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Abstract
The Oostvaardersplassen is a nature reserve in the Netherlands known as an example of rewilding con-
servation. The park hosts large herbivore populations which, due to the lack of predators, have grown to
unsustainable numbers. Despite reactive culling actions, the populations have experienced high rates of
death by starvation. An estimation of food availability as biomass could be used by the park management
to reduce unnecessary suffering. In order to assess the amount of biomass in a certain area, we can use
remote sensing techniques that are to be effective in providing accurate estimates of biomass in other grass-
lands. The main advantage of using this method to make estimations is that large amounts of data from
every place on earth can be collected and used to analyse at unprecedented spatial and temporal scales.
Previous studies have often used remote sensing data in combination with machine learning techniques,
while conducting the whole process manually.

This study aims to assess which machine learning methods can be used to provide biomass estimates
from remote sensing data. We have compared previous examples with more data-driven approaches to
make estimations of vegetation height. In addition, we aim to capture the relationships of remote sensing
features within the data. We have compared three different scenarios, using reference field data in the form
of grass height from the Oostvaardersplassen, and remote sensing data from Landsat satellites. Firstly, we
tested the standard approaches used in remote sensing studies, to estimate vegetation height. Secondly, we
tested the usage of algorithms which automate the entire machine learning procedure. Thirdly, we have
tested using raw remote sensing data, instead of derived features as done in the previous scenarios, in a
neural network to make estimations. During the third scenario, we have also examined the properties of
the neural network to discover the relations between the data. We discovered that the automated machine
learning algorithms performed better than most conventional methods. The H2O AutoML and Auto-sklearn
algorithms made estimations with a mean absolute error of 2.04 cm and 2.12 cm respectively. However, the
SVM made estimations with a 2.08 cm mean absolute error. Moreover, we found no new relations other
than what was already known in a remote sensing context.



Acknowledgements
I would first like to thank my supervisors, Nuno César de Sá, from the Institute of Environmental Sciences
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1 Introduction
In this section we will describe the current situation at the focus of our research. We will also include a de-
scription of related work. This section also details the research goals and questions, as well as a description
of the research design.

1.1 The situation

Grassland ecosystems can be classified as one of the most important types of ecosystems, as they provide
functions such as soil and water conservation, and air purification (Zhao et al, 2014) [1]. Grassland biomass
is an indicator of grassland productivity, which provides important information for animal husbandry [2].

There are various methods which can be used to make estimations of above ground biomass. The three
main categories are field-measurement based, remote sensing based, and GIS based methods [3]. Remote
sensing based methods can be described as acquiring data using an instrument that is not in direct contact
with the object being analyzed [4]. In the case of estimating above ground biomass it is useful to monitor
large areas, without the need to use methods that can be time consuming or harmful to nature. This method
has been used numerous times to make biomass estimations, since it has a great advantage because of its
global coverage and cost-effectiveness [5].

The Oostvaardersplassen (OVP) is a nature reserve located in the Dutch province Flevoland. The reserve
has been created in 1968 after the area has been poldered, and consists of a wide variety of land types such
as marshlands, wet and dry grasslands, and forest areas [6]. The vision of the park management is to rewild
the nature nature reserve, meaning a number of animals will be introduced to the area, while the human
intervention will be as little as possible [7]. The management of the park will downplay direct intervention
in the natural processes so nature can develop on its own.

The OVP has been a frequent subject to controversy. Due to minimal human intervention, herbivore pop-
ulation has grown. While reactive culling actions have been implemented to control their numbers, it has
not been able to curb the high rates of death by starvation [8]. As this has happened multiple times, it has
been a long-running subject of public debate in the Netherlands, even involving politics on a national level
[7, 9]. A prediction of the food availability as biomass in the Oostvaardersplassen could be used to reduce
unnecessary suffering. The park management is able to anticipate and make decisions much sooner with
such information.
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1.2 Related work

Using remote sensing techniques to estimate biomass is nothing new, as explained in the previous section.
It is regarded as the most effective way to make predictions on aboveground grassland biomass (AGB) [10].
The form of remote sensing that is interesting to our research, is the use of passive sensors on satellites.
These sensors measure the spectral reflectance from the surface of the earth, and can be derived to features
which have been successful in the assessment of AGB [11].

Machine learning techniques are interesting to our research as well, as they have been used often and
successfully to make estimations from remote sensing data. Wolanin et al. (2019) [12] have used neural
networks and random forests on data from the Sentinel-2 and Landat 8 satellite missions, to estimate the
primary productivity of crops. Wu et al. (2016) [13] conducted a study which compared multiple machine
learning methods from Landsat 8 data. The predictions were made on AGB values from a forest area in the
Zhejiang province in China.

Zhang et al. (2015) [14] predicted the AGB in the Xilinhot region in Inner Mongolia, China. They have
used an support vector machine regression model to predict data from Landsat 5 and MODIS. Xie et al.
(2009) [15] also made predictions for AGB values in the Xilinhot region. The machine learning technique
they used to accomplish this is a neural network, using input from an unspecified Landsat mission. Zeng
et al. (2019) [16] estimated the AGB of the Tibetan Plateau, using data from the MODIS VI mission and
meteorological data such as temperature and precipitation. Random forest has been the algorithm of choice
for this study. López-Serrano et al. (2016) [18] compared several machine learning techniques for biomass
estimation. The study has used data from Landsat 5 to test a support vector machine, neural network, and
k-nearest neighbour algorithm.

Yang et al. (2017) [17] estimated the the AGB of the Three-River Headwaters Region of the Qinghai
province in China. They have successfully applied a neural network to MODIS data. Wang et al. (2019) [19]
estimated the Leaf Area Index of AGB using data from Sentinel-1, Sentinel-2, and Landsat 8. This data
was used by a support vector machine and random forest algorithm to create predictive models. Gleason et
al. (2012) [20] used LiDAR data to acquire biomass reference values of a forest in New York, USA. This
study tested multiple algorithms, including random forest and support vector machine. Wu et al. (2019)
[21] predicted the AGB of a forest spanning across multiple nature reserves in China. They have also tested
multiple machine learning algorithms to make predictive models, including the artificial neural network and
support vector machine.
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These studies have made use of the conventional way to utilise machine learning algorithms, where all steps
- feature selection, feature preprocessing, model selection, and hyper-parameter optimization - are executed
manually. While the use of conventional methods has been effective, little to no research has been done to
incorporate different approaches to use machine learning in the process of estimating AGB. These different
approaches are the use of automated machine learning methods and using a data driven approach in which
non-derived features can be used in a predictive model. This research has explored these different approaches.

1.3 Research questions

For this study, we have substituted AGB with vegetation height, due to the unavailability of biomass data
for the OVP. So the main goals of this research were to assess whether data-driven approaches can deliver
accurate estimations of vegetation height, and to find relations within this data other than what is previously
known. This can be achieved by comparing these approaches to those that are commonly used in remote
sensing research. Having this in mind, we have simultaneously focused on the OVP, being our main study
site. Once we assessed the best performing method to predict vegetation height values, the resulting model
would be the most suitable to assist in predicting the food availability in the OVP.

Having the main goals of this research in mind, we can define the research question as follows:

• RQ1: Are automated machine learning approaches more effective than standard methods in predicting
the vegetation height of the Oostvaardersplassen?

• RQ2: Can a data-driven approach be used to capture other relationships in remote sensing data other
than previously known in a remote-sensing perspective?
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1.4 Research Design

To evaluate the effectiveness of data-driven approaches we have defined a number of scenarios that each
represent a different approach of vegetation height estimation using machine learning algorithms. In this
section we will explain the different scenarios, and the steps which will take place to test them. Figure 1.1
visualizes the steps for each of these scenarios, and the steps required for preparation. Diamonds represent
an action, and rectangles represent input and output. For each scenario, we have documented the results
in terms of accuracy. These were measured using Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Squared Error (RMSE).

List of
Vegetation

Indicies

Selection of ML
algorithms

Field data

Data set used
for experiments

Literature 
review

Satellite 
data 

collection

Image 
processing

Field data
processing

Feature 
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Experiment
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Experiment
Scenario II

Experiment
Scenario III

Feature
relations RQ2

RQ1
Performance
Comparison

Figure 1.1: Flowchart of the research design
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Scenario I is an emulation of standard approaches used in similar remote sensing studies. We used frequently
used methods and frequently used features. To determine what these methods and features were, we com-
piled a number of remote sensing studies on similar topics. After this evaluation, we had a selection of the
features, machine learning algorithms and preprocessing methods. As part of this scenario, we compared
the results of each algorithm using the features in the selection.

Scenario II focused on an automated method which can be described as an input-output approach to
make estimations on the vegetation height. All of the optimization - model, feature and hyper-parameter
selection - will be done automatically. Automated machine learning is a fairly new method, and has not been
used much in research, although there have been recent studies which used automated machine learning
algorithms to make predictions successfully. Tanaka et. al (2019) [22] used the auto-sklearn Python library
to predict software defects. In remote sensing, the usage of such algorithms is little to none.

In scenario III, we tested an automated machine learning algorithm for a neural network to predict veg-
etation height using only non-derived features, which are spectral band values in this case. The purpose of
this scenario is for a neural network to discover relations on raw remote sensing data, so there would be no
need to extract derived features from this data.

Before any of these scenarios are effectively able to be examined, we first obtained the data which was
used for this study, and preprocessed it accordingly. After all results have been formed, we compared the
results of each scenario with each other.
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2 Methods
2.1 Study Area

Figure 2.1: Image of the Oostvaarder-
splassen. Credits to Esri Nederland (2019)
for the air photo

As mentioned first in Section 1, the main study site
for this research is the Oostvaardersplassen (OVP) na-
ture reserve. In particular, we looked at the grass-
lands area. This area lies on the out brim of the
OVP, as indicated with the teal-colored outline in Figure
2.1.

This grassland contains both dry and wet grassland areas, and
are being grazed by a population of large herbivores introduced
by humans in support of the rewilding vision of the park [23].
This population consists of three species: heck cattle, red deer
and konik horses. Besides these species, the OVP also knows
a large population of geese [24]. All reference data used in this
research has been collected from the OVP.

2.2 Data

This section will explain how the data used for this study has been collected, cleaned, and processed. This
data can be split into two categories. First we have field data which functions as target variable to train
and validate the model. Second, we will describe the data that has been collected through remote sensing
techniques. This data is used to train the model and estimate the value of the target variable.

2.2.1 Field Data

For this research Dr. Perry Cornelissen from Staatsbosbeheer - the Dutch national office for forest manage-
ment - has provided us with a database containing the grass height and cover percentage for grass and a
number of additional plants, from a number of measurements. These measurements were conducted over
a 5-year period on the Oostvaardersplassen grasslands from 2013 to 2017. The grasslands are divided in a
set of plots, of which 10 are included in this database. For each plot, the measurements have been carried
out in a straight line from one edge of the plot to the other. In appendix A we can see this visualised in
images obtained from Staatsbosbeheer. Depending on the plot, the measurements were taken in a 30 or 50
meter interval.

For this study, we only extracted the grass height data from this data set. We have not been provided
with exact biomass data for these locations, or models to calculate the biomass from the grass height.
However, multiple studies [25, 26, 27] show significant correlations between AGB and grass height. For
this research, instead of assuming a theoretical or empirical relationship between grass height and AGB we
directly aimed to predict vegetation height.
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2.2.2 Remote Sensing Data

For this study we have used remotely sensed data retrieved from satellite sensors. The satellite sensors
measure the values of specific regions in the wavelength spectrum that have been reflected from the earth’s
surface, after this part of the surface has been hit by light [34]. In Figure 2.2 we can see a visualisation
of this spectrum. The numbers in the rectangles represent the band number of the Landsat sensor. The
location of each rectangle on the graph represents the wavelength region for that band. The upper row of
bands are included in Landsat 8, and the lower row in Landsat 7.

Figure 2.2: Wavelength spectrum. Credits to NASA for this image

2.2.3 Landsat mission

The Landsat mission is a program which collects images of the earth’s surface through remote sensing. This
is done by satellites which orbit the earth. The first satellite has been sent in orbit in the year 1972. This
satellite, Landsat-1, started monitoring the globe for biospheric processes and the evolution of land-cover
conditions [28]. Since then, the initial launch has been succeeded by upgraded satellites. As of today, Land-
sat 8 has been the latest satellite launched to orbit. The program is operated by the National Aeronautics
and Space Administration (NASA) and United States Geological Survey (USGS).

The satellite sensors we retrieved data from during this research are from the Landsat 7 and Landsat
8 missions. The Landsat 7 satellite has been launched in 1999, and orbits the earth in a 16-day interval
[29]. We have made use of the Surface Reflectance Tier 1 dataset for the Landsat 7 data, which measures
at a 30-meter resolution. In Table B.1 the bands we have collected from Landsat 7 are specified. The newer
Landsat 8 satellite has been launched in 2013, also orbiting the earth in a 16-day interval [30]. For the
Landsat 8 data we accessed the Surface Reflectance Tier 1 dataset, which also has a 30-meter resolution.
In Table B.2 the bands we have collected from Landsat 8 are specified. From both missions we acquired
the same six bands. We have included the Blue, Green, Red, Near Infrared (NIR), Shortwave Infrared 1
(SWIR1), and the Shortwave Infrared 2 (SWIR2) spectral regions.
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2.2.4 Google Earth Engine

We have collected this data by using Google Earth Engine (GEE) [31]. GEE is a cloud-based platform,
operated by Google, which allows users to analyze and visualize geospatial data. [32] It can be used to
integrate satellite imagery from various missions of the globe with a scientific analysis [33]. We have used
the GEE API for Python to extract the spectral band values from the Landsat sensors. In accordance with
the date range in which the field data was collected, we have only extracted satellite imagery from 2013
until 2017.

2.2.5 Vegetation indices

Vegetation indices have been proven to be successful in the assessment of biomass [11]. It has also been
used previously to make estimations on grass height data [36, 39]. A vegetation index (VI) can be formed by
combining two or more spectral bands. Jackson and Huete (1991) [11] state that that intention of VI’s are
to enhance the vegetation signal, while the solar irradiance and soil background effects are minimized. For
this research, we have examined a number of studies where VI’s have been used to estimate aboveground
grassland biomass or grass height.

In Table C.1 we can see an overview of what vegetation indices, that can be formed using data from
Landsat bands, have been used by these studies. From this set of indices, we have selected only some that
will be used in this research. Table 2.1 shows this selection, joined with formulas used to calculate the
indices.

Vegetation Index Formula Reference

Normalized Difference VI (NDVI) NIR−Red
NIR+Red Tucker (1979) [48]

Enhanced VI (EVI) 2.5 ∗ NIR−Red
NIR+6∗Red−7.5∗Blue+1 Huete et al. (2002) [49]

Simple Ratio (RATIO) NIR
Red Tucker & Sellers (1986) [51]

Soil Adjusted VI (SAVI) NIR−Red
NIR+Red+0.5 ∗ (1 + 0.5) Huete (1988) [52]

Transformed VI (TVI) (NIR−Red
NIR+Red + 0.5)0.5 Tucker (1979) [48]

Normalized Difference Water Index (NDWI) NIR−SWIR1
NIR+SWIR1 Gao (1996) [50]

Normalized Difference Tillage Index (NDTI) SWIR1−SWIR2
SWIR1+SWIR2 van Deventer et al. (1997) [53]

Renormalized Difference VI (RDVI) NIR−Red√
(NIR+Red)

Roujean & Breon (1995) [54]

Table 2.1: Vegetation indices used within this research
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2.2.6 Preprocessing

To make use of this data, the locations of the band values have to be paired with the locations of the cor-
responding field data measurements. This has been done through a series of steps, as visualized in Figure 2.3.

I II III

Select 
clear Landsat 

images

Obtain 
coordinates of 

field data

Select 
clear Landsat 

images

Figure 2.3: Process of pairing remote sensing and field data

Step I: Selecting clear Landsat images. During the first step of this process, we made a selection of the
satellite imagery taken within a 10-day range from dates field data has been collected, that are fit for use.
In this case, an image is fit for use when at least one of the plots from which the field data was collected is
not covered with clouds. From those images, only the unclouded plots made the final selection. This final
selection contained data from 15 different dates.

Step II: Obtaining the coordinates of field data measurements. The field data has not provided us with
precise coordinates of the locations of the measurements. For this part, we have used the ArcGIS software
[35]. ArcGIS is a geographic information system used for analysis of geospatial data. Through its graphic
interface a line has been drawn to reproduce the paths on which the field data was collected. Thereafter,
this line was split into equally long parts, resembling the field data locations. Then, a 30-meter buffer was
added to these points, which formed a polygon shape for each measurement location. Lastly, the coordinates
of all polygons were exported.

Step III: Extracting the band values of of the coordinates on the selected images. We developed a Python
script which extracted all raw band values from the given coordinates on the selected satellite imagery.
Then, these values were paired with their corresponding grass height values in a single table. Lastly, this
table has been cleaned by removing all empty values.

After the remote sensing data has been paired with the field data, we developed a Python script to transform
the remote sensing data to vegetation indices. After the transformation, a table was completed containing
the vegetation indices from Table 2.1, raw band values and grass height.

As for the grass height data, instances containing empty values and zero-centimeter values have been
cleaned from the data. The grass height values were represented by natural numbers N (0,1,2,3,4...) in
centimeters. This would not be an accurate representation of real grass height, so a Gaussian noise with a
scale of 0.1 cm was added to the data. This has left us with a data set containing a total of 1607 instances.
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2.3 Machine Learning

Machine learning algorithms learn from data so that a model that discovers patterns in the data to perform
better in the future, and is able to predict unobserved behaviours [55]. In this section we will outline which
machine learning algorithms are used in this research. We only looked at algorithms that offer regression
models, as the purpose of this study is to estimate grass height.

2.3.1 Algorithms

For the first scenario, which tests the standard methods used in remote sensing studies, we made a selection
of machine learning algorithms. In order to create this selection, we looked at remote sensing studies to
find machine learning algorithms that are commonly used for the purpose of predicting AGB values. Table
2.2 shows that the Random Forest, Support Vector Machine, k-Nearest Neighbour, and Artificial Neural
Network algorithms are the most commonly used, and were added to our selection of algorithms.

Study Machine learning algorithms used

Wolanin et al. (2019) [12] ANN, RF

Wang et al. (2019) [19] SVM, RF

Yang et al. (2017) [17] ANN

Zhang et al. (2015) [14] SVM

Wu et al. (2016) [13] KNN, RF, SVM, SGB

López-Serrano et al. (2016) [18] KNN, RF, SVM

Xie et al. (2009) [15] ANN

Zeng et al. (2019) [16] RF

Wu et al. (2019) [21] ANFIS, GMDH, ANN, SVM, GRNN

Gleason et al. (2012) [20] LME, RF, SVM, Cubist

Table 2.2: Machine learning algorithms used in previous studies
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We have also tested a novel algorithm, the Gaussian Process, to extend the scope of this experiment beyond
what is standard practice in remote sensing research. What follows is a brief description of each of these
algorithms.

• Random Forest (RF) is a machine learning algorithm first introduced by Breiman (2001) [56]. This
algorithm uses a random selection of features and data instances to make binary decisions. By com-
bining the resulting random trees, the algorithm will prevent outliers in the input data from having
significant impact on the function of the model.

• Support Vector Machines (SVM) applies a decision boundary to a plane of data points to make
classifications. What it does for non-linear data, is that it uses a function to transform the plane
to a higher dimensional space. Vapnik et al. (1996) [57] have made the SVM usable for regression
estimations. In the context of regression, an SVM considers the values within a certain margin from
the decision boundary, and measures the errors of values outside this margin. This way the SVM
creates a function which can map values within this function.

• K-Nearest Neighbour (KNN) is a method first proposed by Altman (1992) [58] which can be used
for classification and regression purposes. To make regression estimations, the KNN algorithm assigns
a continuous value to an input data instance. This value is calculated by taking the average of the
target values of the k closest instances in the training set to the input instance.

• Artificial Neural Network (ANN) is a method which mimics the computations made in the human
brain. An ANN uses a network of directed, weighted nodes. The way it works is that a signal is passed
on to a node. Then, a summation of of all incoming signals to the node will be passed on to an
activation function. This delivers an output value. A network can consist of multiple (hidden) layers,
which will always be followed in a consecutive way, making it an ”input-output” situation [59]. In
some cases, an artificial neural network can be referred to as deep learning. A deep learning model
consists of multiple neural networks, thus having more hidden layers in its architecture.

• Gaussian Process (GPR) is a non-parametric algorithm used for highly non-linear data. It finds a
distribution over all possible functions from the data [60]. A GPR uses a covariance matrix to find
values which are similar. A covariance function shapes the functioning of the process. In combination
with the matrix, the algorithm will produce output data. For a GPR there are several covariance
functions, also called kernels, to use. Popular kernels include the radial-basis function (RBF) kernel
and the Matérn-class kernels. [61].
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2.3.2 Automated Machine Learning

Automated machine learning is a process in which certain steps of the process of applying machine learning
methods will be done automatically. The general idea is that it automates the steps for data preprocessing,
feature selection, algorithm selection and hyper-parameter tuning. These are complicated steps that require
some knowledge in the domain of data mining and machine learning. Automated machine learning methods
offer an ”input-output” situation for its user. This process makes the application of machine learning more
accessible to users with less knowledge about machine learning or data mining. In this research, we have
made use of automated machine learning methods during scenario II. For this research, we have used two
different methods: Auto-sklearn and H2O AutoML.

Auto-sklearn: The Auto-sklearn algorithm is introduced by Feurer et al. (2019) [62]. For this research
we have utilised the Auto-sklearn Python package. This method employs eleven different Scikit-Learn re-
gression machine learning algorithms, which are as follows:

• Adaboost

• ARD Regression

• Decision Tree

• Gaussian Process

• Extra trees

• Gradient Boosting

• K-Nearest Neighbour

• Support Vector Machine

• Random Forest

• Ridge Regression

• Stochastic Gradient Descent

Auto-sklearn tackles the Combined Algorithm Selection and Hyperparameter optimization (CASH) problem,
in which the algorithm has to be picked simultaneously with the tuning of the hyper-parameters [63].

Figure 2.4: The approach of Auto-sklearn for automated machine learning, credits to Feurer et al.
(2019) for this image

The Auto-sklearn approach is visualised in Figure 2.4. Firstly, the algorithm uses a meta-learning step in
the process. Meta-learning is the usage of previous experience on related tasks to learn and build on. In the
case of machine learning the previous experience encompasses algorithm configurations, which are evaluated
based on performance results [65]. Secondly, it employs a Bayesian optimization procedure. In the context
of hyper-parameter tuning, Bayesian optimization exists out of a probabilistic model and an acquisition
function which decides which parameters are to be evaluated next [64]. The knowledge gained from the
meta-learning step reduces the amount of time needed for this optimization [62].
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At last, the Auto-sklearn algorithm builds an ensemble from the models that were searched during the
Bayesian optimization. This ensemble consists of multiple models with each having used an accompanying
method for preprocessing and feature selection.

H2O AutoML: The H2O AutoML is part of the machine learning platform H2O.ai [66]. For this re-
search we have made use of its Python API. The algorithms picked by this method are developed by H2O
themselves, which are the following:

• Random Forest

• Extremely Randomized Trees

• GLM

• XGBoost

• Deep learning

The approach H2O AutoML uses is different than the one used by Auto-sklearn. It uses a random grid
search to find the best performing parameters for each model [67]. During a random grid search, the hyper-
parameters are picked at random for evaluation. The H2O AutoML method is able to produce either a
stacked ensemble of all models or one from each algorithm family [68]. In contrast to Auto-sklearn, H2O
AutoML is also able to produce a model based on a single algorithm. These results are presented on a
leaderboard produced by the H2O AutoML method. This leaderboard shows the best performing models
that have been evaluated by the algorithm.

A key difference between the two methods is that H2O AutoML offers capabilities for deep learning models,
along with the option to perform a Neural Architecture Search (NAS). This allows any user to examine the
relations between variables used in the deep neural network.
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3 Experiments
In this section we will describe the experimental setup for each scenario described in Section 1.4. A series of
experiments have been conducted for each scenario, to test the performance of the methods. In this section,
we will go over the circumstances that have been present throughout all experiments, and the experiment
design for each scenario we tested.

3.1 Experiment protocol

It is important to note that the same circumstances must be applied for each scenario. That means we
used the same data set, method for cross validation, and amount of time consumed by the hyper-parameter
optimization for all conducted experiments.

3.1.1 Data

The data set used as input is as described in Section 2.2 containing the vegetation indices from Section
2.2.5, and spectral bands from Table B.1 and B.2 as features. The grass height data as described in Section
2.2.1 has been used as the target variable.

3.1.2 Metrics

The performance of each method is based on the accuracy of the regression estimations it has produced.
This performance has been evaluated by measuring the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE) of the predictions. The formulas for these
metrics can be found in Table 3.1. The variable n is the number of instances in the prediction, y represents
the predicted values, and ŷ represents the true values.

Metric Formula

Mean Absolute Error MAE = ( 1
n )

∑n
i=1 |yi − ŷi|

Root Mean Squared Error RMSE =
√

1
nΣn

i=1
(yi−ŷi)2

n

Mean Absolute Percentage Error MAPE = 100%
n Σn

i=1|
yi−ŷi

ŷi
|

Table 3.1: Metrics used to measure model accuracy
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3.1.3 Cross Validation

To test the performance of the predictions, we have split the data set into a training set containing 80% of
total data, and a test set containing 20% of the total data. To ensure every model works well in general,
we have made use of k-fold cross validation. As seen in Figure 3.1, we have used a k-value of 5 to split
the training set into equally large parts. For each k-fold split we optimized the model and measured its
performance against the test set.

Training set Test Set

Hyper-parameter Optimization

Measure 
performance

Figure 3.1: K-Folding process

3.1.4 Hyper-parameter tuning

The automated machine learning algorithms we described in Section 2.3.2 both hold the option for the
user to configure the amount of time the algorithm uses to tune the hyper-parameters for its models. To
ensure a fair comparison of the scenarios, we measured the average amount of time needed to complete its
hyper-parameter tuning activities for the models used to test the first scenario. This average time has been
applied to the automated machine learning algorithms, scaled to the amount of algorithms searched.

3.2 Experimental setup scenario I

In the first scenario we wanted to test the commonly used methods in remote sensing studies which use
machine learning to estimate AGB. We will reproduce the methods used in the studies introduced in Section
1.2. In Section 2.3.1 we have established a selection of machine learning algorithms to be used for this exper-
iment, and in Section 2.2.5 we have established which vegetation indices will be used as features. Besides
the algorithms and features, we have also emulated the feature selection and hyper-parameter optimization
methods from the studies we have examined.

Previous studies have used varying methods of feature selection. A number have used each extracted
feature individually to evaluate the best vegetation index to use for estimations [12, 43, 41]. Others have
used input data which were a combination of extracted features [19, 13]. For this research we have used
both these methods. To select which individual features to use, we first correlated the vegetation indices
against each other. The results may tell us which features are rudimentary to the experiment. As for the
combination of vegetation indices as input features, we applied principal component analysis (PCA) to
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reduce the dimensionality of the input. PCA is a technique used to simplify the description of a data set
by computing new components from linear combinations of the features [69]. This prevents overfitting the
model.

In this experiment, we want to evaluate the performance of each machine learning algorithm using ev-
ery input type we have established. In this experiment, we have defined the testing of one input set on
one machine learning algorithm as a run. For example, evaluating the performance of the NDVI vegetation
index on the Random Forest is a run. Each algorithm has the same amount of runs, as each algorithm tests
the same input data. During each run, we have used the k-folding cross validation method as mentioned in
Section 3.1.3.

For each k-fold, we have used a cross-validation grid search to optimize the hyper-parameters. This method
creates 5 sub-folds and searches the values of a set of parameters, and uses cross validation to determine
which configuration of hyper-parameters will deliver the most accurate predictions. We have used this
method for the machine learning algorithms that were commonly used in remote sensing studies: ANN, RF,
SVM, KNN (as seen in Table 2.2), and the GPR. The values that have been searched can be found in Table
D.1.

For each run we have produced a value for each metric described in Section 3.1.2 for every k-fold. Having
these results allowed us to compare all combinations of algorithms and input type. We have also measured
the average time needed to optimize the parameters on each run, so we could use comparable times for the
other experiments.

Remote sensing
+ field data

Feature 
selection Model testing

Individual + 
combined features

tested

K-fold cross
validation

Hyper-
parameter 
optimization

Performance
metrics

Figure 3.2: Design of the experiment setup for scenario I
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3.3 Experimental setup scenario II

In Section 2.3.2 we have described the two automated machine learning algorithms we have used during the
experiment for scenario II: Auto-sklearn and H2O AutoML. We have used the k-folding method as described
in Section 3.1.3, meaning we have ran both algorithms for each k-fold, and collected the prediction metrics
from each k-fold.

For both algorithms we needed to configure the amount of time (expressed in seconds) the algorithm
takes to find the best model. The total amount of seconds we want to allocate as the search time budget
was determined by the number of models searched by each algorithm. The Auto-sklearn algorithm searches
eleven different models, and H2O AutoML five. We have multiplied these numbers by the average search
time measured in the previous experiment.

Remote sensing
+ field data

Algorithm 
search time 

config.

K-fold cross
validation

Automated ML
method

Performance
metrics

Figure 3.3: Design of the experiment setup for scenario II
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3.4 Experimental setup scenario III

For this scenario we wanted to test an automated machine learning method to predict grass height using
a neural network. We have only applied the raw band values as input data. The H2O AutoML algorithm
supports neural networks. H2O AutoML will search a number of values for the parameters of the neural
network, and applies a k-folding cross validation strategy to find the best performing neural architecture.
We can find the search space in Table D.2

The H2O AutoML API allows the user to examine the results. It includes a description of the neural
architecture, a table of the feature importance, and the values of various scoring metrics. It includes all
metrics mentioned in Table 3.1, except for the MAPE. For this experiment it is also important to configure
the search time used by the algorithm, in order to make a valid comparison with the results of the other
experiments.

Remote sensing
+ field data

Algorithm 
search time 

config.

Selecting 
features

Running 
Neural Architecture 

Search

- NN architecture
- Feature importance
- Performance
metrics

Figure 3.4: Design of the experiment setup for scenario III
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4 Results
In this section, we will show the performance scores for the tests conducted as described in Section 3, and
other notable results. Besides displaying the performance, we will also reflect on noteworthy patterns in the
results.

4.1 Results scenario I

In Figure 4.1 we can see the correlation values between the vegetation indices in our selection. What
stands out is that the NDVI, SAVI, and TVI features correlated perfectly. Since retaining all three fea-
tures for our experiment will produce redundant results, two features will be discarded from the selection for
this experiment. In this case, we have eliminated SAVI and TVI, and kept NDVI as it is a commonly used VI.

NDVI EVI RATIO SAVI TVI NDWI NDTI RDVI

ND
VI

EV
I
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TI

O
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VI
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I
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1 0.88 0.91 1 1 0.73 0.87 0.78

0.88 1 0.81 0.88 0.88 0.74 0.78 0.72

0.91 0.81 1 0.91 0.9 0.74 0.88 0.74

1 0.88 0.91 1 1 0.73 0.87 0.78

1 0.88 0.9 1 1 0.71 0.86 0.78

0.73 0.74 0.74 0.73 0.71 1 0.81 0.61

0.87 0.78 0.88 0.87 0.86 0.81 1 0.67

0.78 0.72 0.74 0.78 0.78 0.61 0.67 1
0.65
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0.85

0.90
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Figure 4.1: Heat map displaying the inter-correlation of vegetation indices
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In Appendix E.1 we can see an overview of the MAE scores of all tested models. Appendix E.2 displays how
the models scored in terms of MAPE, and Appendix E.3 for RMSE. The performance results are expressed
in the form of boxplot figures. Boxplots can be interpreted in the following way: The bar in the center of
each figure represents the median value, and within the box you can find 50 percent of the values. The
upper and lower whiskers of the figure respectively represent the highest 25 percent and lowest 25 percent
values.

To compare the performance of each algorithm, we have compared the models with the strongest per-
formance produced by each algorithm. For each algorithm, one model produced the lowest values in terms
of MAE, MAPE and RMSE. In Table 4.1 we can see which models performed the best based on the data in
Table E.1. The best performing model terms of MAE and MAPE was the Support Vector Machine (SVM)
using the RATIO vegetation index. In terms of RMSE we can see that the K-Nearest Neighbour using
the NDVI vegetation index performed the best. Another distinct result is that the RATIO vegetation index
performed well in comparison with the other inputs.

ML Algorithm MAE RMSE MAPE

SVM RATIO (2.079254) RATIO (4.149188) RATIO (38.599707)

RF All VI’s combined (2.393749) All VI’s combined (3.979208) All VI’s combined (57.804206)

KNN RATIO (2.388331) NDVI (3.951641) RATIO (54.713806)

GPR All VI’s combined (2.676705) All VI’s combined (4.423031) All VI’s combined (80.322708)

ANN NDVI (2.388331) NDVI (3.961021) NDVI (56.098928)

Table 4.1: Results of scenario I, showing the best performing model per algorithm, a cell represents the
input used with the metric score in brackets

Besides the performance metrics, we have also measured the average time it took to optimize the hyper-
parameters per machine learning algorithm. The average time needed to complete the optimization was
18.6 seconds. In Table 4.2 the average time per algorithm can be found.

Algorithm Time consumption (in seconds)

ANN 24.9

KNN 22.6

RF 22.7

SVM 4.2

GPR 18.8

Table 4.2: Time consumption for optimization hyper-parameters
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4.2 Results scenario II

In Section 4.1 we have determined the average search time per algorithm for the experiments conducted for
scenario II to be 18.6 seconds. As the Auto-sklearn algorithm searches from 11 different machine learning
algorithms, the time has been configured to 205 seconds. The H2O AutoML algorithm searches from 5
algorithms, and thus the time has been set to 93 seconds.

The performance results of both algorithms - Auto-Sklearn and H2O AutoML - have been visualised in
appendix F. The scores described in the boxplots are the performance scores for each k-fold. The mean
values of the results are also displayed in Table 4.3. The H2O AutoML algorithm scored better in terms of
MAE, yet is out bested by the Auto-sklearn algorithm in the RMSE and MAPE scorings. There is a minimal
difference between both MAE and RMSE scores, yet a huge difference in the MAPE scores.

Algorithm MAE RMSE MAPE

Auto-sklearn 2.070337 3.480959 51.217733

H2O AutoML 2.042946 3.497677 131.699548

Table 4.3: Results of scenario II, showing the mean performance metrics of the H2O AutoML and
Auto-sklearn automated machine learning algorithms
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4.3 Results scenario III

In this section we will describe not only the results of the experiment for scenario III in terms of metrics. The
resulting neural network architecture and feature importance will be specified as well. For this experiment
we have also allocated a time budget. The H2O AutoML algorithm only searches the deep neural network
for this case. Because of this, it has been allocated 18.6 seconds, which is the average time it took for
algorithms in scenario I to optimize its parameters. In Figure G.1 and Figure G.2 the performance scores
of the neural network are represented as a boxplot visualization. As the API for this feature of the H2O
AutoML did not offer a performance score in the form of MAPE, we only possessed the MAE and RMSE
scores. In Table 4.4 we can see that this experiment resulted in an MAE of 2.679430 and an RMSE of
4.421356.

Algorithm MAE RMSE

H2O AutoML Neural Network 2.679430 4.421356

Table 4.4: Results of scenario III, showing the performance metrics for the Neural Network using the
H2O autoML algorithm

The resulting Neural Network Architecture produced by the H2O AutoML algorithm is described in Table
G.1. The table describes the layout of the neural network by giving the number of nodes (neurons) per
hidden layer in the network, along with the mean weight and bias of the nodes. In Table 4.5 the feature
importance of the input data is displayed. This table shows how often each spectral band is used in the
neural network to make a prediction on grass height data. This describes the relevance of each spectral
band in the model.

Band name Importance Percentage used

NIR 1.000000 0.204854

SWIR2 0.873306 0.178900

BLUE 0.817366 0.167441

RED 0.774636 0.158687

SWIR1 0.748654 0.153365

GREEN 0.667571 0.126754

Table 4.5: Feature importance for the spectral bands
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4.4 Comparison

In this section we will compare the results of all three scenarios. This will give us insights to the performance
of the different methods we have tested under the same circumstances. In Figure 4.2 the Mean Absolute
Error performances of the models are displayed. The models are ranked, the best performing model on the
left and the least performing on the right. The H2O AutoML seems to have scored the best on this metric.
In Figure 4.3 the models are ranked in the same fashion. The Support Vector Machine (SVM) using the
RATIO vegetation index as input has scored the best on this metric, while the H2O AutoML algorithm is by
far the worst performing model. Figure 4.4 illustrates a comparison of the different models with regard to
the Root Mean Squared Error. There was not much of a difference in scoring between the models, although
we can see the two models tested in scenario II performed the best.

Overall, we can see that the models from scenario II generally outperformed those from scenario I and
III, except for the H2O AutoML MAPE value. The models from scenario I largely stayed in the mid-range of
all ranking, with an exception from the Support Vector Machine, having performed the best in its category.
Lastly, there is the model from scenario III having had the overall worst performances as can be seen in the
aforementioned figures.
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Figure 4.2: Mean Absolute Error comparison models (Best performing ranked left to right)
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Figure 4.3: Mean Absolute Percentage Error comparison models (Best performing ranked left to right)

Auto-sklearn (all features)

H2O AutoML (all features)
KNN (NDVI)

ANN (NDVI

RF (all vegetation indices)
SVM (RATIO)

H2O AutoML NN (Spectral bands)

GPR (all vegetation indices)
0

1

2

3

4

5

Ro
ot

 M
ea

n 
Sq

ua
re

d 
Er

ro
r

Figure 4.4: Root Mean Squared Error comparison models (Best performing ranked left to right)

4.5 Limitations

A number of limitations have been tied to this research, which impacted the data we have used. First,
no reference data for AGB in the OVP was available. This resulted in grass height data being used as
prediction variable instead of biomass. Secondly, the field data measurements have not been provided with
actual coordinates. That also applies to the start- and endpoint of the visualization of the indication where
the field data was collected. An accurate indication of the location of field data could impact the reliability
of the results in a positive way. Third, the cloudiness of satellite images severely limited the amount of data
available. A lack of clear weather prevents the satellite sensor from collecting reflectance light. Out of 23
dates field data were acquired on, only data from 15 of these have been suitable for at least one plot.
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5 Conclusions
5.1 Discussion

We have researched three different approaches to predict grass height using remote sensing data and ma-
chine learning methods. We did this to find out whether data-driven approaches were as effective as the
standard remote sensing practices in making predictions. These data-driven approaches in this case were
firstly automated machine learning methods, and secondly a neural network using only raw spectral band
values instead of derived vegetation indices. We have used remotely sensed data from the Landsat 7 and
Landsat 8 satellites. This discovery could introduce new approaches for estimation of information such as
biomass and grass height. In this section, we will discuss the results of all tested scenarios, and compare them.

Looking at the first scenario, we can see that the SVM using the RATIO VI scored the best in its cat-
egory in terms of MAE (2.08 cm) and MAPE (38.60%). The RF algorithm using a combination of all VI’s
scored the best in terms of RMSE (3.98 cm). A study using data from the Sentinel-2 satellite has scored
better, making grass height estimations with an RMSE of 2.89 cm [71]. Another study using an ultrasonic
scanner estimated the vegetation height of Alfalfa at a MAPE of 0.30%, and Bermudagrass at a MAPE
of 0.21% [36]. A study using LIDAR data was able to predict sward height at an RMSE of 3.98 cm [70],
exactly the same as the RF algorithm using a combination of all VI’s used. This implies that using data
from an ultrasonic scanner or Sentinel-2 could improve our results.

As for the second scenario, we can see that that the Auto-sklearn algorithm outperformed the model
made by Yuan et al. (2018) [70] by estimating grass height at an RMSE of 3.48 cm. It is outperformed by
Pittman et al. (2015) [36] and Cimbelli et al. (2017) [71]. To improve the results for automated machine
learning algorithms, we could firstly use other sources of remotely sensed data such as Sentinel-2 and the
ultrasonic scanner. Another is to delimit the algorithm search time parameter of both the Auto-sklearn and
H2O AutoML algorithms. For this research we have capped the search time to ensure a fair comparison
across each scenario. Delimiting this parameter could produce a more accurate model, as the algorithm
would have more time to search for optimal settings for feature selection, preprocessing, model selection
and hyper-parameter configuration.

As for the third scenario, if we look at the predictive performance we can see it scored poor in com-
parison with the aforementioned studies, having an MAE of 2.68 cm and an RMSE of 4.42 cm. Also for
this method it is possible to perform better if we use data from different sources, and delimit the search
time for the H2O AutoML algorithm, which is used for this scenario to build a neural network. For this
scenario, we have also researched the relationships between the spectral bands in this neural network. If we
look at Table 4.5 we can see the NIR band is the most important band, which is expected. If we compare
it with the bands that are most used in vegetation indices, referring to Table 2.1, we can see that the
blue band is not common, yet holds a higher importance than the red band, which is more common. All
in all, the importance ranking corresponds to the knowledge known in the domain of remote sensing. This
implies that a neural network only using raw spectral band data formulates relationships which are used
to transform the data to vegetation indices. This means that such a neural network can be used to pre-
dict vegetation height or biomass, without having to derive vegetation indices from the remote sensing data.
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We have compared all approaches in similar circumstances, and referring to the results we can assume
that automated machine learning algorithms such as Auto-sklearn and H2O AutoML are more effective at
predicting the grass height in the Oostvaardersplassen than the conventional methods, in which all steps
in the machine learning process have to be done manually. The automated machine learning algorithms
will be more suitable for making predictions based on remotely sensed data, both for its high performance
and ”input-output” situation making it more accessible for researchers without ample machine learning
knowledge. This does not mean the usage of manually configured machine learning algorithms should be
abandoned. As we can see the SVM outperformed both automated machine learning algorithms in terms
of MAPE.

For predicting the grass height in the Oostvaardersplassen, either of these methods are suitable. To predict
the AGB for locations in the Oostvaardersplassen, one could apply the methods as described in this thesis.
The methods would require reference field data in the form of the weight of dry pasture, and remotely
sensed data measured from the locations where this field data was taken from.

5.2 Conclusion

We have succesfully demonstrated that remote sensing data from the Landsat 7 and Landsat 8 satellites
can be used to predict vegetation height, making use of manual and automated machine learning meth-
ods. Automated machine learning methods such as Auto-sklearn and H2O AutoML are the best pick to
make these predictions. This research has also demonstrated that a neural network can be used to create
relationships in raw spectral data which are often used in remote sensing studies.
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5.3 Further research

This research has laid the groundwork for various other potential researches. First, the full potential of
automated machine learning used to make predictions in the remote sensing field can be researched. In this
research, we have limited the performance of the automated machine learning learning algorithms in order to
assure the circumstances were consistent across all experiments. We have done this by setting a limit to the
time span the algorithm uses for the feature selection, preprocessing, model selection and hyper-parameter
optimization. Future research could study the potential of these algorithms when they have less limiting
configurations. The same is implied for the neural network using spectral bands as input created by the
H2O AutoML, as described in Section 3.4. Even though the performance for this approach is weak, these
results paved a way for further research.

Secondly, as the Oostvaardersplassen has been the main study site for this research, and all data was
collected from this location, this thesis can be the basis for further research on this location. As a prediction
of future food availability is valuable information for the park management, future research could create
a prediction of future grass height values using the methods from this research. Besides the Oostvaarder-
splassen, the scale of the research can also consist of the entire Netherlands. Remote sensing data can
be retrieved from Landsat satellites, which can be freely accessed using Google Earth Engine. As long as
reference vegetation height data exists, the methods described in this thesis can be used for estimations.
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Appendices

A Field data locations

Figure A.1: Transects E28, E30, E29, E20, E21
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Figure A.2: Transects C29, C30
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Figure A.3: Transects E139, E140, E32, E31
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B Spectral bands

Band name Wavelength in µm Surface reflectance type

B1 0.45 - 0.52 Blue

B2 0.52 - 0.60 Green

B3 0.63 - 0.69 Red

B4 0.77 - 0.90 Near Infrared (NIR)

B5 1.55 - 1.75 Shortwave Infrared 1 (SWIR1)

B7 2.08 - 2.35 Shortwave Infrared 2 (SWIR2)

Table B.1: Landsat 7 Spectral Bands

Band name Wavelength in µm Surface reflectance type

B2 0.452 - 0.512 Blue

B3 0.533 - 0.590 Green

B4 0.636 - 0.673 Red

B5 0.851 - 0.879 Near Infrared (NIR)

B6 1.566 - 1.651 Shortwave Infrared 1 (SWIR1)

B7 2.107 - 2.294 Shortwave Infrared 2 (SWIR2)

Table B.2: Landsat 8 Spectral Bands
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C Literature examination

Study Vegetation Indices used

Psomas et al. (2011) NDWI, NDVI, TSAVI, RDVI

Peng et al. (2013) NDVI, EVI, WRDVI

Payero et al. (2004) RATIO, NDVI, TVI, IPVI, SAVI, DVI, RDVI, MSAVI

Frank & Aese (1994) NDVI, RATIO

Karakoc & Karabulut (2019) NDVI, RATIO

Jansen et al. (2018) NDVI, NDTI

Wang et al. (2019) LSWI, NDVI, EVI

Prabhakara et al. (2015) NDVI, RATIO, EVI, TVI, SAVI, VARI, NDREI

Lussem et al. (2019) NDVI, RDVI

Hoving et al. (2018) NDVI, WDVIr, WDVIg

Vescovo et al. (2004) NDVI

Cho & Skidmore (2009) NDVI, MSAVI, NDWI, SARVI

Table C.1: Vegetation indices used in previous studies
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D Hyper-parameter search spaces

Algorithm Hyper-parameters optimized Values searched

Artificial Neural Network Hidden layer sizes 1, 2, 3, 5

Activation tanh, relu, logistic

Solver sgd, admin, lbfgs

Learning rate constant, adaptive

Gaussian Process Kernel RBF(), Matern(), WhiteKernel()

Number of restarts 10, 20

Random Forest Number of estimators 50, 75, 100, 250, 500, 750

Max. number of features 0, 1, 2 , 3

Support Vector Machine Kernel linear, rbf, sigmoid

C 1, 5, 10

Gamma 0.1, 0.01, 0.001, 0.0001

K-Nearest Neighbours Number of neighbours 1 - 30

Leaf size 1 - 50

Table D.1: Search space for the machine learning algorithms

Parameter Searchable Values

activation Hard coded: RectifierWithDropout

epochs Hard coded: 10000 (true value found by early stopping)

epsilon {1e-6, 1e-7, 1e-8, 1e-9}

hidden

•Grid search 1: {50}, {200}, {500}

•Grid search 2: {50, 50}, {200, 200}, {500, 500}

•Grid search 3: {50, 50, 50}, {200, 200, 200}, {500, 500, 500}

hidden dropout ratios

•Grid search 1: {0.1}, {0.2}, {0.3}, {0.4}, {0.5}

•Grid search 2: {0.1, 0.1}, {0.2, 0.2}, {0.3, 0.3}, {0.4, 0.4}, {0.5, 0.5}

•Grid search 3: {0.1, 0.1, 0.1}, {0.2, 0.2, 0.2} {0.3, 0.3, 0.3}, {0.4, 0.4, 0.4}, {0.5, 0.5, 0.5}
input dropout ratio {0.0, 0.05, 0.1, 0.15, 0.2}
rho {0.9, 0.95, 0.99}

Table D.2: Search space for the H2O AutoML Neural Network Architecture
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E Scenario I results
E.1 MAE scores
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Figure E.1: KNN MAE performance scores
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Figure E.2: SVM MAE performance scores

All V
Is c

om
bin

ed EV
I

NDTI
NDVI

NDWI
RATIO RDVI

Input features

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n 
Ab

so
lu

te
 E

rro
r

Artificial Neural Network

Figure E.3: ANN MAE performance scores
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Figure E.4: GPR MAE performance scores
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Figure E.5: RF MAE performance scores
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E.2 MAPE scores
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Figure E.6: KNN MAPE performance scores
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Figure E.7: SVM MAPE performance scores
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Figure E.8: ANN MAPE performance scores
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Figure E.9: GPR MAPE performance scores
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Figure E.10: RF MAPE performance scores
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E.3 RMSE scores
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Figure E.11: KNN RMSE performance scores
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Figure E.12: SVM RMSE performance scores
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Figure E.13: ANN RMSE performance scores
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Figure E.14: GPR RMSE performance scores
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Figure E.15: RF RMSE performance scores
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E.4 All performance score values

ML Algorithm Input features RMSE MAE MAPE
SVM All VIs combined 4.219499 2.127358 39.704539

EVI 4.389440 2.178482 40.558912
NDTI 4.402553 2.170536 41.345459
NDVI 4.461306 2.227793 41.743709
NDWI 4.541283 2.276787 43.826464
RATIO 4.149188 2.079254 38.599707
RDVI 4.667263 2.464171 51.671345

RF All VIs combined 3.979208 2.393749 57.804206
EVI 4.834978 2.773854 62.711096

NDTI 4.925699 2.782304 65.142014
NDVI 5.027952 2.839207 62.904760
NDWI 5.319518 3.149385 78.781659
RATIO 4.976450 2.805902 62.020654
RDVI 5.650295 3.423770 88.838945

KNN All VIs combined 4.099739 2.487383 59.768151
EVI 4.012767 2.413133 56.438365

NDTI 4.061409 2.472119 59.669670
NDVI 3.951641 2.396571 55.481201
NDWI 4.410081 2.775395 71.590342
RATIO 3.963621 2.388331 54.713806
RDVI 4.563450 2.915198 80.379104

GPR All VIs combined 4.423031 2.676705 80.322708
EVI 4.742240 3.051942 101.680043

NDTI 4.649250 2.984313 99.754205
NDVI 4.737944 3.044196 101.489331
NDWI 4.725422 3.040731 100.865977
RATIO 4.737992 3.030284 100.676855
RDVI 4.712671 3.022835 100.686846

ANN All VIs combined 4.021516 2.447529 56.699423
EVI 4.087979 2.524812 61.135107

NDTI 4.055013 2.459123 59.502602
NDVI 3.961021 2.382207 56.098928
NDWI 4.501931 2.818823 71.831857
RATIO 5.032713 2.443981 56.129954
RDVI 4.537489 2.929461 83.104306

Table E.1: Mean performance scores for all tested models
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F Scenario II results
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Figure F.1: Auto-sklearn MAE performance scores
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Figure F.2: Auto-sklearn MAPE performance scores
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Figure F.3: Auto-sklearn RMSE performance scores
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Figure F.4: H2O AutoML MAE performance scores
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Figure F.5: H2O AutoML MAPE performance scores
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Figure F.6: H2O AutoML RMSE performance scores
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G Scenario III results

layer 1 2 3 4 5

units 6 10 10 10 1

type Input Rectifier Rectifier Rectifier Linear

dropout 0 0 0 0

l1 0 0 0 0

l2 0 0 0 0

mean rate 0.00048358 0.000828805 0.000763349 0.000534967

rate rms 0.000238964 0.000609651 0.00146712 0.000495285

momentum 0 0 0 0

mean weight -0.0439295 -0.01273 -0.0146142 -0.113699

weight rms 0.366273 0.309482 0.337802 0.564537

mean bias 0.481552 0.990919 0.992945 0.0336012

bias rms 0.0482909 0.0345512 0.030939 1.09713e-154

Table G.1: Neural Network Architecture produced by H2O AutoML
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Figure G.1: Spectral band neural network MAE performance scores
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Figure G.2: Spectral band neural network RMSE performance scores
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