
Computer Science

Exploration of the ChipWhisperer Lite ARM board for education on

Side-Channel Power Analysis

Gijs Burghoorn

Supervisors:
N. Mentens & F. Hermans

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 15/06/2021

www.liacs.leidenuniv.nl

Abstract

Power analysis provides a way to break confidentiality of electronic devices by precisely
inspecting their power usage. The ChipWhisperer framework provides a cleaner and more
accessible way to perform power analysis, which could make it suited to teach power analysis
methodology to those inexperienced in the field. An evaluation of the ChipWhisperer frame-
work’s tutorials and documentation is done to determine its capabilities and shortcomings
for beginners. A short-course for Master students is created to more clearly assess the needed
materials and create a centralized resource for beginners.

Contents
1 Introduction 1

2 Background & Related Work 2
2.1 Cryptography . 2
2.2 Side-channel Power Analysis . 4

2.2.1 Leakage Models . 4
2.2.2 Simple Power Analysis . 5
2.2.3 Correlation Power Analysis . 7

2.3 ChipWhisperer framework . 7
2.4 Semantic waves . 7

3 Methodology 11
3.1 Discovering and selecting of existing resources . 11
3.2 Creating and refining course material . 11
3.3 Evaluating the functionality and delivery of course material 13
3.4 Relationships between sections . 13
3.5 Collection into a short-course . 14

4 Course material 15
4.1 Setup Guide . 15
4.2 Simple Power Analysis . 15
4.3 Correlation Power Analysis . 16

4.3.1 AES Documentation . 16
4.3.2 AES CPA attack implementation . 16
4.3.3 Exercises . 17

4.4 Development Guide . 17
4.4.1 SimpleSerial Documentation . 17
4.4.2 SimpleSerial C Template . 17
4.4.3 NIST Lightweight Cryptography Wrapper 18

4.5 Assignment . 18
4.6 Resulting short-course . 19

5 Discussion 20

6 Conclusions 21

7 Future Work 21
7.1 Evaluation of semantic waves . 21
7.2 Implementation in other programming languages 21
7.3 Information on steps to take next . 21
7.4 NIST Lightweight Cryptography wrapper . 22

References 24

A Appendix: Method-Structure 25

B Appendix: SPA Excerpt 26

C Appendix: AES Documentation Excerpt 27

D Appendix: AES Modeling Excerpt 28

E Appendix: NIST Wrapper ReadMe Excerpt 29

1 Introduction
Electronic devices have grown to become a major part of daily life and the concern for the security
and privacy practices these devices utilize has grown accordingly. A major part of security and
privacy is confidentiality: being able to keep certain information a secret. Many techniques which
are used in breaking confidentiality attempt to construe information from the usual input or output
of a device. This can be by fishing someone’s password by email or by sending malicious input data
to a website to expose user-data. There are also many unconventional inputs and outputs of these
devices. These include the power a device uses, the sounds a device makes and the electromagnetic
field a device generates. The analysis involved in breaking certain security and privacy principles
using these unconventional side channels is appropriately called side-channel analysis (SCA).
A form of side-channel analysis which is especially interesting and potent is power analysis. Power
analysis studies the amount of power an electronic device uses over time, its so called power traces.
One can imagine that an electronic device sitting idle uses less power than that same device per-
forming calculations at the highest computational intensity. Similarly, one can measure minute
differences in power usage between different calculations or input data used. This is especially
interesting when measuring the power usage for computer algorithms which rely upon confidential-
ity. Therefore, the focus often falls on cryptography and specifically encryption algorithms. These
algorithms enable a major part of the confidentiality most electronic devices rely on. Examples of
where these algorithms are used are in chat applications or whilst accessing bank accounts online.
Studying cryptography algorithms — to tell how well these resist power analysis or whether algo-
rithm implementations can be more resistant to these attacks — has become a topic of interest in
security and privacy research. One platform for testing algorithm implementations or for preparing
more advanced attacks on electronic devices is the ChipWhisperer framework. This framework pro-
vides many of the tools to make power analysis simpler and more accessible. This, however, leads
to the need for evaluation of how well suited this framework is for people who are inexperienced
in the power analysis field. Furthermore, if there are clear gaps in the resources provided by the
ChipWhisperer framework, they can be attempted to be filled in.
This paper attempts to create a short-course for Master students in the field of computer science.
The course can be seen as a gateway to assess the state of the ChipWhisperer and power analysis
documentation and tutorials for beginners. More specifically, this work and the course will focus
on a specific electronic device provided by the ChipWhisperer framework called the ChipWhisperer
Lite ARM board. Furthermore, this course should then also provide a centralized resource for inex-
perienced students to get started with the power analysis field. Therefore, this work questions the
following “What are the current limitations of the information surrounding the ChipWhisperer Lite
ARM board” and “How can the information surrounding the ChipWhisperer framework be improved
to create an introductory Master of Science course on power analysis in hardware security?”.

1

2 Background & Related Work
Within this section, necessary background information is addressed to create a better understand-
ing of the problem stated and the methods used. Furthermore, this chapter will also cover some
related work on which this work is based. First, this chapter go into the cryptography algorithms
often used as a target in power analysis attacks. Then, this chapter will cover the fundamentals of
side-channel analysis and power analysis. Afterwards, the ChipWhisperer framework will be cov-
ered in more depth. Lastly, semantic waves will be covered in a section on pedagogy and education
in relation to the short-course created.

2.1 Cryptography
Cryptography has been used for millennia to ensure the protection of information whilst in transit
or storage [1]. The internet has produced the need for faster and more secure encryption standards.
Two common standards used today are the Advanced Encryption Standard (AES) [2] and the
encryption algorithm designed by Ron Rivest, Adi Shamir and Len Adleman (RSA) [3], which
both represent two different strategies and requirements for encryption. Namely, these can also be
categorized as symmetric and asymmetric ciphers, respectively. A schematic overview of symmetric
and asymmetric encryption can be found in Figure 1.

Figure 1: A schematic overview of symmetric and asymmetric encryption.

Symmetric encryption uses the same key for encryption and decryption similar to how opening and
closing of a lock would function in the real world. The current standard for symmetric encryption is
AES [2]. If an encrypted message needs to be sent from one device to another over a public channel,
they would first both have to agree on a secret key to use. Therefore, the secret key needs to be
agreed upon over a secure channel or through using asymmetric encryption over a public channel.
A commonly used algorithm to agree upon a secret key over a public channel is the Diffie-Hellman
key-exchange algorithm [4].
As can be seen from symmetric encryption, secretly agreeing on a secret key can cause difficulty.
Asymmetric ciphers have a solution to this problem by having two keys: a public and a private key.

2

The public key is publicly available to every sender that wants to encrypt a message before sending
it to a receiver. The receiver holds the corresponding private key with which the decryption of that
message can be done. One commonly used standard today for asymmetric ciphers is RSA [3].
With some asymmetric encryption algorithms, the private key can also be used to verify the identity
of the holder of the private key by using digital signatures [5]. The process can be divided into the
signing and the verification part as is shown in Figure 2.
A digital signature can be signed or created in three steps. First, the data is summarized to a
fixed data length. This summarization process is called hashing [5]. Then using the private key,
the hash is encrypted. Finally, this encrypted hash (referred to as a signature) is combined with a
digital certificate to create the digital signature. Centralized certificate authorities manage these
digital certificates. A digital signature can be verified by first verifying the digital certificate and
then comparing the hash of the predetermined data to the signature after it is decrypted with the
public key.

Figure 2: A schematic overview of the signing and verification process of digital signatures.

In essence, symmetric encryption is mostly used for one-to-one encryption — as may apply to
chat applications — and asymmetric encryption is mostly used for many-to-one encryption — as
may apply when requesting a website from a web-server. This is generally done since symmetric
encryption will expose all information to all holders of the secret key. This increases the attack
surface for the number of people participating and generally disallows for multiple levels of confi-
dentiality. Furthermore, the performing numerous key-exchanges is resource intensive. Performing
asymmetric encryption, on the other hand, is generally slower and requires larger keys.

3

2.2 Side-channel Power Analysis
For most embedded hardware there is some form of input and output. Inputs of electronics range
from buttons and environment sensors to mice and touchscreens. Outputs range from lights and
displays to speakers. Beyond the intended inputs and outputs, however, there are also some inad-
vertent interfaces. Some examples of these unintended in- and outputs are the electromagnetic field
generated by currents, the sound produced by electronics or their peripherals (such as keyboards
or mice), or the power used by electronics. The latter will be the main point of interest in this
work.
There are many possible avenues that attacks on encryption standards can take. Since implemen-
tations of encryption standards are done on multiple different levels — including the mathematical
specification, software implementation, and hardware operations [6] — there are also multiple lev-
els to attack. There are many examples of attacks to all these individual levels in the encryption
implementation stack. Cipher specifications are often tested using differential cryptanalysis [7],
linear cryptanalysis [8], or frequency analysis [9]. Software implementations are often broken using
misused memory pointers [10]. Within hardware, speculative execution is exploited which could
lead to elevation of privileges and exposure of private keys [11].
Whilst many of these areas are often exploited individually, some issues happen on the conjunction
of these different levels [6]. Exploiting an implementation’s or a specification’s vulnerabilities with
power analysis requires combining knowledge of these three areas. Power analysis looks at the
power consumed by an electronic device to make statements about what data were used or which
algorithm was executed.

2.2.1 Leakage Models

Microprocessor-controlled devices store data within components such as registers, caches, or mem-
ory buses, and share data between such components [12]. Storing data in memory uses small
capacitors which represent the value of the data by the charge on the capacitor and consequently
the voltage over the capacitor. The value stored in an individual capacitor — also referred to as a
bit — can be represented using the commonly used on/off model with the 0 for a low voltage and
1 for a high voltage. Both the exchanging and the storing of data containing multiple bits can be
modeled as bigger capacitors. This is done by viewing a capacitor which holds an amount of charge
equal to the sum of the charges hold by the individual capacitors representing those bits [12].
The power used by electronic devices over time can be measured using specialized equipment such
as multimeters or oscilloscopes. Oscilloscopes are often used while performing analysis on such a
power measurement also called a power trace because they allow for a more detailed waveform
analysis. Most modern oscilloscopes also allow for digital storage of the measured power traces.
After the traces are stored, more detailed analysis can be done on the power traces.
To properly model the power consumption of capacitors and extract secret information from power
traces, there are two commonly used models: the Hamming-Weight and Hamming-Distance mod-
els [12]. These models are also called leakage models. The Hamming-Weight model states that
there should be a correlation between the number of capacitors in the 1 state and the power con-
sumption of a power trace. The Hamming-Distance model states that there should be a correlation
between the number of capacitors switching between states and the power consumption within a
power trace. This Hamming-Distance model is primarily of use for modeling hardware implemen-
tations [12] of encryption algorithms since hardware registers are often updated to a fixed value

4

between the 0 state and the 1 state before being written to [12]. Contrarily, the Hamming-Weight
model is more commonly used for software implementations.

2.2.2 Simple Power Analysis

Simple Power Analysis (SPA) aims to extract secret information from a single power trace. An easy-
to-understand example is SPA on the RSA algorithm. Within implementations of the asymmetric
encryption algorithm RSA [3], there are common uses of a memory-efficient version of the modular
exponentiation algorithm. Within this algorithm — of which Python code can be found in Figure 3
along with a visual overview in Figure 4 — every bit is inspected one-by-one and depending on
whether it is in the 0 or 1 state an extra multiplication is done. Here there is a one-to-one relation
(bijection) between the type of instructions which are executed and the possible private keys.
Since we can often recognize the instructions done by purely looking at the power used by a
microprocessor, it could be possible to infer information about the private key by looking at a
power trace of decryption being performed using those private keys [6].

Custom implementa t ion o f pow(x , y) % p
With p >= 2
def custom_pow_mod(x , y , p) :

r e s = 1

U n t i l we have reached the h i g h e s t power
while (y > 0) :

I f the l a s t b y t e i s a one
i f (y & 0x01) :

r e s ∗= x
r e s %= p # Make sure we s t a y modulo p

Move on to the nex t b y t e
y >>= 1
x ∗= x
x %= p # Make sure we s t a y modulo p

return r e s

Figure 3: A Python implementation of the memory-efficient modular exponentiation.

For example, if we use the algorithm from Figure 3 as it is used in the decryption process of RSA.
The value of y loosely corresponds with the private key. If, for the example, y is assumed to equal
binary 10011101. Please note that this is not a normal value for y. Apart from y being usually
much greater in value, there are other requirements for the value of y. In the power trace, there
would be eight distinct spikes. Each being either a longer spike or a shorter spike. The longer
spikes correspond to the extra multiplications — thus 1’s — and the shorter spikes correspond to
skipping this multiplication — thus 0’s. The order that would be seen is: long, short, long, long,
long, short, short, long. This can also be seen in Figure 5. As can be noticed, the power trace

5

result := result × x mod p

is y even?

y > 0?

y := y/2, x := x2 mod p

Begin: result := 1

End

true

false

true false

Figure 4: A visual overview of the modular exponentiation algorithm shown in Figure 3.

Figure 5: An idealized overview of a power trace of modular exponentiation using an exponent of
binary 10011101.

exposes the value of y by its power spikes corresponding to the reverse of y’s value.
SPA requires the type and/or the number of instructions executed on a microprocessor by an
algorithm to be dependent upon (part of) the data used [6]. This is the case with RSA [3] as
demonstrated in the previous paragraph.

6

2.2.3 Correlation Power Analysis

While Simple Power Analysis solely works on algorithms that have a different set of instructions
depending on the input data, Differential Power Analysis (DPA) [6] works with the aforementioned
leakage models to combine more than one power trace in order to extract secret information. Within
DPA there is a statistical comparison between the hypothetical power consumption of our leakage
model and the actual power consumption of the device.
One way to determine whether a model and the real-world power trace are correlated is using
Pearson Correlation Coefficients [13]. In which case, we are talking about a subset of DPA called
Correlation Power Analysis (CPA). The formula for Pearson Correlation Coefficient takes two
finite sets or two functions and returns a value between −1 and 1: −1 meaning a perfect inverse
correlation, 0 meaning no correlation at all, and 1 meaning a perfect correlation. When comparing
the leakage model to a power trace there is an indirect search for the location within each trace
where the hypothesized leakage model has an (inverse) correlation with the trace at that point in
time.
When trying to optimize the search for correlations — meaning the correlation to be as far from
0 as possible whilst requiring the least amount of traces — it helps to synchronize the different
traces. Synchronization meaning to match up specific parts of computations with each other in
power traces. Since microprocessors have some instability in the frequency of internal clocks, there
may be jitters in power traces [14]. There are several techniques to resynchronize power traces
including the commonly used Sum of Absolute Difference (SAD).

2.3 ChipWhisperer framework
Early on in embedded security research there was a realization that comparing side-channel attacks
between different platforms was difficult [15]. Therefore, there were several attempts at creating
standardized targets, software, and educational resources [15]. ChipWhisperer [12] is a framework
for finding vulnerabilities of embedded systems based on side-channel and fault analysis. Fault
analysis is a different attack vector which is not covered this paper. ChipWhisperer creates a fully
open-source [15] platform for performing Side-Channel attacks which includes all parts of such an
attack: hardware and software for both target and capture devices [15].
Since its initial creation, ChipWhisperer has created more than just the initial platform based on
an FPGA [15]. The framework now also contains targets based on the STM32 ARM Cortex MCUs
and AVR XMega. All of these platforms are commonly used within hardware security. Furthermore,
capture devices can be used in combination with other targets already available in measurement
labs [15].
Apart from the hardware the ChipWhisperer framework provides, the framework also provides
analysis software [15]. This analysis software is used to perform reproducible and thus shareable
side-channel attacks. The software also provides ways to perform the previously mentioned syn-
chronization.

2.4 Semantic waves
This work will involve creation of course material for students. Therefore, it is of value to discuss
pedagogy and a concept called semantic waves, which is a part of the study of meta learning. In

7

short, semantic waves provide a structure for your language-use and explanation-methods. This
provides guidelines on when to use technical or everyday language and when to use examples
or talk more generally or abstractly. Semantic waves along with its sub-concepts called semantic
gravity and semantic density are explained in more detail in the following paragraphs.
It impacts students positively when educators have “pedagogic practice” [16] — meaning having
experience in meta learning —, even when educators from one field study meta learning from
the perspective of other fields [16]. In short, when educators generally learn about meta learning,
it helps students learn. This fact leads to the need to talk about education in more abstract
terms. Mainly, the need for terms to describe the relationship between meaning and context in an
educational setting independent of the field of study [16]. Put into simpler words: the relationship
between how much technical knowledge is required and how abstract a concept can be explained.
Semantic gravity refers to how close an explanation is to the real world [16]. High semantic gravity
(SG+) indicates a description being closer to common real-world phenomena and low semantic
gravity (SG-) indicating more abstract in nature. In Table 1 a few examples of comparisons of SG-
versus SG+ can be seen.

Semantic gravity level Example 1 Example 2 Example 3
Low semantic gravity
/ SG-

x× y =
y∑

i=1

x

A lack of concern
for online safety
can lead to your
device obtaining
computer viruses

Swimming is all
about being calm
in the water

High semantic gravity
/ SG+

Having 3 nets of 5
oranges. How many
oranges does one
have?

If you recklessly
open files you
downloaded from
the internet, hack-
ers may be able
to look at your
webcam without
your permission

If one wants to
swim better, they
need to learn to be
comfortable in the
water.

Table 1: Examples illustrating the difference between low and high semantic gravity.

Semantic density refers to the amount of technical language used [16]. High semantic density (SD+)
indicates a high amount of jargon used and low semantic density (SD-) implies everyday language.
In Table 2 a few examples of comparisons of SD- versus SD+ can be seen.
Downward semantic shifts go from SG-/SD+ to SG+/SD-. Namely, going from technical terms in
which explanation remain in the abstract to everyday terms in which explanations remain close to
real world situations. This direction for a semantic shift is also called unpacking. Similarly, going
in the reverse direction is called repacking [16].
When analyzing classroom practice, there are often several downward semantic shifts in succes-
sion [16]. This can be seen in Figure 6. While the “down escalator” profile [16] — involving these
repeated downward shifts — is commonly used, it fails to recontextualize the unpacked knowledge:
failing to repack knowledge. This can be solved by appending “upward semantic shifts” [16] to
each unpacking curve. The approach of smoothly appending repacking actions after unpacking is

8

Semantic gravity level Example 1 Example 2 Example 3
Low semantic density
/ SD-

When you are
sleepy, you want to
sleep

Obtaining higher
grades leads to
higher chances at
getting into college

Using more exam-
ples and real-world
analogies in your
explanations may
make children
understand you
better

High semantic density
/ SD+

When one experi-
ences somnolence,
one feels the
need to suspend
conciousness

Obtaining a higher
GPA leads to
higher chances at
getting into college

Statements of
lower semantic
gravity may be
more understand-
able for younger
generations

Table 2: Examples illustrating the difference between low and high semantic density.

Figure 6: Several downward semantic shifts in succession.

also called the semantic wave [16]. A representation of a semantic wave can be seen in Figure 7.
Semantic waves provide guidelines on the structure of language-use and explanation-methods
within the explanation of a concept, the structure of a chapter and similarly the structure of
the entire course. When following semantic waves, every unit of explanation (the explanation of
a concept, a chapter or the entire course) should first state its premise abstractly. This premise
should not involve examples of the real world. Then, this premise is unpacked into everyday terms
using examples from the real world. And finally, the explanation is repacked using more technical
language and going back to general terms.

9

Figure 7: A graphical representation of a semantic wave.

10

3 Methodology
In order to create a short-course which has the required amount of functionality and has a proper
delivery, this work is conducted following a specific structure. The methodology is divided over
three categories.

1. Discovering and selecting of existing resources.

2. Creating and refining course material.

3. Evaluating the functionality and delivery of course material.

First a detailed description of each of the three categories will be given. Subsequently, the relation-
ships between these different categories will be explored. Afterwards, the steps to collect material
will be discussed.

3.1 Discovering and selecting of existing resources
In order to create a well-formulated and semantically sound explanation covering an aspect of
power analysis (PA), background information needs to be gathered, and relevant works need to be
evaluated. The combination of background information and relevant works are hereafter referred
to as background resources. These background resources were evaluated on two specific grounds:
the completeness of a background resource and the complexity of a background resource.
Completeness is indicated by the amount of extra external information or referenced resources
needed for the target audience of the final short-course to understand the background resource.
A lower amount of extra external information or referenced resources needed to understand the
background resource implies a higher amount of completeness. In essence, completeness is a mea-
surement for how well a resource provides a centralized knowledge-base for the target audience on
a specific subject.
Complexity of a background resource can be seen as the amount of excess information or unneeded
abstract concepts used in or exposed by that resource. This is evaluated relative to the concepts
which were sought to be explained by the resource. A lower amount of excess information or
unneeded abstract concepts implies that a background resource has a lower complexity. Fundamen-
tally, complexity is a measurement for how fitting a resource is for the target audience on a specific
subject.
Background resources are sought to be both high in completeness and low in complexity.

3.2 Creating and refining course material
The resulting short-course may be divided in the multiple components. The combination of these
components is hereafter referred to as course material. There are four different types of compo-
nents for this short-course. These are utilities, documentation, manuals and exercises. These are
illustrated in Figure 8.
Utilities aim to provide a significant time gain and increased ease-of-use to users whilst performing
a commonly done or an otherwise difficult to perform task. Utilities can provide a baseline from
which to start. In which case, they may also be called template utilities. These utilities form a

11

Figure 8: An overview illustrating the structure of course material.

template from which to start. Utilities can also abstract difficult concepts and tasks or mask
concepts and tasks which are unrelated to the course’s objective. In which case, they are often
referred to as wrapper utilities. These utilities wrap around more abstract concepts.
Documentation is a resource to quickly understand the specific behavior of protocols, programs and
utilities. In essence, documentation provides an avenue to interact which these resources without
needing to concern oneself with implementations. Therefore, it may prevent unnecessary distraction
and provide a possibility for black-box implementations. It can also provide context as to why
certain design choices are made, extra notes or warnings for when using that item, as well as share
examples of how to perform common or specific tasks using that resource.
Manuals are a collection of programs, utilities and documentation, gathered as to achieve specific
goals. A manual takes a reader through performing certain tasks. They provide a close to centralized
location for information on performing that task.
Exercises are problems for readers to solve, which are aimed to test and advance the depth of
understanding of the reader. Exercises can be appended to manuals to test the reader on their
understanding of the manual’s information, or they can be more isolated in order to concern more
generalized and/or applied knowledge.
The resulting short-course is a combination of manuals, some with appended exercises and a
more generalized applied exercise. Course material — consisting of these manuals and the utilities,
documentation and exercises from which the manuals are compiled — needs to be created and
refined. The evaluation procedure for course materials will be covered in more detail in Section 3.3

12

and the refining process for course materials will be covered in more detail in Section 3.4.

3.3 Evaluating the functionality and delivery of course material
In order to evaluate the course material created, and determine if and on what ground to refine
and improve that component of the short-course, two factors are taken into account: functionality
of that component and delivery of that component.
Proper Functionality is satisfied completely when a component is coherent and it provides all the
information and/or capabilities needed in order to perform its goal. For a utility, its capabilities
and the level to which it achieved its set goals are most important. The problem such a utility
intended to speed up and/or simplify relates to its goal. For documentation and manuals, the goal
relates to the amount and completeness (discussed in Section 3.1) of information provided. For
exercises, the goal relates to what information was supposed to be accessed and how well that
information was tested.
Delivery of course material refers to the ease with which a component can be understood and/or
utilized. This includes the complexity (discussed in Section 3.1), abstract language use and semantic
waves (discussed in Section 2.4). Specifically for utilities, delivery refers to how simple it is for one
to get started with that utility without prior knowledge of it.

3.4 Relationships between sections
The parts of the methodology were not followed chronologically, but in fact followed a network of
relationships. A representation of the entire methodology can be seen in Figure 9.
Starting with no resources or documentation, one attempts to create and correctly formulate a
manual covering an aspect of power analysis. If a concept — which needs to be explained and
thus formulated — proves to be either impossible to reproduce or formulate using the current
resources, an attempt is made to find resources which fill this conceptual gap. When a potential
resource is found, it is evaluated on both complexity — including readability and semantic context

— and completeness. Whenever both requirements are sufficiently met as explained in Section 3.1,
the resource is accepted and implemented as course material. If either of the conditions is not
sufficiently met, the resource is re-evaluated in order to determine whether the missing aspects
can be resolved. Furthermore, it is also evaluated whether a different resource exists which scores
better in the evaluation on complexity and completeness. If so, that resource is used instead.
If a resource is selected, it is either directly referenced or adapted into a more fitting format. This
is signified by a resource having a lower complexity, a more complete explanation and/or it being
better suited to the manual’s semantic wave (discussed in Section 2.4). This may again require
new resources to fill conceptual gaps. In that case, the process is repeated.
If no resource exists to fill a conceptual gap — and that gap creates a significant shortcoming in
the information or functionality — a new resource has to be created without using background
resource as a base. In this case, complexity and completeness can be taken into account whilst
creating the resource.
When a manual covering an aspect of power analysis is created and formulated, the functionality
is evaluated. In the case where a certain part of the required functionality is missing, that part of
functionality is then created and formulated using the processes described above. If all requested
functionality is present, we move on to evaluating the formulation and semantic context. There

13

Figure 9: A diagram showing the methods followed. A enlarged version can be found in Appendix A.

may be several cycles of improvement to these aspects. If more manuals are needed — when all
combined — to create a satisfactory overview of power analysis, more manuals are created by
recursion of the process.

3.5 Collection into a short-course
When it is determined that the current selection of manuals paint a satisfactory overview of power
analysis, all manuals are compiled into a short-course. Some alternations to the semantic structure
or formulation can be made in order to create a better overall semantic structure or formulation
for the short-course. This compilation aims to be a centralized resource on power analysis and in
its structure should aim to provide an uninterrupted record from start to end. Furthermore, at the
end of the short-course, a more generalized and gradable assessment of knowledge should be done.

14

4 Course material

Figure 10: A diagram showing all course material created.

Resulting from the methodology explained in Section 3, many assets were created and then collected
into a short-course. As also explained in the Section 3, these resources can be categorized by utilities,
documentation, manuals and exercises.
This chapter will go over all the resulting materials by inspecting their origin and goals. Firstly
in Section 4.1, the manual which aims to document and simplify the steps whilst setting up the
reader’s environment is covered. Then in Section 4.2, a manual containing the main concepts of
power analysis is introduced. Thirdly in Section 4.3, a manual aimed to introduce the reader to
the ChipWhisperer framework and CPA is discussed. Fourthly, Section 4.4 covers resources aimed
at simplifying the experimentation and development process. Lastly, Section 4.5 discusses a more
general exercise aimed at gradable evaluation.

4.1 Setup Guide
One of the first mandatory steps taken when starting with side-channel Analysis and with the
ChipWhisperer framework is setting up all the prerequisites and installing the dependencies on
your computer. Creating a utility which would automatically set up all necessary components was
ultimately decided against, since it was thought to be limited in its cross platform capabilities
and was thought not to add value when considering the target audience of the course. Therefore,
largely adapted from the ChipWhisperer documentation [17] on prerequisites and installation, a
created setup guide [18] aimed to summarize the extensive pieces of documentation.
This manual first provides instructions on how to install Python [19] along with PIP [20], TQDM [21],
MatplotLib [22], and NumPy [23], which are all mandatory or helpful dependencies while perform-
ing analysis of power traces created by the ChipWhisperer capture devices. The manual attempts
to provide an installation guide for all commonly used operating systems.
Following the installation guide of Python and other packages, there is an installation guide on how
to install the ChipWhisperer Python Library along with its dependencies. Namely, LibUSB [24] and
GNU make [25]. Again, this manual provides specific instructions for all commonly used operating
systems.

4.2 Simple Power Analysis
Solely introducing the concepts of power analysis — isolated from any examples or implemented
attacks — is missing in the open-source tutorials from the NewAE [17]. This causes the open-source

15

tutorials to lack the SG-/SD+ part of the semantic wave, which also creates a gap in a centralized
source. Articulating, in its most basic sense, the idea that power analysis provides is the goal of
the simple power analysis manual [18].
This manual first provides the idea behind SPA and then using the example of RSA attempts to
give an empirical meaning to the concepts explained. The aim is to provide a visual intuition for
SPA, which is then to rebuilt that into theoretical knowledge. An excerpt of the manual can be
found in Appendix B.

4.3 Correlation Power Analysis
The core manual of the resulting short-course is the Correlation Power Analysis course [18]. This
course means to adapt the NewAE CPA tutorial [17] into a more centralized, complete and com-
prehensible package. Its target being to provide adequate theoretical knowledge, and to have a
proper transition from theory and abstract knowledge to implementation. The manual intends to
achieve this goal by combining knowledge about AES with the knowledge about CPA. Both of
these are standalone sections in the manual.
The CPA manual divides into four parts, which occur in the respective order listed below.

1. CPA’s theory, which covers the theoretical basis on Correlation Power Analysis. Along with
information about the Hamming-Weight and Hamming-Distance leakage models. It also
covers Pearson Correlation Coefficients.

2. AES theory, which contains documentation on the AES algorithm’s specification along with
a section covers how CPA works with AES.

3. ChipWhisperer theory, which covers how to measure power traces using the ChipWhisperer
and how to export these traces to perform analysis later.

4. Implementing a CPA attack, which includes analyzing trace data along with an extra section
on optimizing the speed of our analysis.

4.3.1 AES Documentation

Detailed documentation, which covers how AES works, is missing from the mentioned NewAE
tutorial [17]. This was, therefore, appended to create a more centralized knowledge base for a cor-
relation power analysis attack. This documentation adapts the AES specification [2] into, what is
meant to be, a more approachable and concise explanation. The aim is to introduce the mathemat-
ical operations used within AES. Furthermore, this documentation also includes the cryptographic
added value — namely the reasoning for inclusion in the algorithm — of mathematical opera-
tions, which should provide a deeper understanding of the inner workings of AES. This broader
grasp of AES should simplify reinvention of the attack method by the reader. An excerpt of this
documentation can be found in Appendix C.

4.3.2 AES CPA attack implementation

The CPA attack on AES detailed in the ChipWhisperer tutorials [17] contained sufficient com-
pleteness but failed to unpack semantically dense (SD+) explanations. The concepts explained

16

in a semantically dense way include correlations and AES leakage models. Therefore, it was at-
tempted to adapt the CPA attack covered in the ChipWhisperer tutorials with more attention to
these semantically dense explanations. Since the provided CPA attack is functional but computa-
tionally intensive, an added section on code-optimization creates a lower computational hurdle for
the reader. An excerpt of the manual covering modeling AES can be found in Appendix D.

4.3.3 Exercises

Testing the knowledge gained from the CPA manual, in a more open-ended way, is also missing
from NewAE tutorials. Thus, some more open-ended broader questions had to be introduced. These
questions attempted to allow the reader to engage with them for a longer time. This is done by
providing room for experimentation and additional research.

4.4 Development Guide
When experimenting with SPA and CPA attacks, some development of low-level algorithm imple-
mentations has to be done. This can include both code complications steps and low-level program-
ming. This topic formed a gap in the NewAE documentation [17]. A manual needed to be written
to provide accessible and easy to understand information on developing and compiling algorithms
for the ChipWhisperer. Along with this manual, extra documentation and two utilities help to sim-
plify the development process. This manual also contains a list of useful resources when compiling
algorithms for ChipWhisperer targets, which also includes all the course material mentioned.
One of the challenges faced when trying to experiment with algorithms on the ChipWhisperer is
implementation; it is still difficult to implement algorithms which can be executed on the Chip-
Whisperer boards. Therefore, three resources were created in order to simplify this process. Firstly
in Section 4.4.1, a resource is covered in which documentation for a commonly used protocol was
written. Secondly, Section 4.4.2 details an attempt at a well-documented template utility. Lastly,
Section 4.4.3 covers a wrapper utility which aims to simplify experimentation for a selection of
algorithms.

4.4.1 SimpleSerial Documentation

A protocol often used for ChipWhisperer targets is SimpleSerial. This protocol allows for commu-
nication between the device capturing the power trace and the device performing the encryption
calculations, and it lacked up-to-date documentation. Therefore, more detailed documentation
about the SimpleSerial protocol was added to the NewAE ChipWhisperer repository [26]. This
documentation includes an interface reference along with a broad protocol specification. It aims
to make utility development easier using this protocol. Large parts of this documentation were
written in collaboration with developers at NewAE.

4.4.2 SimpleSerial C Template

While the NewAE ChipWhisperer repository [27] provides a base template for SimpleSerial target
source code, it misses things such as a Python code example for capturing power traces, references
to external resources and documentation on compilation. Furthermore, the base template also

17

creates unnecessary complexity for new users over topics such as the version of the SimpleSerial
protocol.
To address these mentioned problems, a new template repository was created [28]. This repository
attempts to provide a readable and albeit comprehensible Python power trace capturing code
example. Furthermore, its README file intends to provide comprehensible documentation on
compilation as well linking to external resources for more information. One of these resources
being the SimpleSerial Documentation discussed in 4.4.1.

4.4.3 NIST Lightweight Cryptography Wrapper

In addition to providing a base template for SimpleSerial targets which is discussed in Section 4.4.2,
a wrapper around the NIST Lightweight Cryptography [29] contest algorithms was built [30]. This
wrapper has multiple goals.

1. Universal: This wrapper repository aims to work for all NIST Lightweight Cryptography
contestants.

2. Little boilerplate: The wrapper intends to require very little boilerplate code and setup when
compiling algorithms or obtaining power traces.

3. Abstraction: The wrapper’s design intends to abstract and thus wrap as much ChipWhis-
perer specifics as well as abstracting away common steps taken to implement algorithms for
ChipWhisperer.

4. Accessibility: The wrapper aims to provide an extremely accessible option to provide embed-
ded hardware encryption algorithms.

In pursuing these goals an abstraction over the SimpleSerial protocol was constructed, as well as
creating a wrapping interface for the ChipWhisperer Python API [27]. Compiling NIST Lightweight
Cryptography algorithms for ChipWhisperer targets using this wrapper consists of few steps. The
documentation of these steps can be found in the repository’s [30] README file. An excerpt of
this file can be found in Appendix E.
Many steps taken to set up and transfer data — such as keys, input, and associated data — to
and from the target are routine, error-prone and not the main concern for students studying power
analysis. The wrapper, therefore, aims to abstract setting up and transferring the differing key
sizes, variable sized input and associated data byte-arrays, as well as retrieving the data back.

4.5 Assignment
As a requirement set by the original goal of creating a short-course for a Master level class, it
was necessary to also create an assessable exercise for students. This exercise, which was the final
amendment to the short-course [18], aimed to provide an open-ended but thorough examination
of the student’s knowledge. The goal is pursued by assigning students with a report. This report
should entail the details on some component of power analysis along with a demonstration. Fur-
thermore, the report should at least include a “reproducible demonstration and explanation of
your method” and a “description of (remaining) attack vectors through power analysis”.

18

The report’s subject choice is left up to the student whilst still providing a list of example subjects
to pick from. This method of subject selection intends to give complete freedom to enthusiast
students whilst not also trying not to overbear more reserved students.
Along with explanation on the subject and requirements of the assignment, a set of focus points is
provided which will be graded upon. This has two objectives. Firstly, it aims to provide the students
with transparency on the grading process of the assignment. Secondly, it provides the professor,
student assistant or other moderators grading the assignment some guidelines on grading.

4.6 Resulting short-course
The resulting short-course compiles all these materials into one semantically waving collection.
This compilation aims to have the possibility to be read from beginning to end, without need for
additional resources. This is done by slightly transitioning from manual to manual, illustrated by
introducing the next manual at the end of a manual, and incorporating the conclusions from a
manual in the next one.

19

5 Discussion
When searching for the current limitations of information surrounding the ChipWhisperer Lite
ARM board, the results indicate that finding a centralized source providing complete information
when starting out with the board is difficult. Furthermore, the ChipWhisperer framework lacked
some critical utilities and documentation surrounding important protocols. These three points were
all addressed and improved upon. This was done in accordance with creating a Master course on
power analysis.
The short-course created during this project [18] provides additional explanations about topics
and steps of the power analysis process. These topics and steps were previously either difficult to
follow (being targeted at more experienced users or not paying attention to semantic waves), had
hard to locate documentation or were completely undocumented. Furthermore, the course has also
centralized close to all necessary knowledge in one location. Both of which create an easier opening
for new users of the ChipWhisperer framework to get started with power analysis. This leads to it
being suited for an introductory Master course on the subject. Currently, however, the short-course
only demonstrates one CPA implementation using the AES algorithm. This also means that the
short-course does not provide reference to or content covering topics of intermediate difficulty.
The semantic waves formed within the short-course are solid. They improve readability of the
explanations of the topics and steps mentioned before. Since there is a lack of objective evaluation
methods for semantic waves, the semantic waves proved difficult to evaluate. Within some specific
sections, the semantic waves can still be improved. Mostly, these improvements can be done in the
chapter on SPA and the AES documentation section.
Arguably the biggest addition this project made is not the short-course but instead the combination
of the improved SimpleSerial documentation [26], the new template repository [28], and the NIST
wrapper [30].
The new template repository and the improved SimpleSerial documentation provide a much simpler,
well documented and less cumbersome way to compile one’s binaries for the ChipWhisperer Lite
ARM board. This should allow for more experimentation using the ChipWhisperer framework,
although knowledge of the SimpleSerial protocol is still required. Therefore, it is still not trivial
to either create an algorithm implementation or wrap an existing algorithm implementation and
compile one’s binaries from those.
The NIST wrapper provides a well documented and easy to use wrapper around the NIST Lightweight
Cryptography competition’s algorithms. It invites for more research, as will be covered in Section 7.
It also potentially — without that being part of its initial intentions — provides a simpler method
to execute created algorithm implementations on the ChipWhisperer than the template reposi-
tory. Although, no documentation for using the wrapper for more than just the NIST Lightweight
Cryptography contestants has been written.

20

6 Conclusions
The research intended to identify the current limitations of the information environment surround-
ing the ChipWhisperer Lite ARM board. Based on creating a short-course for Master students to
fill in these limitations, it can be concluded that — before the project concluded by this research

— the information environment provided many resources but existing step-by-step documentation
targeted at beginners had limitations. These limitations included a large amount of needed prelim-
inary knowledge, explanations not suited for beginners, and a lack of set up and experimentation
documentation.
Regarding the improving the information surrounding the ChipWhisperer framework by creation
of a short-course for Master of Science students, the following conclusion can be drawn. The short-
course provides a centralized resource which contains the needed knowledge for students to get
started with power analysis. The semantic structure of the short-course can be further evaluated
and improved. Furthermore, the created utilities and written documentation enable beginners to
more easily utilize the framework.

7 Future Work
Based on the conclusions drawn in Section 6 and on the evaluation of the results done in Section 5,
future studies can address the following areas.

7.1 Evaluation of semantic waves
In this research, it became apparent that, currently, objectively evaluating the semantic waves
created by informational texts is difficult. This is also briefly mentioned in Section 5. The process
of creating, improving and refining informational texts could be greatly improved if more objective
measurements or evaluations or semantic waves were available.

7.2 Implementation in other programming languages
During this research, it was attempted to implement some utilities or documentations in other
programming languages rather than the languages used by the ChipWhisperer framework. The
programming language attempted to be used was Rust [31] whilst the framework exclusively uses
Python [19] and C. Ultimately — due to time restraints — this implementation attempt was halted.
Implementing the SimpleSerial protocol in Rust could help the usability of the ChipWhisperer
framework and allow for modernization of the side-channel analysis community.

7.3 Information on steps to take next
As discussed in Section 5, the results demonstrated by this research lack the information on where
to go when finished with the introductory short-course. A recommendation on these steps could
be documented or appended to the short-course.

21

7.4 NIST Lightweight Cryptography wrapper
The NIST Lightweight Cryptography wrapper, which is one of the results of this research, shows
enormous potential which was left unexplored by this research. There are two recommendations
regarding this wrapper future studies could address.
Firstly, the wrapper could be adapted into a more general wrapper of the ChipWhisperer framework.
More general here meaning that it would provide a simpler, more intuitive and less-boilerplate
method to wrap or develop algorithms which are not part of the NIST Lightweight Cryptography
competition and measure their power traces. This is also briefly mentioned in Section 5. This could
provide a more beginner-friendly interface to the framework.
Secondly, the wrapper can be utilized to provide a comparison analysis between the contestants of
the NIST Lightweight Cryptography contest. For each algorithm, the level to which they are possi-
ble to attack using side-channel analysis could be evaluated. Referencing the algorithm’s memory
usage and computational intensity, this can then optionally be equated with how lightweight the
algorithm is.

22

References
[1] Simon Singh. The Code Book - the Secret History of Codes and Code-Breaking. 2000.

[2] Joan Daemen. The Rijndael Block Cipher. 1999.

[3] R L Rivest, A Shamir, and L Adleman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. 1978.

[4] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6), November 1976.

[5] Muhammad Iqbal and Andysah Putera Utama Siahaan. Combination of MD5 and ElGamal
in verifying file authenticity and improving data security. November 2018.

[6] Paul Kocher and Joshua Ja. Differential Power Analysis. 1999.

[7] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-round DES. 1992.

[8] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Gerhard Goos, Juris
Hartmanis, and Tor Helleseth, editors, Advances in Cryptology — EUROCRYPT ’93, volume
765. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994. Series Title: Lecture Notes in
Computer Science.

[9] Harinandan Tunga and Soumen Mukherjee. A New Modified Playfair Algorithm Based On
Frequency Analysis. International Journal of Emerging Technology and Advanced Engineering,
January 2012.

[10] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael Lyu. Memory-Safety
Challenge Considered Solved? An In-Depth Study with All Rust CVEs. February 2021. arXiv:
2003.03296.

[11] Andrew Prout, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Vijay Gade-
pally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein, Peter Michaleas, Lauren
Milechin, Julie Mullen, Antonio Rosa, Siddharth Samsi, Charles Yee, Albert Reuther, and
Jeremy Kepner. Measuring the Impact of Spectre and Meltdown. In 2018 IEEE High Perfor-
mance extreme Computing Conference (HPEC), Waltham, MA, September 2018. IEEE.

[12] Alex Dewar, Jean-Pierre Thibault, and Colin O’Flynn. NAEAN0010: Power Analysis on
FPGA Implementation of AES Using CW305 & ChipWhisperer. October 2020.

[13] Philip Sedgwick. Pearson’s correlation coefficient. BMJ, 345, July 2012.

[14] Sergei Skorobogatov. Synchronization method for SCA and fault attacks. Journal of Crypto-
graphic Engineering, 1(1), April 2011.

[15] Colin O’Flynn and Zhizhang Chen. ChipWhisperer: An Open-Source Platform for Hardware
Embedded Security Research. In Emmanuel Prouff, editor, Constructive Side-Channel Anal-
ysis and Secure Design, volume 8622. Springer International Publishing, Cham, 2014. Series
Title: Lecture Notes in Computer Science.

23

[16] Karl Maton. Making semantic waves: A key to cumulative knowledge-building. Linguistics
and Education, 24(1), April 2013.

[17] ChipWhisperer documentation. Available at https://chipwhisperer.readthedocs.io/en/
latest/index.html.

[18] Gijs Burghoorn. Power analysis Introductory Walkthrough. Available at https://
coastalwhite.github.io/intro-power-analysis/, 2021.

[19] python. Available at https://github.com/python/cpython, May 2021.

[20] pip. Available at https://github.com/pypa/pip, May 2021.

[21] tqdm. Available at https://github.com/tqdm/tqdm, May 2021.

[22] matplotlib. Available at https://github.com/matplotlib/matplotlib, May 2021.

[23] numpy. Available at https://github.com/numpy/numpy, May 2021.

[24] Chris Dickens, Ludovic Rousseau, Nathan Hjelm, and Ihor Dutchak. libusb. Available at
https://github.com/libusb/libusb, May 2021.

[25] GNU Make. Available at https://www.gnu.org/software/make/.

[26] Chipwhisperer repository simpleserial documentation. Available at https://github.
com/newaetech/chipwhisperer/blob/1eb7c2e047d4a9256b10a3fc3f603ae0fc59638d/
hardware/victims/firmware/simpleserial/README.md, May 2021.

[27] Chipwhisperer repository. Available at https://github.com/newaetech/chipwhisperer,
May 2021.

[28] Gijs Burghoorn. simpleserial-c-template. Available at https://github.com/coastalwhite/
simpleserial-c-template, April 2021.

[29] Information Technology Laboratory Computer Security Division. Lightweight Cryptography |
CSRC. Available at https://csrc.nist.gov/projects/lightweight-cryptography, Jan-
uary 2017.

[30] Gijs Burghoorn. chipwhisperer-nist-lwc. Available at https://github.com/coastalwhite/
chipwhisperer-nist-lwc, May 2021.

[31] rust. Available at https://github.com/rust-lang/rust, June 2021.

24

https://chipwhisperer.readthedocs.io/en/latest/index.html
https://chipwhisperer.readthedocs.io/en/latest/index.html
https://coastalwhite.github.io/intro-power-analysis/
https://coastalwhite.github.io/intro-power-analysis/
https://github.com/python/cpython
https://github.com/pypa/pip
https://github.com/tqdm/tqdm
https://github.com/matplotlib/matplotlib
https://github.com/numpy/numpy
https://github.com/libusb/libusb
https://www.gnu.org/software/make/
https://github.com/newaetech/chipwhisperer/blob/1eb7c2e047d4a9256b10a3fc3f603ae0fc59638d/hardware/victims/firmware/simpleserial/README.md
https://github.com/newaetech/chipwhisperer/blob/1eb7c2e047d4a9256b10a3fc3f603ae0fc59638d/hardware/victims/firmware/simpleserial/README.md
https://github.com/newaetech/chipwhisperer/blob/1eb7c2e047d4a9256b10a3fc3f603ae0fc59638d/hardware/victims/firmware/simpleserial/README.md
https://github.com/newaetech/chipwhisperer
https://github.com/coastalwhite/simpleserial-c-template
https://github.com/coastalwhite/simpleserial-c-template
https://csrc.nist.gov/projects/lightweight-cryptography
https://github.com/coastalwhite/chipwhisperer-nist-lwc
https://github.com/coastalwhite/chipwhisperer-nist-lwc
https://github.com/rust-lang/rust

A Appendix: Method-Structure

25

B Appendix: SPA Excerpt

Figure 11: An excerpt of the section on SPA in the resulting short-course. Available at https:
//coastalwhite.github.io/intro-power-analysis/rsa.html

26

https://coastalwhite.github.io/intro-power-analysis/rsa.html
https://coastalwhite.github.io/intro-power-analysis/rsa.html

C Appendix: AES Documentation Excerpt

Figure 12: An excerpt of the AES documentation in the resulting short-course. Available at https:
//coastalwhite.github.io/intro-power-analysis/aes/workings.html

27

https://coastalwhite.github.io/intro-power-analysis/aes/workings.html
https://coastalwhite.github.io/intro-power-analysis/aes/workings.html

D Appendix: AES Modeling Excerpt

Figure 13: An excerpt of the section on AES modeling in the resulting short-course. Available at
https://coastalwhite.github.io/intro-power-analysis/aes/modeling.html

28

https://coastalwhite.github.io/intro-power-analysis/aes/modeling.html

E Appendix: NIST Wrapper ReadMe Excerpt

Figure 14: An excerpt of the README.md from the NIST LWC wrapper repository. Available at
https://github.com/coastalwhite/chipwhisperer-nist-lwc

29

https://github.com/coastalwhite/chipwhisperer-nist-lwc

	Introduction
	Background & Related Work
	Cryptography
	Side-channel Power Analysis
	Leakage Models
	Simple Power Analysis
	Correlation Power Analysis

	ChipWhisperer framework
	Semantic waves

	Methodology
	Discovering and selecting of existing resources
	Creating and refining course material
	Evaluating the functionality and delivery of course material
	Relationships between sections
	Collection into a short-course

	Course material
	Setup Guide
	Simple Power Analysis
	Correlation Power Analysis
	AES Documentation
	AES CPA attack implementation
	Exercises

	Development Guide
	SimpleSerial Documentation
	SimpleSerial C Template
	NIST Lightweight Cryptography Wrapper

	Assignment
	Resulting short-course

	Discussion
	Conclusions
	Future Work
	Evaluation of semantic waves
	Implementation in other programming languages
	Information on steps to take next
	NIST Lightweight Cryptography wrapper

	References
	Appendix: Method-Structure
	Appendix: SPA Excerpt
	Appendix: AES Documentation Excerpt
	Appendix: AES Modeling Excerpt
	Appendix: NIST Wrapper ReadMe Excerpt

