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Abstract

Disease risk involves differences in genomic regulation, and despite many in-depth investigations, it remains

unclear how causal relationships can be established due to the dynamic nature of genomic regulation and

because they cannot be discerned as a cause or a consequence. Strengthened by conclusions from other fields,

Mendelian randomization can aid in identifying the causal mechanisms underlying these diseases. MR analyses

rely on establishing good genetic proxies for molecular profiles, called quantitative trait loci, which have been

well established for gene expression and DNA methylation. Given the aetiology of complex disease likely lies in

the interaction between molecular processes, it is crucial to look not only at how cellular changes cause disease,

but also how they influence each other. Here, we take advantage of multiple databases (EWAS Atlas, EWAS

Catalog, and GoDMC) to collate quantitative trait loci libraries from histone post-translational modifications

and DNA methylation, and run a novel modular MR pipeline that uses the TwoSampleMR R package to

perform the MR analyses. With this approach, we focused on 9 selected cardiometabolic traits and reported

36 interesting cases where we found directed associations between an exposure (i.e. SNP) and an outcome

(i.e. trait; e.g. BMI) fitting into one of the seven designed scenarios encompassing all the envisaged ways in

which associations can be observed between the histone post-translational modification quantitative trait loci

and the trait, as well as the DNA methylation quantitative trait loci and the trait.
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Chapter 1

Introduction

Understanding the molecular aetiologies of diseases is a vital stepping stone in the development

of treatment and prevention measures. In epidemiology, observational studies are commonly used and able

to provide insight into the plausible associations between disease exposures and outcomes. Unfortunately,

observational studies’ power is hindered by the effects of confounding and reverse causality, which in turn make

the link between the aforementioned associations and causality unworkable [1]. Alternatively to observational

studies, experimental studies can be used. Randomized controlled trials (RCTs) are part of the latter and are

a very popular study design when aiming at inferring causality with the disadvantage of being expensive and

time-consuming [1]. To circumvent this, Mendelian randomization (MR), an approach resilient to both reverse

causation and confounding, has been rising in popularity in the past decade [2]. Applying MR to quantitative

trait loci (QTLs) and genome-wide association studies (GWAS) data may help unveiling causality within

the context of cardiometabolic disease and allow the uncovering of putative interactions between epigenetic

mechanisms such as histone post-translational modifications (PTMs) and DNA methylation, as well as the

identification of molecular processes that can potentially affect health outcomes. Being such a wide-ranging

family of diseases, collating a large number of publicly available QTL libraries is essential. Furthermore, due

to the nature of this approach (i.e. integrating data from different sources) and the relative newness of MR,

there is also a need for developing a standardized pipeline.

1.1 Epigenetics

Epigenetics is the field that studies how some heritable changes in gene expression occur without any

change to the underlying DNA sequence. Epigenetic mechanisms include molecular changes to DNA such as

DNA methylation (DNAm) and histone PTMs that determine the accessibility of the underlying DNA sequence

to the transcriptional machinery and also repel and recruit transcription factors (TFs) that can regulate gene

expression. Common histone modifications include acetylation, methylation, and phosphorylation [3, 4].

Capturing and processing relevant biological information from epigenetics requires the integration of

several research fields into one unique interdisciplinary scientific community. To that effect, linking data from

genetics, transcriptomics, and phenotypes using the appropriate data sources may lead to new findings in the

field [5] (see Figure 1.1).
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Figure 1.1: Overview of epigenetics and how we can link results from several sources to make sense of
raw biological data. eQTL: expression QTL; meQTL: methylation QTL; GWAS: genome-wide association
study; EWAS: epigenome-wide association study; TWAS: transcriptome-wide association study. Adapted
from Cazaly et al. [5].

1.1.1 DNA methylation

Of all known epigenetic marks, DNAm is the one considered to be the most stable and accessible,

and has been shown to affect CG (or CpG) sites, i.e. regions of DNA where a cytosine nucleotide is immediately

followed by a guanine nucleotide along the 5’→ 3’ direction, as well as CHH and CHG sites, where H represents

any nucleotide but guanine [3]. CpGs occur with high frequency in larger genomic regions called CpG islands.

Henceforth in this project, we refer to CpG sites as CpGs. In mammals, DNA methylation involves the transfer

of a methyl group (i.e. CH3) onto the C5 position of a cytosine nucleotide, thus establishing a 5-methylcytosine,

and is able to regulate gene expression through two mechanisms, namely, the recruitment of proteins involved

in gene silencing, and the inhibition of the binding of transcription factors to DNA [6]. With regard to gene

silencing, DNA becomes transcriptionally inactive due to the wrapping of chromatin around that site that

is influenced by the structural conformation of histones leading to a compaction of the overall structure

of the nucleosome which ultimately prevents access of the transcriptional machinery to chromosomal DNA

[7]. Summarily, methylation of CpG islands allows the stabilization of the inactive state of chromatin (i.e.

“heterochromatin”), thus silencing gene expression. Conversely, the demethylation of CpG sites allows gene

expression to occur via switching to the active state of chromatin (i.e. “euchromatin”) [8]. Although DNAm

has generally been shown to be linked to gene expression silencing [9], in some instances it can effectively

activate gene expression [10, 11].

1.1.2 The nucleosome

Structure

The basic repeating structural unit of eukariotic chromatin is called the “nucleosome”. In order to

fit the sheer amount of genetic information inside the nucleus of a given cell, there needs to be some kind of

efficient mechanism for compaction and packaging of DNA. As it turns out, nucleosomes are very well suited

for that task, and thus serve as the backbone for DNA packaging seen in chromatin. Each nucleosome carries 2

copies of each histone: H2A, H2B, H3, and H4. These 8 proteins are assembled into an octamer around which
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a 145-147 base pairs (bp) DNA is wrapped around (∼1.65×). This assembly forms the so-called “nucleosome

core” [12]. Nucleosome core particles (NCPs) are linked together by linker DNA of variable length ( 20-90

bp) [13]. In addition to the main four histone proteins, in many cases, each NCP is associated with a linker

histone, H1, through the linker DNA [14]. The addition of H1 to the NCP adds another 20 bp, effectively

wrapping two full turns of DNA around the histone octamer and establishing the structure that we call the

“chromatosome” [15].

Histones

Figure 1.2: Complex between the nucleosome core particle H2A, H2B, H3, and H4) and a 146 bp long
DNA fragment in Xenopus Laevis. Representations generated using PyMOL [16] (PDB id: 1AOI).

Histone tails are subject to PTMs, which include methylation, phosphorylation, acetylation, ubiqui-

tylation, and sumoylation. These can impact gene expression by modifying chromatin conformation or through

the recruitment of histone modifiers. Histone PTMs can affect the overall nucleosome structure by modifying

the energy landscape of the nucleosome, as well as influencing the binding of histone chaperones and chromatin

remodelers. The location and neighbourhood in which the PTM occurs within the nucleosome architecture

determines its effect. For example, PTMs that occur in the vicinity of histone-DNA interfaces promote DNA

unwrapping, thus increasing the chances for DNA-binding proteins (e.g. TFs) to access that region of DNA.

On the other hand, it may also decrease the nucleosome conformational stability by negatively affecting cru-

cial contacts near the dyad (the nucleosome dyad axis passes through a single base pair at the center of the
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nucleosome structure) [17].

It is important to be aware that modification levels of PTMs on histones are susceptible to change.

For example, lysine residues (K) can be mono-, di-, and trimethylated (Kme1, Kme2, and Kme3, respectively).

In essence, the different combinations of histone PTMs are encapsulated into a hypothesis called the “histone

code” which determines the structure of chromatin and its ability to be transcribed (e.g. H3K4me2 and

hypomethylation of DNA are linked to active transcription) [18].

1.1.3 Experimental techniques

ChIP-seq

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a well-known technology that

can be used to map DNA-binding proteins and histone PTMs at very high resolution genome-wide (bp).

Previously, chromatin immunoprecipitation followed by microarray (ChIP–chip) was more common to study

the aforementioned interactions, but with the advent of ChIP-seq, ChIP-chip is now less popular due to

lower resolution, higher noise, and smaller genome coverage [19]. ChIP-seq allows the identification of binding

sequences of transcription factors (TFs), as well as the positions of histone PTMs [20].

A typical ChIP-seq analysis workflow includes: 1) sample preparation, sequencing, and mapping; 2)

computational analysis [21, 22] (see Figure 1.3). Firstly, the DNA and associated proteins on chromatin are

cross-linked in vitro or in vivo, and the subsequent chromatin-protein complexes are sheared via sonication or

nuclease digestion. These DNA-protein fragments are then selectively immunoprecipitated using the appropriate

antibody, and the resulting immunoprecipated fragments are then unlinked, thus isolating the DNA which will

be purified, sequenced, and mapped to the genome (i.e. read mapping). Here, genomic regions significantly

enriched for ChIP reads are interpreted as peaks, representing plausible sites of interaction of proteins with

DNA, and histone modification sites. Furthermore, ChIP-seq experiments can also be used in conjunction with

different types of genomic assays (e.g. DNA methylation and chromatin conformation) [21].

The majority of ChIP-seq tools are designed to process sharp peaks located at specific genomic

positions. But some histone PTMs are associated with rather large domains in the genome which leads to

broadly distributed enrichment regions [19]. For example, enhancer markers such as H3K27ac and H3K4me1

produce sharp peaks, albeit sometimes leading to broadly enriched regions [23]. This peak characteristics

variation consequently impacts the choice of computational tools to process the data resulting from ChIP [22].
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Figure 1.3: General ChIP-seq workflow. Adapted from Nakato and Sakata [22].

DNA methylation data

Changes in DNA methylation have been previously linked to cancer and several developmental dis-

eases [24]. Fortunately, there is a multitude of experimental techniques that can be used to detect DNA

methylation and allow the scientific community to thoroughly study it. DNA methylation of CG sites (i.e.

CpGs) is commonly measured using Illumina Infinium BreadChip platforms [25]. The Illumina Infinium Hu-

manMethylation27 BeadChip (27k) probes on 27k array target regions of the human genome to measure

methylation levels at 27.5k CpGs in 14.5k genes. The Illumina Infinium HumanMethylation450 (450k) Bead-

Chip array covers over 480k CpG sites and targets 96% of CpG islands in the human genome. The Infinium

MethylationEPIC (EPIC) array has replaced the Infinium Methylation450 array, assaying almost double the

number of sites assayed by the 450k array [25].

1.2 Cardiometabolic diseases

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) take the podium

for the number one cause of death worldwide [26]. CVDs are part of cardiometabolic diseases (CMDs) which, by

definition, include several disorders (abdominal adiposity, hypertension, dyslipidaemia, hyperinsulinaemia and

glucose intolerance) that lead to CVDs and type 2 diabetes (T2D) [27]. According to the MeSH browser [28],

CVDs (MeSH UID1: D002318) include: cardiovascular abnormalities, cardiovascular infections, heart diseases,

cardiovascular pregnancy complications, and vascular diseases.

Tackling with risk factors of T2D and CVD is a good start to deal with their prevention, but it

requires a deeper understanding of the aetiology of CMDs nonetheless, hence the identification of the molecular

mechanisms and risk factors associated with T2D and CVD (along with the aforementioned traits) being of

vital importance [29]. The continued rise of CMD cases is largely due to the exposure to diverse environmental

1Unique id
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factors and lifestyle habits (e.g. low to non-existent physical activity, smoking, unhealthy diet, etc.) [30, 31].

And although most general practitioners (GPs) consider selective CMD prevention useful (82%), some GPs

still do not see is as such [30]. Establishing the aetiology of CMDs will likely incentivize the remaining GPs

to adopt a more preventive approach when it comes to CMDs. This includes the unraveling of molecular

mechanisms, the identification of risk factors, as well as the association of CMDs with a plethora of different

traits.

Some cardiometabolic traits include: body mass index (BMI), coronary heart disease (CAD), triglyc-

erides (TGs), homeostatic model assessment for insulin resistance (HOMA-IR), C-reactive protein (CRP),

waist circumference, fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), low-density lipopro-

tein cholesterol (LDL-C), diabetes mellitus (DM), adiponectin, leptin, leptin receptor, serum uric acid (SUA),

and aldosterone\renin ratio [32, 33]. Some of the aforementioned traits are implicitly linked (e.g. BMI and

adiposity).

1.3 Instrumental variable analysis

In epidemiology and few other fields, instrumental variable (IV) analysis is of great interest and

used to extract causal inferences in an observational setting (e.g. whenever experiments are not feasible or

practical) by exploiting a natural experiment. By definition, an instrumental variable is a factor correlated with

the exposure, though not associated with confounders, and for which there exists no pathway by which a given

IV can have an influence on the outcome by any other means than through direct exposure (i.e. to a risk

factor) [34].

Genetic variants (i.e. regions of the genome that differ between individuals) can be used as IVs. For

a sizeable portion of these fragments of the genetic code, the functions of several genes and the pathways in

which they are involved are known and extensively described in the literature. Since these genetic variants are

fixed at conception, and hence are not affected by environmental factors (thus avoiding reverse causation),

they are considered as being ideal candidates to be used as IVs [34].

1.4 Mendelian randomization

MR is an analytical method of great importance in the epidemiological field that uses genetic variants

as IVs for modifiable risk factors that have an impact on population health [35]. As mentioned beforehand,

using MR for inferring causality in given associations has the advantage of overcoming confounding and reverse

causation which observational studies suffer from.

Since MR studies make use of IVs (i.e. genetic variants), they must fulfill 3 key assumptions [2, 35]:

1. Relevance assumption: The relevance assumption holds that the genotype is associated with the

exposure.

2. Independence assumption: The independence assumption states that the genotype is independent of

third-party factors affecting the outcome.
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3. Exclusion restriction assumption: The exclusion restriction assumption states that the genotype is

associated with the outcome solely through the exposure.

MR studies’ power is determined by the sample size and the strength of the association between the chosen IV

and the risk factor. Using so-called “weak” IVs may lead to low statistical power and bias. For single sample

MR studies, the F statistic may be used to detect weak IVs [2]. Confounding may be caused by violations of

the independence and exclusion restriction assumptions. Using so-called “negative control” populations, one

could evaluate the plausibility of the assumptions [35].

To increase the statistical power, two-sample MR can be used, at the cost of two additional assump-

tions: both samples are assumed to represent the underlying population, and any overlap between the two

samples can cause bias [35].
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Chapter 2

Aims

This project aims at inquiring which molecular processes contribute to changes in cardiometabolic

traits, and how these interact with each other. To that intent, the goals include:

• Understanding how molecular processes influence cardiometabolic traits

• Collating libraries of molecular QTLs

• Standardizing a summary-based MR workflow for application to different subsets of phenotypes

• Finding directed associations between epigenetic mechanisms associated with health outcomes
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Chapter 3

Methods

In this chapter, we describe each step of the workflow depicted in Figure 3.1. Starting from data

collection using QTLbase, followed by data preprocessing of the selected studies. Then we performed hQTL and

methylation QTL (mQTL) data integration which involves 2 main steps: trait-associated CpG extraction (using

EWAS Atlas and EWAS Catalog), and mQTL extraction (using GoDMC). Lastly, we performed summary-based

Mendelian randomization (SMR) on the processed data and analysed the output.

The source code used in this project is hosted on GitHub at https://github.com/alxdrcirilo/

smr.git. Running the entire pipeline can be done via the main.R file located within the src directory. Note

that the pipeline is modular and the aforementioned file can be edited to get the results from different parts

of the analysis workflow, or for debugging purposes. Findings data available upon request.

3.1 Data collection

3.1.1 QTLbase

The first step in the workflow involved looking for publicly available hQTL data in different studies.

Fortunately, the process of gathering the hQTL data required for this project was greatly simplified thanks to

QTLbase [36], a flexible curated database that conveniently stores information regarding QTLs (21 diferent

types; e.g. hQTL, eQTL, mQTL) across multiple tissues, phenotypes, and variants. At the moment of writ-

ing, the database was storing data for a total of 257 independent studies. Navigating through QTLbase is

straightforward and, if need be, documentation is available as well with exhaustive descriptions on every piece

of information provided by the database and how to extract, query, and filter through it.

3.1.2 hQTL data

Based on our aims, we looked thoroughly through QTLbase for adequate studies that were performed

on lymphoblastoid cell lines (LCLs) and included data for hQTLs. We also took into account the maximum

sample size and the year of publication; greater sample sizes and more recent studies were prioritized in our
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search. Following an in-depth search over all the studies listed on QTLbase, we selected 5 studies that included

hQTL and caQTL data, both in LCLs, in African (AFR) and European (EUR) populations, and somewhat

recent (±5 years). We contacted the authors from all 5 articles, but could only proceed with the downstream

analyses on 2 out of the 5. The aforementioned studies are listed in Table 3.1.

Table 3.1: Overview of the articles selected for downstream analyses. Articles highlighted with an asterisk
(*) contain data used in this project.

Article xQTL
Tissue

Cell type
Tissue
State

Platform
Max

Sample
Size

Population Year

1* [37]
hQTL
caQTL

Lymphocyte Normal Illumina TrueSeq 75 African 2015

2* [38] hQTL Lymphocyte Lupus Illumina NextSeq 500 358 European 2018

3 [39] hQTL
Fibroblast

Lymphocyte
Normal Illumina HiSeq 2000 317 European 2019

4 [40] caQTL Lymphocyte Normal Illumina HiSeq 4000 500
African

East Asian
European

2019

5 [41] caQTL Lymphocyte Normal
Illumina Genome

Analyzer II
70 African 2012

We collected histone peak and hQTL data from the supplementary data of Grubert et al. [37] and

received additional information directly from one of the authors. For this study, we have data for 3 histone marks

(i.e. H3K27ac, H3K4me1, and H3K4me3): the peak position (i.e. a range of bp within a chromosome), peak

width, hQTL id, hQTL position, hQTL-peak effect size (β), hQTL-peak standard error (SE), hQTL effect

allele (EA), hQTL alternative/other allele (OA), and effect/minor allele frequency (EAF/MAF). Summary

descriptive statistics with regard to the histone peak width for all peaks in each of the 3 histone PTMs are

listed in Table 3.2.

Table 3.2: Descriptive statistics of the histone peak width (in bp) in the source data for each histone
PTM from Grubert et al. [37].

Histone
PTM

Histone peak width (bp)
Min Max Mean Median

H3K27ac 179 66690 3006 2038
H3K4me1 213 106120 2927 1910
H3K4me3 273 24992 2008 1462

3.2 GWAS selection

In this project, we selected 9 cardiometabolic traits of interest from the literature. Using these traits,

we identified large, recent, and relevant GWAS from the Integrative Epidemiology Unit GWAS (IEU GWAS)

[42] (see Table 3.3). All of the 9 selected GWAS are less than 10 years old. Here, it is important to note

that the sample size varies between the 9 studies (e.g. the sample sizes in the leptin and adiponectin GWAS

studies are significantly smaller than in the BMI one). All studies include European populations, except for the

adiponectin GWAS which includes a mixed population.
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Table 3.3: Overview of the 9 GWAS studies used to run the SMR analyses.

Trait
Sample

size
Number
of SNPs

Population Year GWAS id

Adiponectin 39883 2675209 Mixed 2012 ieu-a-1
BMI 681275 2336260 European 2018 ieu-b-40
FG 133010 64432 European 2012 ieu-b-114
FI 108557 64421 European 2012 ieu-b-116

HDL-C 403943 12321875 European 2020 ieu-b-109
LDL-C 440546 12321875 European 2020 ieu-b-110
Leptin 33987 2457011 European 2016 ebi-a-GCST003367

TC 115078 12321875 European 2020 met-d-Total C
TG 441016 12321875 European 2020 ieu-b-111

3.3 hQTL and mQTL integration

Having selected the traits of interest and gathered hQTL data, we now focused on integrating hQTL

and mQTL data. To filter the hQTL data, we first looked at each hQTL peak and determined its span (i.e. the

width of the hQTL peak). Using data from the databases EWAS Atlas [43] and EWAS Catalog [44], we looked

for CpGs associated with a particular trait, for each hQTL peak, within the chromosomal location window

defined by the aforementioned span. Solely peaks containing overlapping trait-associated CpG(s) were kept

for further downstream analyses. For cases in which the hQTL peak contained more than one unique CpG, we

only kept the CpG with the highest association with the trait (i.e. lowest p-value). This part of the workflow

is highlighted in the blue box as depicted in Figure 3.1. It is important to note that this work is exploratory,

thus we are not bound to look for CpGs within each peak. For example, if we wanted to be more stringent,

we could for example have limited the search to half the span of the histone peak.

3.3.1 Trait-associated CpGs extraction

To extract trait-associated CpGs for each histone peak, we merge the data provided by EWAS Atlas

and EWAS Catalog.

EWAS Atlas

EWAS Atlas1 is a database that stores data on epigenome-wide association studies (EWAS). At

the moment of writing, EWAS Atlas was holding a total of 616280 associations, 616 traits, 3379 cohorts,

192 tissues/cells, 1434 studies, and 907 publications. The database is part of the National Genomics Data

Center from the China National Center for Bioinformation based in the Beijing Institute of Genomics, Chinese

Academy of Sciences. It allows the user to straightforwardly browse through its catalog with convenient filters

(e.g. trait, gene symbol, probe id). Although EWAS Atlas provides an API, we decided to download the full

database and do any data preprocessing locally. The following files were downloaded and stored locally:

• EWAS Atlas associations.tsv2 (n = 416331): contains data for trait-associated CpGs (e.g. for BMI).

1Available at https://ngdc.cncb.ac.cn/ewas (last accessed 14-06-2021)
2Available at https://ngdc.cncb.ac.cn/ewas/downloads
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• EWAS Atlas studies.tsv2 (n = 1554): contains exhaustive information for every study included in the

database.

• EPIC.hg19.manifest.tsv3 (n = 865918): basic hg19 annotation with suggested overall masking on

the EPIC platform.

• HM450.hg19.manifest.tsv3 (n = 485577): basic hg19 annotation with suggested overall masking on

the HM450 platform.

Firstly, we loaded EWAS Atlas associations.tsv into a dataframe (atlas dat), and filtered

through it, for each trait, using pre-defined terms (e.g. c("bmi", "body mass index")) in order to ex-

tract the trait-associated CpG (Probe.id) and its association p-value (P.value). Note that filtering using a

given trait will naturally decrease the number of rows very considerably since only rows with CpGs associated

with that trait will be kept.

Next, we merged the EPIC and HM450 data into one unique dataframe (merged), with each row

containing data pertaining to one CpG: chromosome (CpG chrm), starting position (CpG beg, in bp), ending

position (CpG end, in bp), strand (probe strand), and the CpG id (probeID).

The resulting dataframe (i.e. merged) was merged anew with the former (atlas dat) by CpG (re-

named on both dataframes as probeID), resulting in a new dataframe that includes all the required information

for each trait-associated CpG, i.e. the chromosome in which it is located, the starting and ending positions (in

bp), the association p-value, and the CpG id.

EWAS Catalog

EWAS Catalog4, as EWAS Atlas, is a database with the main purpose of providing the scientific com-

munity with access to a wide array of EWAS. It was developed and is currently maintained by the Intergrative

Epidemiology Unit (IEU) at the University of Bristol, United Kingdom. As was the case with EWAS Atlas, we

also downloaded the full database for EWAS Catalog. The following files were downloaded and stored locally:

• ewascatalog-results.txt (n = 1823781): contains exhaustive information for every study included in

the database, including CpG id (CpG), chromosomal location (Location), chromosome (Chr), position

(Pos, in bp), gene (Gene), association p-value (P), study id (StudyID), among others.

• ewascatalog-studies.txt (n = 1554): contains meta-data for all the studies recorded in the database

(e.g. author(s), trait, study id).

As was the case with EWAS Atlas in section 3.3.1, we also first need to filter the data to only

keep rows with information for the trait we’re interested in (e.g. BMI). To that intent, we first load both the

aforementioned files into memory, and we proceed to filter the meta-data (i.e. ewascatalog-studies.txt)

using pre-defined terms (e.g. c(”bmi”, ”body mass index”)) to find one or more study ids that match our

query. Furthermore, we also applied a tissue filter to solely include “whole blood” as we are working with LCLs.

This step will generate a list of one ore more study ids that we can use to filter ewascatalog-results.txt

by study id, hence exclusively keeping CpGs included in one or more studies associated with a given trait.

3Available at https://zwdzwd.github.io/InfiniumAnnotation
4Available at http://www.ewascatalog.org/ (last accessed 14-06-2021)
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The resulting filtered dataframe will hold the required information for each trait-associated CpG, i.e. the

chromosome, the position, the CpG id, and the association p-value.

3.3.2 mQTL data extraction

To incorporate mQTL data into our pipeline with hQTL data, we fetch the top mQTL for each CpG

(if any) using the GoDMC database. Only fully integrated hQTL and mQTL peaks are saved. This part of the

workflow is highlighted in the yellow box seen in Figure 3.1.

GoDMC

The Genetics of DNA Methylation Consortium (GoDMC5) is a database that focuses on consolidating

data from multiple sources and prioritising the analysis of Illumina HM450 BeadChip and GWAS data. The

database stores data from the mapping of cis and trans acting genetic influences on DNA methylation using 36

cohorts (n = 27750, for samples from European populations in whole blood). In total, approximately 420k DNA

methylation sites were analysed using 10 million common variants. GoDMC provides a convenient browser that

allows the user to search through it (e.g. querying the database with a given CpG or chromosomal location).

The results from the query can be exported and saved locally for further analyses (e.g. SMR, requiring minimal

data preprocessing). Furthermore, the GoDMC database also provides a RESTful API that allows the retrieval

of more exhaustive information regarding SNPs and chromosome positions. In this project, we take advantage

of the API to fully automate the process of extracting the relevant mQTLs.

Following section 3.3.1, we send queries to the GoDMC API using the trait-associated CpGs to

retrieve cis-mQTLs. In the event that the database does not find any mQTL for a given CpG, then we discard

the respective peak. Otherwise, we keep it and save the relevant variables to perform SMR. If we found multiple

mQTLs for a given CpG, then we solely keep the one with the lowest p-value.

3.4 Data integration

For each trait (e.g. BMI), we extracted relevant CpGs (i.e. trait-associated) from the EWAS Atlas and

EWAS Catalog databases. We then filtered the preprocessed data from Grubert et al. [37] based on the peaks

that contained trait-associated CpGs within the peak width (i.e. a given range of bp within a chromosomal

location). Peaks with no nearby CpGs were dropped, whilst for peaks with more than 1 CpG, we only kept the

CpG with the lowest p-value (i.e. highest association).

3.5 Summary-based Mendelian randomization

Once we gathered and filtered the QTL data, we can proceed with running the SMR analyses. To

that intent, we used well-documented TwoSampleMR R package [45, 46] to estimate the causal effect of an

exposure (i.e. histone peak, e.g. H3K4ME3 1234) on an outcome (i.e. trait, e.g. BMI) solely using summary

5Available at http://mqtldb.godmc.org.uk/ (last accessed: 14-06-2021)
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statistics from GWAS. This package provides the user with a complete set of tools to perform MR, including:

data processing and harmonisation, statistical routines to estimate the causal effects, and a connection to

large publicly available repositories of GWAS summary statistics required for the analyses (via the ieugwasr

package6). This step of the workflow is highlighted by the blue box as seen in Figure 3.1.

3.5.1 Exposure data

TwoSampleMR requires a minimum set of variables to perform MR analyses: rsid (SNP), beta

(effect size), se (standard error), and ea (effect/reference allele). In addition to these mandatory variables,

we were also able to provide: oa (other/alternative allele), eaf (effect allele frequency), phenotype (e.g.

H3K4ME3 1234), chr (chromosome), position (position in chromosome), and pval (p-value).

3.5.2 Running SMR

At this step, we integrated the hQTL (i.e. peak) and mQTL (i.e. CpG) with the GWAS data to

perform SMR of:

• Each histone peaks effect (hQTL) on the trait

• Each CpGs effect (mQTL) on the trait

We saved the SMR effect size (β), standard error (SE), and p-values (pval) for each peak/CpG-trait combi-

nation. Only peaks where we could perform SMR for both the peak and the nearby CpG were kept. P-values

were adjusted for multiple testing using the Bonferroni method.

3.6 Linkage disequilibrium

Investigating whether 2 alleles are in linkage disequilibrium (LD) is greatly facilitated by the LDlinkR

R package which provides several functions that deal with different LD scenarios, including the LDpair function

that allows the user to fetch some statistics (e.g. R2) for a pair of SNPs within a given population (e.g. EUR).

In this work, we feed the LDpair function with one pair of SNPs per row (i.e. 1 hQTL SNP and 1 mQTL

SNP). To determine if a given pair of alleles is in LD, we check if the R2 is above the threshold for the R2

value (i.e. in LD: R2 > 0.3). For every row in our results following SMR, we determine if each pair of alleles

(i.e. hQTL SNP and mQTL SNP) are in LD within the EUR and YRI populations. We add these observations

to our results, including R2 values on both populations, naming the appropriate columns as ld.(POP) and

r2.(POP), where “POP” is the population. In essence, two SNPs are considered to be in LD when non-random

association of alleles occurs at different loci within a given population.

6Available at https://github.com/MRCIEU/ieugwasr/ (last accessed: 14-06-2021)
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3.7 Workflow

Figure 3.1: Overview of the main workflow. Blue box: data preprocessing and CpG extraction; yellow
box: extracting trait-associated cis-mQTLs (CpGs); red box: SMR.
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Chapter 4

Results

In this chapter, we showcase the results from each step of the SMR analysis pipeline and establish

the different designed scenarios in which our results can be encapsulated. We also give some in-depth examples

for the biologically relevant scenarios.

4.1 Data preprocessing

Grubert et al. [37] identified cis-QTLs for H3K27ac (n = 14134), H3K4me1 (n = 22618), and

H3K4me3 (n = 9570) from 75 unrelated Yoruba individuals (i.e. ethnic group originating from Western

Africa). The raw data needed some data preprocessing before we could perform the SMR analyses. Namely,

pruning the hQTL data to only contain peaks that have nearby CpG(s) (i.e. within each histone peak), and

filtering the hQTLs via the integration of the source data with trait-associated CpGs (i.e. mQTLs). A density

plot of the histone peak width for each of the 3 histone PTMs is shown in Figure 4.1. All 3 histone PTMs

seem to have peaks’ width averaging around 1.5-2 kbp.

19



Figure 4.1: Density plot of the width of the histone peak (in bp) from the source data for all 3 histone
PTMs (< P99). Data coloured by histone PTM (red: H3K27ac; green: H3K4me1; blue: H3K4me3).

4.1.1 hQTL filtering

For each of the 9 selected cardiometabolic traits, we filtered through the cis-hQTLs per histone PTM

using trait-associated mQTL data (i.e. CpGs) integrated from EWAS Atlas and EWAS Catalog. An overview

of the number of CpGs available for each of the 9 traits in each EWAS database is shown in Table 4.1.

In most cases, EWAS Catalog held more CpGs for the selected traits. The number of CpGs used from the

aforementioned databases, for each trait, is considerably lower (see Table 4.2).

Table 4.1: Number of trait-associated CpGs available from each EWAS database (i.e. EWAS Atlas and
EWAS Catalog)

Database
Trait

Adiponectin BMI FG FI HDL-C LDL-C Leptin TC TG
EWAS Atlas 3 2434 34 5 8 10 10 1 27

EWAS Catalog 72 4787 10 22 3717 6795 0 2308 2394

Table 4.2: Number of trait-associated CpGs used from each EWAS database (i.e. EWAS Atlas and EWAS
Catalog).

Histone
PTM

Trait
Adiponectin BMI FG FI HDL-C LDL-C Leptin TC TG

H3K27ac 4 164 2 1 76 129 1 71 71
H3K4me1 3 159 1 1 82 97 1 57 66
H3K4me3 2 140 1 0 81 129 0 69 61

Total 9 463 4 2 239 355 2 197 198

In addition to the number of filtered cis-QTLs per GWAS, we also provide descriptive statistics for

each GWAS with regard to the distance to the nearest trait-associated CpG in bp, as listed in Table 4.3 and
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visualized in Figure 6.1. The density plot of the width of all histone peaks is shown in Figure 6.2.

Table 4.3: Descriptive statistics of the distance from each peak to the nearest trait-associated CpG for each
trait. Includes the number of peaks in the data (Count), minimum (Minimum, bp), maximum (Maximum,
bp), and median (Median, bp) distances from the histone peak to the nearest trait-associated CpG, and
the 99% percentile (P99, bp)).

Trait Count Minimum (bp) Maximum (bp) Median (bp) Q (0.99 bp)
Adiponectin 9 70 1917 781 1852

BMI 463 4 26659 707 10291
FG 4 509 3852 901 3770
FI 2 678 3852 2265 3820

HDL-C 239 1 28086 685 12577
LDL-C 355 0 52838 627 13007
Leptin 2 802 833 818 833

TC 197 0 26659 707 10291
TG 198 0 16897 677 6857

4.1.2 hQTL and mQTL integration

An overview of the number of trait-associated CpGs used as input for GoDMC API queries and the

number of trait-associated mQTLs derived from those queries is shown in Table 4.4. Note that unique values

(CpGs or mQTLs) from the output of GoDMC (e.g. nm H3K27AC for BMI: 105 saved; 107 unique mQTLs

from GoDMC) may be higher than the ones actually used due to the presence of NA values in some rows

(which are dropped).

Table 4.4: The number of trait-associated CpGs that were used as input for GoDMC API queries are
shown for each given trait under nc. The number of trait-associated mQTLs that were found in GoDMC
are shown for each given trait under nm. Unique CpGs and mQTLs are highlighted with an asterisk (*)
in the appropriate columns (i.e. nc and nm, respectively).

Histone
PTM

Trait
Adiponectin BMI FG
nc nm nc nm nc nm

H3K27ac 4 (4*) 1 (1*) 164 (164*) 105 (107*) 2 (2*) 1 (1*)
H3K4me1 3 (3*) 0 159 (159*) 111 (113*) 1 (1*) 1 (1*)
H3K4me3 2 (2*) 1 (1*) 140 (140*) 81 (83*) 1 (1*) 0

Histone
PTM

Trait
FI HDL-C LDL-C

nc nm nc nm nc nm

H3K27ac 1 (1*) 1 (1*) 76 (76*) 30 (30*) 129 (129*) 64 (65*)
H3K4me1 1 (1*) 1 (1*) 82 (82*) 45 (47*) 97 (97*) 62 (64*)
H3K4me3 NA NA 81 (81*) 24 (24*) 129 (129*) 53 (54*)

Histone
PTM

Trait
Leptin TC TG

nc nm nc nm nc nm

H3K27ac 1 (1*) 1 (1*) 71 (71*) 32 (32*) 71 (71*) 33 (33*)
H3K4me1 1 (1*) 1 (1*) 57 (57*) 34 (34*) 66 (66*) 40 (41*)
H3K4me3 NA NA 69 (69*) 25 (26*) 61 (61*) 26 (27*)
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For the sake of clarity, an overview of the number of resulting cis-QTLs remaining after hQTL and

mQTL data integration (to be used in the SMR analyses) is shown in Table 4.5.

Table 4.5: Number of filtered cis-QTLs for each trait after hQTL and mQTL data integration.

Histone
PTM

Trait
Adiponectin BMI FG FI HDL-C LDL-C Leptin TC TG

H3K27ac 1 105 1 1 30 64 1 32 33
H3K4me1 0 111 1 1 45 62 1 34 40
H3K4me3 1 81 0 0 24 53 0 25 26

Total 2 297 2 2 99 179 2 91 99

4.2 SMR

An overview of the number of peaks at each step of the SMR analysis is shown in Table 4.6.

Table 4.6: Overview of the number of entries in the data at each crucial step of the SMR analyses for all
9 traits. Gd refers to the GWAS data retrieved from IEU GWAS, Hd refers to the data after performing
harmonisation using the TwoSampleMR R package, and Md refers to the resulting data after performing
MR using the TwoSampleMR R package. The number of rows for the association between a given trait
and hQTL peaks is shown as is (e.g. 3). The number of rows for the association between a given trait and
mQTLs is highlighted with an asterisk (*). In Md, only data containing SMR results of both the hQTL
peak and its nearby mQTL are kept.

Histone
PTM

Trait
Adiponectin BMI FG

Gd Hd MRd Gd Hd MRd Gd Hd MRd

H3K27ac (1*) (1*) 0 56 (70*) 56 (70*) 39 0 0 0
H3K4me1 0 0 0 56 (74*) 56 (74*) 36 0 0 0
H3K4me3 0 0 0 47 (59*) 47 (59*) 38 NA NA NA

Histone
PTM

Trait
FI HDL-C LDL-C

Gd Hd MRd Gd Hd MRd Gd Hd MRd

H3K27ac 0 0 0 21 (30*) 21 (30*) 20 47 (63*) 47 (63*) 44
H3K4me1 0 0 0 33 (44*) 33 (44*) 32 50 (59*) 50 (59*) 46
H3K4me3 NA NA NA 18 (22*) 18 (22*) 16 42 (53*) 42 (53*) 38

Histone
PTM

Trait
Leptin TC TG

Gd Hd MRd Gd Hd MRd Gd Hd MRd

H3K27ac (1*) (1*) 0 27 (32*) 27 (32*) 26 24 (33*) 24 (33*) 23
H3K4me1 1 (1*) 1 (1*) 1 30 (34*) 30 (34*) 30 28 (39*) 28 (39*) 27
H3K4me3 NA NA NA 23 (25*) 23 (25*) 21 19 (26*) 19 (26*) 19

For significant results (histone peak and/or CpG), we considered:

• Using eQTLGen [47] to assess if the h/mQTL was also associated with the expression of a relevant gene

(i.e. cis-eQTL)

22



• Using the LDpair function from the LDlinkR R package [48] to assess if there was a strong correlation

between the hQTL and the mQTL (see section 3.6)

• If there was an overlapping histone peak in Pelikan et al. [38] which we could use for replication purposes

4.3 Scenarios

After gathering the results from the summary-based Mendelian randomization (SMR) analyses for all

the nine selected cardiometabolic traits, we designed a series of possible scenarios in which each pair of hQTL

peak and its closest mQTL could fit in. In total, there are seven different scenarios taken into account, albeit

only four of these will be up for interpretation (herein named “cases”). Here, the p-values give us information

regarding the evidence of directed association (i.e. between the peak and the trait, and between the CpG and

the trait), and the R2 (ranging between 0 and 1) gives us the strength of correlation (i.e. whether a set of

SNPs are in LD or not). If p-values are greater than 0.05, then we assume there is no directed association,

and if R2 is greater than 0.3, we assume the pair of SNPs to be in LD (i.e. MR would should not be able to

distinguish between them). Scenarios A, B, and F are not followed up. For scenario A, we found no evidence

of directed association for both the peak and CpG with the selected trait, thus we don’t investigate further.

For scenario B, we only found evidence of directed association for the peak and the trait, but not for the CpG

and the trait. Here, R2 is greater than 0.3, thus the SNPs are in LD. Since it is hard to understand how MR

was able to distinguish between the hQTL and the mQTL even though they are in LD, we do not follow up

scenario B. Scenario F is similar to scenario B, except that here the directed association is found between the

CpG and the trait, and not between the peak and the trait. We did not follow up scenario F for the same

reasons than scenario B. The aforementioned scenarios and their properties are listed in Table 4.7. In total,

456 peaks resulted from the SMR analyses and were included in 1 of the 7 scenarios (see Figure 4.2).

Table 4.7: Overview of the possible scenarios for the interpreta-
tion of the MR analyses.

Scenario
Peak MR
p-value

CpG MR
p-value

R2

(EUR)1
Interpretation

A >0.05 >0.05 NA Not followed up
B <= 0.05 >0.05 >0.3 Not followed up
C <= 0.05 >0.05 <0.3 Case 1
D <= 0.05 <= 0.05 >0.3 Case 2
E <= 0.05 <= 0.05 <0.3 Case 3
F >0.05 <= 0.05 >0.3 Not followed up
G >0.05 <= 0.05 <0.3 Case 4

1 European population
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Figure 4.2: Barplot of the histone peaks included in the 7 possible scenarios.

From all seven possible scenarios, only four (i.e. scenarios C, D, E, and G) allow further analysis and

interpretation. The aforementioned scenarios will henceforth be referred to as “cases”. For each case, we have

the following interpretation:

• Case 1: Evidence that the two analyses are different and that histone PTM is the driving mechanism.

• Case 2: Not possible to distinguish between the histone PTM and methylation mechanisms, both are

candidates for the driving mechanism.

• Case 3: Evidence that the two analyses are different, although both appear to influence the trait.

• Case 4: Evidence that the two analyses are different and that methylation is the driving mechanism.

In total, there are 36 (hQTL peak, mQTL) pairs that fit into one of the 4 aforementioned cases, as

tabulated in Table 4.8. These “top pairs” come from four of the original GWAS studies, namely, ieu-b-109

(HDL-C), ieu-b-110 (LDL-C), ieu-b-111 (TG), and ieu-b-40 (BMI). In total, there are 15 pairs that fit in case

1, 7 in case 2, 4 in case 3, and 10 in case 4. And with regard to the histone mark, 12 pairs are in H3K27ac,

13 in H3K4me1, and 11 in H3K4me3.
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Table 4.8: Overview of the 36 (hQTL, mQTL) pairs that fit into 1 of the 4 cases.

# Trait Chr1
hQTL
SNP

mQTL
SNP

Histone
PTM

LD2’

(EUR)3
LD2’

(YRI)4
R2

(EUR)3
R2

(YRI)4
Case

1 BMI 11 rs11020992 rs61895493 H3K27AC F F 0.0864 0.0668 1
2 BMI 11 rs6483382 rs61895493 H3K4ME3 F F 0.0864 0.0656 1
3 BMI 22 rs2413048 rs136274 H3K4ME1 F F 0.0148 0.0039 1
4 HDL-C 9 rs10984990 rs77354872 H3K27AC F F 0.0133 0.0226 1
5 HDL-C 9 rs3753025 rs68023192 H3K27AC F F 0.0062 0.0133 1
6 HDL-C 9 rs3753025 rs68023192 H3K4ME3 F F 0.0062 0.0133 1
7 HDL-C 11 rs17726787 rs113097600 H3K4ME3 T T 0.1347 0.5694 1
8 HDL-C 22 rs13057194 rs5753625 H3K4ME3 T T 0.1683 0.1186 1
9 TG 11 rs3751033 rs11222341 H3K4ME3 T F 0.1102 0.0153 1
10 TG 17 rs72625946 rs2940227 H3K4ME1 F F 0.0015 0.009 1
11 TG 19 rs11671664 rs4802262 H3K27AC F F 0.0315 0.0089 1
12 TG 19 rs892149 rs721885 H3K27AC F T 0.0341 0.1333 1
13 TG 19 rs892149 rs721885 H3K4ME1 F T 0.0341 0.1333 1
14 TG 19 rs11671664 rs4802262 H3K4ME3 F F 0.0315 0.0089 1
15 TG 19 rs892149 rs721885 H3K4ME3 F T 0.0341 0.1333 1
16 BMI 6 rs56874662 rs9379875 H3K27AC T F 0.3489 0.0033 2
17 BMI 16 rs1868157 rs4783556 H3K27AC T T 0.8665 0.2895 2
18 BMI 16 rs1868157 rs4783556 H3K4ME1 T T 0.8665 0.2895 2
19 BMI 16 rs1868157 rs4783556 H3K4ME3 T T 0.8665 0.2895 2
20 BMI 22 rs12158556 rs5756763 H3K4ME1 T T 0.7709 0.326 2
21 HDL-C 3 rs6798146 rs62274121 H3K4ME1 T F 0.3084 0.0305 2
22 HDL-C 4 rs2595103 rs12642151 H3K4ME1 T T 0.9731 0.8582 2
23 BMI 8 rs6997893 rs4733037 H3K4ME3 F F 0.0244 0.0035 3
24 HDL-C 3 rs782445 rs113761591 H3K4ME1 F F 0.0524 NA 3
25 HDL-C 6 rs2855807 rs2256747 H3K4ME1 F F 0.051 0.0034 3
26 HDL-C 11 rs7101772 rs7117404 H3K27AC F F 0.052 NA 3
27 BMI 2 rs6720165 rs10930199 H3K4ME1 T F 0.2441 0.0501 4
28 BMI 12 rs1990714 rs72649521 H3K27AC F F 0.0011 NA 4
29 BMI 12 rs11066714 rs72649521 H3K4ME1 F F 0.0011 NA 4
30 HDL-C 16 rs223869 rs28401442 H3K4ME3 T F 0.1119 0.0023 4
31 LDL-C 9 rs10760118 rs10818492 H3K27AC F T 0.0441 0.1074 4
32 LDL-C 9 rs1930778 rs10818492 H3K4ME1 F T 0.0439 0.1074 4
33 LDL-C 19 rs11667718 rs1029709 H3K27AC T F 0.1024 0.0067 4
34 LDL-C 19 rs77664054 rs142448599 H3K27AC F F 0.0041 NA 4
35 LDL-C 19 rs77664054 rs142448599 H3K4ME1 F F 0.0041 NA 4
36 LDL-C 19 rs11667718 rs1029709 H3K4ME3 T F 0.1024 0.0067 4
1 Chromosome
2’ Linkage disequilibrium
3 European population
4 Yoruba population

25



4.4 In-depth case analysis

4.4.1 Case 1

In case 1, we uncovered evidence for a directional association between histone PTMs and the trait,

but insufficient evidence to suggest that nearby methylation was associated with the same trait. Here, the

SNPs instrumenting these two molecular traits are not in LD for the European population. This may represent

a scenario where histone PTM, and not DNA methylation, is affecting the trait. To verify this, we consider

the following hypotheses:

1. The hQTL is an eQTL of a relevant gene but the mQTL is not.

2. SMR of a EUR hQTL peak within the width of the YRI one.

In total, there are 15 hQTL peaks matching this case: 3 for BMI, 5 for HDL-C, and 7 for TG.

hQTL: H3K4ME3 4407

The hQTL peak H3K4ME3 4407 spans 3989 bp on chromosome 19, with the centre of the peak 531

bp away from its hQTL SNP (rsid: rs11671664, β = 0.90, p < 0.001). The TG-associated CpG cg14661225

[49] is 1358 bp away, and methylation at this CpG is also highly associated (β = 0.27, p < 0.001) with

the nearby mQTL SNP rs4802262. This mQTL is not in LD with the hQTL in the European population

(R2 = 0.0315), and so we can expect SMR analyses investigating the histone peak and methylation’s effect

on triglycerides to be distinct. SMR provided evidence of this histone PTM being directionally associated with

triglycerides (Bonferroni p = 0.029), but did not provide sufficient evidence to suggest nearby DNA methylation

at cg14661225 affected triglyceride levels (Bonferroni p = 0.999). There was no overlapping histone peak in

the second hQTL mapping study for us to replicate this result with. The aforementioned hQTL is also a known

cis-eQTL for 4 genes, including SYMPK, which contains SNPs implicated in triglyceride measurement GWAS

(as well as LDL-C and HDL-C measurement, body mass index, and body fat percentage). The mQTL was

not an eQTL for any of these for genes, but was for SNRPD2 which has not been found to be associated

with triglyceride levels. This could potentially indicate a pathway through which histone trimethylation in this

region could influence triglycerides. An overview of the genomic features found for this example of case 1 is

shown in Figure 4.3.
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Figure 4.3: Overview of genomic features for case 1: CpG position, mQTL position, histone peak range,
hQTL position, relevant nearby gene, mQTL-CpG associations, and eQTL-gene associations. Figure
rendered using the Gviz R package [50].

4.4.2 Case 2

We found evidence for a directional association between histone PTMs and the trait, and between

nearby methylation and that trait. The SNPs instrumenting these two molecular traits are in LD, thus SMR

cannot distinguish between them. This may represent a scenario where histone modification and methylation

are both affecting the trait. In total, there are 7 hQTL peaks matching this case: 5 for BMI, and 2 for HDL-C.

hQTL: H3K4ME3 3286

The hQTL peak H3K4ME3 3286 spans 3115 bp on chromosome 16, with the centre of the peak

278 bp away from its hQTL (rsid: rs1868157, β = −0.90, p < 0.001). The BMI-associated CpG cg26899718

[51] is 1421 bp away, and methylation at this CpG is highly associated (β = 0.18, p < 0.001) with the nearby

mQTL SNP (rsid: rs4783556). SMR provided evidence of this histone PTM being directionally associated with

BMI (Bonferroni p = 0.004) and this evidence was also present when looking at the effect of methylation

at cg26899718 (Bonferroni p < 0.001). Since the mQTL and hQTL are highly correlated (R2 = 0.87), this

exemplifies a situation where SMR fails to distinguish between the two epigenetic mechanisms. Here, a study

focused on only one level of the epigenome may conclude that a causal link has been identified, but when

including data on both histone modifications and methylation, we observe that no such conclusion can be

reached. As expected, both the hQTL and mQTL were eQTLs of many of the same genes (13 overlapping

genes out of the 18 unique genes using eQTLGen).
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4.4.3 Case 3

In the scope of case 3, as seen in case 2, we found evidence for a directional association between

histone PTMs and the traits, as well as between nearby methylation and that same trait. The difference

between this case and the previous one lies in the fact that, in this scenario, the SNPs intrumenting the two

molecular traits are not in LD, and SMR should be able to distinguish between them. In total, there are 4

hQTL peaks matching this case: 1 for BMI, and 3 for HDL-C.

hQTL: H3K27AC 1183

The hQTL peak H3K27AC 1183 spans 2711 bp on chromosome 11, with the centre of the peak

1433 bp away from its hQTL (rsid: rs7101772, β = 0.69, p < 0.001). The HDL-associated CpG cg09580214 is

589 bp away, and methylation at this CpG is highly associated (β = 0.50, p < 0.001) with the nearby mQTL

SNP rs7117404. SMR provided evidence of this histone PTM being directionally associated with HDL-C levels

(Bonferroni p < 0.001), and this was also observed with methylation at rs7117404 (Bonferroni p < 0.001).

Here, since the mQTL and hQTL are not correlated in the European population (R2 = 0.0052), in principle,

SMR is able to distinguish between the two epigenetic mechanisms. The hQTL mentioned beforehand is

a known cis-eQTL for 12 genes, including MTCH2, which is highly expressed in white adipose tissue and

adipocytes, and thought to play a regulatory role in adipocyte differentiation [52, 53]. With regard to the

mQTL, eQTLGen found that it is a known cis-eQTL for 10 genes, 7 of which overlap with the ones found for

the hQTL. It is possible that the hQTL and mQTL both affect HDL-C levels through different mechanisms.

An overview of the genomic features found for this example of case 1 is shown in Figure 4.4.
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Figure 4.4: Overview of genomic features for case 1: CpG position, mQTL position, histone peak range,
hQTL position, relevant nearby gene, mQTL-CpG associations, and eQTL-gene associations. Figure
rendered using the Gviz R package [50].

4.4.4 Case 4

With regard to the final case, conversely to case 1, we found evidence for a directional association

between DNA methylation and the trait, but insufficient evidence to suggest that the histone PTM was

associated with the same trait. Again, here the SNPs instrumenting these two molecular traits are not in LD

for the European population. It may be a case in which DNA methylation is the driving mechanism affecting

the trait, and not histone PTM. In total, there are 10 hQTL peaks matching this case: 3 for BMI, 1 for HDL-C,

and 6 for LDL-C.

hQTL: H3K27AC 1988

The hQTL peak H3K27AC 1988 spans 1492 bp on chromosome 12, with the centre of the peak 108

bp away from its hQTL SNP (rsid: rs1990714; β = 0.64, p < 0.001). The BMI-associated CpG cg24727480

[54] is 36 bp away, and methylation at this CpG is highly associated (β = −0.22, p < 0.001) with the nearby

mQTL SNP rs72649521. This mQTL is not in LD with the hQTL in the European population (R2 = 0.0011),

hence we expect SMR analyses investigating the hQTL peak and methylation’s effect on BMI to be distinct.

Here, SMR provided evidence of the nearby DNA methylation at cg24727480 being directionally associated

with BMI (Bonferroni p < 0.001), but not the histone PTM (Bonferroni p = 0.999). This hQTL is a known

cis-eQTL for 1 gene, KCTD10, which overlaps with one of the 6 genes found for the mQTL. According to

GeneCards [55], KCTD10 contains SNPs implicated in alcohol consumption and HDL-C measurement GWAS

which possibly have an impact on BMI. Noteworthily, the mQTL is a known cis-eQTL for ACACB, which
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studies have linked its variants to obesity and diabetes [56], adipose gene expression regulation [57], and BMI

[58]. An overview of the genomic features found for this example of case 1 is shown in Figure 4.3.

Figure 4.5: Overview of genomic features for case 1: CpG position, mQTL position, histone peak range,
hQTL position, relevant nearby gene, mQTL-CpG associations, and eQTL-gene associations. Figure
rendered using the Gviz R package [50].
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Chapter 5

Discussion

With this project, we set the aim of understanding how molecular processes could influence car-

diometabolic traits. To that effect, we looked at the interactions between 2 epigenetic mechanisms (i.e.

histone PTMs and DNA methylation) using QTL data that we processed via a novel modular SMR analysis

pipeline. Using this approach, based on the raw data from Grubert et al. [37], we reduced the data to 36 hits

that fit into 1 of the 4 cases included in our 7 designed scenarios. From the results we found that most of the

hits (15) were cases in which the histone PTM was the driving mechanism, closely followed (10) by cases in

which the DNA methylation was the driving mechanism.

Initially, we set out to run our SMR-based analysis pipeline on the data included in 5 different studies

(see Table 3.1). Unfortunately, we were only able to proceed with 2 of them since the remaining ones were

either missing required data or crucial data processing steps were omitted, rendering replication of some parts

of the studies unviable. Thus, in this chapter, we focus on discussing the results from the SMR-based analysis

pipeline applied to the data from Grubert et al. [37] according to the workflow shown in Figure 3.1.

Although QTLbase provides a straightforward way of finding relevant articles, there is a noticeable

lack of standardization when it comes to reporting results from QTL mapping studies to perform bidirectional

MR. Ideally, the scientific community could formulate a set of conventions for reporting epigenetic assays

(including QTL data), as pointed out by Carter et al. [59]. This would significantly decrease the amount of

data preprocessing required for performing SMR analyses, as well as increase the reproducibility of said studies.

The first step of our approach required the integration of hQTL and mQTL data. To that effect, we

collected the supplementary data from Grubert et al. [37] along with additional files kindly provided by the

authors. The data in Grubert et al. [37] included all the required variables to perform SMR for 3 histone PTMs

(H3K27ac, H3K4me1, and H3K4me3) and our pipeline successfully performed the SMR analysis. Although in

the case of Pelikan et al. [38], we were missing data on the effect allele frequency (EAF) which we extracted

from the Ensembl Rest API using reference SNP cluster ids (rsids) as input. Data from Pelikan et al. [38]

was used for replication purposes from the results of SMR on Grubert et al. [37]. Unfortunately, the most

interesting peaks (see Table 4.7) did not overlap between the two articles. This may be derived from the fact

that they used different populations (i.e. EUR vs YRI).
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In this project, we designed an experiment in which our results were categorized into 7 different

scenarios (4 of which are of interest; “cases”) by tuning different variables (MR p-values and R2). Our analysis

amounted to 36 interesting peaks out of the few thousands peaks in the source data (n = 46322): 15 peaks in

case 1 (3 for BMI, 5 for HDL-C, and 7 for TG), 7 peaks in case 2 (5 for BMI and 2 for HDL-C), 4 peaks in case

3 (1 for BMI and 3 for HDL-C), and 10 peaks in case 4 (3 for BMI, 1 for HDL-C, and 6 for LDL-C). Almost

half of the peaks falling into one of the 4 cases were included in case 1. Some peaks have NA values in the R2

(YRI) column because of population-specific alleles. Population-specific SNPs are non-randomly distributed

throughout the genome and significantly associated with recombination hotspots [60]. Another observation we

made is the fact that out of the 9 traits we studied, only 4 (BMI, HDL-C, LDL-C, and TG) survived the SMR

and subsequent analyses. It is important to highlight that some traits hold more studies than others (e.g. BMI

has been much more studied than leptin levels).

Noteworthily, scenarios B and F had practically no results. In this case, mQTLs and hQTLs are in

high LD but results from the SMR analysis are different: SMR is able to distinguish the exposures, and it

presumably shouldn’t be able to in these two scenarios. For scenarios C and G, SMR is able to distinguish

between the mQTLs and hQTLs (not in LD), and it seems like we have more results for case 1 (i.e. scenario

B) than case 4 (i.e. scenario F). It would be interesting to follow up this lead and see if, for example, histone

PTMs have more influence than DNA methylation when looking at cardiometabolic traits.

The default R2 threshold to determine if a pair of alleles are in LD set by the LDpair function of

the LDlinkR R package is set to 0.1. But in our analysis, we were slightly more flexible (i.e. R2 = 0.3) since

we aimed at a more exploratory analysis. It is plausible that decreasing the threshold for this variable would

lead to more significant results (e.g. R2 < 0.1) at the cost of less flexibility. On the other hand, increasing

it (e.g. R2 > 0.3) could possibly give more hits, some of which could potentially be biologically relevant.

Alternatively, one could also try out different widths for each histone peak where we look for trait-associated

CpGs. Lastly, the experiment could be rearranged to include more in-depth scenarios that incorporate multiple

p-value cut-offs and effect size estimates.

Due to the fact that we ran the SMR analyses per h/mQTL-trait association (i.e. we only look at 1

instrument/SNP at a time), one limitation worth mentioning is that we were not able to check if there were

pleiotropic effects (i.e. SNPs affecting 2 or more traits through through independent pathways). Furthermore,

because a genetic variant (i.e. 1 SNP) proxying for an exposure (e.g. H3K27ac 1234) may only explain a small

part of the variance observed for a given trait (e.g. BMI), MR does require a large sample size, which is not

always the case.

With respect to the aims of this project, we successfully collated libraries of molecular QTLs (hQTL

and mQTL) and standardized a SMR workflow that can be applied to different subsets of phenotypes. In the

future, it would be beneficial to the growing field to focus on gathering larger amounts of data from multiple

sources (including different types of QTLs, e.g. caQTLs), performing MR on these larger sets of data, and

creating database with standardized data formats that can be used as input for the TwoSampleMR R package.
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[49] H. Toinét Cronjé, Hannah R. Elliott, Cornelie Nienaber-Rousseau, and Marlien Pieters. Replication and expansion

of epigenome-wide association literature in a black south african population. Clinical Epigenetics, 12(1), 2020.

doi: 10.1186/s13148-019-0805-z.

[50] Florian Hahne and Robert Ivanek. Visualizing genomic data using gviz and bioconductor. Methods in Molecular

Biology Statistical Genomics, page 335–351, 2016. doi: 10.1007/978-1-4939-3578-9 16.

[51] L E Wilson, S Harlid, Z Xu, D P Sandler, and J A Taylor. An epigenome-wide study of body mass index and

dna methylation in blood using participants from the sister study cohort. International Journal of Obesity, 41(1):

194–199, 2016. doi: 10.1038/ijo.2016.184.
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tissue and obesity. The Journal of Clinical Endocrinology & Metabolism, 96(10), 2011. doi: 10.1210/jc.2010-3050.
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Chapter 6

Appendix

Figure 6.1: Density plot of the distance from the histone peak to the nearest trait-associated CpG (in bp)
for each GWAS after hQTL filtering. Refer to Table 3.3 for GWAS id to trait conversion, and vice-versa.
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Figure 6.2: Density plot of the width of the histone peak (in bp) after hQTL filtering for each trait. Refer
to Table 3.3 for GWAS id to trait conversion, and vice-versa.
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SMR results

1. exposure: Histone peak (e.g. H3K4ME3 1234)

2. cpg.db: Source database from which the nearby CpG was retrieved

3. cpg.dist: Distance from the nearby CpG to the histone peak

4. cpg.id: CpG id (e.g. cg cg00029284)

5. h.be: Effect size of the histone peak

6. h.chr: Chromosome on which the histone peak is located

7. h.ea: Effect allele of the histone peak

8. h.eaf: Effect allele frequency of the histone peak

9. h.oa: Other allele of the histone peak

10. h.peak: Centre position of the histone peak within a chromosome (in bp)

11. h.pos: Histone peak position (in bp)

12. h.pval: Histone peak p-value

13. h.se: Histone peak standard error

14. h.snp: Histone peak SNP

15. h.snp.pos: Position of the histone peak SNP

16. h.width: Histone peak width

17. m.be: Effect size of the mQTL

18. m.chr: Chromosome on which the mQTL is located

19. m.ea: Effect allele of the mQTL

20. m.eaf: Effect allele frequency of the mQTL

21. m.oa: Other allele of the mQTL

22. m.pos: Position of the mQTL within a chromosome (bp)

23. m.pval: mQTL p-value

24. m.se: mQTL standard error

25. m.snp: mQTL SNP

26. m.snp.pos: Position of the mQTL SNP

27. mark: Histone PTM (or mark)

28. h.pval.mr: P-value for the peak-trait association after MR

29. h.pval.adj.mr: Adjusted p-value (Bonferroni) for the peak-trait association after MR

30. h.outcome.be: Effect size of the outcome for the histone peak

31. h.outcome.se: Standard error of the outcome for the histone peak

32. h.outcome.pval: P-value of the outcome for the histone peak

33. h.outcome.ea: Effect allele of the outcome for the histone peak

34. h.outcome.oa: Other allele of the outcome for the histone peak

35. h.outcome.eaf: Effect allele frequency of the outcome for the histone peak
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36. m.pval.mr: P-value for the mQTL-trait association after MR

37. m.pval.adj.mr: Adjusted p-value (Bonferroni) for the mQTL-trait association after MR

38. m.outcome.be: Effect size of the outcome for the mQTL

39. m.outcome.se: Standard error of the outcome for the mQTL

40. m.outcome.pval: P-value of the outcome for the mQTL

41. m.outcome.ea: Effect allele of the outcome for the mQTL

42. m.outcome.oa: Other allele of the outcome for the mQTL

43. m.outcome.eaf: Effect allele frequency of the outcome for the mQTL
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