells exposed

to Systemic sclerosis perturbations. Usually, this kind of analysis starts with segmenting

individual cells from the input image and extracting a set of morphological characteristics

or measurements for each object. These values are aggregated on an image level to create

its signature. The resulting morphological profiles are finally clustered based on similarity.

We will deviate from this standard approach and investigate whether compressing the

input images into a lower-dimensional space can result in information-rich representations,

that could benefit the final patients clustering. We demonstrate that even with a limited

amount of data, we can isolate cases of Sceloderma with comparable severity levels.

Contents

Abstract i

1 Introduction 1

1.1 General approach . 2

1.2 Proposed methodology . 3

2 Cell culture and data acquisition 5

2.1 Patients and healthy volunteers . 6

2.2 Cell culture . 6

2.3 Plasma exposure . 7

2.4 Immunofluorescent staining and imaging . 7

2.5 Image quality control and preprocessing . 8

2.6 Data set composition . 8

3 Machine Learning background 10

3.1 Data usage . 10

3.2 Training procedures . 11

3.3 Performance evaluation . 11

3.4 Neural networks . 11

3.5 Transfer learning . 12

3.6 Data compression . 13

3.7 Image classification . 13

3.8 Image reconstruction . 15

3.9 Semantic segmentation . 16

3.10 Clustering techniques . 16

3.10.1 Connectivity-based clustering . 16

3.10.2 Centroid-based clustering . 17

3.10.3 Clustering evaluations . 17

4 Related work 19

ii

5 Methods 21

5.1 Data preprocessing . 21

5.2 Data augmentation . 23

5.3 Neural networks for extracting embeddings . 24

5.3.1 Segmentation approach . 24

5.3.2 Reconstruction approach . 27

5.3.3 Classification approach . 28

5.4 Clustering algorithms . 30

6 Experiments 32

6.1 Segmentation experiment . 32

6.2 Reconstruction experiment . 33

6.3 Classification experiment . 34

6.3.1 Custom classifier . 34

6.3.2 Pre-trained classification network on ImageNet experiments 36

7 Conclusion and Discussion 38

7.1 Conclusion . 38

7.2 Discussion . 38

7.3 Future work . 40

Bibliography 42

Appendix 48

A.1 Reconstruction architecture . 48

A.2 Custom classification architecture . 49

A.3 DenseNet-121 based architecture . 50

B.1 Performance reconstruction model . 51

B.2 Performance classification model . 51

C.1 Learning curves for the classification model . 52

iii

Chapter 1

Introduction

Systemic sclerosis or Scleroderma (SSc) is an autoimmune rheumatic disease characterised by vascular

damage (vasculopathy) and, skin and internal organs scarring (fibrosis). The interior of the blood vessels

is lined by a monolayer of endothelial cells (ECs), called the endothelium. An early pathological signal

in the development of Systemic sclerosis is the damage of this layer. Although SSc is not curable at the

moment, advancements in the medical field resulted in the possibility of attenuating or treating some of

the symptoms [1].

The goal of the current research is to investigate the methodologies of clustering Scleroderma patients.

We hypothesize that sub-grouping SSc patients based on the perturbations observed at the ECs level can

assist in the development of personalized therapeutic schemes. We specifically curate cellular images to

showcase vasculopathy.

Our hypothesis is open-ended as there is no rigorous method to determine the practicality of the

identified stratification. A medical specialist can only assess whether a specific association between

patients is reasonable based on experience. Additionally, there is a multitude of unobserved factors

(possibly unrelated to Systemic sclerosis) that could influence whether a therapeutic scheme would

indeed benefit each individual in a group. Nevertheless, we consider the study of our hypothesis

relevant, as it has the potential to unveil (subtle) similarities between samples, that could aid the design

of therapeutic strategies. Ideally, in case the discovered similarities seem convincing from a medical

point of view, such a research project could serve as the enabler for an extensive medical study that

attempts to ground the most prominent results into solid medical knowledge.

This research is developed in collaboration with the Leiden University Medical Center (LUMC). The

medical domain experts involved in the project provided a data set of high-dimensional cellular images

from both Systemic sclerosis (SSc) patients and healthy controls (HC).

1

1.1 General approach

The analysis of the impact of a disease has on a cellular block is typically conducted at individual cell

level [2]. A series of single-cell phenotypic features deemed relevant for the given research are identified

and collected, with the assistance of a medical expert. These handcrafted features are further aggregated

for creating a morphological fingerprint for an entire specimen. The dimension of the morphological

fingerprint is equal to the cardinality of the set of features. This compressed representation is passed to

a machine learning algorithm that exploits distinctive phenotypic characteristics to construct clusters of

similarly developed cases. Given that there is no ground truth to be employed for guiding the clustering

algorithm or evaluating the resulting sub-groups, the study can be formulated in the machine learning

domain only as an unsupervised problem.

Data
manipulation Segmentation Feature

definition
Aggregation

Clustering
model

Cellular
images

Clusters

Cells
per image

Features
per cell

Features per image

Handcrafted features

Figure 1.1: Summary of the baseline approach. Cells are segmented from each image i, ci = {ci1 , ci2 , ..., cik
}, with

|ci| different for each image. Feature vectors fik
are defined for each individual cells. All the feature vectors

{ fi1 , fi2 , ..., fik
} for cells in the same image are aggregated, thus resulting in one feature vector fi per image. This

feature vector is used for clustering.

This methodology was shown to yield satisfactory outcomes [3–6]. However, several remarks can

be raised regarding the integrity of the derived clustering as a result of the way the morphological

fingerprints are built.

Firstly, the identified grouping is naturally highly dependent on the quality and relevance of the

handcrafted features. Defining a set of measurements that captures the main characteristics and

uniqueness of each sample can be laborious, most often confined by the developer’s intuition and

knowledge of both medical and machine learning domains. Omitting just a few discriminating features

can be detrimental for the results while including a plethora of features introduces the curse of

dimensionality [7].

Secondly, prevalent morphological characteristics of the cells can be weakened or even lost due to the

aggregation step. By employing a naive dimension-level aggregation, one assumes that the entire feature

variance present in a sample can be captured with only one value. Moreover, depending on the chosen

aggregation method, the summary statistics would be more or less susceptible to outliers and the overall

distribution. Defining a morphological fingerprint that captures the essence of all samples might require

a unique aggregation strategy per dimension. This is a non-trivial task that can easily translate into

over-engineering.

2

1.2 Proposed methodology

In the present study, we aim to explore alternative approaches, based on the discovery of relevant patterns

or features rather than the employment of a rigid set of measurements. Namely, we replace the curated

morphological profiling step with a deep neural network capable of assembling lower-dimensional

representations (i.e. embeddings) of the input images. This adjustment intrinsically shifts the attention

from single-cell phenotypic features to the characteristics of the entire cell population present in a

sample.

Data
manipulation

Deep learning
model

Classification
Segmentation
Reconstruction

Clustering
model

Cellular
images

Outcome

Embeddings Clusters

Figure 1.2: Summary of the proposed methodology for defining clusters of Systemic sclerosis patients. The deep
learning model can have as objective to either classify, segment or reconstruct the input data.

Autoencoder neural networks are specifically popular for their ability to construct low-dimensional

representations of the received input data. The derived embeddings retain essential information for

reconstructing [8] the original data (up to a certain degree), or even constructing an improved version

of it (e.g. denoising [9]). There are previous attempts trying to make image representations extracted

using these networks suitable for data clustering [10]. A closely related methodology is to develop

a network that instead of specializing in reconstructing the image, can rather segment desire objects

out of it [11]. However, given the objectives of these networks, there is no intrinsic mechanism to

ensure that discriminating features between the SSc and HC samples are preserved, as they are not

significant for reconstruction. These features are nonetheless instrumental for our application. As the

clustering algorithm that processes the embeddings has to be unsupervised, we must ensure that the

representations sustain as much as possible the discovery of quality groups. Thus, it is preferred to

construct embeddings rich in discriminating features, as it has the potential to aid the stratification.

A promising approach regarding the preservation of discriminating features is to construct a supervised

classification model that can accurately distinguish between healthy and diseased samples. As the

weights of final layers in the model are particularly trained to heavily influence and support the

classification, we can use their activations as our encodings. Unfortunately, this method is more

demanding in terms of the amount of data than an autoencoder. Given the limited amount of data that

could be collected on the period of the research project, this aspect represents an impediment in the

progress of the study, as detailed in Chapter 6. While experimenting with artificially augmenting our

data set, we demonstrate that this method is also highly susceptible to overfitting when the variance of

data is low.

We implement the segmentation, reconstruction and classification approach, extract the associated

3

embeddings for our cellular images, and use this representation as input for the clustering algorithm,

which has to find sub-groups of the SSc patients. We ultimately assess which one of these deep learning

approaches is better suited for deriving appropriate lower-dimensional representations for our study.

In the following chapters, we present both the biological and machine learning background information

necessary for a reader to comprehend the entirety of the paper. We further summarise relevant related

work and do a deep dive into the particularities of the data and the details of the methods used. We

present a series of experiments conducted for developing and assessing the alternative pipelines, discuss

their results, formulate the conclusions and future work opportunities.

4

Chapter 2

Cell culture and data acquisition

The study of the phenotypic modifications occurred at cell level in the presence of chemical perturbations

gives the opportunity to advance the understanding of disease mechanisms [12]. As previously

introduced, endothelium injury is a pathological hallmark in the evolution of Systemic sclerosis. We

hypothesize that endothelial cell (EC) dysfunction in response to circulating metabolic or inflammatory

mediators is likely the main driver of the disease. Thus, treating cultured endothelial cells (ECs) with

plasma from confirmed Scleroderma patients offers access to controllable simulation of the disease.

Supplementing this with healthy controls treatment enables the possibility of comparative studies. The

specific type of cells used in this study are human umbilical vein endothelial cells (HUVEC), which are

ECs isolated from veins from the umbilical cord. The patients with increased fibrosis are considered to

be more severe cases (SSCHL).

These biological probes can be stained with fluorescent dyes and imaged using a high-throughput

microscope for generating cellular images with characteristics of interest highlighted. By visually

inspecting the samples, the medical specialists involved in the project have been able to identify two

indicators that can be used to detect the SSc samples:

• both the cell-borders and actin fibers have a more chaotic appearance

• the level of actin inside the cell increases, while in healthy cells the actin is mainly distributed

around the cell-borders

Based on these findings, we image the actin, borders and nuclei channels. Figure 2.1 offers an illustrative

example of extremely visually distinctive confocal images of Systemic sclerosis and healthy controls.

The extracted information is suitable for further investigation on the impact that the SSc perturbation

has on cell populations or for developing automated pipelines to identify the disease. The channels can

be either introduced into specialized software which produces information-rich singular cell profiles

(including features such as shape, intensity, texture features etc.) or into more complex machine learning

5

(a) Systemic sclerosis. (b) Healthy control.

Figure 2.1: Comparative example of a systemic sclerosis sample and a healthy control. Illustrative 512× 1024 crops,
with the 3 channels (i.e. actin, borders, nuclei) merged into one image.

or deep learning models which are able to directly unveil meaningful insights from the entire confocal

image. An important particularity of this study is that the effects of the applied perturbation are not

localized and can be observed over the entire cell population.

An exhaustive protocol on setting up such a screening assay is detailed in [13]; the cell culturing,

imaging and profiling involved in our study closely follows the presented methodology.

2.1 Patients and healthy volunteers

Venous blood (K2EDTA) was obtained from Scleroderma patients (n = 10), and age-matched healthy

volunteers (n = 5). SSc patients met the criteria set by ACR/EULAR [14], and were all in the active

stage of the disease. Cells were removed by 15 minutes centrifugation at 2500×g. Platelet-free plasma

was obtained by centrifugation of the supernatant at 2500×g for 15 minutes, and stored at −80°C.

2.2 Cell culture

HUVECs were isolated from umbilical cords obtained from the department of obstetrics at the Leiden

University Medical Center, anonymized and under full consent of the parents, as previously described

[15]. Freshly isolated HUVECs were cultured in EGM-2 (PromoCell C-22111) supplemented with 1%

antibiotics for one passage and frozen for later use. For the plasma exposure experiments HUVECs

were thawed and cultured in 1% gelatin coated T25 flasks two days prior to seeding in the 96-wells

plate (Corning 4580). The glass surface of the 96-wells plate was coated according to [16]. In short, the

glass surface was incubated overnight with 0, 5% glutaraldehyde (Sigma Aldrich; G 400-4) in “water

for injection”, WFI (Ampuwa). Afterwards, wells were washed thoroughly with WFI and incubated

overnight with WFI. Prior to seeding, the glass surface was incubated with 1% gelatin in PBS for 30

minutes at 37°C. The gelatin solution was aspirated and the coating was cross-linked by incubation with

0, 5% glutaraldehyde in PBS for 20 minutes at room temperature. Afterwards the wells were washed

repeatedly with warm PBS, and incubated with 1% Glycine in PBS for 7 minutes to block any exposed

aldehyde groups. Wells were incubated with PBS for at least 4 hours before seeding the cells. HUVECs

were seeded near confluency at a density of 9000 cells/well in 100µL EGM-2 medium. Cells were

6

cultured for 2 more days before exposure to allow for a quiet uniform monolayer to form.

2.3 Plasma exposure

To assess the differences between endothelial cell phenotype induced by healthy and Scleroderma

patient plasma, confluent HUVEC monolayers were exposed to 25% recalcified K2EDTA plasma from

either SSc patients or healthy controls for 18 hours. K2EDTA plasma was recalcified by adding 0.5 µM

recombinant Hirudin (ABCAM ab201396), 25 µg/ml CTI, 1.85 mM CaCl2 to a K2EDTA plasma volume

equaling 25% of the total sample volume. Endothelial cell basal medium (PromoCell) containing 1:100

ITS supplement (Gibco 41400) was added to obtain the final volume. 12.5 µM Compstatin was added to

prevent complement activation for some experiments. At most 8 technical replicates were made for each

plasma exposed HUVECs.

2.4 Immunofluorescent staining and imaging

Prior to fixation, cells were incubated with MitoTracker Deep Red FM (InVitrogen M22426) for 30

minutes. Cells were fixated by incubation with 3, 7% PFA + 0, 5% BSA in PBS for 15 minutes, washed,

and permeabilized by incubation with 0, 2% Triton X-100 in HBSS+ for 10 minutes. 10 minute blocking

by incubation with 5% BSA in HBSS+ was followed by a two hour long incubation with primary

antibody against VE-Cadherin (BD 555661, 2µg/ml in HBSS+ with 0.5% BSA). Cells were washed three

times with 5% BSA in HBSS+, and incubated with 488 Alexa-fluorophore labeled Donkey anti-mouse

secondary antibody (Invitrogen A-11001, 2µg/ml), 1:200 Rhodamine Phalloidin (Invitrogen R415), and

1:1000 HOECHST 33258 (Molecular Probes) in HBSS+ with 0, 5% BSA for one hour. Cells were washed

with blocking buffer, and stored under HBSS+. Max-projections of 11 z-steps at 0, 8µm intervals were

acquired using a high content confocal microscope (Molecular Devices, ImageXpress™ Micro Confocal)

at 20× magnification (Super Plan Fluor ELWD DM, NA = 0.45 and Nikon Plan Apo Lambda; NA

= 0.75), utilizing full resolution (2048× 2048) and dynamic range (16-bit). The objective lenses were

changed as the latter has an increased contrast and gathers 4× as much light as the other objective.

Dapi, FITC, TRITC, and CY5 channels were used to acquire nuclei, VE-Cadherin, F-actin, and mitochondria,

respectively. Four sites were imaged per well in a 2× 2 configuration spaced 200µm apart.

Due to the low intensity of the mitochondrial staining, mitochondrial structures were indiscernible

from the background signal. Therefore, mitochondria were not taken into account for the subsequent

analysis. Likely, the thiol-reactive nature of the Mitotracker Deep Red FM probe led to excessive binding

to cysteine residues of plasma albumin, lowering the overall availability of the probe for uptake by

the mitochondria. Unfortunately, using higher concentrations of Mitotracker Deep Red FM resulted in

undesired effect, e.g. mitochondrial stress, due to the high cytotoxicity of this probe.

7

(a) Nuclei channel. (b) Borders channel. (c) Actin channel.

Figure 2.2: Random sample from data set.

2.5 Image quality control and preprocessing

Images were checked for common artifacts, e.g. out-of-focus images, debris, clipping/saturation artifacts,

and clumped cell growth, using in-house routines. A focus-score metric defined as the slope of the radial

averaged log-log power spectrum- was obtained for each image, assuming a high ratio of high-frequency

components to low-frequency components for in-focus images [17,18]. For each image, median, standard

deviation, min(Q0.01), max(Q0.99), Q0.25, Q0.75, and total intensity values were computed. Results were

plotted in histograms comprised of all images for a given channel and plate to assess outliers [18].

Visual inspection of outliers was performed to assess image quality and the presence of artifacts before

discarding the image. Sites that contained failed images were discarded to prevent missing values.

To correct for uneven illumination and vignetting, artificial background images were constructed for

each channel and plate separately, using in-house routines. To cope with a small number of images

and/or the presence of bright structures, an iterative approach was used, loosely based on the approach

in [19]. In short, bright areas or debris was iteratively filtered out by first identifying areas with intensity

values 3×standard deviation above the local median value, and assigning these areas the intensity value

of the direct neighborhood. This procedure was repeated for several iterations, after which the median

weighted average of the images was computed and smoothed by a Gaussian filter. The correction image

was constructed by dividing the mean background value by the smoothed artificial background image.

All images in the corresponding channel and plate were multiplied by the correction image to obtain

the illumination corrected images.

All these preprocessing steps were applied in the laboratory, before the modelling phase was even

initiated.

2.6 Data set composition

After filtering the sites that contained artifacts, the final number of samples that the data set contains is

401. The final distribution of classes is 64% SSc samples and 36% controls.

8

Each site is represented as an image with shape 3× 2048× 2048, with the 3 channels representing the

actin fibers, borders and nuclei of the cells. Figure 2.2 illustrates a random example from the final data set.

Based on the opinion of medical experts, our collection includes some SSc samples in which the disease

markers are highly distinguishable while in the majority of cases recognizing the examples originated

from patients and from the controls is quite challenging.

9

Chapter 3

Machine Learning background

Machine learning is a branch of Artificial Intelligence that studies data-driven algorithms which try

to mimic human reasoning. The performance of these procedures is gradually improved based on the

knowledge extracted from input data.

In this chapter, we are going to discuss the machine learning concepts needed for a complete understanding

of the methods used in the current study. We start by covering basic techniques of introducing data

into the system. Afterwards, we present neural networks, a sub-type of machine learning algorithms

that serve as our principal method of constructing image embeddings. Because the data set that we

are using is rather small for the requirements of such techniques, we discuss ways to make neural

networks applicable in our scenario. We present two model training paradigms used in our pipeline

and evaluation tactics. We introduce data compression and the theoretical details behind the three

approaches that we used for implementing it. Finally, we discuss some clustering methods relevant to

our study.

3.1 Data usage

Typically when training any type of machine learning algorithms, the data has to be divided into three

sections:

• a training set - used for training the parameters of the model;

• a validation set - used for assessing the quality of last training epoch;

• a test set - used for defining the actual performance of the model; this set must contain only

examples unseen during the training process.

Cross-validation is an additional technique that aims to eliminate any bias that can occur due to a

fortunate split of the data set. This procedure is commonly applied for ensuring the correctness and

generalization of a model. The idea behind it is to first isolate your test set, and then train your model

10

with different train and validation splits. The final performance of the model is equal to the average

score of all the created instances.

3.2 Training procedures

Machine learning algorithms can be tuned according to two types of learning procedures, supervised

and unsupervised learning. Supervised learning is a technique in which an objective function is

optimized according to data labelled for a specific task. The algorithm is said to have successfully

converged when it is able to correctly generalize its knowledge on unseen examples. This methodology

is useful in problems such as classification or segmentation. In unsupervised learning, the model has

to uncover hidden structural components or patterns in unlabeled data, without receiving any ground

truth. Examples of tasks that employ this technique are clustering analysis and dimensionality reduction.

3.3 Performance evaluation

Evaluating the trained machine learning model is a vital part of developing a proper solution for any

given problem. This evaluation can be done using metric functions. The choice of metric function is

dependent on the task that the machine learning algorithm is trained to solve. However, the training

procedure should not have an impact, in this case. We introduce several metric functions relevant in the

following sections when discussing specific machine learning tasks.

3.4 Neural networks

Neural networks (NNs) are a special type of machine learning algorithm inspired by the connections

formed between neurons in the human brain. A general scheme of these networks is illustrated in

Figure 3.1.

...

...

...

x1

x2

xn

y1

yk

Input layer Hidden layer Output layer

Neurons
Input

features
Output
features

Figure 3.1: General scheme of neural networks.

11

Neurons are the core elements in a neural network. They are arranged in interconnected layers. Any

layer of neurons presents between the first and last layer (input and output layer, respectively) is called

a hidden layer. Architectures with more than 1 hidden layer are considered to be deep learning models.

Each neuron applies a non-linear (activation) function on the weighted sum of its inputs. The weights

are randomly initiated, and updated during the biphasic training process of the algorithms: forward

propagation and backpropagation.

Forward propagation: The data is introduced into the network in batches. In this study, the procedure

employed for training neural networks follows the supervised learning approach. Thus, the

data is labelled. Each batch of data is propagated through the layers in order to compute the

corresponding predictions. An appropriate error is computed between the ground truth and the

predicted values, using a loss function. The goal is to minimize the error by gradually moving

towards a minimum of the loss function.

Backpropagation: The weights are modified by propagating backwards the error throughout the

network. This update is generally conducted using a variant of Gradient Descent. The derivatives

of the error with respect to each weight are computed, and the resulting gradients are subtracted

from the corresponding weights. The step size with which the optimization algorithm moves is

regulated by a learning rate. In the current research project, we use the Adam optimizer [20].

The magnitude of the learning rate can be fixed during the entire training process or it can fluctuate

between iterations or epochs, according to a learning rate scheduler. This update is generally defined

using parameters such as momentum or decay. In this project, we mainly use schedulers that update

the learning rate based on the number of steps taken, when a performance metric is not improving or

according to a cosine annealing schedule [21].

Neural networks can be used to model complex functions but, because of their capabilities, are more

data-hungry than general machine learning approaches. A complex model trained on a small amount of

data will likely overfit or learn a direct relationship between a specific sample and an outcome. Building

a simplistic model can result in underfitting the data or the inability of the model to approximate

the target function. Generally, there is considered to be a strong and direct correlation between the

dimension (and quality) of the data set and the performance of (deep) neural networks.

3.5 Transfer learning

An important technique that enables the applicability of powerful deep learning networks on small data

sets is transfer learning. The fundamental idea of this method is to train a neural network (initialized

with random weights) on a large data set, preferably related to the problem you are actually trying to

solve. Afterwards, (part of) these pre-trained weights are used as initialization for a model that is trained

on the initial (smaller) data set. The architecture of the target model can differ from the pre-trained one,

12

but it must encapsulate the layers whose weights one wants to preserve. The pre-trained weights can be

frozen, thus the backpropagation process will only affect the newly added layers, or they can be further

fine-tuned on the small data set.

3.6 Data compression

The goal of the current research is to investigate ways to cluster Systemic sclerosis patients using models

able to interpret information from the entire high-dimensional cellular images.

Directly clustering high-dimensional data comes with several challenges, which are generally referred

to as the curse of dimensionality [7]. The clustering algorithms aim to group the observations based on

relevant attributes. As the dimensionality of the data increases, identifying these meaningful attributes

becomes more difficult. Furthermore, with a larger number of features the possibility of correlation

increases. Thus, a common first step in clustering high-dimensional data is to apply a method for

representing this data in a lower-dimensional space, in order to alleviate (part of) these issues.

The most prominent dimensionality reduction technique is principal component analysis (PCA) [22].

PCA reduces the dimensionality of the data by projecting the data points in directions that maximize the

retained variance. The particularity of PCA that limits its applicability in our case is that it is agnostic to

the locality, thus the positioning of the pixels in the images is completely neglected.

A different approach for encoding the images is to allow a neural network to learn meaningful

representations of the data, that can aid the target task (i.e. clustering). Generally, the network learns

the required encodings while training to perform a surrogate task, such as image classification,

reconstruction or semantic segmentation. Activations of any of the layers in this network can be

perceived as eligible embedding, as long as the shape is lower-dimensional than the input data.

We further introduce each of the mentioned surrogate tasks in the context of machine learning and

explain their corresponding training details and evaluation methods.

3.7 Image classification

The classification task refers to a problem where a predictive model is trained to assign labels to the

input data. This is a supervised learning task and the training of such networks follows the procedure

previously detailed, where a loss function has to be employed during the training process. One of the

possible candidates for this is cross-entropy:

H(P, Q) = − ∑
x∈X

P(x) ∗ log(Q(x)) (3.1)

13

where X is a set of examples, P(x) is the one-hot encoding of the true label of example x and Q(x)

is the probability of example x being each of the considered classes, as returned by the model. The

cross-entropy function is easily adaptable to the binary classification case.

In the case of k-class problem, with k > 2, trying to maximize the likelihood of the correct class given a

sample can result in a longer training time and an overly confident model, less capable of generalization.

In order to alleviate this issue, one can use the label smoothing regularization technique [23]. Assuming

a small smoothing factor ε is set, the hard targets, 1 for the true classes and 0 for the other labels, are

replaced with 1− ε and ε/(k− 1).

In terms of evaluating a classification model, there are several metrics that can be used. Before defining

the metric functions of interest for our study, we need to introduce the following terminology.

Let’s assume that we trained a model to recognize samples coming from patients with a particular

disease. Thus, the algorithm classifies a sample as either disease, the positive class, or healthy, the

negative class. The nature of the data is not relevant for this example. A prediction made by a model on

a specific test observation can fall into one of the 4 categories:

True positive (TP): correctly diagnosed positive sample.
True negative (TN): correctly diagnosed negative sample.
False positive (FP): negative sample labeled as positive.
False negative (FN): positive sample labeled as negative.

With this terminology in place, we can now define a series of metrics that can be employed evaluation

for binary classifiers. Table 3.1 provides a list of several auxiliary metrics that can be employed in such a

binary classification problem.

For a multi-class scenario, the recall, precision and F-score are calculated with respect to each individual

class and then averaged in order to compute the overall performance of the model.

Metric
name

Formula Description

Accuracy TP+TN
TP+TN+FP+FN Percentage of correctly classified examples.

Recall TP
TP+FN Percentage of correctly diagnosed samples out of all

the positive examples.

Precision TP
TP+FP Percentage of correctly diagnosed samples out of all

the positively diagnosed examples.

F-score (1 + β2)× precision×recall
β2×precision+recall Weighted harmonic mean of recall and precision.

β is a positive real number that indicates the
importance of recall relative to precision. The most
common value for β is 1, which indicates that both
recall and precision are as important.

Table 3.1: Metric functions used for evaluating classification model.

14

To benchmark neural network classifiers, one can standardize machine learning algorithms such as

support vector machines (SVMs) [24]. In the context of linear binary classification, the algorithm aims

to find the hyperplane, named decision boundary, that maximizes the distances between the points

associated with each class. Nonlinear classification problems can be solved using a kernel trick, that

translates the data points into a feature space where the linear approach is applicable.

3.8 Image reconstruction

Image reconstruction involves compressing the input into a lower-dimensional space, and then trying to

build up a higher-dimensional representation from this restricted encoding, that resembles as closely

as possible the original data (see Figure 3.2). Details are lost in accordance with how restrictive the

encoding space is defined to be. The neural networks that implement such an algorithm are called

autoencoders. As this is a standard way to compress information using deep learning, we are interested

in its suitability for embedding our cellular images.

Encoder

Bottleneck

Decoder

Input image Encoding Reconstruction

High-dimensional space
C × H ×W

e.g. C = 3

Lower-dimensional space
E

High-dimensional space
C × H ×W

Compression Up-scaling

Figure 3.2: Summary of the reconstruction pipeline and general autoencoder architecture.

Even though this class of models are considered to fit into the unsupervised learning paradigm, as they

do not require labelled data, their optimization process still follows the supervised learning approach.

During the training of autoencoders, the distance between the original image and the reconstruction has

to be minimized. A loss function that can be used is a pixel-level version of the mean-squared error

(MSE):

MSE =
1
N
×

N

∑
n

H

∑
i

W

∑
j
(yni,j − ŷni,j)

2 (3.2)

where N is the number of samples in the data set, H and W are the height and width of one sample, yn

is the ground truth of the n-th sample and ŷn is the predicted value.

15

3.9 Semantic segmentation

Semantic segmentation is the process of classifying individual pixels in an input image as belonging to a

specific class. We are interested in applying this technique for segmenting the actin fibers, such that the

data representations computed throughout the model will intrinsically encapsulate information about

the positing of the actin. This information is of interest as it exposes one of the indicators mentioned in

Chapter 2 for identifying samples from SSc patients.

The output of a neural network that performs such a task is a pixel-wise probability distribution over

the classes that a pixel can be a part of. In the nuclei segmentation example, one pixel can only take two

values, as it can be part of either the background (0) or nuclei (1). The ground truth in this example

needs to be a binary map, with a value of 1 on the positions where nuclei are placed.

Cross-entropy can be again used for calculating the segmentation performance. Another popular choice

is the dice loss.

An evaluation metric that can be applied to measure the accuracy of a segmentation model is the Jaccard

index or Intersection-over-Union (IoU). The standard accuracy is not a useful metric in this case as

it is not suitable for problems that involve class imbalance, such as semantic segmentation. IoU has

generally been defined as the intersection of the percentage of overlap between the ground truth and

the prediction. In the context of semantic segmentation, IoU can be redefined at a class level as shown

in eq. (3.3).

IoUk =
TPk

TPk + FPk + FNk
, where k is a class. (3.3)

The overall performance of the model is then calculated as the average of the class-level IoUs. However,

there are cases, such as the binary semantic segmentation of nuclei, in which the IoU for the nuclei class

might be sufficiently informative.

3.10 Clustering techniques

Clustering analysis is a machine learning technique with the goal of discovering legitimate groupings of

the data. There are numerous types of clustering approaches, but, due to the specific of our study, we

focus specifically on unsupervised variants such as connectivity-based and centroid-based methods.

3.10.1 Connectivity-based clustering

Connectivity-based clustering or hierarchical clustering is a class method that provides a hierarchy of

samples based on their distance to each other, instead of definitive clusters. This family of algorithms is

divided into two types:

1. Divisive approach: the algorithm starts with the complete set of data and iteratively connects

samples based on their distance.

16

2. Agglomerative clustering: a single element is used as a starting point and the rest of the samples

are aggregated to it, on a distance-based, to form clusters.

One particularity of hierarchical clustering is that the number of clusters is not required for training. A

cut has to be made at the desired level in the hierarchy in order to obtain samples grouping. This is

especially useful in more exploratory applications, where there is no strict requirement on the number

of clusters.

The algorithms naturally require the definition of a distance metric, but also the choice of a linkage

criterion. This criterion specifies the rule based on which connections between samples are formed.

Common linkage criteria are:

1. Single-linkage criterion which combines at each step the clusters with the minimum distance

between all elements in the two sets.

2. Maximum or complete linkage criterion aggregates the clusters with the maximum distance

between all the elements.

3. Average linkage criterion which combines clusters based on the average distance between the

elements in the two sets.

3.10.2 Centroid-based clustering

Centroid-based clustering assumes that clusters can be represented by a central vector. The observations

in data that are closest to this vector are considered to be part of the corresponding cluster. This approach

requires as parameters the desired number of clusters k.

K-means clustering is an algorithm representative of this approach. Firstly, k random cluster centre

points (centroids) are defined. The centroids do not have to be observations in the data set. Then, the

centroids are iteratively updated such that the squared distances between elements assigned to the

cluster and its centre are minimized. The algorithm converges when the centroids are not updating

anymore.

3.10.3 Clustering evaluations

The evaluation of clustering algorithms focuses on the degree of separation between clusters or the

similarity of the samples that are grouped together.

The Silhouette Coefficient can be used to assess how well the clusters are defined when there are

no ground truth labels. It is calculated using the equation (b − a)/max(a, b), where a is the mean

intra-cluster distance (i.e. distance between the points within a cluster) and b is the mean inter-cluster

distance (i.e. distance between clusters). The Silhouette score ranges between [−1, 1] with 1 defining

well-separated groups, 0 indicating coinciding clusters and −1 describing wrongly assigned clusters.

Davie-Bouldin score [25] is another cluster separation metric which computes the average similarity

17

scores between pairs of clusters. The similarity is the ratio of intra-cluster and inter-cluster distances.

The lowest the scores, the better the performance.

Homogeneity and completeness are two metrics that requires a labelled data set. The maximum

homogeneity score is obtained when each cluster is formed only from elements with the same label,

while completeness score is maximal when examples from a specific class are associated to the same

cluster. Both metrics are based on the normalized conditional entropy measures.

Finally, V-Measure is the harmonic mean between the homogeneity and completeness scores.

18

Chapter 4

Related work

Morphological profiles of high-throughput fluorescent cellular images are regularly defined using

aggregated values of handpicked features or measurements of segmented cells [13]. These signatures

were used for various analyses from annotating genes [26], identifying relationships between genes

[27, 28], discovering similarities between different compounds [29], etc. These phenotype profiles are

nonetheless a collection of features that summarize, in a restrictive manner, the relevant information in

the input images in a compressed space.

Automatically constructing lower-dimensional representations of images using neural networks is an

established technique for dimensionality reduction [30,31], which starts to be embraced by the biological

imaging field. The encodings can be tailored towards specific goals [32, 33], according to the underlying

mathematical understanding of the objective functions used to train the deep learning models. In

previous work, multiple ways of computing lower-dimensional representations of different medical

images were explored.

Embeddings were previously extracted using models such as recurrent neural networks [34] or siamese

convolutional networks [35]. The authors used these representations as a way of retrieving images of

similarly developed medical cases [36, 37]. These approaches demonstrate the similarity property that

the encodings can encapsulate. Being able to define similarity measures between embeddings is vital for

successfully applying clustering algorithms on these lower-dimensional representations.

As such, autoencoders are a popular option for learning feature representations of high-content

fluorescent screening. Protein expression patterns of single cells were previously extracted using

convolutional autoencoders. Based on them, human proteins could have been examined using hierarchical

clustering [38]. The neural network was trained using a pixel-wise mean-squared objective function.

Moreover, HeLa cells exposed to various RNAi genes depletion were clustered for observing similarities

between the induced abnormal phenotypes. The features necessary for clustering were defined on a

single-cell level using an autoencoder architecture [39], with the sum of residuals between the input and

19

output data as the loss function.

Morphological profiles of entire high-throughput cellular images depicting drug inducted genetic

perturbations of cancer cells were extracted using an Inception-v3 classifier [40] pre-trained on ImageNet

[41]. The segmentation step of singular cells was omitted. Thus, the solution considered the entire

confocal images. The neural network was not fine-tuned on the target data set. The final linear layer of

the model, in charge of classification, was removed, and the classification task was eventually performed

using a 1-nearest neighbour approach on the activations of the penultimate layer of the network, for

comparison to previous results [42]. Additionally, in [43] transfer learning approaches were tested

on several neural network architectures for classifying mechanisms of action (MoAs) of breast cancer

cells. However, differences in the acquisition and staining processes of confocal images can deter the

pre-trained models’ generalization [44]. Adapting the weights to a different domain may lead to an

undesired drop in performance or to limited improvements.

Convolutional neural networks classifiers were successfully used to learn discriminative feature

representations of generic visual recognition tasks [45]. Thus, applying such architectures to medical

images is a promising avenue. Lower-dimensional encodings of genetic perturbations on various human

cells (including HUVEC) were created using an adapted version of the DenseNet-161 classifier [46].

These embeddings were further used for varied types of analysis including hierarchical clustering of

similarities between endothelial cells treated with different growth factors [47].

20

Chapter 5

Methods

In this chapter, we explore the exact methodology used for developing a deep learning solution for

clustering Systemic sclerosis patients. Figure 5.1 illustrates the complete pipeline. Each component is

elaborated on in the following sections.

Pre-processing Augmentation Deep learning
model

Classification
Segmentation
Reconstruction

Clustering
model

Cellular
images

Embeddings
Clusters

Data manipulation

Figure 5.1: Complete scheme for the proposed solution for defining clusters of Systemic sclerosis patients. The deep
learning model can have as objective to either classify, segment or reconstruct the input data.

5.1 Data preprocessing

The first step in our pipeline is data preprocessing, which consists of 5 transformations, as depicted in

Figure 5.2. The preprocessing is meant to clear out as much as possible from the artifacts and noise in

the confocal images.

Outlier
extraction*

Subtract
background Median filter

Total variation
denoising Center Crop

Jython ImageJ Python

Figure 5.2: Pipeline used for data preprocessing. Part of the pipeline was implemented in Jython scripts using
ImageJ pre-defined functions, and part in Python.

The outlier extraction helps us eliminate the debris that can be interpreted as useful information

(small nuclei or cells). We use a selective median filter for this step. For each pixel, the median of

21

(a) (Objective lenses 1) 150× 150 patch
of the nuclei channel of a raw image.

(b) (Objective lenses 1) The nuclei
channel after applying outliers
extraction, background subtraction
and median filter.

(c) (Objective lenses 1) The nuclei
channel after total variation denoising.

(d) (Objective lenses 2) 150× 150 patch
of the nuclei channel of a raw image.

(e) (Objective lenses 2) The nuclei
channel after applying outliers
extraction, background subtraction
and median filter.

(f) (Objective lenses 2) The nuclei
channel after total variation denoising.

Figure 5.3: Example of results of different pre-processing steps on samples images with each objective lenses. Color
map added to emphasize the differences.

its surroundings is calculated. If the deviation of the intensity of a pixel from the computed median

value exceeds a pre-set threshold, the pixel is replaced with the localized median. We apply the outlier

extraction filter only on the nuclei and borders channels. On the nuclei channel, the localized median is

computed on a 10 pixels radius and brighter pixels, with a deviation of at least 50, are modified. For the

borders channel, the radius is increased to 50 and the intensity threshold to 2 000.

The background subtraction and median filter transformations are used to further eliminate granular

noise. We use background subtraction based on the ”rolling ball” algorithm introduced in [48] with a

rolling of 50. The median filter is applied with a small radius of 2, as we do not want the details to be

blurred too much.

As noted in Chapter 2, two objectives were used during the data acquisition phase. While using the

20× Super Plan Fluor ELWD DM with NA = 0.45, problems with condensation were encountered.

Thus, part of the data set ended up being noisier. In the comparative example in Figure 5.3, it can be

seen that the differences between the two subsets are not fully attenuated after applying the first three

transformations. In order to bring the images closer, a final denoising step is applied. After testing

22

Random
Resized Crop

Train samples

Rotate
Random

Horizontal Flip
Random

Vertical Flip Normalize

Center Crop

Validation samples

Rotate
Random

Horizontal Flip
Random

Vertical Flip Normalize

Center Crop

Test samples

Normalize

Figure 5.4: Pipeline used for data augmentation. The augmentations applied on validation and test samples have
to preserve more from the original characteristics of images. The augmentations applied on test examples are
restricted to just simple cropping and normalization.

various methods, we settled on a total variation denoising approach, as implemented in skimage1.

The last preprocessing transformation applied is simple cropping at the centre, to shape 1536× 1536.

Because of the acquisition equipment and procedure, the raw samples have the tendency to be more

out-of-focus towards the margins. By centre cropping, we ensure that the information passed to the

models is more uniform in this sense.

All the hyper-parameters used during the preprocessing phase were determined empirically.

5.2 Data augmentation

In Section 2.6 we detailed the composition of the data set, with the final size of 401 3-channel confocal

images. Because the number of samples is rather small for properly training a neural network, we have

to apply several augmentation steps (see Figure 5.4). While augmenting, we also ensure that the final

shape of the images (Hin, Win) matches the neural network’s definition, with Hin being the height of the

image and Win, the width.

For the training subset, we crop a random segment of the image, with the aspect ratio preserved at a scale

∼ U (0.5, 1), using nearest-neighbour interpolation. The crop is further resized to the necessary shape

(Hin, Win). Next, we apply a rotation at a random angle, multiple of 90◦. Horizontal and vertical flips

are performed with a probability of 0.5 each. The images are then normalized. This step is commonly

used in machine learning, as it helps with the convergence of the model [49]. We normalize each channel

in an observation to N (0, 1). Considering c to be a channel in a random sample I, the normalization

can be formalized as (c− c̄)/σ(c), with c̄ being the mean value in c and σ(c), the standard deviation.

The validation images are cropped at the centre, randomly rotated, flipped and normalized. In this

manner, we still increase the number of samples, while preserving the original aspect ratio. Increasing

1Total variance denoising function implementation in skimage: https://scikit-image.org/docs/dev/api/skimage.

restoration.html#skimage.restoration.denoise_tv_chambolle.

23

https://scikit-image.org/docs/dev/api/skimage.restoration.html#skimage.restoration.denoise_tv_chambolle
https://scikit-image.org/docs/dev/api/skimage.restoration.html#skimage.restoration.denoise_tv_chambolle

the size of the validation set helps the gradient descent algorithm to perform smoother updates, as we

can create more and larger batches.

The images reserved for testing are the only centre cropped and normalized, as we want to calculate the

final performance of the model only on original samples.

5.3 Neural networks for extracting embeddings

At this stage, the shape of the samples is equal to 3× 1536× 1536. This dimension is too high for the

data to be directly served as input into a clustering model, as explained in Section 3.6. Thus, we need to

construct a model which creates lower-dimensional representations of the images, while preserving

relevant features. The goal of this research project is to cluster Scleroderma patients based on the

similarities in the abnormalities observed in ECs. In this context, the term ”relevant” refers to the

information that can help with grouping similar samples.

As previously mentioned, the simplest approach that can be followed for creating these encodings is to

reshape each sample into a single-dimensional array and apply the PCA algorithm on the flattened forms.

The dimensions that explain a sufficient fraction of the variance in the samples can be concatenated into

lower-dimensional embeddings. We consider the clusters generated using this technique as one of the

benchmarks in our experiments.

A more advanced procedure is to build a neural network whose activations of an internal layer can

be extracted as embeddings. This introduces a restriction on the architecture: to include at least one

block that constructs a lower-dimensional representation of the data. The neural network is optimized

to perform a surrogate goal and the corresponding encodings are used as input for a clustering model.

We investigate the effectiveness of the embeddings extracted using three different surrogate tasks: actin

segmentation, image reconstruction, and binary classification. We implement each of these options and

conduct experiments to determine which of them are appropriate solutions for our case study.

5.3.1 Segmentation approach

Developing a segmentation network is equivalent to training a model to separate areas of interest from

an image. Following the insights received from the medical professionals at LUMC (see Chapter 2) on

the characteristics that can be used to visually identify a Systemic sclerosis sample, we develop a model

for segmenting the actin present inside the cells. We aim to disregard the actin present on the borders of

the cells.

Training the model requires both the confocal images and the corresponding expected outputs, as it is a

supervised process (see Section 3.9). In our case, the input data is composed of the borders and actin

channels. The intuition behind using also the borders channel is that we want to provide the necessary

information for identifying the borders and neglecting the actin present on them.

24

(a) Random size patch from the nuclei
channel

(b) Otsu thresholding, morphological
opening, fill holes

(c) Chamfer distance map (d) Watershed segmentation and kill
borders

Figure 5.5: Steps in manual nuclei semantic segmentation.

Naturally, we adopt the U-Net as our choice of architecture for segmentation. As the originally proposed

model was developed to segment only nuclei, we need to adapt the solution to accommodate our

problem. The implementation that we opted for is a multi-channel adaptation of the original U-Net

architecture. Basically, the only modification is to change the input layer to accept multiple channels. We

tile the input channels to 512× 512. As explained in Chapter 2, the cellular modifications introduced

by the Systemic sclerosis perturbations are distributed in the entire sample. Thus, cropping a smaller

region from the original confocal image does no result in crucial information loss.

Ground truth

The U-Net computes the probability distribution of pixels to be part of the background/border (0) or to

be actin (1). The output has the same shape as the input channels. The definition of a proper ground

truth requires the development of a deterministic segmentation pipeline for both the borders and actin

channels. The computation of each binary mask in this section starts from the channels pre-processed as

detailed in Section 5.1.

For detecting the borders of the cells, we guide the identification of the individual cells by nuclei

positioning. A Voronoi-based segmentation [50] that uses already identified nuclei seed2 can be applied

in this regard. The algorithm divides an image into adjacent areas around each seed (i.e. Voronoi cells),

which contain all the points closest to particular nuclei. The lines that separate the Voronoi cells coincide

with the cell borders and are interpreted as the borders mask.

The steps in nuclei semantic segmentation are illustrated in Figure 5.5. We first apply a standard Otsu

2Voronoi-based segmentation implementation in R: https://rdrr.io/bioc/EBImage/man/propagate.html.

25

https://rdrr.io/bioc/EBImage/man/propagate.html

(a) 512× 512 patch of actin channel. (b) Actin binary map.

(c) 512× 512 patch of borders channel. (d) Borders binary map.

(e) Actin inside the cells binary map.
Binary ‘and‘ operation between the
actin and borders binary maps.

Figure 5.6: Steps in defining the segmentation ground truth (actin inside the cells binary map) for a random
512× 512 patch, and its associated weight map.

thresholding [51] on the nuclei channel. The method returns one value that separates the intensities

in the actin channel into two classes (actin fibres and background) such that the inter-class variance is

maximized or the intra-class variance is minimized. This threshold is then used to define a binary mask.

To filter out granular impurities we apply a morphological opening, with a circle structural element

with a radius of 3. The holes that can occur inside the isolated nuclei are removed using a flood-fill

approach. As there is a possibility for touching nuclei, we apply the watershed segmentation [52] with

dynamic 1 and 4-pixel connectivity on the inverse Chamfer distance map transform of the binary map3.

The inverse Chamfer distance map is computed with normalized Chessknight weights and 32-bit output

format. The individual nuclei are labelled and we clear the incomplete nuclei visible on the borders.

We use the resulting nuclei binary masks as seeds for the Voronoi-based segmentation. The output is a

second binary mask with information only on the regions that correspond to the borders of the cells

(Figure 5.6c).

The actin information is extracted by simply applying the Otsu thresholding on the nuclei channel

(Figure 5.6b). The ground truth definition for the semantic segmentation of the actin inside the cells is

finalized by applying a binary ’and’ operation between the actin and borders binary masks (Figure 5.6e).

Following the methodology in [11], we define a weight map that assigns an importance score to each

pixel in the ground truth map (Figure 5.7). This score is taken into account for loss computation. In our

3Distance map watershed segmentation documentation: https://imagej.net/plugins/distance-transform-watershed

26

https://imagej.net/plugins/distance-transform-watershed

(a) Actin inside the cells binary map. (b) Pixel-level weight map.

Figure 5.7: Segmentation ground truth for a random 512× 512 patch, and its associated weight map.

case, we assign increased importance to the pixels that depict the cell borders and the actin.

In Section 6.1 analyze our results from applying this segmentation approach and discuss how suitable

this class of models is for image encoding construction.

5.3.2 Reconstruction approach

In Chapter 3 we introduce the concept of image reconstruction task and present a state-of-the-art class

of neural networks for solving it in Chapter 4. The reconstruction problem can be summarized in two

phases: the encoding step, where the input data is compressed into a lower-dimensional space (generally

one dimensional), and the decoder step, within which the network tries to expand the information in

the latent space to an image that resembles as closes as possible the original one. The output image is

directly compared to the corresponding input channel.

Although generally, such networks can comfortably handle 3-channel input images, the nature of the

information depicted in our samples made it challenging to find an autoencoder architecture that

could properly reconstruct the entire sample at once. In our case, each channel represents the complete

characteristics of a biological sample. When proving all 3 channels as input for the autoencoder,

we observed that the network would direct its focus on a single channel (i.e. the nuclei one) and

optimize the reconstruction of it. Thus, we opted for training one autoencoder per channel and

define the final embedding of the sample as ei = eactini ‖ ebordersi
‖ enucleii , where operator ‖ denotes

the vectors concatenation function, ei is the embedding for the entire sample and echanneli
are the

encodings constructed for each individual channel in the current sample. The specific order in which

one chooses to concatenate the vectors (in our example: actin→ borders→ nuclei) does not influence the

clustering performance. However, the ordering has to be preserved during the whole experimentation

for consistency reasons.

The architecture we adopted follows the encoder-decoder paradigm, and it is illustrated in Figure 5.8.

We opted for input image patches of 256× 256, softmax as the output activation function and MSE as

27

the reconstruction loss.

Convolutional layer

LeakyRelu

Dropout

Input
1× 256× 256

Convolutional layer

LeakyRelu

Dropout

Dropout

LeakyRelu

Transpose layer

Softmax

Transpose layer

Output probability
2× 256× 256

.

Flatten

Linear layer

LeakyRelu

Dropout

Dropout

LeakyRelu

Linear layer

C×

(C− 1)×

L× ×L
Embedding size

Figure 5.8: Architecture of the autoencoder used for reconstructing all the channels. Softmax outputs the probability
distribution of each pixel being either background or object of interest. The transpose layer implements the transpose
convolution operation [53]. We use C = 4 and L = 2. The last linear block in the encoder must output a feature
vector with the dimensionality equal to the desired embedding size. The dropout rate is 0.4.

5.3.3 Classification approach

The last procedure that we employ for constructing the necessary sample embeddings is a classification

approach. The neural network is designed to solve a binary classification task, namely to predict whether

a sample is treated with plasma from a Systemic sclerosis patient or healthy control. The architecture

has to contain a block of layers whose output features have the shape of the desired embedding. This

block helps the classification, as its weights are still trained during backpropagation, and it also serves

as a proxy for us to extract the embeddings.

Custom classifier

In order to get a sense of the behaviour of our data set as the input for a classifier, we started by

constructing a small custom architecture, shown in Figure 5.9.

The network starts with a series of convolutional blocks, designed to gradually reduce the dimensionality

of the data by a factor of 2. The first convolutional layer receives 3 input channels and outputs 256. The

following convolutional layers have the number of output channels equal to half of the number of the

input channel. All convolutional layers have kernel size (3, 3), stride (1, 1), padding (1, 1) and use Leaky

ReLU [54, 55] as activation. They are accompanied by both batch normalization operations [56] and

28

Convolutional layer

Batch norm

LeakyRelu

MaxPool

Input
3× 512× 512

N×

Flatten

Linear layer

LeakyRelu

Dropout

M×

Linear layer

Sigmoid

Output probability

Figure 5.9: General scheme of the classifier architecture. In our experiments N = 8 and M = 2. The dropout rate is
0.4.

dropout regularization [57], due to the restrictive size of the data set. The max-pooling layers shrink the

dimensionality of the input by a factor of 2. The following two linear layers output 64 and embedding size

features, respectively. They use Leaky ReLU as activation. The final layer is a linear layer with sigmoid

activation, as the classifier is trained to perform binary classification.

Pre-trained variants

There are a variety of powerful state-of-the-art classification models that hold impressive results in a

variety of problems, such as DenseNet [46], ResNet [58], EfficientNet [59], to name a few. We expect

using these networks to favour a better separation of our classes and, in turn, a higher classification

performance. However, applying such complex models directly to our samples is quite challenging, as

they are not developed for small data collections: the number of weights to be tuned is high and the

regularization is generally quite modest for our requirements. Augmenting the samples to a quantity

appropriate for training these neural networks results in creating a low variance data set, which in turn

prompts overfitting. In order to be able to use such powerful networks, we need to make use of transfer

learning (see Section 3.5). Figure 5.10 showcases the general architecture of the classifier model which

includes a pre-trained model.

The fastest way to integrate transfer learning into the pipeline is to employ available pre-trained models

on ImageNet [41]. Although this data set does not resemble the nature of our cellular images, using the

weights from pre-trained models on it as a starting point could offer a better initialization than random.

The overfitting encountered during fine-tuning shrank the set of architectures that were capable to

handle our data set. After testing multiple networks, we settled on the DenseNet-121 architecture, as

the overfitting was more controllable than in any other case. We use binary-cross entropy as the loss

29

Linear layer

LeakyRelu

Dropout

Linear layer

Sigmoid

Output probability

Pre-trained model
(without the output layer)

Input
3× 512× 512

×M

Figure 5.10: General scheme of classifier including pre-trained model. One of the M Leaky ReLU activated linear
layers must have the dimension of the output features equal to the desired embedding size.

function. We set the number of linear blocks following the pre-trained model M = 1.

Nevertheless, a more rigorous approach is to pre-train a model on a large collection of images that

relates at some level to our data. As our acquisition process, samples and end-goal problem are highly

specialized, we consider as good enough candidates any high-resolution confocal images collections,

that contain, besides the nuclei channel, at least another channel resembling the actin or borders ones.

The closest data set that we have been able to find is the RxRx1 CellSignal 2019 data set4, which depicts

drug inducted genetic perturbations on human cells. The linked task is the detection of the type of

perturbation applied at the sample level. There are 1 139 possible classes (including controls). We tried

to pre-train different state-of-the-art architectures on this data set and then fine-tune the weights on our

smaller collection. We used cross-entropy with label smoothing regularization (see Chapter 3). Although

the loss function seemed to have a less extreme variation, the final performance of the target model

did not improve. An important note here is that due to time constraints, we did not invest a lot in

optimizing the pre-trained model, which might have in turn hindered the potential of this experiment.

5.4 Clustering algorithms

Lower-dimensional representations of the samples are obtained using each of the presented methodologies.

The embeddings are defined at a well-level. As we mentioned in 2, a biological sample is cultured in a

well and for each well, we imaged at most 4 non-overlapping sites. This means that one biological sample

corresponds to at most 4 unique observations in our data set (thus, at most 4 encoding representations).

We apply the median over the embeddings associated with different sites of the same well to obtain the

4Original source of the data set and complete description: https://www.rxrx.ai/rxrx1.

30

final sample embedding.

We first analyse whether the information encapsulated in the embeddings retain sufficient discriminating

features to be able to form two clusters with high ground truth class homogeneity. Thus, we check if

we can construct, based on the encodings, one cluster with the class majority being Systemic sclerosis

samples and another one, with the control observations. We implement this using the K-means algorithm

with k = 2.

We then apply hierarchical clustering to finally try to check whether we can identifying pertinent

subgroups in our data. We assess the resulting clusters based on the homogeneity, completeness,

Silhouette and Davies-Bouldin scores.

31

Chapter 6

Experiments

In this section, we describe the experimental settings tested for defining lower-dimensional representation

of the cellular images and sub-groups of patients and controls. We start by investigating how suitable

models performing segmentation are for constructing image embeddings. Then we experiment with

both reconstruction and classification architectures. We train neural networks for both tasks on data

sets augmented at different degrees and then define the image embeddings for our unaltered input

images. We develop baseline embeddings by directly applying PCA. We verify that the encodings still

contain features that discriminate between SSc and HC samples by training a simple SVM classifier and

constructing a two-class clustering using K-means. Finally, we develop dendrograms using the image

representations extracted from the neural networks.

6.1 Segmentation experiment

Training a deep learning model for segmenting the actin inside the cells proved to be a quite difficult

problem, due to the delicate details in the input channels (i.e. actin and borders). Constructing a larger

data set, through acquisition and/or augmentation could lead to better convergence. However, the

method would still not be suitable for our use case, due to some architectural technicalities in the U-Net.

The initial reason for training the deep learning model was to be able to encode the initial confocal

images into a lower-dimensional space. Given the general architecture of the U-Net follows the standard

autoencoder structure (see Figure 3.2), the final layer in the encoder could be perceived as a viable

source for image encodings. However, by simply computing the output shape of this layer, one can

determine that the actual representation at that level is inherently higher-dimensional than the input.

The complete input shape for our U-Net model is 2× 512× 512. By simply serializing this representation

we obtain a vector of 2× 130 000 features. The encoder’s output has a shape of 1024× 32× 32, which

converts into a vector with over 1 million features. Adding more blocks to the encoder further increases

32

(a) Actin reconstruction. (b) Borders reconstruction. (c) Nuclei reconstruction.

Figure 6.1: Example of the channels reconstruction achieved with

this number. Due to this dimensionality expansion, we conclude that the U-Net architecture is not

suitable for extracting lower-dimensional representations of our data.

6.2 Reconstruction experiment

We train three individual autoencoders for each channel: nuclei, actin and borders. We use random crops

from the augmented samples with a shape of 256× 256. The reconstruction of the borders and especially

the actin channels are more challenging, due to the high amount of fine details. The size of the bottleneck

is tuned to 256 such that the reconstruction for all channels is possible and the dimensionality of the

encoding is kept relatively low. The channel embeddings extract for different sites of the same well

are averaged. We finally concatenate the channel encodings into a single one-dimensional embedding.

This process results in 103 sample embeddings with a size of 768. Figure 6.1 showcases an example of

sample reconstruction.

We first apply SVM with a 5-fold cross-validation scheme to check whether we can discriminate between

the two classes in our data set using the embeddings generated with autoencoders. The accuracy of the

model is 63.5%.

We use PCA to extract the first two principal components and be able to visualize the results of

the clustering. We apply two clusters K-means Figure 6.2a, based on the euclidean distance, and a

dendrogram Figure 6.3a, with the cosine distance as metric. The associated metrics are included in

33

Image embeddings from

PCA Autoencoder Custom classifier DenseNet classifier

Cluster size
Cluster 1 37 16 12 41

Cluster 2 66 87 91 62

Homogeneity score 0.0024 0.0037 0.2171 0.2499

Completeness score 0.0024 0.0055 0.2464 0.2427

V-Measure 0.0024 0.0044 0.2309 0.2463

Davies-Bouldin index 5.49 4.94 0.409 0.846

Silhouette score 0.324 0.469 0.738 0.516

Table 6.1: Performance metrics for the two clusters K-means algorithm applied on embeddings defined using deep
learning models trained for image reconstruction and classification.

Table 6.1.

6.3 Classification experiment

Firstly, we define a classifier benchmark. We directly embed the images in a 64-dimensional representation

using PCA and train an SVM classifier with a 5-fold cross-validation scheme. The performance metrics

are included in Table B.2.1.

6.3.1 Custom classifier

We train several custom models, as presented in Section 5.3.3, on 512× 512 random crops of augmented

samples. We use an embedding size of 8. Due to the conservative size of the data set, we experiment with

several multiplication ratios of the data, in order to determine the amount of augmentation accepted by

the classifier before it starts to overfit. The augmentation levels that we consider extend the data set 1×

(only original data), 5×, 10×, 20×, 30× and 50×. We use a batch size of 8. The train, validation and test

set represent 60%, 20% and respectively 20% of the augmented data. We ensure that all the input data

originated from one biological sample are included in only one of these subsets. The data is shuffled

each epoch such that the batches have a random composition every time. For each run, we store the

weights of the classifier with the lowest validation error. The Adam optimizer has a starting learning

rate of 5e− 5, 1e− 5 weight decay, beta0 and beta1 equal to 0.9 and 0.999 respectively, and an epsilon of

1e− 08. The learning rate is annealed using a cosine scheduler with a maximum of 10 iterations and an

accepted minimum learning rate of 5e− 10.

Figure C.1.1 shows the train and validation learning curves resulted in the data augmentation experiment.

Based on these figures, we conclude that using a data set augmented less than 5× results in underfitting,

while augmenting with a larger factor makes the model overfit. Thus, we select the custom classifier

34

−1 0 1 2 3
Principal component 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Pr
in
ci
pa

l c
om

po
ne

nt
 2

HC in cluster 0
SSC in cluster 0
SSCHL in cluster 0
HC in cluster 1
SSC in cluster 1
SSCHL in cluster 1

(a) Based on embeddings extracted from autoencoder.

−2 0 2 4 6 8 10
Principal component 1

−0.2

0.0

0.2

0.4

0.6

Pr
in
ci
pa

l c
om

po
ne

nt
 2

SSC in cluster 0
SSCHL in cluster 0
HC in cluster 1
SSC in cluster 1
SSCHL in cluster 1

(b) Based on embeddings extracted from custom classifier.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Principal component 1

−0.2

−0.1

0.0

0.1

0.2

0.3

Pr
in
ci
pa

l c
om

po
ne

nt
 2

HC in cluster 0
SSC in cluster 0
SSCHL in cluster 0
HC in cluster 1
SSC in cluster 1
SSCHL in cluster 1

(c) Based on embeddings extracted from the ImageNet pre-trained DenseNet-121.

Figure 6.2: Output of K-means algorithm with k = 2 and euclidean distance for embeddings extracted from the
image reconstruction and classification deep learning models.

35

trained on a 5× data set for performing the remaining experiments. The performance metrics of this

model are listed in Table B.2.1. When extracting the embeddings, we use the unaltered original samples

and serve a 512× 512 central crop for each of them to the classifier. The median is applied over the

embeddings associated with different sites of the same well. Thus, we construct 103 embeddings with

size 8.

Again, we start by applying an SVM classifier with a 5-fold cross-validation scheme, to check if this

low-dimensional representation can still be used to discriminate between classes. The accuracy of the

model is 67.7%.

We compute the first two principal components and serve them as input for the two clusters K-means

clustering Figure 6.2b and dendrogram construction Figure 6.3b. The K-means clustering uses the

Euclidean distance, while the dendrogram is computed using the cosine distance as the metric. The

performance metrics for the K-means clustering are included in Table 6.1.

6.3.2 Pre-trained classification network on ImageNet experiments

We apply the exact same steps as described in the previous subsection on a classifier pre-trained on

the ImageNet data set. We experimented with multiple state-of-the-art architectures pre-trained on

ImageNet and based on our trials, we settle on the DenseNet-121 architecture. All the weights in the

pre-trained network are fine-tuned using our data set.

We run the same data augmentation experiment on the chosen architecture. The associated learning

curves are shown in Figure C.1.2. We again select the classifier fine-tuned on the data set augmented

to 5× its size and extract the embeddings. The performance descriptors of the classification model are

included in Table B.2.1.

As the accuracy of an SVM model with 5-fold cross-validation trained on these lower-dimensional

representations is 73.5%, we can conclude that the embeddings capture more of the discriminative

features between the two input classes, HC and SSc, than in the other cases. We define the corresponding

principal components using PCA and train clustering models on them. The K-means clusters are

visualized in Figure 6.2c and the associated performance metrics are shown in Table 6.1. Figure 6.3c

illustrates the dendrogram.

36

0 2 4 6 8

Sample type
SSCHL
SSC
HC

(a) Based on embeddings extracted from autoencoder.

−2−1 0 1 2

Sample type
SSCHL
SSC
HC

(b) Based on embeddings extracted from custom classifier.

−1 0 1 2

Sample type
SSCHL
SSC
HC

(c) Based on embeddings extracted from the ImageNet
pre-trained DenseNet-121.

Figure 6.3: dendrograms generated on lower-dimensional representations of unaugmented images extracted from
the image reconstruction and classification deep learning models.

37

Chapter 7

Conclusion and Discussion

7.1 Conclusion

Sub-grouping patients based on the ECs abnormalities is a complex task, with the potential of

advancing the understanding of Systemic sclerosis and unveiling personalized therapeutic schemes. The

unsupervised nature of this problem results in the necessity of an interdisciplinary approach and the

final assessment of the discovered clustering needs to be made by medical experts.

The definition of descriptive features for a sample has been previously done by computing a large

quantity of handcrafted features on a singular cell level. We explore ways to adapt the pipeline to

operate directly on the entire images, such that the context is not lost. We consider deep learning models

that perform image segmentation, reconstruction or classification, while intrinsically compressing the

data into lower-dimensional representations. The resulting embeddings of the input samples are further

used for our clustering goal. Although some of the methods demonstrate high potential for being able

to construct suitable embeddings, the lack of data hinders their performance. Nevertheless, we show

that even in this scenario, the created embeddings already contain features that favor the unsupervised

separation of Systemic sclerosis samples from healthy controls and even the unsupervised discovery of

groups of severe cases.

We consider this study to be a compelling proof of the capabilities of deep learning models for developing

lower-dimensional image representations, that encapsulate the information from the entire sample and

can be successfully used as input for clustering methods.

7.2 Discussion

The augmentation experiment performed on the autoencoder, and two classification networks, proves

that the amount of acquired data is insufficient for successfully training deep learning models. All three

38

neural networks underfit when the collection is not augmented and start to showcase signs of overfitting

when the size of the data set is increased as little as 10 times, with the classifiers being slightly more

susceptible to this issue. The overfitting is due to the limited variance in the images, despite increasing

the data collection. The neural networks are sufficiently complex to create a straightforward mapping

between the input images and the expected output. The high magnitude spikes in the epoch loss are

induced by the amount of data and the necessity of using a small batch size. However, the learning

curves associated with the training processes demonstrate that models with decent reconstruction and

classification performance are achievable, with an appropriate number of samples.

We observe that the autoencoders are able to separate the objects of interests from background in most

cases. However, due to the limited embedding space and the fine details present in both the actin and

borders channels, the reconstructions depict only the most pronounced features and have an observable

blurriness. The latter issue can be alleviated by increasing the embedding space, while the reconstruction

of the fine details can only be achieved with a larger data set and more complex architecture.

For the classification models, the DenseNet-121 based architecture generally outperforms the custom one.

However, the baseline SVM model seems to have a better recall than any of the neural networks. By also

considering the low accuracy and precision scores of the SVM, we can conclude that the baseline model

tends to classify most of the samples as being from patients, which indeed increases the recall score.

Thus, this isolated score should not be considered as a reliable indicator of the model’s performance.

The performance of the SVMs trained using the deep learning generated embeddings confirms the

intuition that, in our study, the lower-dimensional representations should be constructed to retain

features that can still discriminate between the SSc and HC classes. Due to the complex information

encapsulated in each sample (i.e. irregular actin fibres and borders), the features required for image

reconstruction do not necessarily overlap with the ones for class discrimination. This idea is even more

apparent when analysing the clusters generated by the K-means algorithm. The grouping produced

using the embeddings originated from the autoencoder architecture do not separate samples from

patients and controls. This division exists in the clusters defined based on the classifier networks. Both

the custom classifier and pre-trained DenseNet-121 based architecture are able to isolate a sub-set of SSc

samples. All the performance metrics increase when using the classifier as an embedding model. The

increased homogeneity and completeness scores indicate that we can identify clusters with less class

variety. As both the Silhouette and Davies-Bouldin improve, the discovered groups are more compact

while the distance between them increases. Generally, the SSc samples separated from HCs have a

cellular structure visibly distinct from the controls. These results provide compelling evidence that the

classification neural networks are suitable for constructing embeddings for our data set.

The dendrograms reinforce the previous findings. The representation vectors generated using the

autoencoder are strikingly similar. The strong resembles confirms that features associated with the nature

of the samples (i.e. HC or SSc) are not valuable for reconstruction. On the other hand, the embeddings

39

generated using the classifiers are visibly better at separating the two classes and thus support the

discovery of more interesting sub-groupings. In both cases the features are able to encapsulate differences

depending on the origin of the samples. Clusters of mainly Systemic sclerosis cases are formed. Sever

SSc cases (SSCHL) are grouped together even if the classifiers were not served any explicit information

in this regard. Increasing the performance of the classifiers and the confidence of their predictions

(assigning classification scores closer to 0.0 to HC samples and 1.0 to SSc samples) will strengthen the

discriminative features in the encodings and further encourage an increased inter-cluster distance and

class homogeneity.

7.3 Future work

In terms of future efforts, the primarily focus should be to gather a larger collection of samples, such

that artificial augmentation becomes less of a necessity for training a decent model and more of an

improvement option. It is preferred for the additional data to be balanced in terms of class distribution.

The next set is to observe the performance of the models proposed in the current work on the new

data set. Re-training or at least fine-tuning the DenseNet-121 based model should result in an increased

confidence in the prediction and higher performance. Having extreme scores associated with the

predictions generates an improved separation of the classes in the embedding space and a better support

for a clustering approach. If the model is fine-tuned, the additional data has to be pre-processed and

especially normalized using the same scheme as for the original data.

If the number of samples allows, replacing the DenseNet-121 pre-trained model with a more complex

neural networks (DenseNet-161, DenseNet-201, various ResNet models, etc.) might further increase the

classification performance.

Finally, by investing time in defining a performance metric for the clustering algorithm, one can rephrase

the entire study into a supervised problem. The metric can even be encapsulated in the loss function for

both the autoencoder architecture and the classifiers, such that the trained weights can be specialised

towards the construction of embeddings useful for clustering, besides a good performance of the

surrogate task.

40

Acknowledgements

I would like to thank Prof. Fons Verbeek for offering me the opportunity to work on this project and

Dr. Vincent van Duinen for proposing the project and for the patience to understand my needs, as a

computer scientist, for properly integrating the biological knowledge in the AI solution.

Furthermore, I would like to extend my deepest appreciations to Dr. Lu Cao for the insightful

conversations and constant guidance throughout the entire research period.

Finally, I want to acknowledge the tremendous support received from Rudmer Postma, from the

extensive responses to all of my questions, to the availability to guide me in my first cell culturing

experiment. The entire section describing the cell culturing and data acquisition (Chapter 2) process

was kindly documented by Rudmer.

41

Bibliography

[1] Christopher P Denton and Dinesh Khanna. Systemic sclerosis. The Lancet, 390(10103):1685–1699,

2017.

[2] Juan C Caicedo, Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba Molnar, Aliaksei S

Vasilevich, Joseph D Barry, Harmanjit Singh Bansal, Oren Kraus, et al. Data-analysis strategies for

image-based cell profiling. Nature methods, 14(9):849–863, 2017.

[3] Vebjorn Ljosa, Peter D Caie, Rob Ter Horst, Katherine L Sokolnicki, Emma L Jenkins, Sandeep

Daya, Mark E Roberts, Thouis R Jones, Shantanu Singh, Auguste Genovesio, et al. Comparison of

methods for image-based profiling of cellular morphological responses to small-molecule treatment.

Journal of biomolecular screening, 18(10):1321–1329, 2013.

[4] Ashley A Powell, AmirAli H Talasaz, Haiyu Zhang, Marc A Coram, Anupama Reddy, Glenn Deng,

Melinda L Telli, Ranjana H Advani, Robert W Carlson, Joseph A Mollick, et al. Single cell profiling

of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines.

PloS one, 7(5):e33788, 2012.

[5] Darren A Cusanovich, Riza Daza, Andrew Adey, Hannah A Pliner, Lena Christiansen, Kevin L

Gunderson, Frank J Steemers, Cole Trapnell, and Jay Shendure. Multiplex single-cell profiling of

chromatin accessibility by combinatorial cellular indexing. Science, 348(6237):910–914, 2015.

[6] Bushra Raj, Daniel E Wagner, Aaron McKenna, Shristi Pandey, Allon M Klein, Jay Shendure,

James A Gagnon, and Alexander F Schier. Simultaneous single-cell profiling of lineages and cell

types in the vertebrate brain. Nature biotechnology, 36(5):442–450, 2018.

[7] Michael Steinbach, Levent Ertöz, and Vipin Kumar. The challenges of clustering high dimensional

data. In New directions in statistical physics, pages 273–309. Springer, 2004.

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

42

[9] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and

composing robust features with denoising autoencoders. In Proceedings of the 25th international

conference on Machine learning, pages 1096–1103, 2008.

[10] Iordania Constantinou, Michael Jendrusch, Théo Aspert, Frederik Görlitz, André Schulze, Gilles

Charvin, and Michael Knop. Self-learning microfluidic platform for single-cell imaging and

classification in flow. Micromachines, 10(5):311, 2019.

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical

image segmentation. In International Conference on Medical image computing and computer-assisted

intervention, pages 234–241. Springer, 2015.

[12] Jaak Simm, Günter Klambauer, Adam Arany, Marvin Steijaert, Jörg Kurt Wegner, Emmanuel

Gustin, Vladimir Chupakhin, Yolanda T Chong, Jorge Vialard, Peter Buijnsters, et al. Repurposing

high-throughput image assays enables biological activity prediction for drug discovery. Cell chemical

biology, 25(5):611–618, 2018.

[13] Mark-Anthony Bray, Shantanu Singh, Han Han, Chadwick T Davis, Blake Borgeson, Cathy Hartland,

Maria Kost-Alimova, Sigrun M Gustafsdottir, Christopher C Gibson, and Anne E Carpenter.

Cell painting, a high-content image-based assay for morphological profiling using multiplexed

fluorescent dyes. Nature protocols, 11(9):1757, 2016.

[14] Frank Van Den Hoogen, Dinesh Khanna, Jaap Fransen, Sindhu R Johnson, Murray Baron, Alan

Tyndall, Marco Matucci-Cerinic, Raymond P Naden, Thomas A Medsger Jr, Patricia E Carreira, et al.

2013 classification criteria for systemic sclerosis: an american college of rheumatology/european

league against rheumatism collaborative initiative. Arthritis & Rheumatism, 65(11):2737–2747, 2013.

[15] Dianne Vreeken, Caroline Suzanne Bruikman, Stefan Martinus Leonardus Cox, Huayu Zhang,

Reshma Lalai, Angela Koudijs, Anton Jan van Zonneveld, Gerard Kornelis Hovingh, and

Janine Maria van Gils. Eph receptor b2 stimulates human monocyte adhesion and migration

independently of its ephrinb ligands. Journal of leukocyte biology, 108(3):999–1011, 2020.

[16] Edgar F Smeets, Eckhardt JU von Asmuth, Cees J van der Linden, Jet FM Leeuwenberg, and Wim A

Buurman. A comparison of substrates for human umbilical vein endothelial cell culture. Biotechnic

& histochemistry, 67(4):241–250, 1992.

[17] David J Field and Nuala Brady. Visual sensitivity, blur and the sources of variability in the

amplitude spectra of natural scenes. Vision research, 37(23):3367–3383, 1997.

[18] Mark-Anthony Bray, Adam N Fraser, Thomas P Hasaka, and Anne E Carpenter. Workflow and

metrics for image quality control in large-scale high-content screens. Journal of biomolecular screening,

17(2):266–274, 2012.

43

[19] MJ Currie, DS Berry, T Jenness, AG Gibb, GS Bell, and PW Draper. Starlink software in 2013.

Astronomical Data Analysis Software and Systems XXIII, 485:391, 2014.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[21] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv

preprint arXiv:1608.03983, 2016.

[22] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,

Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

[23] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When does label smoothing help? arXiv

preprint arXiv:1906.02629, 2019.

[24] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, pages

144–152, 1992.

[25] David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on pattern

analysis and machine intelligence, (2):224–227, 1979.

[26] Mohammad Hossein Rohban, Shantanu Singh, Xiaoyun Wu, Julia B Berthet, Mark-Anthony

Bray, Yashaswi Shrestha, Xaralabos Varelas, Jesse S Boehm, and Anne E Carpenter. Systematic

morphological profiling of human gene and allele function via cell painting. Elife, 6:e24060, 2017.

[27] Varadharajan Sundaramurthy, Rico Barsacchi, Nikolay Samusik, Giovanni Marsico, Jerome Gilleron,

Inna Kalaidzidis, Felix Meyenhofer, Marc Bickle, Yannis Kalaidzidis, and Marino Zerial. Integration

of chemical and rnai multiparametric profiles identifies triggers of intracellular mycobacterial

killing. Cell host & microbe, 13(2):129–142, 2013.

[28] Adam B Castoreno, Yegor Smurnyy, Angelica D Torres, Martha S Vokes, Thouis R Jones, Anne E

Carpenter, and Ulrike S Eggert. Small molecules discovered in a pathway screen target the rho

pathway in cytokinesis. Nature chemical biology, 6(6):457–463, 2010.

[29] Cynthia L Adams, Vadim Kutsyy, Daniel A Coleman, Ge Cong, Anne Moon Crompton, Kathleen A

Elias, Donald R Oestreicher, Jay K Trautman, and Eugeni Vaisberg. Compound classification using

image-based cellular phenotypes. Methods in enzymology, 414:440–468, 2006.

[30] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural

networks. science, 313(5786):504–507, 2006.

[31] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint

arXiv:1605.09782, 2016.

44

[32] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.

In International conference on machine learning, pages 478–487. PMLR, 2016.

[33] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep representations

and image clusters. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 5147–5156, 2016.

[34] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word

representations. In Proceedings of the 2013 conference of the north american chapter of the association for

computational linguistics: Human language technologies, pages 746–751, 2013.

[35] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore, Eduard

Säckinger, and Roopak Shah. Signature verification using a “siamese” time delay neural network.

International Journal of Pattern Recognition and Artificial Intelligence, 7(04):669–688, 1993.

[36] Carrie J Cai, Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel Smilkov, Martin Wattenberg,

Fernanda Viegas, Greg S Corrado, Martin C Stumpe, et al. Human-centered tools for coping with

imperfect algorithms during medical decision-making. In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, pages 1–14, 2019.

[37] Yu-An Chung and Wei-Hung Weng. Learning deep representations of medical images using

siamese cnns with application to content-based image retrieval. arXiv preprint arXiv:1711.08490,

2017.

[38] Alex X Lu, Oren Z Kraus, Sam Cooper, and Alan M Moses. Learning unsupervised feature

representations for single cell microscopy images with paired cell inpainting. PLoS computational

biology, 15(9):e1007348, 2019.

[39] Christoph Sommer, Rudolf Hoefler, Matthias Samwer, and Daniel W Gerlich. A deep learning and

novelty detection framework for rapid phenotyping in high-content screening. Molecular biology of

the cell, 28(23):3428–3436, 2017.

[40] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking

the inception architecture for computer vision. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2818–2826, 2016.

[41] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages

248–255. Ieee, 2009.

[42] Nick Pawlowski, Juan C Caicedo, Shantanu Singh, Anne E Carpenter, and Amos Storkey.

Automating morphological profiling with generic deep convolutional networks. BioRxiv, page

085118, 2016.

45

[43] Alexander Kensert, Philip J Harrison, and Ola Spjuth. Transfer learning with deep convolutional

neural networks for classifying cellular morphological changes. SLAS Discovery: Advancing Life

Sciences R&D, 24(4):466–475, 2019.

[44] Shai Ben-David and Ruth Urner. On the hardness of domain adaptation and the utility of unlabeled

target samples. In International Conference on Algorithmic Learning Theory, pages 139–153. Springer,

2012.

[45] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative

unsupervised feature learning with convolutional neural networks. Advances in neural information

processing systems, 27:766–774, 2014.

[46] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 4700–4708, 2017.

[47] Michael F Cuccarese, Berton A Earnshaw, Katie Heiser, Ben Fogelson, Chadwick T Davis, Peter F

McLean, Hannah B Gordon, Kathleen-Rose Skelly, Fiona L Weathersby, Vlad Rodic, et al. Functional

immune mapping with deep-learning enabled phenomics applied to immunomodulatory and

covid-19 drug discovery. bioRxiv, 2020.

[48] Stanley R Sternberg. Biomedical image processing. Computer, 16(01):22–34, 1983.

[49] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In

Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[50] Thouis R Jones, Anne Carpenter, and Polina Golland. Voronoi-based segmentation of cells on

image manifolds. In International Workshop on Computer Vision for Biomedical Image Applications,

pages 535–543. Springer, 2005.

[51] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE transactions on

systems, man, and cybernetics, 9(1):62–66, 1979.

[52] Luc Vincent and Pierre Soille. Watersheds in digital spaces: an efficient algorithm based on

immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(06):583–598,

1991.

[53] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv

preprint arXiv:1603.07285, 2016.

[54] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in

convolutional network. arXiv preprint arXiv:1505.00853, 2015.

46

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE international conference

on computer vision, pages 1026–1034, 2015.

[56] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In International conference on machine learning, pages 448–456.

PMLR, 2015.

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning

research, 15(1):1929–1958, 2014.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778, 2016.

[59] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural

networks. In International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

47

Appendix

A.1 Reconstruction architecture

Convolutional layer

LeakyRelu

Dropout (rate = 0.4)

Input
1× 256× 256

Convolutional layer

LeakyRelu

Dropout (rate = 0.4)

Convolutional layer

LeakyRelu

Dropout (rate = 0.4)

Convolutional layer

LeakyRelu

Dropout (rate = 0.4)

Flatten

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Reshape

Transpose layer

LeakyRelu

Dropout (rate = 0.4)

Transpose layer

LeakyRelu

Dropout (rate = 0.4)

Transpose layer

LeakyRelu

Dropout (rate = 0.4)

Transpose layer

Softmax

Output probability
2× 256× 256

Embedding
extracted

256

256× 128× 128

128× 64× 64

64× 32× 32

32× 16× 16

8192

512

256

512

8192

32× 16× 16

64× 32× 32

128× 64× 64

256× 128× 128

Figure A.1.1: Complete reconstruction architecture. Only one channel is used as input. The output represents a
probability distribution for each pixel to be the object of interest (i.e. actin, nuclei or borders) or background.

48

A.2 Custom classification architecture

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Input
3× 512× 512

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Convolutional layer

Batch Norm

LeakyRelu

Max Pool

Flatten

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Embedding
extracted

E

Linear layer

Softmax

Output probability
1× 2

256× 256× 256

128× 128× 128

64× 64× 64

32× 32× 32

16× 16× 16

8× 8× 8

4× 4× 4

2× 2× 2

8

64

E

Figure A.2.1: Complete custom classification architecture, with E being the embedding size. In our case, E = 8.

49

A.3 DenseNet-121 based architecture

Pre-trained model
(without the classification layer)

Input
3× 512× 512

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Linear layer

LeakyRelu

Dropout (rate = 0.4)

Linear layer

Softmax

Output probability
1× 2

Embedding
extracted

E

1024

512

E

Figure A.3.1: Architecture of the classifier based on DenseNet-121 model, with E being the embedding size. In our
case, E = 8.

50

B.1 Performance reconstruction model

Table B.1.1 includes the reconstruction loss on validation and test sets for each of the autoencoders

trained on individual channels.

Channel
Loss

Train Validation Test

Nuclei 0.396 0.225 0.221

Borders 0.788 0.679 0.703

Actin 0.744 0.664 0.642

Table B.1.1: Loss values for the nuclei, borders and actin reconstruction autoencoders.

B.2 Performance classification model

Metrics Baseline classifier (SVM) Custom classifier DenseNet-121 based

Loss

Train

-

0.553 0.550

Validation 0.550 0.581

Test 0.537 0.638

Accuracy

Train

0.603

0.742 0.767

Validation 0.686 0.752

Test 0.673 0.696

Recall

Train

0.860

0.646 0.782

Validation 0.640 0.724

Test 0.607 0.621

Precision

Train

0.637

0.829 0.776

Validation 0.710 0.810

Test 0.755 0.842

F1

Train

0.732

0.691 0.744

Validation 0.650 0.736

Test 0.636 0.698

Table B.2.1: Performance metrics for the two classifiers used in the project: the custom architecture and the neural
network based on the DenseNet-121 architecture.

51

C.1 Learning curves for the classification model

Figure C.1.1 and Figure C.1.2 include the training and validation learning curves for the neural networks

classifiers resulted from the data augmentation experiment.

0.685

0.690

0.695

0.700

0.705
Augmentation ratio 1

Train loss
Validation loss

0.55

0.60

0.65

0.70

0.75 Augmentation ratio 5

Train loss
Validation loss

0.5

0.6

0.7

0.8

Augmentation ratio 10
Train loss
Validation loss

0.5

0.6

0.7

Augmentation ratio 20

Train loss
Validation loss

0 20 40 60 80 100

Epochs

0.4

0.6

0.8

Augmentation ratio 30
Train loss
Validation loss

0 20 40 60 80 100

Epochs

0.4

0.6

0.8

1.0 Augmentation ratio 50
Train loss
Validation loss

Figure C.1.1: Train and validation loss curves for the custom architecture using data sets augmented 1, 5, 10, 20, 30
and 50 times. The loss function is binary cross entropy.

0.55

0.60

0.65

0.70

0.75

0.80

Augmentation ratio 1
Train loss
Validation loss

0.5

0.6

0.7

0.8
Augmentation ratio 5

Train loss
Validation loss

0.5

0.6

0.7

Augmentation ratio 10
Train loss
Validation loss

0.3

0.4

0.5

0.6

Augmentation ratio 20

Train loss
Validation loss

0 20 40 60 80 100

Epochs

0.3

0.4

0.5

0.6

Augmentation ratio 30

Train loss
Validation loss

0 20 40 60 80 100

Epochs

0.2

0.3

0.4

0.5

0.6

Augmentation ratio 50

Train loss
Validation loss

Figure C.1.2: Train and validation loss curves for the DenseNet-121 based architecture using data sets augmented 1,
5, 10, 20, 30 and 50 times. The loss function is binary cross entropy.

52

