
Master Computer Science

Automatic Segmentation of Recordings for

Text-to-Speech model training

Name: Xin Chen
Student ID: S2425319

Date: 21/08/2021

Specialisation: Computer Science and Science
Communication & Society

1st supervisor: Dr. Erwin M. Bakker
2nd supervisor: Prof. dr. Michael S. Lew

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands2



Automatic Segmentation of Recordings for

Text-to-Speech Model Training

Xin Chen

Abstract

Text-to-speech (TTS) synthesis models have seen a rapid development and are able
to generate human-like speech with a high inference speed. Customized voices in
TTS are very desirable for commercial speech platforms. People who currently intend
to let the TTS engine speak in their own voice face three challenges: 1) how to
segment their speech; 2) how to align their speech with the text they read; 3) how
to select the high quality components of self-made speech for training. It is very
time-consuming to tackle these three challenges manually, since the training of most
TTS engines requires at least 24-hour of recorded and annotated speech. Aligning
the text and speech would be a very labor-intensive work. We present an automatic
recording segmentation strategy (ARS) to segment speech and align the speech to
its corresponding text automatically. The segmentation results of ARS achieve a
lower word error rate (0.220) in comparison to the manual segmentation (0.347).
Additionally, experimental results demonstrated that a Transformer TTS engine
trained with an ARS-processed dataset obtains a word error rate of 0.632 and a
mean opinion score of 2.833 after a reasonable training time.

1



1 Introduction

As Text-to-Speech (TTS) engines become more and more mature and well-developed,
people start to shed a light on letting TTS speak in a customized voice, probably
their own voice. But ordinary people normally will not have a professional recording
studio with recording equipment to capture perfectly a clean speech. Additionally,
it will be difficult for them to spend the time and effort to produce a high-quality
speech dataset similar to LJSpeech (Ito et al., 2021).

So is it possible to let these TTS systems speak in our own voice? The answer is
positive. But there are three major challenges that we have to deal with before
entering the TTS training phase.

The first challenge is to segment our recording. As the first approach, we may consider
segmenting our recording according to the silences between sentences. A speaker will
pause because of a comma, ”,”, a full stop, ”.”, etc., information expressions, and
having to take a breath. This will make the problem of aligning the speech between
silences and the given text challenging.

Szymański et al. (2006) have proposed an automatic segmentation of speech by
using HMM-based method, in which dynamic programming was used to correct
the boundary points the HMM generated. It is used to process the speech dataset
with precise annotations, including the labels of phonemes and the duration of each
phoneme, for automatic speech recognizers and speech synthesizers. However, it is
rather computationally expensive and its performance is not as good as the manually
segmented dataset. Besides, the latest TTS models, such as Tacotron, do not require
a training dataset that has a full phonetic level annotation.

The second challenge is how to align the texts we read with our recording. Since
a TTS dataset requires in general at least 24-hour speech, which resembles four
audiobooks, it is pretty time-consuming and laborious for one person to align all the
texts to the corresponding speech one by one.

Recent methods such as forced alignment (McAuliffe et al., 2017) can be used to
match each word with the corresponding phoneme forcefully by finding the start
time and end time of this word. For instance, there is a speech of ”How are you”.
Forced alignment is able to find out the start time and end time of ”How”, ”are” and
”you” respectively according to the transcription of a speech and its phone library
indicating the duration of each phone. Even though it is able to align text with
speech automatically, it requires a large library of word pronunciation, which still
needs lots of human inputs, to search for phones of words so that it can locate each
word in the whole speech.

Apart from these two challenges, preliminary TTS training with self-made recording
datasets, in general, resulted in bad performance with a mumbling voice. The only
difference from the original training procedures is the used dataset, indicating that
the quality of speech dataset may have been to blame. It is the third challenge we
face.

2



1 Introduction

Although TTS technology made some huge strides coming from requiring a phoneme-
based annotated dataset to a sentence-based dataset, it is clear that current TTS
engines require a training dataset of a certain quality to be well trained. Thus, a
novel preprossing strategy is required to align text and speech automatically.

In this paper, a novel automatic recording segmentation strategy is proposed to
help us align text and speech automatically by using an automatic speech recognizer
(ASR), which can transform speech to texts. While using ASR as an alignment tool,
enables us to get rid of the low-quality parts of our speech.

Specifically, each ASR result is being compared with its corresponding original text
so that its highly matching part can be found by calculating its word error rate.
Then the low score ones are being selected as our inputs so that we can get our
high-quality ones. In this way, we successfully select the high-quality ones as well as
aligning our recording with the corresponding texts automatically. Afterward, we
fed them into the speech synthesis systems (Tacotron and Transformer) with the
corresponding texts input to test out whether this strategy is able to ensure the
quality of generated speech by TTS, and even improve its inference performance as
well as the speech quality to some extent.

The rest of the paper is organized as follows. In section 2, related work is described.
In section 3, basic methods and terminologies are used in the rest of the paper.
In section 4, baseline methods are introduced and used in the experiment stage.
In section 5, automatic recording segmentation for TTS training is explained in
detail. In section 6, experiments and results are displayed. Finally, in section 7, the
conclusion is presented.

3



2 Related Work

In this section, we will introduce the related work of speech segmentation and the
background of text-to-speech, including its development and the state of art TTS
architectures. Then we will explain why we chose Tacotron and Transformer as our
baseline methods.

2.1 Speech Segmentation

Segmenting speech manually is the most common way in terms of segmentation
since it is considered as the most accurate way to cut the speech. Furthermore, it
provides certain flexibility when it comes to manual segmentation in terms of the
semantic meaning of speech. There are several tools that support it, such as PRAAT,
a phonetic software. PRAAT enables you to segment the parts you want by setting
the boundaries manually, then annotate the parts with the corresponding words.
However, manually annotating words one by one is extremely time-consuming and
labour-intensive if you have a large dataset, such as the one for TTS training.

To reduce such labour tasks, automatic speech segmentation has been proposed to
solve this problem. Segmenting speech based on silences between sentences is widely-
used since a speaker will normally pause due to a comma or a full stop. However,
when it comes to the annotation, it requires a clear pause without breathings, which
are usually unavoidable. This makes the text annotation challenging.

Apart from systematic segmenting based on silences, Zió lko et al. (2006) indicated that
the segmentation boundaries could be located based on the analysis of speech signals
done by discrete wavelet transform, due to the rapid power changes of phonemes in
different frequency subbands. This information enables them to determine the start
points and endpoints of phonemes. It is efficient to use this method to do a clean
cut on speech at the phoneme level since the whole process can be done without any
phoneme recognition and any training. However, without phoneme recognition, it’s
hard to make sure the quality of audio. Additionally, it also means that it requires
other annotation methods to annotate the speech with texts.

Another automatic segmentation for speech synthesis method using Hidden Markov
Model (HMM) was proposed by Bansal et al. (2014). This method contains two
training models. One model is built for a fixed silence, since it lacks pauses at
the end of sentences initially. Another model is designed for aligning words to the
most optimal pronunciations. In the end, the Viterbi algorithm is used to compute
the location of each phoneme. Even though its segmentation results are closed
to the manual segmentation results, the complexity of this method increases the
computational time to an extent.

4



2 Related Work

Besides, these speech segmentation strategies are commonly implemented on a
standard dataset, such as LJSpeech, which hardly contains any breathings and
unclear speeches. In other words, these algorithms in general do not take the
”filter” function, which serves for filtering out breathings and unclear speeches, in
considerations. However, self-made recordings normally include such low-quality
components. There is a necessity to get rid of them so that TTS training won’t be
affected by them to a great extent.

2.2 Text-to-speech

Text-to-speech synthesis (TTS), a process that transforms text into speech by
computer, is getting more and more popular in daily life, especially for the interaction
between machines and humans.

TTS is a typical one-to-many problem which one text might correspond with multiple
pronunciations. In the earliest TTS engine, it requires massive human inputs of
the rules between texts and speech.(Taylor, 2009) This requirement has become an
obstacle that stopped TTS from developing at that time. As neural networks came
back to the stage of computer science, TTS engines obtained the ability to find
the patterns and relationships behind text inputs and speech inputs, imitating the
learning process of humans. It succeeded in decreasing the demand of human inputs.
Neural networks lead TTS to a whole new world.

During these years, TTS engines with neural networks have been developed a lot.
WaveNet (Oord et al., 2016) is a generative model of raw audio waveforms that
can predict an output based on previous inputs. It builds a solid foundation for
the future vocoder. Deep voice (Arık et al., 2017) succeeded in merging all the
necessary TTS components into one system. Tacotron (Y. Wang et al., 2017) realized
a real End-to-End TTS systems without training each component independently and
extracting linguistic features from texts.

Additionally, latest TTS engines have made a lot of improvements on the inference
speed as well as the speed of training. FastSpeech2 (Ren et al., 2020) and Transformer
(Li et al., 2019) are able to produce a more human-like and clearer speech and reach
a faster inference speed as well as training speed.

2.2.1 the Early State of Art

Wavenet

Wavenet (Oord et al.,2016), a kind of generative model,can be used to generate texts,
images and raw audios, etc. In 2017, DeepMind announces that it is able to build a
model upon raw audio directly, competing with other state-of-art architectures on
TTS tasks. The core of this model is that the prediction of xn+1 depends on the
given input sequence: x1 ∼ xn. Then we add it into the original sequence generating

5



2 Related Work

a new input: x2 ∼ xn+1 for the next prediction. However, while coping with TTS
problems, Wavenet still requires linguistic features from text input extracted by
the frontend of TTS. Moreover, its inference speed is extremely slow, since it only
predicts one audio sample at a time.

Deep Voice

In the same year, Arık et al. (2017) rolls out a novel TTS system called Deep voice,
with the replacement of all the components of traditional TTS systems by neural
networks. It can learn a kind of voice at one time and need several hours to master
each voice with enough datasets. The key of it is that this framework can convert all
kinds of linguistic features to various acoustics features, then take these features as
the input of its audio synthesis model, which outputs speeches. Deep Voice, ”a real
End-to-End TTS system”, is able to reduce a majority of labor and decrease certain
complexity to train the system. However, since Deep Voice is consisted of 5 different
models training independently, these errors from different models might compound
to a great extent.

Wang

Wavenet and Deep Voice are not “real” end-to-end systems. According to Wang’s
explanation (W. Wang, Shuang, et al., 2016), “end-to-end” refers to the integration
of text analysis and acoustic modeling in the same model. In order to achieve that,
an attention-based recurrent network is introduced to the TTS framework, which
helps to cope with the intensive labour in text analysis and the complexity of the
TTS pipeline at that time. Wang claims that the alignments between linguistic
features and acoustic features can be learned automatically with this network.

However, in their experiment, a trained hidden Markov model (HMM) was still
employed to align phonemes and their corresponding frames as initial alignments
in the training process. Additionally, what it predicts is spectral parameters. A
vocoder is still required to help it synthesize speech.

Char2wav

Char2wav (Sotelo et al., 2017)is another end-to-end speech synthesis system inte-
grated the frontend (texts→ linguisticfeatures) and the backend(lingusticfeatures→
speech). It is also inspired by the success of attention-based recurrent networks in
sequence-to-sequence tasks as Wang’s work. One of the differences between them
seems to be that attention network is employed in the whole process of speech
synthesis in Wang’s work, while in Char2wav, it is merely used in the decoder to
generate acoustic features. Then, SampleRNN is used to generate a waveform with
relatively high quality.

6



2 Related Work

Another difference is that the two components of Char2wav: the reader (an encoder-
decoder model) and the neural vocoder, need to be pretrained separately beforehand,
while Wang’s work only needs to be trained once. Since there is no comparison of
the system with other models, it’s hard to say how well it performs.

2.2.2 the State of Art TTS

Up till now, all the TTS architectures mentioned above were still struggling with
either multiple networks within one model or poor quality of a complete model. In
recent years, more efficient, high quality and less complex speech synthesis systems
have emerged, such as Tacotron, Tacotron2, Transformer, and Fastspeech2.

Tacotron

Tacotron(W. Wang, Xu, et al.,2016), as one of the earliest TTS model, is a ”real”
end-to-end TTS model generating speech from text input directly. There are two
major differences that made Tacotron stand out.

The first difference is that it integrates text analysis and acoustic modeling in the
same model. It got rid of the traditional complex TTS architectures, such as the
ones with frontend and backend. Most importantly, it can still produce high-quality
human-like speech.

Another major difference is that it does not need to extract linguistic features from
texts, thanks to a crucial module: CBHG module, composing of convolutional filters,
highway networks, and a bidirectional gated recurrent unit (GRU) recurrent neural
net (RNN). It helps Tacotron to extract representations from sequences, instead
of manually deriving linguistic features from texts. They use this module in both
the encoder and post-processing net, which converts decoder output to the input
of synthesizer, which can synthesize input into waveforms. The CBHG module not
only enables them to reduce the probability of overfitting and accelerate convergence
but also simplifies the architecture by correcting the prediction with contextual
information.

Moreover, Tacotron is able to be trained entirely based on given 〈Text, Audio〉 pairs,
which reduces the complexity and, as a consequence, reduces the manual labour of
the training dataset. (Y. Wang et al.,2017)

Tacotron2

Tacotron2 (Shen et al., 2018) is an upgraded version of Tacotron. It simplifies the
whole architecture of the original Tacotron by replacing the CBHG module with a
vanilla LSTM. Apart from that, they also did some adjustments when it comes to the
vocoder, which transforms the spectrogram into a waveform. They still use Wavenet
as their vocoder but it is a modified version so that they improved the quality of audio

7



2 Related Work

generation. According to their results, they claimed that Tacotron2 outperforms
Tacotron to a great extent and the speech produced by Tacotron2 received a high
mean opinion score (4.526), which is close to the mean opinion score of the ground
truth(4.582).

Transformer

Transformer (Li et al.,2019), is another novel End-to-End TTS model, built upon
Tacotron. It is inspired by the success of the Transformer neural network in automatic
translation research. It succeeded in improving the efficiency of Tacotron by replacing
the recurrent neural networks (RNN) with a Transformer neural network. Since
RNN has to process and generate data sequentially, the current hidden state can
only be generated based on the previous hidden state. This somehow limits the
amount of possible parallelization resulting in slow inference speed. In our early
preliminary experiments, we also found that, with the same amount of input (texts
and speeches), Tacotron at least took more than twice the time as Transformer on
inference as well as training.

FastSpeech2

FastSpeech2, unlike the ones mentioned above, is a non-autoregressive model. It
means that its new prediction is less dependent on the previous alignments between
text and audio. (Qi et al.,2021) FastSpeech2 is able to deal with the problems
the autoregressive model (Tacotron) encountered, such as slow inference speed and
word skipping issues. Besides that, it also adds other audio features, such as pitch
and energy, as additional inputs in its training phase. Qi et al. indicated that its
performance is better than Tacotron2 and Transformer according to their mean
opinion score results in which Fastspeech2 received 3.83, Tacotron 2 received 3.70
and Transformer received 3.72. Additionally, its training time, as well as inference
speed, are improved to a great extent compared to Tacotron2 and Transformer.

2.2.3 Baseline Method Selection

For our research, we selected these four TTS engines, Tacotron, Tacotron2, Fastspeech,
and Transformer as our baseline methods, to test the performance of our automatic
segmentation strategy. Here we will explain how and why we chose our baseline
methods.

There are two major criteria being used in our selection.

As the first selection criteria, we take the quality of audio generated by these models.
Even though all of them claimed that they achieved good performance and the
audio they produced is similar to human speech, the results in reality always deviate
from the ones they indicated, since the performance, such as the speech quality, is
measured by the score of mean opinion score (MOS). However, MOS is a subjective

8



2 Related Work

opinion depending on listeners and the qualities of audio generated by other models
it is compared with. To have a better understanding of their audio quality, we tested
them by feeding the same text inputs to these four TTS engines, including short
texts and long texts. Since they all used the same dataset, LJSpeech, to train, this
makes their results comparable.

The second criterion is whether it is feasible to train. Different models require
different programming environment features. Some problems are easily solvable by
installing a specific version of the library, while some problems are more challenging,
such as the conflicts between the conda version and the torch version. We followed
the instructions given by their implementation and tested and ran the training.

Baseline Results

Tacotron1 The quality of its audios is a bit lower than expected. It contains
background noise and it sounds somewhat robotic as it speaks. The synthesized
speech audio is intelligible. Furthermore, the training script is confirmed to work.

Tacotron22 We failed to run its inference script, due to the RuntimeError of PyTorch.
Even though its demo audio did sound much clearer than the Tacotron one, we had
to leave it out because of the problems we encountered and the limited time we have
to try to solve them.

Transformer3 The sound of its audios is much clearer than Tacotron’s and sometimes
it sounds like singing. But the major drawback is that it will produce repeating
words if the input is too short. For instance, on the input text ”hello world”, it will
produce an audio sounding ”hello world hello world hello world”. On some occasions,
it re-organizes the order of some words by itself. For instance, on the input text ”all
of them”, produces a speech saying ”of them all”. Running the training scripts was
successful, where its speed is at least twice faster than the training of Tacotron with
the same speech quality. So it indeed improved a lot when it comes to computational
time.

FastSpeech24 Its sound quality is the best among four TTS engines. It’s much
clearer and more human-like, even though it might still mispronounce some words
sometimes. But that is probably due to the fact that those particular words don’t
show up in its training dataset. As for the training, ”it requires Montreal Forced
Alignment (MFA) to obtain the alignments between the utterances and phoneme
sequences”, as stated on the instructions page. However, running MFA gave errors
that could not be solved due to the limited time of the project. Hence we had to
abandon this method also.

1https://github.com/keithito/tacotron
2https://github.com/NVIDIA/tacotron2
3https://github.com/soobinseo/Transformer-TTS
4https://github.com/ming024/FastSpeech2

9



2 Related Work

In the end, we selected Tacotron and Transformer as our baseline methods to test out
our automatic segmentation strategy, since they are able to generate understandable
speech for humans and can be trained by using the new datasets we produced.

10



3 Fundamentals

In this section, we will introduce the basic methods, different automatic speech
recognizers, and metrics, word error rate and mean opinion score, we applied in the
later implementation and experiments.

3.1 Automatic Speech Recognizer

Automatic Speech Recognition (ASR) is a reverse process of TTS. It translates speech
into texts. In this research, we used ASR to examine the quality and intelligibility of
our recordings by verifying how much ASR can recognize. Its transcription would be
compared with the original texts so that it can help us to filter those low-quality
speech based on a high word error rate.

We considered two high-performance ASR systems: Deep Speech and Google
Speech.

3.1.1 Deep Speech

Deep Speech (Hannun et al., 2014) is an End-to-End automatic speech recognition
system by using deep learning with two major components: an RNN and a language
model. It does not require the manual design of a specific model to be robust against
noise or other factors that might affect the transcription capability. It’s able to
learn directly from the dataset that is composed of 7000-hour clean speech with
certain artificial noise. Most importantly, it outperformed other ASR models at the
time and reached a word error rate of 16.0% on Switchboard Hub5’00, which is a
challenging dataset with telephone conversations between humans and robots as well
as conversations between two native English speakers.

RNN. It (Figure 3.1 (b)) is composed of 5 layers of hidden units. Among these five
layers, only the fourth layer is the recurrent network. Initially, they first segment
an audio clip (with label) into T segments. For each segment, a spectrogram vector
is extracted. In the first three layers, it converts each vector into a corresponding
character.

Then these characters are fed into the fourth layer, a bi-directional recurrent layer
to extract hidden representations from its forward and backward recurrence. The
fifth layer is to predict a sequence of character probabilities for each time frame by
taking those hidden representations as inputs. By filtering the highest probability of
character in each time frame, they can compose a complete transcription.

After each prediction, to minimize the error between prediction and ground truth,
the Connectionist temporal classification (CTC) loss is further computed to evaluate

11



3 Fundamentals

Figure 3.1: (a) The overall architecture for Deep Speech. (b) depicts the structure
of RNN.

the edit distance between the sequence of predicted characters and the sequence of
corresponding ground truth.

With those speech and corresponding sequences of character, the model is trained by
using back-propagation to obtain a predictive model.

Language model. It is a model to cope with the word errors which these words
don’t exist in our training dataset. The language model takes the prediction result
as inputs to compare with the corpora used to train the language model. Combining
the result of RNN and the one of the Language model, the final predictive result is
obtained as the transcription output.

In this research, we apply deep speech as a tool to measure the quality of our
recordings. In our preliminary studies, we discovered that the word error rate of
deep speech is relatively low and it is able to recognize all the words in speech.

3.1.2 Google Speech

Google speech is another popular automatic speech recognizer. Its structure is pretty
similar to deep speech in the description of Soltau et al. (2016).

It is composed of a deep LSTM RNN neural network and uses the CTC loss to
minimize the error between prediction and ground truth. It differs from the deep
speech on the ”language model”. It models words in written form but also maps an

12



3 Fundamentals

FST verbalization model for words in spoken forms with a larger dataset with written
and spoken English vocabulary. For instance, mapping ”205” to ”two hundred and
five” and ”two o five”.

Both of these two ASRs optimize the transcription by rescoring their prediction in
multiple times. However, we didn’t use google speech as our tool to examine our
audio quality. There are two main reasons behind that.

The first one is that its performance was not good as the deep speech. It either
failed to transcribe speech shorter than three seconds most of times or merely
recognize one or two words while there are at least five words spoken in the speech.
Since we used the same speech to test google speech and deep speech, deep speech
outperforms google speech in terms of the accuracy of transcription and the capability
to transcribe.

In addition, in our later experiment, we attempted to do a precise cut on the audio
according to the transcribed words, (so that we can get rid of the words ASR failed
to recognize), where the timestamps of transcribed words were required. It could
be something wrong with the environment and the versions. We couldn’t run that
timestamp python file so we had to choose not to use google speech in this case.

3.2 Signal Preprocessing

Before feeding our recordings into ASR, we preprocessed our speech since we need to
feed our speech into ASR to see how much it can recognize. Based on its recognized
results, we can compare it with the original texts so as to calculate its WER.

3.2.1 Pre-emphasis

According to previous ASR research, pre-emphasis (Loweimi et al., 2013) is an
essential step to preprocess audio signal, since audio signal normally experiences
”Spectral Tilt”, which is that the amplitude of high frequency signal is relatively
lower than the amplitude of low frequency one.

Due to the different energy levels, the low frequency component has higher energy
levels than the high frequency one. In that case, with the same amount of noise,
the signal-noise ratio (SNR) of high frequency components is much lower than low
frequency ones which means that high frequency signal contains more noise relatively
giving rise to being less easy to be recognized.

Pre-emphasis (“Emphasis (telecommunications)”, 2021) is able to balance the high
frequency component and the low frequency component so that the high frequency
component can be amplified relatively. It uses the following first-ordered filter to
achieve:

y(t) = x(t)− ax(t− 1), 0.95 < a < 0.99 (3.1)

13



3 Fundamentals

Since the frequency of the signal is determined by the speed of signal level change.
After applying this first-ordered differentiation on signal, its differentiation value
is high on the high frequency component where signal level changes fast, while its
differentiation value is low on low frequency component where signal changes slow so
that this filter is able to lower the low frequency component and enhance the high
frequency component. In this case, the pre-emphasis process increases the chance of
detecting the high frequency component by ASR.

In Figure 3.2 , it presents the comparison between a 3.5-second speech signal and its
pre-emphasis results. As we can see, the amplitude of pre-emphasis one in Figure
3.2(b) has been flattened and occupied evenly the whole Spectrum map. If you
looked at the vertical axis, you will find out that the range of amplitude has been
compressed from −40dB ∼ 30dB to −30dB ∼ 18dB. What results in it is that the
amplitude of the low frequency components has been compressed, since they are the
ones which contribute to high amplitude, while the amplitude of the high frequency
components remains unchanged basically.

In a word, even though the Equation 3.1 didn’t really flatten the spectrum map of
the signal by directly amplifying the amplitude of the high frequency components but
compressing the low frequency ones, it achieves that we can use the same signal-noise
ratio (SNR) to analyze the signal, since the original SNR is different in terms of
low frequency components (high SNR) and high frequency components (low SNR).
Pre-emphasis is able to ensure ASR to better capture the signal info from high
frequency components.

14



3 Fundamentals

(a)

(b)

Figure 3.2: Comparison between original speech signal and the one after pre-emphasis.
a): Speech signal before pre-emphasis (Original Signal), b): Speech signal
after pre-emphasis

3.3 Word Error Rate

Word error rate (WER) (“Word error rate”, 2021) is a common metric to measure the
performance of ASR. What it measures is straightforward as its name, the proportion
of incorrect words in transcription while comparing to the reference texts (input
texts).

There are three situations when incorrect words show up. The first one is the
insertion (I). It inserts a word or words in the original texts. It could be because of
the misread or because ASR takes another sound, such as the voice of other people,
as input. The second one is the deletion (D). It deletes a word or words. It could
be due to the fact that ASR fails to recognize it or ASR fails to transcribe it. The
last one is the substitution (S). It substitutes a word with another word. The
mispronunciation could be blamed.

The equation of WER is defined as in Equation 3.2. N denotes the total number of
reference texts. On the other hand, N also equals to the total number of hits (H)
and substitution (S). ”Hits” refers to that the words in transcription are the same
as the words in reference inputs on the location level as well as the spelling level.

15



3 Fundamentals

Figure 3.3: WER Example.

See the example in Figure.3.3. Its WER would be 3/8 = 0.375.

WER =
S + D + I

N
(3.2)

3.4 Mean Opinion Score

Mean opinion score (MOS) (“Mean opinion score”, 2021) is an evaluation metric
that researchers normally use to measure the quality of a product from a human
perspective, specifically how they feel and what kind of experience they have while
using it. It is a common metric used in the telecommunication area.

Initially, it calculates the arithmetic mean of ”values on a predefined scale that a
subject assigns to his opinion of the performance of a system quality”. Table 3.1 is a
regular rating scale for MOS.

In the field of TTS, Tacotron receives a MOS around 4.001 in the comparison
among ground truth, Tacotron and Tacotron2 (Shen et al., 2018), while Transformer
receives a relatively high MOS around 4.39 in the comparison between Tacotron2
and Transformer (Li et al.,2019). But MOS as a subjective evaluation metric is
highly dependent on the object of reference. For instance, if you compare the result
of your model with the one of a model that is much worse, it’s apparent that you
will receive a high MOS for your model. In this case, the object of reference should
be carefully selected.

Rating Label
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 3.1: Rating Scale for MOS

16



4 Baseline Method

4.1 TTS

Here are the two TTS engines, Tacotron and Transformer, we worked with in our
later experiment. In our designing stage, we also have considered other TTS engines,
such as Fastspeech2 and Tacotron2. But during our preliminary studies, we found
several obstacles that could not be resolved during the limited duration of our project
and they stopped us from using them for our research.

4.1.1 Tacotron

Tacotron (Y. Wang et al., 2017) adopts the sequence-to-sequence structure based
on encoder and decoder with attention mechanism. It is composed of three main
components, including an encoder, a decoder and post-processing, as indicated in
Figure.4.1.

Encoder. It (Figure.4.1 (b)) takes character sequences as inputs and each character
has been converted into a one-hot vector and a continuous vector before being fed
in the encoder. After feeding in the encoder, a series of nonlinear transformations
would apply to these inputs in Pre-net, which is able to accelerate the convergence
and generalization of the model. Afterward, the output of Pre-net would be fed
into CBHG, which also helps to improve the generalization. ”This module is able to

Figure 4.1: (a) The overall architecture of Tacotron. (b) depicts the structure of
encoder. (c) depicts the structure of decoder. (d) depicts the structure
of post-processing.

17



4 Baseline Method

extract sequential features from both forward and backward contexts.” In a word, this
encoder aims to obtain the hidden representations from those character sequences’
input.

Decoder. The output of the encoder, hidden representations of context, would
first feed in an attention module in subfigure (a) to get the context vectors. The
input frames (audio clips) would be processed by the pre-net in the decoder first to
do several nonlinear transformations. Then the Attention-RNN takes the output
of pre-net and context vectors as its input. Before getting into the inference state,
Decode-RNN, the output of Attention-RNN would pass a layer of GRUs first. Each
GRU output contains multiple frames of an audio file, since one character might
correspond to multiple frames.

While in the inference stage, at each decoding step, it not only predicts one frame
corresponding to its input but multiple frames instead, due to the fact that it is able
to quicken the convergence of the algorithm. The whole prediction process is highly
dependent on the previous output since it will take the last frame of the previous
output as the input of the next prediction. In the end, the decoder will generate a
mel-scale spectrogram.

Post-processing. Tacotron doesn’t generate the speech directly from the result
of the decoder, but lets it get through a post-processing net mainly composed of
CBHG so that the model can modify the spectral magnitude in each frame before
synthesis. After these modifications, the predicted spectrogram would be synthesized
by Griffin-Lim into a waveform.

4.1.2 Transformer

Transformer is a TTS model developed upon Tacotron which also comes along with an
encoder-decoder structure. It applied the Transformer network, which is commonly
used in the translation field, into the TTS area. (Li et al., 2019) It contains four
main components, a text-to-phoneme converter, an encoder, a decoder, and a module
to synthesize speech and produce stop tokens.

Text-to-phonome converter. Instead of taking texts as inputs, they used phonemes
as their inputs due to the limitation of their dataset, which is not able to cover all
the regularity of each letter. Here a rule system has been produced to cope with this
problem.

Scaled Positional Encoding. Without the recurrence and convolution, Trans-
former will generate the same output even though the input sequences of the encoder
and decoder present in a different order. To avoid that, a triangle positional embed-
ding with a trainable weight has been employed to the outputs of encoder pre-net
and the ones of decoder pre-net so that Transformer is able to learn the order info of
input sequences.

Pre-net. Pre-net in Encoder is the same as the Pre-net in Tacotron. It can apply
several nonlinear transformations to the inputs, while pre-net in the decoder is

18



4 Baseline Method

Figure 4.2: (a) The overall architecture of Transformer. (b) depicts the structure of
encoder. (c) depicts the structure of decoder. (d) depicts the structure
of mel linear, stop linear and post-net.

different from the one in Tacotron, in terms of its structure as well as its functionality.
It is composed of a neural network with two fully connected layers, while the one in
Tacotron is composed of a 3-layer CNN.

The responsibility of the decoder pre-net is to map mel spectrograms ”decoder
pre-net is responsible for projecting mel spectrograms into the same subspace as the
phoneme embeddings so that the similarity of a 〈phoneme,melframe〉 pair can be
measured, thus the attention mechanism can work”.

Encoder. With the multi-head attention network, one attention is being split into
several subspaces so that it is able to project the 〈phoneme,melframe〉 relationship
in different perspectives. This replacement of RNN, the multi-head attention network,
improved the efficiency since it allows the model to compute those inputs parallel.

Decoder. The decoder of Transformer is to measure the similarity of 〈phoneme,melframe〉
pairs by using self-attention. Apart from that, the multi-head attention is able
to generate better context vectors from the output of the encoder, which is the
〈phoneme,melframe〉 relationship mentioned above. In addition, it does not have
to take previous output into account in its inference stage which also improves the
training speed.

Mel Linear, Stop Linear and Post-net. The mel linear and post-net is similar to
the post-net and griffin-lim in Tacotron, and are used to predict the mel spectrogram.
What makes it different is the stop linear. Since there is an imbalance between
positive samples and negative samples, the ”stop” is the only positive sample at the
end of each input sequence, while others are negative ones. Stop linear produces a
stop token which means ”stop” in the sentence. Without the stop token, it might
give rise to an unstoppable inference.

19



4 Baseline Method

4.2 LJSpeech

Since we produced our own dataset, we want to compare and validate our dataset
against a baseline dataset that is used to train TTS. LJSpeech (Ito et al., 2021) is a
well-known widely used for TTS training, including Tacotron and Transformer.

It contains a 24h speech of paragraphs from seven different books read by the same
speaker and its corresponding texts. In its ”Readme” file, it indicates the features of
this dataset. This 24h speech was segmented based on the silences between sentences
in the recording. ”Each audio clip is a single-channel 16-bit PCM WAV with a
sample rate of 22050 Hz.” The length of each audio clip varies from 1 second to 10
seconds.

The corresponding texts were aligned to each audio clip manually. While aligning
texts to the audio clip, abbreviations should be expanded. For instance, ”Mr”
should be expanded to ”Mister”. Besides that, the whole dataset passed the quality
assurance test to make sure those texts matched the audio clips accurately word by
word.

In the light of LJSpeech, there are several requirements for a dataset for TTS
training.

• the total length of speech should be at least 24 hours

• the sample rate of speech should be 22050 Hz

• the format of speech should be a single-channel 16-bit PCM WAV

• the speech should be segmented into multiple audio clips

• the length of each audio clip should not be longer than 10 seconds

• each audio clip should be aligned to the corresponding texts

The first three requirements are being strictly followed while recording. While for
the last three requirements, they are the research questions we attempt to resolve
automatically in this paper, instead of reaching these requirements with a large
amount of labour and time.

On the other hand, to improve the bad performance of preliminary TTS training
with recorded speech, speech segmented by silences between sentences should also
be abandoned, due to a number of breathings found in self-made recordings. These
breathings might prevent TTS systems to learn the alignments between text and
speech. They might misinterpret those breathing as words instead of silences.

To achieve that, an automatic speech segmentation is applied to meet the last three
requirements. This strategy helps us align our speech with the corresponding texts
and get rid of the low-quality clips. The details of this strategy will be discussed in
section 5.

20



5 Automatic Recording
Segmentation for TTS Training

In our preliminary studies, a self-made recording dataset used in TTS training
normally received a poor performance. It is believed that those low-quality compo-
nents of the speech we produced should be blamed for that, due to the unavoidable
breathings and unclear speeches in our recordings.

While segmenting our speech based on silences between sentences, these breathings
and unclear speeches will still be kept in our audio clips. TTS might be misled by
considering breathing as a word and aligning unclear speeches to wrong words. Apart
from that, aligning the audio clip to the corresponding texts manually is extremely
time-consuming and labor-intensive, especially when it comes to a dataset with a
24h speech.

In this paper, an automatic recording segmentation has been proposed to solve such
problems. To get rid of the low-quality components of our speeches, breathings, and
unclear speeches, ASR is being used to distinguish which word is recognizable for a
machine. A speech is cut into multiple audio clips with recognizable words according
to the results of ASR.

Furthermore, with the results of ASR, the alignment between an audio clip and
the corresponding texts could be established automatically by calculating the WER
between the results of ASR and the segments of original texts for each audio clip
respectively. The original texts segment with the lowest WER will be saved as the
corresponding texts for this audio clip.

5.1 Automatic Recording Segmentation

When it comes to automatic segmentation, the most common way to segment speech
is to use silences to segment our speech into audio clips by using the length of silence
as criterion.

Before designing our strategy, we concluded several preliminary experiments on the
audio segmentation based on silences. It was found that this kind of segmentation
can not segment each sentence accurately, due to different lengths of silences caused
by the speaker. Apart from that, some segments were too short, e.g. two words, for
ASR to recognize it. Therefore, training a TTS model on such a dataset is deemed
too challenging.

Alternatively, a novel strategy, automatic recording segmentation for TTS training
(ARS), is proposed in which it segments our speech based on the WER of the ASR
result of our speech and the original text, as Figure 5.1 indicated.

21



5 Automatic Recording Segmentation for TTS Training

Figure 5.1: Flow Chart of the Automatic segmentation Algorithm.

Initially, audio with a certain length is first segmented, then ASR is being used to
transcribe the segmented audio. The original texts are extracted according to the
length of the transcript and the length of original texts which is twice as much as the
length of the transcript. According to our transcript, the result of ASR, the optimal
original texts from our extracted texts is being found by calculating its WER. If its
WER is lower than our threshold, it will be kept in our dataset, otherwise, it will be
left out.

Due to the fact that ASR is not able to transcribe each word spoken by the speech
most of the time, we chose to make some adjustments to the original texts to see
which segment of the texts (by moving it back and forth) would be the closest one
to our transcripts.

5.1.1 ARS for TTS

Based on the idea explained above, one iteration of finding the optimal original texts
for a segmented audio clip is visualized in the Figure 5.1.

Algorithm. 1 is the main function designed for this automatic segmentation. In this

22



5 Automatic Recording Segmentation for TTS Training

algorithm, the main inputs are the novel texts we read for our recordings and our
recordings. The start point (sPoint) of our segmented speech and the endpoint
(ePoint) of it are set as our parameter inputs. These two parameters are used to
control the duration of our segmented speech. times is a parameter to control the
ratio of the length of extracted original texts (words), while tsPoint is the start
point of our extracted original texts. It helps us to locate the beginning of texts.
thresholdwer is obviously the wer thresold we set for filtering the optimal texts. var
is a fixed parameter to move segmented speech forward. It also determines the length
of segmented speech in our case.

As long as the endpoint of our segmented speech is smaller than or equal to the
duration of the whole recorded speech, our finding optimal texts iterations continues.
In this algorithm, there are several crucial functions being used, such as ”find the
optimal word sequence”. More details in each function and how those parameters
were set and chosen will be explained in the following subsections.

Algorithm 1 Automatic recording segmentation

1: Main Input: OriginalTexts, recording
2: Parameter Input: sPoint, ePoint, times, thresholdwer, tsPoint, var
3: Output: audioclips, transcripts, originaltexts, wer
4: Split the OriginalTexts into a wordList
5: while ePoint <= recordingduration do
6: segment an audioclip with the length of var from the whole recording ac-

cording to sPoint and ePoint

7: transcribe the audioclip into a transcript
8: extract words that are twice (times) as long as the the length of transcript

from the beginning of the tsPoint and wordList

9: find the optimal word sequence for the audioclip from the extracted words
10: if optimal word sequence exits then
11: if there are only one optimal word sequence then
12: save the optimal word sequence, the transcript and the audioclip
13: end if
14: if there are multiple optimal word sequence then
15: select the one with the minimal WER, then save it
16: end if
17: sPoint← ePoint
18: ePoint← ePoint + var
19: tsPoint ← index of the beginning of optimal word sequence +

the length of transcript
20: end if
21: if optimal word sequence doesn’t exit then
22: sPoint← ePoint
23: ePoint← ePoint + var
24: tsPoint← tsPoint + the length of transcript
25: end if
26: end while

23



5 Automatic Recording Segmentation for TTS Training

Text Preprocessing

To achieve the flexibility of extraction, the original novel texts are split into a word
list so that we can scratch the different lengths of the texts according to our needs.
In our previous experiments, it was found that deep speech is able to transcribe
the same amount of words in the speech. For instance, the original speech contains
5 words. Deep speech can also transcribe this speech into 5 words, even though
they might not all be correct. But at least its transcription ability is strong enough.
That’s why we set the times parameter as 1, in terms of deep speech. It means
that we will extract the same amount of words as the result of deep speech while
calculating the WER.

Fixed Length Audio Segmentation

A fixed length of speech is segmented for later calculation. As for deep speech, the
speech length is set to 3s. Normally, a 3s speech contains 5 words which makes it a
suitable length for deep speech. Since the audio clip is obtained from the beginning
of the speech, sPoint and ePoint are set as 0 and 6 (segment parameter) respectively,
and multiply these two points by the sample rate of speech (Alg.2). As long as the
distance between sPoint and ePoint is 6, the segmented audio clip will be always 3
seconds.

Theoretically, it is better to have a relatively short speech rather than the long one
for TTS learning so that it doesn’t have to learn too many things at one time but
only focus on those 5 words on average. In addition, even if the texts are not perfectly
aligned to the audio clip. Shorter audio clips could also reduce the possibility of
learning incorrect alignments for TTS since they contain fewer words than longer
speeches.

Algorithm 2 segmentAudio

1: function segmentAudio(audioData, sampleRate, sPoint, ePoint)
2: audioData (is the original speech)
3: segment a fixed length of audio started with sPoint and ended with ePoint

according to the sampleRate of audioData
4: audio = audioData[int(sPoint ∗ sampleRate) : int(ePoint ∗ sampleRate)]
5: return audio
6: end function

Find the Optimal Word Sequence

The strategy to ”find the Optimal word sequence” function consists of two parts:
speech transcription and the WER calculation. The most optimal original word
sequence for the corresponding audio clip can be found by calculating the WER
between the transcription of the audio clip and the texts we moved.

24



5 Automatic Recording Segmentation for TTS Training

There are multiple ways to find the most optimal original texts. Two different ideas
have been proposed in the early stage. The first idea is to locate the beginning and
ending words of the original texts according to the beginning and ending words of
the transcription. There will be four different cases of matching the beginning and
ending words, such as both of the beginning words overlap but the ending words do
not. In this case, the start point of this speech remains unchanged and the speech
will be lengthened by moving the endpoint of the speech a step further to see whether
the last words of the updated speech can overlap with the last words of the word
sequence.

But we failed since it can only find out the first few sentences, while the later original
texts deviate from the transcripts to a great extent. The challenge for this method
is to find out the feasible parameters to stop matching the current audio clip and
the corresponding word sequence then move to the next pairs. Due to the limited
time of our project, this method has been set aside.

The second idea is a simplified version of the first idea. While searching for the
optimal 〈Text, Audio〉 pair, the length, and the location of an audio clip remained
unchanged, the location of the word sequence has been moved to find the optimal
one with the lowest WER.

First of all, a number of texts are extracted from the original texts which is twice as
long as the length of the transcript. In Figure 5.2, if the length of transcript is 5, 10
words are extracted from the original texts. But in the WER calculating phase, the
transcript will be compared with the same amount of texts wordSequence. After
each comparison, the wordSequence will be moved one step right (the 14th line
in Algorithm.3), then repeat the comparison and calculation till the last word of
wordSequence is the last word of our extracted texts. It is also our stop criterion.
This iteration will be ceased when the length of the wordSequence is shorter than the
length of transcript in the sixth line of Algorithm.3, since this kind of wordSequence
is not in our considerations. Then the audio with the lowest WER will be saved
among all the comparisons, if the optimal word sequences exist. (the 15th line in
Algorithm.1)

After testing our codes with one smaller dataset (a 2-minute speech), it is discovered
that 0.625 would be a nice WER threshold and it also works well in a large dataset
(an 1-hour speech). Besides, we also attempted to lower the threshold to find a more
optimal dataset at one time, otherwise, we need to filter the result again to achieve
that. However, due to the mechanism we used for updating tsPoint in Alg.1, we
discovered that wordSequence would deviate from the transcription after certain
iterations if the WER threshold is lower than 0.625. In this case, 0.625 is set as our
WER threshold.

Once we finish each iteration, our tsPoint would move forward. But how the tsPoint
moves is different, in terms of different situations. (Algorithm.1) If the optimal word
sequence exists, the tsPoint would first move to the start point of the optimal texts,
then continue to move forwards according to the length of the transcript. If not, the
tsPoint would be updated only with the length of the transcript.

25



5 Automatic Recording Segmentation for TTS Training

Figure 5.2: Find the optimal wordSequence for the corresponding audio clip

Algorithm 3 Find the optimal word sequence

1: function Find the optimal word sequence(tsPoint, words, transcript, thresholdwer)
2: i← 0
3: while i ≤ the length of words do
4: tsPoint← tsPoint + i
5: extract wordSequence from words according to the updated tsPoint and

the length of transcript
6: if the length of wordSequence <the length of transcript then
7: wordSequence shorter than the transcript is not in our consideration
8: break
9: end if

10: calculate the WER between wordSequence and transcript
11: if WER ≤ thresholdwer then
12: save this wordSequence and the currenttsPoint
13: end if
14: move our tsPoint a step forward
15: i← i + 1
16: end while
17: end function

26



5 Automatic Recording Segmentation for TTS Training

Figure 5.3: Example result of metadata generated by deep speech

Formulation and Organization of the Results

Once the optimal 〈Text, Audio〉 pair is found, the audio clip and the corresponding
wordSequence need to be saved. However, while segmenting the audio clip, the end
time of the last recognizable word remained unknown. It might result in cutting a
word in the middle of its duration, while ASR is not able to recognize and it also
might confuse TTS in the later training to some extent.

To cope with it, those incomplete words should be removed. To locate the unrecog-
nizable words or syllables is a challenging task. But to keep the complete ones is
much easier by using their timestamp. The timestamp is speech info containing the
start time of the word and its duration. It is used to locate where the words show
up in the speech. Since our segmented audio clips could be recognized by ASR with
a reasonable WER, there must be several alignments being established between the
speech and transcripts already. Otherwise, ASR won’t be able to recognize them
correctly.

Due to the fact that deep speech must have a way to obtain such encoded information
with them, we looked into their Github to look for the codes. So this part of code
(Algorithm.4) is originated from “mozilla/DeepSpeech” (2021). The metadata is
generated by its transcription algorithm containing the start time and duration of
each letter and space. (Figure.5.3) In Algorithm.4, it first concatenates letters till
meeting a space then adds up their start time to generate the start time and the
duration of a word, as Figure.5.3 stated.

Post Processing

Among our speech results, there are some audio files with an unexpected small file
size, such as 10 KB. By listening to such audio files, they turn out to contain one
word only, the long silence of the original audio clip has been cut out, due to our
”Formulation and Organization of the Results” (FOR) procedure described in the
previous section.

Additionally, there is another extreme case that some audio files only contain 44
bytes. That might be something wrong with FOR procedure since their transcripts

27



5 Automatic Recording Segmentation for TTS Training

Algorithm 4 timeStamp

1: function timeStamp(metadata)
2: word = ””
3: wordlist = []
4: wordstarttime = 0
5: for i, token ∈ enumerate(metadata.tokens) do
6: if token.text! = ”” then
7: if len(word) == 0 then
8: wordstarttime = token.starttime
9: end if
10: word = word + token.text
11: end if
12: if token.text == ””ori == len(metadata.tokens)− 1 then
13: wordduration = token.starttime − wordstarttime

14: if thenwordduration < 0
15: wordduration = 0
16: end if
17: eachword = dict()
18: eachword[”word”] = word
19: eachword[”starttime”] = round(wordstarttime

, 4)
20: eachword[”duration”] = round(wordduration, 4)
21: wordlist.append(eachword)
22: word = ””
23: wordstarttime

= 0
24: end if
25: end for
26: start = wordlist[0][”starttime”]
27: end = wordlist[−1][”starttime”] + wordlist[−1][”duration”]
28: return start, end
29: end function

and their corresponding wordSequence are correct in our result file. It is obvious
that it works normally till the FOR part. It still remains unclear why this would
happen, since this only happens on a small proportion of the whole dataset, while
the majority of the dataset performed regularly as we expected.

Apparently, such small audio files would affect TTS training results, since they do not
contain enough useful content. In this case, the result of ARS will be post-processed
by simply removing them from our dataset.

28



6 Experiments & Datasets

6.1 Datasets

There are three datasets that we will use to evaluate the performance of our automatic
segmentation.

The first dataset is the original LJSpeech which has been taken as inputs for Tacotron
and Transformer. Its speech is segmented by silence automatically and is aligned to
texts manually, consisted of 13,100 short audio clips and the corresponding transcripts
aligned manually. LJSpeech would be a dataset (a), as a baseline, we used to see
if there are any improvements after training with those datasets processed by our
automatic speech segmentation.

The second dataset is made from the original speech recordings of LJspeech. We
downloaded those original recordings recorded by Linda Johnson on Ito et al. (2021)
and their corresponding texts. Then our automatic segmentation is applied on those
recordings to segment them into short audio clips and to align these audio clips with
the corresponding transcripts. This dataset (b), we called LCSpeech, is composed of
26,344 segmented audio clips and the corresponding transcripts from deep speech as
well as the original books.

The third dataset is made from our own recordings. Our recordings are of a single
speaker reading from 5 novels that are easy to be understood without any jargon.
We also used our automatic segmentation to segment our recordings as well as
aligning them with their transcripts. This dataset (c), QCSpeech, also contains
18,044 segmented audio clips and the corresponding transcripts from deep speech as
well as the original texts.

6.2 Experiments & Setup

In this section, we will introduce two different experiments to evaluate the performance
of our automatic segmentation strategy directly and indirectly.

The first part is the quality assessment of datasets. The second part is the evaluation
of the training performance with the input of our processed LCSpeech and QCSpeech
by comparing with the training performance of the original LJSpeech, to see whether
our automatic segmentation is able to improve its learning performance or not.

29



6 Experiments & Datasets

WER 0 0 ∼ 0.1 0.1 ∼ 0.2 0.2 ∼ 0.3 0.3 ∼ 0.4 0.4 ∼ 0.5 0.5 ∼ 0.6 ≥ 0.6
NUM 12 361 2571 3442 2926 1852 781 1155

Table 6.1: The segmentation result of LJSpeech

WER 0 0 ∼ 0.1 0.1 ∼ 0.2 0.2 ∼ 0.3 0.3 ∼ 0.4 0.4 ∼ 0.5 0.5 ∼ 0.6 ≥ 0.6
NUM 7216 153 4960 6380 4073 2540 927 95

Table 6.2: The segmentation result of LCSpeech

6.2.1 Quality Assessment of Datasets

In this part, the quality assessment of datasets has been done by calculating the
WER between the transcribed results of audio clips by using ASR (Deep Speech)
and aligned texts.

LJSpeech

LJSpeech is the speech dataset commonly used in TTS training. It is segmented and
aligned to texts manually. There are 13,100 audio clips in total. Table. 6.1 presents
the manual segmentation result of LJSpeech in terms of different WER. Among
these audio clips, there are 0.09% of them (12/13,100) that are totally matched with
the original texts. Besides that, around 48% of them achieve an accuracy of 70%.
(0∼ 0.3 : 6, 386(13, 100))

LCSpeech

The recordings of LCSpeech are the same as those ones for LJSpeech. After processing
by automatic recording segmentation, there are 26,344 audio clips with a length range
from one second to three seconds that have been segmented with WER threshold
of 0.625. Table. 6.2 presents the segmented results of the LCSpeech. Among these
audio clips, there are around 27% of them (7,216/26,344) that are totally matched
with the original texts. Besides that, around 71% of them achieve an accuracy of
70%. (0∼ 0.3 : 18, 709(26, 344))

QCSpeech

As for QCSpeech, there are 18,044 audio clips in total after segmented by automatic
recording segmentation. Table. 6.3 presents the segmented results of the QCSpeech.
The accuracy of the segmentation of QCSpeech is dramatically lower than the one
of LCSpeech. There are only 10.8% of them (1,949/18,044) that matched with the
original texts completely. In addition, there are 41.5% audio clips achieve an accuracy
of 70%. (0∼ 0.3 : 7, 487(18, 044))

30



6 Experiments & Datasets

WER 0 0 ∼ 0.1 0.1 ∼ 0.2 0.2 ∼ 0.3 0.3 ∼ 0.4 0.4 ∼ 0.5 0.5 ∼ 0.6 ≥ 0.6
NUM 1949 22 2718 2798 3744 4162 2380 271

Table 6.3: The segmentation result of QCSpeech

Dataset LJSpeech LCSpeech QCSpeech
WER 0.347 0.220 0.340

Table 6.4: The Mean WER of Each dataset

Table. 6.4 presents the mean WER of each dataset. Among these three datasets,
LCSpeech got the lowest score.

6.2.2 Performance of TTS Training

Before feeding those three datasets (LJSpeech, LCSpeech, and QCSpeech) into TTS
models, the corresponding coding environments have been set up according to the
requirements from the implementation of Tacotron1 and Transformer2. Due to the
limited time, all models with different datasets have been trained on Quadro RTX
6000 for 2 days respectively.

To evaluate the performance of TTS training, the manually segmented dataset
(LJSpeech) and two datasets processed by our method (ARS), LCSpeech and QC-
Speech, were fed into Tacotron and Transformer respectively.

The reason why LJSpeech was chosen and LCSpeech was produced is that the only
difference between them is how their recordings were being segmented and annotated
with the corresponding texts. Both of them are originated from the same recordings
from seven different books. The former one is segmented and annotated manually
according to the clauses basically. The latter one is segmented and annotated by
ARS in terms of their word error rate (WER) results. In this case, the performances
of TTS trained with LJSpeech and LCSpeech are able to reflect the performance of
ARS indirectly. Besides, training with QCSpeech, which is a completely self-made
TTS training dataset, is to test out the performance of a self-made speech dataset.

In this experiment, there are two evaluation metrics that have been used to evaluate
the performance of TTS. The first one is an ASR-based evaluation by WER to see
how many words of synthesized speech could be recognized by Deep Speech. The
other one is a subjective evaluation by mean opinion score (MOS) to reflect the
naturalness of synthesized speech from a human’s perspective.

Eight samples have been selected, which have not been used in TTS training, for the
WER and MOS evaluation. For MOS, there are three participants involved.

1https://github.com/keithito/tacotron
2https://github.com/soobinseo/Transformer-TTS

31



6 Experiments & Datasets

Method WER
Transformer (LJSpeech) 0.349
Transformer (LCSpeech) 0.632
Transformer (QCSpeech) 0.936

Tacotron (LJSpeech) 0.238
Tacotron (LCSpeech) 0.751
Tacotron (QCSpeech) 0.978

Table 6.5: The Mean of WER results

Method MOS
Transformer (LJSpeech) 4.375
Transformer (LCSpeech) 2.833
Transformer (QCSpeech) 1.583

Tacotron (LJSpeech) 4.791
Tacotron (LCSpeech) 2.667
Tacotron (QCSpeech) 1.292

Table 6.6: MOS results

Word Error Rate. The mean of their WER results is shown in Table. 6.5. The
WER results of LJSpeech (Transformer and Tacotron) are lower than the results of
other datasets, no matter in which TTS model, which means TTS models trained
with LJSpeech receives the highest rates of accuracy. Even though LJSpeech performs
better in Tacotron, LCSpeech and QCSpeech perform better in Transformer. It is
probably due to the fact that Transformer generally learn faster than Tacotron within
the same amount of time. Especially for QCSpeech, in Transformer, 10% ∼ 20% of
words were able to uttered while Tacotron trained with QCSpeech hardly utters any
words.

Mean Opinion Score. The results of MOS are shown in Table. 6.6. Similar
patterns have been observed. LJSpeech ranked the first place. LCSpeech ranked
the second place. LJSpeech in Tacotron received a higher score than the one
in Transformer, while both LCSpeech and QCSpeech received a higher score in
Transformer rather than in Tacotron.

32



7 Conclusion

In this paper, we proposed an ASR-based automatic recording segmentation strategy
for TTS training dataset. This strategy is able to segment speech into audio clips and
align audio clips with corresponding texts automatically. In addition, the low-quality
components of speech can be gotten rid of by calculating the WER between the
transcripts of ASR and the original texts.

The dataset with clean recordings processed by our method can contain 71% align-
ments with the accuracy of 70%, which is higher than the manual segmentation,
while the dataset with self-made recordings can contain 41.5% alignments with the
same accuracy. The experimental evaluation results demonstrated that Transformer
received the WER of 0.632 and the MOS of 2.833 on the LCSpeech (ARS-processed
datasets with clean recordings). While for the dataset with our recordings, it’s still
challenging for TTS to train.

In future work, we will work on a more accurate alignment with a lower WER
and a dynamic segmentation of speech resulting in different lengths of audio clips.
Additionally, TTS will be trained for a longer period.

33



Bibliography

Arık, S. Ö., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y.,
Li, X., Miller, J., Ng, A., & Raiman, J. (2017). Deep voice: Real-time neural
text-to-speech. International Conference on Machine Learning, 195–204.

Bansal, P., Pradhan, A., Goyal, A., Sharma, A., & Arora, M. (2014). Speech synthesis-
automatic segmentation. International Journal of Computer Applications,
98 (4), 29–31.

Emphasis (telecommunications). (2021). https://en.wikipedia.org/wiki/Emphasis
(telecommunications)

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R.,
Satheesh, S., Sengupta, S., & Coates, A. (2014). Deep speech: Scaling up
end-to-end speech recognition. arXiv preprint arXiv:1412.5567.

Ito, K., & Johnson, L. (2021). The lj speech dataset. 2017. URL https://keithito.
com/LJ-Speech-Dataset.

Li, N., Liu, S., Liu, Y., Zhao, S., & Liu, M. (2019). Neural speech synthesis with trans-
former network. Proceedings of the AAAI Conference on Artificial Intelligence,
33 (01), 6706–6713.

Loweimi, E., Ahadi, S. M., Drugman, T., & Loveymi, S. (2013). On the impor-
tance of pre-emphasis and window shape in phase-based speech recognition.
International Conference on Nonlinear Speech Processing, 160–167.

McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., & Sonderegger, M. (2017). Mon-
treal forced aligner: Trainable text-speech alignment using kaldi. Interspeech,
2017, 498–502.

Mean opinion score. (2021). https://en.wikipedia.org/wiki/Mean opinion score
Mozilla/deepspeech. (2021). https : / / github . com / mozilla / DeepSpeech / blob /

5f566f442541d76f320ee081294cdef980c361d1/native client/python/client.py
Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-

brenner, N., Senior, A., & Kavukcuoglu, K. (2016). Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499.

Qi, W., Gong, Y., Jiao, J., Yan, Y., Chen, W., Liu, D., Tang, K., Li, H., Chen, J.,
& Zhang, R. (2021). Bang: Bridging autoregressive and non-autoregressive
generation with large scale pretraining. International Conference on Machine
Learning, 8630–8639.

Ren, Y., Hu, C., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T.-Y. (2020). Fast-
speech 2: Fast and high-quality end-to-end text to speech. arXiv preprint
arXiv:2006.04558.

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang,
Y., Wang, Y., & Skerrv-Ryan, R. (2018). Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 4779–4783.

Soltau, H., Liao, H., & Sak, H. (2016). Neural speech recognizer: Acoustic-to-
word lstm model for large vocabulary speech recognition. arXiv preprint
arXiv:1610.09975.

34

https://en.wikipedia.org/wiki/Emphasis_(telecommunications)
https://en.wikipedia.org/wiki/Emphasis_(telecommunications)
https://en.wikipedia.org/wiki/Mean_opinion_score
https://github.com/mozilla/DeepSpeech/blob/5f566f442541d76f320ee081294cdef980c361d1/native_client/python/client.py
https://github.com/mozilla/DeepSpeech/blob/5f566f442541d76f320ee081294cdef980c361d1/native_client/python/client.py


Bibliography

Sotelo, J., Mehri, S., Kumar, K., Santos, J. F., Kastner, K., Courville, A., & Bengio,
Y. (2017). Char2wav: End-to-end speech synthesis.

Szymański, M., & Grocholewski, S. (2006). Post-processing of automatic segmentation
of speech using dynamic programming. International Conference on Text,
Speech and Dialogue, 523–530.

Taylor, P. (2009). Text-to-speech synthesis. Cambridge university press.
Wang, W., Shuang, X., & Bo, X. (2016). First step towards end-to-end parametric tts

synthesis: Generating spectral parameters with neural attention. Interspeech.
Wang, W., Xu, S., & Xu, B. (2016). First step towards end-to-end parametric tts

synthesis: Generating spectral parameters with neural attention. Interspeech,
2243–2247.

Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z.,
Xiao, Y., Chen, Z., & Bengio, S. (2017). Tacotron: Towards end-to-end speech
synthesis. arXiv preprint arXiv:1703.10135.

Word error rate. (2021). https://en.wikipedia.org/wiki/Word error rate
Zió lko, B., Manandhar, S., Wilson, R. C., & Zió lko, M. (2006). Wavelet method of

speech segmentation. 2006 14th European Signal Processing Conference, 1–5.

35

https://en.wikipedia.org/wiki/Word_error_rate

	Introduction
	Related Work
	Speech Segmentation
	Text-to-speech
	the Early State of Art
	the State of Art TTS
	Baseline Method Selection


	Fundamentals
	Automatic Speech Recognizer
	Deep Speech
	Google Speech

	Signal Preprocessing
	Pre-emphasis

	Word Error Rate
	Mean Opinion Score

	Baseline Method
	TTS
	Tacotron
	Transformer

	LJSpeech

	Automatic Recording Segmentation for TTS Training
	Automatic Recording Segmentation
	ARS for TTS


	Experiments & Datasets
	Datasets
	Experiments & Setup
	Quality Assessment of Datasets
	Performance of TTS Training


	Conclusion
	Bibliography

