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Abstract. In the clinical Natural Language Processing (NLP) domain,

Temporal Relation Extraction is a crucial task for understanding how events

are ordered in a clinical text. Electronic Health Records (EHRs) contain

valuable information regarding events that happened to a patient. The in-

formation in these medical records typically refers to events that happened

in the past such as diseases, treatments and tests, as well as to present con-

ditions of the patient. The ultimate goal of Temporal Relation Extraction

in clinical narratives is to create a patient’s clinical timeline and repre-

sent its detailed clinical history by discovering the link between temporal

events and meaningful clinical named entities from the medical records. In

this thesis, we implemented and evaluated an NLP pipeline that is able

to pre-process clinical narratives, extract relevant named entities, namely

problem, test and treatment entities, and relate them to specific temporal

events. Specifically, in our experiments, for the Named Entity Recognition

task we trained a Char – BiLSTM – CNN model, using BioWordVec em-

beddings, that was able to achieve an F1-score of 86.54% on the 2010 i2b2

NLP data set, attaining similar results to the state-of-the-art implementa-

tion by Zhang et al. [50]. The model considered for the Temporal Relation

Extraction task, instead, was a ClinicalBERT pre-trained language model

combined with a 1-d CNN for fine-tuning, based on Chen et al. [8] model

architecture. Experiments on the merged 2012 i2b2 temporal relation ex-

traction corpus revealed that the approach proposed attains an accuracy of

83.19% on the test set, proving that the model is able to e↵ectively relate

clinical entities to temporal events.

Keywords: Named Entity Recognition · Clinical Temporal Relation Ex-

traction · Natural Language Processing.
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1 Introduction

Clinical narratives from medical records contain valuable information regarding
events that happened to a patient. However, most of these occurrences, such
as the history of a patients illness or the e↵ectiveness of a test for a particular
disease are only significant when considered in a timeline that is relevant to the
patient. Answering and interpreting questions such as “Is the treatment e↵ective
for patient X?” or “What is the progression of patient Ys illness?” can prove
to be very challenging for a physician and might require further investigation.
However, if we consider relative temporal relations between occurrences, solving
these questions becomes much easier. Temporal Information Extraction used to
process patient information in clinical narratives can positively contribute to the
process of making accurate decisions in vital patient care tasks such as forecasting
the e↵ects of therapies, preventing the spread of a disease or diagnosing the nature
of a medical condition [4]. In many cases, constructing a reliable and accurate
timeline can facilitate physicians during the challenging decision-making process
and help increase medical accuracy. In the hypothesis of a situation where, for
instance, a patient with a chronic disease is taken to the ER, the physician, to
be able to make an informed decision, would have to check over the history of
the patient and manually verify their medical records to identify what type of
treatment is most suited for this patient. Fundamental information can be hard to
retrieve without any delay, but with a system able to extract crucial information
and generate a detailed timeline this task can be facilitated.
Prior attempts in this research area led to promising results. In 2013, Nikfarjam et
al. [33] implemented an hybrid system that applies machine learning together with a
mechanism based on graph inference that was able to extract di↵erent components
for separate types of temporal relations. More recently, in 2018, Leeuwenberg and
Moens [27] proposed a novel archetype. Compared to earlier work where temporal
relations needed to be predicted as an intermediate step to construct a timeline, the
authors of this paper directly used the start and end-points predictions for events
from the text.
Currently, Temporal Relation Extraction focuses on three main phases: (1) a named
entity recognition phase in which events and their attributes are extracted as well as
a temporal expression such as dates and durations, (2) a relation extraction phase
which focuses on finding temporal links between the extracted entities. And (3) the
timeline phases which concentrates in constructing a timeline from the extracted
temporal links, if they are temporally consistent. In this thesis, the focus is in on
building an NLP pipeline that would be able to pre-process narrative text from
medical records, extract clinical entities and temporal expressions and finally find
the relationship between these events. More specifically, the following contributions
are made:

• Pre-processed and transformed raw clinical notes into training set following
the CoNLL-2003 file format with an accuracy close to the licensed version in
SparkNLP.

• Trained a Biomedical Named Entity Recognition model to extract problem,
treatment and test entities from clinical narratives with an F1-score close to
the current state-of-the-art implementation by Zhang et al. [50].

• Proposed a Temporal Relation Extraction model based on Chen et al. [8] BERT
+ 1-d CNN model architecture, to which di↵erent versions of BERT have
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been implemented, namely BioBERT and ClinicalBERT pre-trained models
that were able to achieve interesting results on the i2b2 2012 data set.

It is important to notice that Electronic Health Records (EHRs) incorporate dif-
ferent types of information, from physical assessments, admission notes, present
complaints to physical examinations and discharge reports, among many. However,
for this work, we only focused on the extraction of temporal relations from raw
text fields in EHRs. Another important note is that both Biomedical Named Entity
Recognition and Temporal Relation Extraction play a relevant role in this project
since the first one is the tool used to extract both events and temporal expressions
in a clinical setting while the second one is used to extract and classify the relation-
ship between those entities. An exhaustive explanation of both these Information
Extraction tasks is carefully unfolded in the following sections.

Problem Statement & Thesis Structure In this thesis, we will attempt to
develop and evaluate an NLP pipeline that will be able to extract clinical events and
relate them to specific temporal entities. Note, therefore, that this thesis focuses
on the overall implementation of a data pipeline that starts with pre-processing
raw data from clinical narratives, extracts specific medical entities and finally links
them to temporal events. The thesis at hand, in particular, will attempt to answer
the following questions:

1. What is the performance of a Named Entity Recognition method trained to
specifically extract clinical entities such as treatments, tests and diseases from
medical narratives?

2. To what extent is Temporal Relation Extraction able to e�ciently categorise
temporal relations between the extracted clinical entities? Specifically, to what
degree are BERT methods more suitable for this task compared to other
feature-based methods?

The layout of the thesis is as follows: Section 2 firstly introduces some of the
preliminary terms and concepts that allow the reader to better understand the
content. A detailed explanation of the model’s architecture is given combined with
a description of the word embeddings and libraries used in the implementation. The
focus then passes onto related work regarding clinical named entity recognition, how
temporal relation extraction has been implemented in the last few years and lastly
some recent work on context understanding models and why recently they received
large popularity.
Section 3 dives into the methods used in this thesis. An overview of the di↵erent
data sets and approaches used together with an explanation of the evaluation
metrics are given in detail. Additionally, the system setup with regards to the
hardware and software are explained with also a deep focus on the distributed
system setup used and future deployment of the models.
Section 4 presents the results of the multitude of experiments performed. For
each type of experiment and each type of model, the time and metric results
are conferred, summarised. Moreover, a deep dive into the experimental results is
given by aggregating the di↵erent experimental results and discussing their practical
implications and limitations, according to the evaluation criteria. With a focus on
the limitations of the approaches proposed, Section 5 discusses the results of the
experiments and summarise our findings.
Lastly, section 6 gives final remarks, presents shortcoming of the thesis as well as
possible future research, and concludes the thesis.

4



2 Background

This section will cover the definitions related to text mining and, more generally,
NLP, explaining more in detail the core concepts around Named Entity Recognition
and text processing as well as text classification. A focus on recent achievements
and related work in clinical NER, relation extraction and context understanding
models will also be given.

2.1 Definitions and core concepts

Text mining is the process of parsing unstructured or semi-structured text and
processing it to derive relevant information. One of the main objectives, therefore,
of text mining is to extract meaningful information from text-based data by learning
trends and patterns in the data. This task is pursued with the help of several
statistical methodologies and models such as statistical language modelling or topic
modelling, among many.

Fig. 1: Text mining process

As a field of artificial intelligence, Natural language processing (NLP) is a task that
thrives to interpret and translate human language into meaningful information for
machines. Its objective, as well as one of the main achievements, is not only for
machines to understand natural language but also to translate highly unstructured
data into structured sources for further analysis. Text data can be very hard to anal-
yse, mostly because languages have di↵erent structures and most of the time even
di↵erent versions (i.e. dialects). Moreover, text can contain mistakes, abbreviations
or punctuation as well as di↵erent syntax rules and terms, therefore, structuring
such highly unstructured data can be challenging for a machine. Generally, NLP
tasks, such as topic modelling, sentiment analysis, machine translation and text
to speech conversion, attempt to analyse and interpret the relationships between
parts of text to understand the meaning of words when put together.
Named entity recognition (NER) is an information extraction task that thrives to
recognise and classify entities from unstructured text into predefined categories.
We refer to an entity as a single token/word or a chunk of words that together
refer to the same named entity. For instance, if we consider the following sentence
“Amsterdam is the capital of the Netherlands.”, an NER model would identify
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and extract entities such as “Amsterdam” and “Netherlands” and classify them as
“city” and “country”, respectively. Although the task in this example might seem
of minor importance, NER use cases are getting more and more common across
industries. For instance, media corporations use NER to determine the subject
of a body of text or to extract similar articles based on the categorised entities;
NER is also used by companies that thrive to improve customer experience by
automatically classifying user requests and complaints and reduce response time;
another important application is in the healthcare domain where NER can quickly
parse and extract relevant information from diagnoses and medical reports.

2.2 BERT

In the last year, BERT models have become very popular among di↵erent NLP
tasks such as Question Answering and NER, among many. Its fame is notorious
not only for the state-of-the-art performances achieved in several NLP tasks but
also for its conceptually simple model architecture. BERT [14] framework consists
of the combination of two sequential tasks, namely pre-training and fine-tuning.
The former refers to the process of training the BERT model on unlabelled data
over multiple pre-training tasks, while the latter refers to the fine-tuning process of
all of the parameters using labelled data from the downstream task. Therefore, it
comes without saying that one of the main innovation of BERT is the use of two
unsupervised tasks to pre-train the BERT model, instead of using the traditional
unidirectional language models. These two unsupervised tasks are referred to as
Masked Language Models (MLM) and Next Sentence Representation (NSP).

Masked Language Model The main idea behind MLM is that the model masks
a percentage of the tokens at random from the input data before feeding it to
BERT. The MLM’s objective is to predict the original masked word’s vocabulary
ID solely based on the context. Therefore, its objective enables the representation
to merge the right and the left context, allowing to pre-train a deep bidirectional
Transformer which would not be possible to pre-train with a unidirectional language
model. The concepts of MLM can be observed in Figure 2. The Figure depicts an
example of how masked language model predicts the output words. As explained,
a percentage of the input words is masked and the word embeddings are fed to
the Transformer encoder that produces the output vectors. On top of the encoder
outputs which are transformed into the vocabulary dimension by multiplying them
with the embedding matrix, a classification layer is added. Finally, with the softmax
activation function, the probabilities of each word are calculated.

An important note to consider is that the slower convergence of the model com-
pared to more traditional directional models is based on the fact that only the
prediction of the masked words is taken into consideration by BERT loss function
while the non-masked word predictions are ignored.
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Fig. 2: Bert Masked Language Model [18].

Next Sentence Prediction (NSP) Language modelling doesn’t directly capture
the relationship between two sentences that many downstream NLP tasks, such as
Question Answering, are based on. With the Next Sentence Prediction, as the task’s
name suggests, the model receives as input pairs of sentences A and B and learns to
predict if sentence B in the pair is the actual sentence that follows sentence A in the
original document. When training, 50% of the inputs are a pair where sentence B

is the actual subsequent sentence in the original document, while 50% of the other
inputs are a pair where a sentence from the corpus is chosen at random as sentence
B. The main assumption in the NSP task is that the random second sentence will
not be connected with the first one. Before entering the model, however, the input is
processed in order to facilitate the model discriminating between the two sentences.
A representation of this process is shown in Figure 3, where sentence A refers to
the first sentence, while sentence B refers to the second sentence. The input tokens
are processed in the following way:

• A special classification token ([CLS]) is added at the beginning of sentence A,
while at the end of every sentence a separation token ([SEP]) is added.

• A learned sentence embedding is added to each token stating if it belongs to
sentence A or B.

• The position in the sequence is then indicated by adding a positional embedding
to each token. In summary, the final input representation of every token is
assembled by adding the corresponding token, segmentation and positional
embeddings.
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Fig. 3: BERT input representation [14].

BioBERT & ClinicalBERT Less than a year after BERT publication, di↵erent
versions of BERT model started to be proposed. BERT proved to be very e↵ective in
several NLP tasks, however, it has its limitations when it comes to domain-specific
tasks, mostly because it is pre-trained on only general domain corpora. The rapid
increase in the volume of biomedical literature suggested that a domain-specific
language model needs to be pre-trained in order to benefit numerous biomedical
NLP research tasks. For this reason, Lee et al. [26] released BioBERT, a biomedical
language representation model pre-trained on large-scale biomedical corpora. While
BERT was pre-trained on general domain corpora, namely BookCorpus and English
Wikipedia, BioBERT is pre-trained using PubMed abstracts and PMC full-text ar-
ticles. In their publication, the authors demonstrated that, when pre-trained on
biomedical corpora, BioBERT significantly outperforms BERT in several biomed-
ical text mining tasks. On a similar note, Alsentzer et al. [2] released Clinical-
BERT, which is a pre-trained model on more than 2 millions clinical notes from
the MIMIC-III v1.4 database, improving not only general domain results but also
BioBERT results on 2 established clinical NER tasks and one medical NLI task.
The motivation behind the need of specialised clinical BERT models is that clinical
narratives, such as physician notes, have di↵erent linguistic characteristics from
other more general and non-clinical biomedical narratives.

2.3 Word Embeddings

One-hot Representation The idea behind word embeddings is to capture as much
of the semantical, morphological and contextual information as possible from a
word. Also known as Count Vectorization, one-hot word embeddings is a rather
trivial and naive way to represent a word as a vector. It consists of assigning 1 to
only one element that corresponds to the word, and 0 to all the other elements.
The generally high vocabulary size, which represents the vector dimensionality, is
responsible for the sparse representation of the words. Moreover, one-hot embed-
dings are not able to catch any relationship between words as well as context, and
therefore it is generally considered a naive embeddings representation.

TF-IDF Representation Term frequency-inverse document frequency, abbreviated
tf-idf, is a statistical measure often used in NLP. The main idea behind tf-idf is to
measure the relevance of a specific term to a document in an ensemble of corpora.
This measure of relevance proportionally increases to the frequency of that word in
the document, however, this e↵ect is counterbalanced by the number of documents
containing that word. In a large ensemble of documents, words such as an, on, at, is,
identified as stop-words, occur very often, however they don’t carry a lot of useful
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information. Because of their high occurrence in many documents, the vectors
of these stop-words are not-so-sparse and some trivial encoding representation,
such as one-hot word embeddings, consider these words as terms carrying a lot of
information. In various information retrieval and text mining applications, tf-idf is
used as stop-words filtering.

Tf-idf is calculated in the following way:

tfidf(term, document) = tf(term, document) · idf(term)

The first part of the multiplication referring to “term frequency” is calculated as
the ratio between the occurrences of that term in the document and the total
number of words in that document.

tf(term, document) =
niPV

k=1 nk

The second part of the multiplication referring to “inverse document frequency”
is calculated as the logarithmic ratio between the total number of documents and
the number of documents in which the term appears.

idf(term) = log
N

nt

This way by combining these two quantities a measure of how relevant a term is
to a particular document can be used as a vector representation of a word.

GloVe Representation GloVe is a word embedding method based on unsupervised
learning. To obtain a vector representation of words, the model, implemented by
Pennington et al. [36], is trained on aggregated global word-word co-occurrence
statistics from a given corpus. Specifically, the entire given corpus is parsed on
a single instance and used to populate the matrix with statistics that represent
how frequently words co-occur with one another. The GloVe model architecture
is a log-bilinear model with a weighted least-squares objective. The choice of this
implementation is based on the simple observation that ratios of word-word co-
occurrence probabilities have the potential for encoding some form of meaning.
To explain this concept, we can consider the following example in Figure 4. The
probabilities of solid given ice and water given ice are higher than the probabilities
of gas given ice and fashion given ice, meaning that the word ice co-occurs more
frequently with the words solid and water and more infrequently with gas and
fashion, as expected. The same idea is followed for the probability of word k given
the word steam, however, the ratio of these probabilities behaves di↵erently. High
values of this ratio, typically much larger than 1, indicate a high correlation with
properties specific to ice, while small values, typically much lower than 1, indicate
a low correlation with properties specific of steam. Values of this ratio very close to
1 indicate a low correlation of the word with both target words in the ratio. In this
way, the ratio of probabilities is able to encode some sort of meaning associated
with the target words.
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Fig. 4: Example of co-occurrence probabilities for target words ice and steam

with other words from the corpus [36].

Word2Vec Representation Word2Vec is a method developed by Thomas Mikolov
in 2013 for computing word embeddings. It consists of a two-layer neural net-
works and it is trained to reconstruct linguistic contexts of words. The strength of
Word2Vec is its ability to both transform input text into low-dimensional vector
representations and to express the semantic similarity of words or sentences. This
way, the model encodes two important qualities. First, it is able to understand
semantic similarity relations and, second, it understands linear translation relations
in the vector space. For instance, if we consider the vector representation of the
word “king”, subtract the vector representation of the word “man” and add the
vector representation of the word “woman”, we will see that the resulting vector is
a lot closer to the vector of the word “queen” than to any other.
To compute word embeddings, Word2Vec uses two di↵erent architectures, namely
and Skip-gram Continuous Bag-Of-Words. Continuous Bag-Of-Words (CBOW)
training object is to use context words in a sentence to predict target words. CBOW
performs better with smaller data sets because it considers a whole context as one
instance by smoothing over a lot of the distributional information. Skip-gram ar-
chitecture, instead, is the exact opposite of CBOW. It uses target words to predict
surrounding context words. Statistically, Skip-gram performs better with larger data
sets because it considers each target-context pair as a new instance. For example,
training a skip-gram model to learn word embeddings from a 100 billion words
corpus can take up to one day with an optimised single-machine implementation.

SparkNLP Library SparkNLP is an open-source NLP library implemented by
John Snow Labs and built on top of Apache Spark and Apache Spark ML. This
library has been awarded for its ability to deliver a unified, scalable and high-
accuracy solution for real production use. It’s important to notice that, generally,
an NLP pipeline consists of a sub-task of a bigger data processing pipeline. For
instance, considering named entity recognition tasks, they involve first transforming
the training data, then apply NLP annotators, train the model, evaluating the
results either with cross-validation or by splitting train and test sets and finally
hyperparameter estimation. This is what sparkNLP provides, an end-to-end solution
from text pre-processing to the final prediction to help the researcher in all steps
of solving a data science problem with NLP. Several common NLP tasks such as
stemming, tokenization, sentiment analysis, POS tagging and NER are covered by
this library.
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For this thesis, the focus goes on the annotators available in this library. SparkNLP
o↵ers two kinds of annotators [22]: (1) Annotator Approaches, which represent
Spark ML Estimators and require a training stage that is performed by means
of the fit() function on the input data; (2) Annotator Models, which are spark
models or Transformers, meaning they have a transform() function which take
a dataset and add to it a column with the result of the annotation. To train
the NER model in SparkNLP, therefore, the Annotator Approach was used and,
specifically, the NerDLApproach framework. This framework is a Char – BiLSTM
– CNN architecture, introduced by Chiu and Nichols [9], which achieved state-of-
the-art performance in both the CoNLL-2003 shared task and OntoNotes 5.0 data
set, exceeding systems that employ more complex feature engineering. Their main
contribution consisted of presenting a hybrid model based on bi-directional LSTMs
and CNNs that is able to learn both word- and character-level features, eliminating
the need for most feature engineering. An overview of this hybrid architecture is
represented in Figure 5. The CNN component is used to produce the character-
level features. Specifically, for each word, a new feature vector is extracted from
character-level feature vectors (i.e. character embedding) by means of a convolution
and a max pooling layer. These new feature vectors are then concatenated and fed
first into a forward LSTM network and then into a backward LSTM network. A
linear layer and a log-softmax layer are then applied to decode into log-probabilities
the output of each network for each tag category. The final output is produced by
simply adding together these two vectors.

2.4 Related Work

In many clinical and public health informatics applications, it is extremely impor-
tant to extract entities from clinical notes or reports and find the relationships
between them in order to gain information and knowledge. NLP has shown to
be a huge driver of success in areas of clinical research such as drug repositioning
[13], protein research [11] or information extraction from Electronic Health Records
(EHRs), among many. Consequently, bioinformatics has seen an increasing number
of applications in text mining and information retrieval. A considerable amount of
research studies have been conducted in named entity recognition as well as rela-
tion extraction in the last years and these studies suggest di↵erent methods. Here,
a deep explanation of recent achievements in clinical NER, relation extraction and
context understanding models is given.

Clinical Named Entity Recognition As previously introduced, Named Entity
Recognition (NER) is a text mining and information extraction task that parses un-
structured text attempting to recognise and classify named entities into predefined
categories. Compared with document or sentence level classification tasks, NER
normally makes classifications on word or even character level, giving each word or
character a category label that denotes whether it is part of a target named en-
tity or not. In the biomedical text mining area, the application of NER is a widely
discussed and studied topic, which aims to distinguish entities such as diseases,
proteins or genes from text in each clinical document. These detected named en-
tities will then be available for further statistic analysis or relation extraction task
to o↵er evidence, resources or just to give inspiration for biomedical research.
After the first results of Biomedical NER, the NLP community started to rapidly
create high-quality and structured data sets. Many of these labelled data sets have
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Fig. 5: Unfolded representation of the Char – BiLSTM – CNN architecture

for named entity recognition. The CNN component extracts a fixed length

feature vector from character-level features. For each word, these vectors are

concatenated and fed to the BiLSTM network and then to the output layers

[9].

been organised as part of several NER shared tasks. In 2014, the GermEval NER
Shared Task made licensed German data with NER annotations available to the
public, aiming for a remarkable advancement in the German NER task and for a
deeper representation of named entities. Recently, in 2019 the Balto-Slavic Natural
Language Processing (BSNLP) Shared Task at ACL 2019 [37] centred around
multilingual named entity recognition (NER) in Slavic languages and was composed
by several subtasks such as recognition, lemmatization, and entity linking.
Research in the clinical field often requires detailed patients information docu-
mented in clinical narratives. Clinical NER [46], specifically, is a fundamental NLP
task that thrives to recognise and extract specific entities of interest such as dis-
eases, medications and symptoms from medical records. Researchers have devel-
oped and applied computational models in general clinical NLP systems where in
most of the cases, such as for MedLEE [15], KnowledgeMap [12] and MetaMap
[3], their method is a rule-based one relying on existing medical vocabularies for
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NER. The clinical NLP community has also organised multiple challenges to ex-
amine the performances of state-of-the-art methods. Most of the top-performed
systems are primarily based on supervised machine learning models with manually
defined features. In order to further improve accuracy, several strategies have been
explored by researchers within the current infrastructure of conventional machine
learning models, such as ensemble models, which stack multiple machine learning
methods, unsupervised features generated using clustering algorithms (i.e., Brown
clustering [6]), hybrid systems, and domain adaptation to leverage labelled corpora
from other domains.
Many machine learning models have been applied in clinical research, including
Structured Support Vector Machines (SSVMs) [41], Maximum Entropy (ME) and
Conditional Random Fields (CRFs) [23]. Many top-ranked NER systems applied
the CRFs model, which is the most popular solution among conventional ma-
chine learning algorithms. A typical state-of-the-art clinical NER system usually
utilises features from di↵erent linguistic levels, including orthographic information,
syntactic information (e.g. CHUNK tags, Part-Of-Speech tags), word n-grams,
and semantic information (e.g., the UMLS concept unique identifier). Some hy-
brid models further leverage the concepts and semantic types from the existing
clinical NLP systems namely MetaMap, cTAKES [38]. To further improve the per-
formance, researchers have also utilised ensemble methods to combine di↵erent
machine learning models, such as re-ranking. More recently, researchers have also
started to examine the unsupervised features derived from large volumes of un-
labelled corpora, such as the word clusters generated using Brown clustering [6]
and random indexing. Thanks to the in-depth and continuous hard work on clinical
NLP, performances of clinical NER have improved considerably, while at the same
time targeting some obstacles that would impede further improvement, such as:

• Fragile feature representation. In many cases, feature representation, such
as bag-of-word, for clinical NER is fragile due to sparsity problem. Many times,
entities that have related concepts are not recognised as similar using bag-of-
words feature representation, therefore, there is a need for more robust feature
representations [44].

• Time-consuming and handcrafted feature engineering. Conventionally, in
machine learning solutions, the extraction of features heavily depends on hu-
mans while the machine can only handle the parameter optimisation supervised
by the gold-standard annotations. Human feature engineering can bring several
issues, such as incomplete feature or repeated in many complex features and
feature combinations. For these reasons, automatic feature learning algorithms
are increasing in popularity and need as they would release the researcher from
the time-consuming feature engineering.

• Lack of long-term dependencies. It has been observed in many experiments
[10] that the system prediction errors have reported false negatives caused by
the lack of long-term dependencies. It goes without saying that the clinical
NER system needs a better architecture to capture long-term dependencies
from clinical texts.
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In the last decade, increasing e↵orts have been put to explore a new emerging tech-
nology, deep learning, to improve the current clinical NLP systems. Deep learning
is a sub-domain of machine learning that uses deep architectures to learn high-level
feature representations. Currently, deep neural networks are commonly used as the
unique deep architecture for high-level feature learning. Deep learning models in-
troduced word embedding as a critical technique to train densely-valued vector
representation of words to replace the fragile bag-of-word representation. Each
word in the vocabulary is represented by a row of the matrix while each column is
associated with a latent feature. The input word sequence can be transformed into
a vector by concatenating the corresponding word vectors from the embedding
matrix. By automatically learning high-level features automatically, deep neural
network architectures can release researchers from time-consuming feature engi-
neering.

Fig. 6: Example of Named Entity Recognition on text data.

Figure 6 shows an example of how Named Entity Recognition works on general text
data. It locates entities that can variate from a person to a more domain-specific
term in an unstructured or semi-structured text. For example, in the sentence ”In
fact, the Chinese markets has the three most influential names of the retail and tech
space [...] of 45% over 2018-2024.”, four di↵erent entities have been recognised:
Chinese - Nationality, three - Cardinal number, 45% - Percentage, 2018-2024 -
Date. It is easily understandable, from this example, the power that NER has in
enabling machines to understand context in text data.

Temporal Relation Extraction Information Extraction (IE) represents one of
the major achievements in NLP. General relation extraction, particularly, aims to
discover and extract relationships between events that are present in plain text. In
the clinical domain, specifically, relation extraction has drawn a remarkable amount
of attention from NLP researcher given the important role that plays in applications
such as creating patient’s clinical timeline, predicting disease given the history of
the patient, among many. In their work, Alimova et al. [1] proposed a machine
learning model with a novel set of features, namely BioSentVec embeddings and
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knowledge-based features, with the aim to identify, in a medical record, the re-
lationship between drug entities and their attributes. These features were tested
systematically on the impact with standard distance and word-based features on
both the MADE 2018 and the i2b2 2018 benchmark data sets, resulting in improv-
ing the F1-score by 3.5% on the MADE corpus.

Magge et al. [31] took it one step further and proposed a natural language process-
ing pipeline consisting of an NER model to identify and extract 9 medical entities
from clinical narratives and a random forests classifier to classify 7 types of relations
between entities. Their method focused on using bidirectional LSTM units coupled
with a CRF classifier at the output layer. As explained by the authors, this model
has achieved interesting results in a variety of sequence tagging and chunking tasks.
The most important part of their work regarding relation extraction can be divided
into two parts. Firstly, they use a binary classifier to filter out entity pairs based
on their types such that only entity pairs with possible relations between them are
selected. They then use, as inputs to a random forests classifier, features extracted
from the two entities and their contexts to identify the type of relationship between
them.

Temporal Relation Extraction (TRE) is a task in Information Extraction that thrives
to identify and extract tokens or chunks corresponding to temporal intervals to
determine the temporal relations between them. The entities extracted consist of
temporal expressions such as datetime events, eventualities, or auxiliary signals that
support the interpretation of an entity or relation. The relations extracted consist of
temporal links (TLinks) which describes the order of events and times. As Galvan
et al. [16] explain, TRE has proven to be one of the most challenging tasks in
NLP. Nowadays, it covers an important active area of research where the ultimate
goal is to be able to create a patient’s clinical timeline and represent its detailed
clinical history. Thanks to the extensive adoption of structured Electronic Health
Records (EHRs) there has been a significant increase of research studies in the
NLP community, raising hopes that clinical narratives can be used to improve and
sometimes solve information extraction challenges in real-world settings. On the
same line, recently several corpora, from clinical narratives to more domain-general
text, have been annotated as part of shared tasks with the aim of implementing
systems able to accurately build timelines based on the events described in the text.
Several information extraction tasks can benefit from the implementation of these
narrative timelines, namely question answering [48], text summarization, clinical
outcomes prediction [28], and the identification of temporal patterns [51], among
many.

Research in the area of temporal relation extraction has been led by several shared
challenges such as TempEval shared tasks [43] but in recent years, the target
domain has been shifted to the clinical domain [5]. Results from clinical TempEval
shared challenges, however, showed that temporal relation extraction remains one
of the most di�cult tasks. Taking as an example the best-ranked system in 2016
Clinical TempEval, UTHealth [24], using an end-to-end system based on linear and
structural Hidden Markov Model, showed a significant gap of 0.25 when compared
to human performance even with gold-standard entity annotations.

Even though the reasons for the discrepancy of the results between named entity
recognition and temporal relation predictions are still not fully discovered, it is
clear that the complexity of temporal representation in natural language processing
represents the main cause of the low performance on temporal relation tasks. As
Galvan et al. [16] investigated, “Tense and aspect are the two grammatical means
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to express the notion of time in English but little has been discussed about the
latter on clinical text.”.
Recent work in temporal relation extraction by Lin et al. [29] described a method
that can automatically generate more high-quality training occurrences. Their ap-
proach is to semantically expand gold medical events based on the Unified Medical
Language System (UMLS). For instance, if we consider the following sentence
“Last week the patient su↵ered from severe back pain”, with a relation between
severe back pain and last week, this method is able to automatically create ad-
ditional training occurrences by expanding the relation to the words in the event.
Therefore, the relation between last week and severe back pain will automatically
generate three additional relations of the same type where the second arguments are
pain and back pain. The authors demonstrate several advantages of this method,
such as the ability to generalise between-argument signals in a more e↵ective way
as well as having a robust mechanism of data augmentation. As a consequence,
their method reached state-of-the-art results, achieving a two points improvement
over the best system for the Clinical TempEval 2016 challenge.

Fig. 7: Example of Relation Extraction from TACRED data set.

In Figure 7 an example of relation extraction is shown from the TACRED data set.
TACRED is a large data set specifically for relation extraction tasks that consists
of 106,264 examples built from the corpus used in the yearly TAC KBP challenges.
As the example depicts, the data set provides annotations such as object mentions,
the spans of the subject, the types of the mentions, the relationship held between
the entities as well as no relation label.

Context understanding models One of the main goals of NLP is trying to
find the meaning of a sentence or text. The process of understanding the context
of a corpus by answering to questions like Who is the subject? What is the subject
talking about? How do they feel? And why? is known as Context Analysis. In
NLP, context analysis involves breaking down unstructured text data to help the
machine understand the context or, more specifically, to extract information such
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as n-grams, noun phrases, themes, and facets present within sentences. Extracting
knowledge around the sentiment of a sentence doesn’t fully describe the context of
a sentence and that is where theme extraction and context determination come into
play. Recent years have seen a huge hype around language representation models.

Devlin et al. [14] proposed a conceptually simple but empirically powerful lan-
guage representation model called BERT: Bidirectional Encoder Representations
from Transformers. BERT is a fine-tuning based approach which is designed to pre-
train, on unlabelled text, deep bidirectional representations by jointly conditioning
on both left and right context in all layers. The significant results of BERT, such as
the 7.7 points absolute improvement on the GLUE score or the 5.1 points absolute
improvement on the SQuAD v2.0 question answering, served as a breakthrough in
the context understanding domain. In later years di↵erent versions of pre-trained
BERT models started to become publicly available. Alsentzer et al. [2] addressed
the need to release pre-trained BERT models for clinical text data, particularly for
discharge summaries and for generic clinical text. In their work, releasing Clini-
calBERT, they demonstrated that with these domain-specific models the perfor-
mance in 2 clinical NER shared tasks, namely i2b2 2010 and i2b2 2012 shared task,
improved significantly. Similarly, Lee et al. [26] released BioBERT, a pre-trained
biomedical language representation model based on BERT but specifically meant
for biomedical text mining. BioBERT proved to outperform state-of-the-art models
on three representative biomedical text mining tasks, namely biomedical relation
extraction, biomedical NER and biomedical question answering.

3 Methods

The methods section is divided into three subsections: data sets, approach and
system setup, each with their own subsections. The data sets subsection describes
what data sets have been used in the experiments together with an overview of
the shared challenges related to them. In the approach subsection, the workflow
is explained in detail. The main components of the NER and temporal relation
extraction systems are illustrated in Figure 8. Firstly, the focus is on one of the most
important tasks in Natural Language Processing, namely pre-processing, where all
the processes of how the data is cleaned and formatted are discussed. Secondly,
the NER models training for entities and temporal events are accurately described.
Lastly, the architecture of the temporal relation extraction model is exhaustively
covered for all the versions used. Moreover, the parameters of the models, and
their values for the experiments, used to train the models are explained in detail.
Following the explanation of the parameters as well as an overview of the evaluation
methods is the system setup subsection where the cluster implementation to run
the experiments is described together with some critical thoughts about model
deployment and ML-Ops. Additionally, the hardware used to run the experiments as
well as the software used for the implementations of the techniques are mentioned.
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Fig. 8: High-level view of the represented structure.

3.1 Data sets

Mimic-III. Mimic-iii is a large, relational database maintained by PhysioNet
[17] that contains de-identified health data from more than 40 thousand patients
admitted to the care units of the Beth Israel Deaconess Medical Center between
2001 and 2012 [17]. This database encloses 26 tables among which we focus on
the NOTEEVENTS table, with 2,083,180 records, that incorporates clinical notes
of patients (i.e. Echo reports, ECG reports, radiology reports).

i2b2 2010. This data set is the result of the 2010 i2b2/VA Challenge [42]. This
shared task challenge encloses three sub-tasks that thrive to:

1. Extract medical annotations, namely problem, treatment and test entities.

2. Classify assertions made on medical problems.

3. Find relations between the extracted medical annotations.

The data available for this shared task consists of discharge summaries from two
hospitals, namely Partners HealthCare and Beth Israel Deaconess Medical Center
(MIMIC-II Database), and discharge summaries and progress notes from University
of Pittsburgh Medical Center. To ensure the anonymity and the privacy of the pa-
tients, a de-identification algorithm, that removes all specific individual identifiers,
has been run on all records, while the annotation task has been manually carried
out by experts. In this thesis, the main focus is on the first sub-task, namely the
extraction of medical problem, test, and treatment annotations.
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Data sets Notes Entities Entity types

i2b2 2010
Training set 349 27,837

Problem, Treatment, Test
Test set 477 45,009

i2b2 2012
Training set 190 16,468

Events, TLINKs
Test set 120 13,594

MIMIC-III N/A 2,083,180 N/A N/A

Table 1: Descriptive statistics on the i2b2 2010, i2b2 2012 and MIMIC-III data

sets.

i2b2 2012. Similarly to i2b2 2010, this data set is the result of the i2b2 2012
Challenge [39]. This data set consists of 310 de-identified discharge summaries
resulting in over 178,000 tokens, with three main types of annotations, namely
clinical events (EVENTs), temporal relations (TLINKs) and temporal expression
(TIMEX3s). Moreover, it contains on average 87 events, 176 temporal relations
and 12 temporal expressions per discharge summary. In this corpus, eight types of
TLINKs between events and temporal expressions were annotated: DURING, AFTER,
BEGUN BY, SIMULTANEOUS, OVERLAP, BEFORE, ENDED BY and BEFORE OVERLAP.
A sample text of a patient’s report with the annotated events and expressions is
represented in Figure 9. For the annotation of this data set, few considerations have
been taken, as explained by Sun et al. [39]. The annotation task for the 2012 i2b2
data set has been carried out by eight annotators with a medical background. Each
clinical narrative has firstly been annotated by two annotators and secondly, it has
been adjudicated by a third annotator. This agreement, called the inter-annotator
agreement, has been used to define the quality of the annotation, therefore a low
level of the agreement would mean that not all the annotators agreed with the
annotation type. The analysis performed by Sun et al. [39] demonstrated that the
inter-agreement on some temporal links between events and temporal expression
was low. In response to this observation, as suggested by authors of the paper, the
eight temporal links types were merged in the following way: AFTER and BEGUN BY

were merged as AFTER; DURING, OVERLAP, and SIMULTANEOUS were merged as
OVERLAP and BEFORE, BEFORE OVERLAP, and ENDED BY were merged as BEFORE.
Table 2 presents the details of the merged data set.

Training set Test set

Temporal expressions 2,366 1,820

Events 16,468 13,594

Temporal relations 33,635 27,736

BEFORE 17,513 15,113

OVERLAP 12,823 9,894

AFTER 3,207 2,729

Unlabelled 92 0

Table 2: Summary of the merged i2b2 2012 temporal relation corpus.
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Fig. 9: Sample text from the i2b2 2012 data set

3.2 Approach

This section represents one of the most important steps for the implementation of
this thesis project. First, the raw data is pre-processed. This step is performed both
for the NER and TRE tasks. During this step, the clinical notes are transformed
into meaningful training data following the CoNLL file format to be fed to the NER
model and the TRE model. Second, the cleaned and structured training data set
is used to train the NER model in SparkNLP to extract clinical entities, namely
Problem, Treatment and Test, as well as date entities. Lastly, the clinical notes
are used to train a temporal relation extraction model which would be able to link
temporal events to the clinical entities extracted at the previous stage.

Pre-processing In order to train a Named Entity Recognition DL annotator on
SparkNLP, it is fundamental to transform the raw clinical notes into the CoNLL
file format. CoNLL refers to Conference on Natural Language Learning which is
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a SIGNLL’s yearly shared task where di↵erent challenges are tackled. In NLP, the
CoNLL file format is a way of representing corpus with one word per line and with
each word containing multiple tab-separated columns with information about the
word, such as its POS-tag, Chunk-tag, NER-tag, Lemmatized form, among many.
There are many di↵erent versions of CoNLL file formats, however, for this thesis
project, the CoNLL-2003 file format has been used to transform the data set before
proceeding with training the model. The CoNLL-2003 file format contains four tab-
separated columns, as previously explained. Each word is placed on a single line
and sentences are separated by an empty line. The item on the first tab for each
line is a single word, followed by a part-of-speech (POS) tag on the second tab, a
syntactic chunk tag on the third tab, which was not used in this project, and the
named entity (NER) tag on the last tab. Moreover, the NER tags follow the IOB2
tagging format, otherwise known as Inside-Outside-Beginning format. The B- prefix
of the NER tag refers to the beginning of a chunk, the I- prefix refers to an entity
that is inside a chunk, while the O tag refers to a token belonging to no chunk.
This whole process of formatting the training data set, following the CoNLL style,
was implemented by a SparkNLP pipeline that first extracts sentences from text
using SentenceDetector annotator, identified tokens by means of a tokenizer and
normalized them following a regex pattern that would remove all the non-relevant
characters from text such as [@\’^\&$\#~_+]. The pre-trained PerceptronModel
pos anc is used in the SparkNLP pipeline to annotate the Part-of-speech (POS) tag
for every token. The last column of our CoNLL file consists of the NER-tags. The
i2b2 2010 data set already provides the annotation file in which the three entities
of interest, namely Problem, Treatment and Test, are annotated. Therefore, to
populate the last column of the CoNLL file, the NER-tags from the annotation file
have been merged with the single-line tokens in the CoNLL file. An illustration of
this process is shown in Figure 10, where the clinical note on the left is processed
to create the CoNLL file on the right with the above-mentioned annotations as
columns. This way the raw clinical narratives are pre-processed and transformed
into the so-called CoNLL training file, which is used to train the NER DL model
at the next stage.
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Fig. 10: Pre-processing of the annotated i2b2 2010 data set (left) into the

CoNLL training file format (right).

For the Temporal Relation Extraction task, however, the pre-processing step on the
i2b2 2012 data set was rather straightforward. Firstly, the clinical narrative files, for
which a sample is given in Figure 9, are parsed and the temporal links (TLINKS)
together with events and temporal expression tags are retrieved. Secondly, the
output file, that will be used to train the TRE model, is generated and consists
of four tab-separated components: first, an ID that identifies the entry, followed
by the target tags such as entities for which a relationship exists. The third tab
consists of the original text of the clinical note, while the fourth tab defines the
type of relation between the target tags, categorised as the label.

Named Entity Recognition The next stage of the NLP pipeline after pre-
processing consists of training the Named Entity Recognition model. Before starting
to train the model it is important to identify which word embeddings will be used
during the training process. Several pre-trained word embeddings were considered
in these experiments. Initially, GloVe embeddings were used. GloVe [36], Global
Vectors for Word Representation, is an unsupervised learning algorithm for obtain-
ing vector representations for words. For this specific task, we considered GloVe
embeddings with 100 dimensions pre-trained on 6 billion tokens and 400 thousand
vocabularies. Further research, however, led to the application of BioWordVec [47]
[7], pre-trained embeddings for biomedical words. BioWordVec is a 200-dimensional
word vector computed with fastText and trained on PubMed and MIMIC-III clinical
notes with a window size of 20, 0.05 learning rate, and a sampling threshold of
1e-4. Moreover, the pre-trained vector, publicly available, follows the word2vec bin
format.
Following the selection of the word embeddings, it is time to train the NerDLAp-
proach model in SparkNLP as explained in the SparkNLP Library section. While
training, several functions are selected. Firstly, the input and output columns are
provided, where the training data, word embeddings and the NER predictions are
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respectively passed to the model. The label column provided refers to the ground
truth for the supervised task, namely TEST, PROBLEM and TREATMENT labels. For
training, the number of epochs considered in the experiments varies between 20
and 10, while the learning rate values range between 0.001 and 0.005. Lastly, the
batch size examined for di↵erent configurations are 8 and 64. These values chosen
for the experiments are based on previous heuristics and projects [21], where similar
NER tasks have been addressed. Finally, a validation split parameter is set to 0.2
and 0.25, defining the proportion of training data set to be validated against the
model on each epoch, while a path to the test data set is added for performance
evaluation on unseen data. Moreover, after training the model and evaluating it on
the validation set, the best model configuration was chosen to train the model on
the entire training data, with validation split parameter set to 0. The performance
evaluations, alongside the multiple implementations and function parameters con-
sidered, are furtherly explained in the Results section.
For the extraction of temporal expressions, such as dates, times of the day or
durations, a date extraction pipeline was implemented in SparkNLP. After the
tokenization of the document, each token was represented as a 100-dimensional
word vector using GloVe pre-trained word embeddings model. The annotation of
temporal expressions was then accomplished by means of onto 100 pre-trained
NER model, available in SparkNLP. Onto 100 is an NER model, trained with
GloVe 100-dimensional word embeddings on the OntoNotes text corpus and it
annotates text to find features such as organisations, name of people, places and
dates, among many.

Temporal Relation Extraction For the Temporal Relation Extraction task we
applied di↵erent versions of BERT + 1-d CNN classifier which was first introduced
by Chen et al. [8]. In particular, from their work, we tested the architecture using
di↵erent versions of BERT model, namely BioBERT and ClinicalBERT pre-trained
models. In this work, in order to increase the performance of the 1d-CNN in clinical
temporal relation extraction tasks, we apply the 1d-CNN classifier firstly presented
by Kim [20] and improved by Chen et al. [8] to fine-tune the pre-trained versions
of BERT. The core components of the 1d-CNN architecture are explained in four
steps as follows:

i Firstly, the input layer converts variable-length medical relation documents into
fixed-length vectors.

ii The convolution layer then uses a 1-d convolution to extract semantic features
from the input vectors by means of multiple convolutional kernels.

iii A pooling layer, in which the most useful semantic features are selected by a
max-overtime pooling operation;

iv Finally, the output layer uses a fully connected softmax classifier to concatenate
and classify multiple features.

When training, back-propagation of the training error is used to fine-tune BERT’s
parameters, which are firstly restored from the pre-trained model.
Moreover, the pre-trained word embeddings used in 1d-CNN are PubMed and GloVe
embeddings. When training the 1d-CNN, the input of the model is represented by
a concatenation of the two entities of a relationship together with the text where
they both occurred and the target TLINK type. As applied by the authors of the
original paper [8], the activation function used consists of rectified linear units,
filter windows of lengths 3, 4 and 5 with 100 feature maps each and a dropout rate
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of 0.5. The fine-tuning process of 1d-CNN, using the pre-trained BioBERT model
and ClinicalBERT model, is carried out by concatenating two entities in a relation
as the first input sentence and the text where the two entities both occurred as
the second input sentence. The BERT model used is an uncased L-12 H-768 A-12
while the BioBERT and ClinicalBERT models are ’cased L-12 H-768 A-12’, with
12 layers, 768 hidden nodes, 12 heads and 110M parameters.

Fig. 11: TRE model’s architecture based on Chen et al. [8] model framework to

which di↵erent versions of BERT model have been applied and examined.

Evaluation Method The performance evaluation of the above-mentioned ap-
proaches is carried out using standard measures of Precision, Recall and F1-score.
Precision is a metric that calculates the number of positive class predictions among
the actual positive class. If the focus is on minimising the number of false positives
than the precision metric is more appropriate.

Precision =
True positives

True positives+ False positives

Recall is a metric that quantifies the proportion of actual positives that were cor-
rectly identified in the data set. If the focus is on minimising the number of false
negatives than the recall metric is more appropriate.

Recall =
True positives

True positives+ False negatives
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F1-score is a metric that balances the concerns of both precision and recall and it
is defined as the harmonic mean of the models precision and recall. Alone, neither
precision nor recall can give an overall performance of the model. An increase in
precision would mean a decrease in recall, or alternately, a decrease in precision
would mean an increase in recall. F1-score provides a trade-o↵ between these two
metrics and is able to express the overall performance of the model.

F1-score =
2 ·Recall · Precision

Recall + Precision

These metrics will be used to evaluate the performances of both NER and temporal
relation extraction tasks. For the experiments, the training process was performed
on the training set, while the evaluations of the performances of the models were
done using the held-out test set for both tasks. In this thesis, the process of auto-
matic hyperparameter optimisation was not included as part of the implementation.
The choice of di↵erent hyperparameter values, however, was mostly based on pre-
vious heuristics and practical work [21], where similar task were addressed.

3.3 System Setup

Distributed system setup Every day larger volumes of data are collected and
processed and this gives rise to lack of computation power in processing, reading
and manipulation of data. In this section, this issue is tackled while introducing
several best practices in data privacy, distributed system development lifecycle and
the use of Cloud Providers for this matter.
With the recent improvements in cluster-computing frameworks like Spark and
Dask, the training, pre-processing and deployment purposes can be distributed
more dynamically. In this thesis, the advantage of the Spark General Purpose Clus-
ter framework was used to deploy on 5 nodes on a Virtual Private Network. Using
such toolset, the computation was allowed to perform on more than 125 units of
CPU and more than 150 GB of memory. Alongside the computation power, security,
network connectivity and deployment of the trained model were carefully analysed.
As expected, general-purpose frameworks do not provide such infrastructure, there-
fore Google Cloud Platform was used to host the data sets and create automated
Machine learning pipelines. To make the most out of GCP, an isolated single Virtual
Machine (VM) was created and the data sets migrated to Google Big Query. As one
of the biggest advantages of cloud platforms, a Virtual Private Cloud network was
enabled to increase security and isolation of the processes. This allowed accessing
BigQuery data sets from the VM, as multiple services like Jupyterlab were hosted
on it, to manipulate the data and have visual access to service. Although GCP itself
provides several High-Performance service and cluster, using a self-managed Spark
cluster seemed to be a better choice but connecting this to the self-contained VPC
network was a challenge in which it was feasible to use SSH port-forwarding and
Nginx to establish connectivity between these two networks. With this configura-
tion, it was possible to take full advantage of a self-hosted Spark cluster and GCP
services in a self-contained ecosystem which was fully privacy data compliant. In
this journey for making the best out of distributed systems and dynamic toolsets
like GCP, several questions and technical di�culties were raised for deployment
and hosting of trained ML models. Developing ML applications in research labs or
Institutes are rather straightforward as they are not designed for deployment in the
industry.
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Deployment and ML-Ops Every day more and more complex and computa-
tionally expensive models are being demystified and commoditised for public use.
This opens the challenge of easy access to these models for consumer devices like
mobile phones and IoT devices. In the past, organisations transpired Data Science
source codes to more deployable languages like Java or C++. With the increase in
complexity and size of the application, this seems impossible today. This section
presents the best practices for taking an ML application from the development
environment to public production with few clear steps. To remove run-time and
project-level dependencies, containerising the source code with tools like Docker
which can help remove barriers of platform and software incompatibility. One of
the concerns regarding deployment for public use is scalability which can be fully
managed by Cloud providers like AWS and GCP. These cloud providers can deploy
and fully maintain the containers and publish an endpoint for consumers and de-
velopers to take advantage of. Creating an automated pipeline can enable the user
to increase the number of deployments and a fasted route to the production stage.
Alongside self-managed service from cloud providers, other tools like Kubernetes
and Openfaas can be used for container orchestration and containers as a function
service.

Hardware and Software The proposed NER and Temporal Relation Extraction
were implemented in Python 3.7.1 64-bit using JupyterLab framework. The Python
programming language was chosen due to the wide variety of packages available
and support for Apache Spark and SparkNLP that allowed easy computations. The
SparkNLP library [22] was a huge asset to pre-process the clinical notes and to
perform which were used in the experiments of this thesis. Appendix A contains
the packages used in these experiments as well as their (advised) versions.
The experiments performed on the NER task were executed on the Leiden Univer-
sity Spark Cluster fs.dslc.liacs.nl, with the setup explained in the previous
distributed system setup section. The experiments performed on the TRE task,
however, were implemented on using the Mithril server of the Data Science Lab at
LIACS. This computing machine has 1 TB of RAM and 64 Intel Xeon E5-4667 v3
cores and it is specialised in running CPU-heavy programs.

4 Results

The results section contains the metric outcomes as well as the evaluation of the
performances of the experiments performed on both NER and TRE tasks.

4.1 Named Entity Recognition

For this task, several parameters as well as word embeddings have been used in the
experiments. Table 3 summarises the results of this task per configuration. Each one
refers to the di↵erent set of functions used to train the NerDLApproach model, and
their functionalities are extensively explained in the Approach section. Configuration
A considers the maximum number of epochs set to 20, a learning rate set to 0.001, a
batch size of 8. Configuration B, instead, considers the maximum number of epochs
set to 10, a learning rate set to 0.001, a batch size of 64. Configuration C, finally,
considers the maximum number of epochs set to 20, a learning rate set to 0.005,
a batch size of 64. These di↵erent configurations are matched with di↵erent word
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embeddings to perform the experiments, namely BioWordVec, GloVe 100d and
Bert base cased embeddings. The results in Table 3 show that the best NER model
is the combination of configuration A and BioWordVec embeddings, achieving an
F1-score of 86.54%. The reason for choosing these specific batch size and learning
rate values is purely heuristic and it’s based on previous NER implementations in
SparkNLP available in [21]. However, for further improvements, a more robust and
e�cient parametrization strategy is needed.

Configuration Embeddings Precision Recall F1-score

A BioWordVec 87.64% 85.48% 86.54%

B BioWordVec 83.34% 84.16% 83.74%

C BioWordVec 84.05% 84.82% 84.43%

A GloVe 100d 80.87% 84.71% 82.75%

C GloVe 100d 80.59% 84.64% 82.56%

B Bert base cased 82.12% 84.52% 83.30%

C Bert base cased 81.93% 84.42% 83.16%

Table 3: Results for di↵erent configurations of the NER model on the i2b2 2010

test set. The result in red represents the lowest performance (F1-score) in this

task given configuration and embeddings, while the result in bold represents

the highest performance.

Considering the F1-score as the base evaluation method, these results show that,
for all the experiments, the BioWordVec embeddings achieve better performances
compared to the other word embeddings. The reason for this disparity can most
certainly be attributed to the nature of these embeddings. BioWordVec is an em-
beddings vector pre-trained on PubMed and MIMIC-III clinical notes and therefore
more suited for a clinical NER model, while GloVe and Bert embeddings are pre-
trained in Gigaword and other large text such as Wikipedia. Moreover, as explained
in the previous sections, context-free models such as GloVe or Word2Vec only gen-
erate a single embedding representation for each token in the vocabulary, so the
token “book” would have the same vector of embeddings in “to book a hotel room”
and “buying a book at the library”. In contextual models, such as BERT, instead,
each word is represented based on the other surrounding words, both on the left
and on the right, in the sentence, making these models deeply bidirectional. Con-
sequently, as expected, the results for NER model using GloVe 100d embeddings
for both configurations proved to be not comparable with the other settings that
achieved higher performances and, therefore, was not considered for the next task
in this thesis.
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Approach Feature Precision Recall F1-score

Char-CNN-BiLSTM BioWordVec Embedding 87.64% 85.48% 86.54%

CharLM-BiLSTM-CRF [50] Word Embedding - - 88.13%

RNN by Wu et al. [46] Word Embedding 85.33% 86.56% 85.94%

Table 4: Performance comparison between di↵erent approaches for the Named Entity

Recognition task using the i2b2 2010 test data set.

As the benchmark for this task, we considered the recent results for clinical NER
from Zhang et al. (2020) [50]. To tackle this task, the authors implemented a
CharLM – BiLSTM – CRF based architecture. Specifically, a bidirectional LSTM
character-level language model is trained to supplement the word representation in
each sentence. At tagging time, the representations from these CharLMs at each
word position are concatenated with a word embedding. The result is then fed
into a standard one-layer Bi-LSTM sequence tagger with a CRF-based decoder.
Through the use of this model, the authors achieved state-of-the-art results with
an F1-score of 88.13% on the 2010 i2b2 test set. Table 4 depicts the comparison
between the benchmark and the results from this work. With an F1-score of 86.54%
the best NER model in this work, implemented using the Char – BiLSTM – CNN
architecture, attained results close to the baseline. Another, less recent, benchmark
considered is the work by Wu et al. (2017) [46]. Their implementation based on
an RNN model using bi-direction LSTM neurons achieved an F1-score of 85.94%
on the test set using only the word and character embedding. It is interesting to
notice that the best NER model in this project managed to achieve similar results
to the benchmarks even without the use of GPU machines, as instead considered
in the RNN implementation [46].

Furthermore, Figure 12 depicts the performance evaluation on the 2010 i2b2 test
set of the best NER model for the three named entities considered: problem, test
and treatment. As one can notice, for all three metrics used, the best NER model
is able to achieve an accuracy of 85% already after 5 epochs on the test set, mean-
ing that even with limited computational power to train it, the model can achieve
relevant performances. Moreover, the F1-score (a) and the Recall (b) visualisations
suggest that, between the three named entities, the problem entity achieves higher
accuracy on the test set with an F1-score and a Recall of 88.37% and 88.54%, re-
spectively. Between the three metrics, however, the treatment entity achieves the
lowest accuracy with an F1-score of 85.79%, a Recall of 86.21% and a Precision of
85.37%. (For further visualisation on other NER models experimented see Appendix
C).
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(a) F1-score on the test set.

(b) Recall on the test set.

(c) Precision on the test set.

Fig. 12: Performances of the best NER model on the 3 named entities:

B-problem, B-test and B-treatment.
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4.2 Temporal Relation Extraction

Tables 5 to 7 depict the performance results on the merged i2b2 2012 data set for
di↵erent implementations of the TRE task, namely BERT/BioBERT/ClinicalBERT
+ 1-d CNN. Table 5, in particular, shows the results using the BERT uncased pre-
trained model. Although the performances for the BEFORE and OVERLAP labels are
quite high with an F1-score of 86.68% and 80.73% respectively, the model performs
poorly when predicting the AFTER label, with an F1-score of only 8.41%. These
limited results suggest the need for a pre-trained language model specifically in the
clinical domain. For this reason, experiments using BioBERT and ClinicalBERT
have been conducted and the results on the merged i2b2 2012 data set are shown
in Table 6 and 7. For both the implementations, the performance increased when
compared to the one using BERT uncased model. Specifically, for the BioBERT
implementation, the F1-score, for the OVERLAP label, increased by 0.94 percentage
point, while for the AFTER label, increased by 25.63 percentage points. Overall, this
model achieved an accuracy of 82.21% which proves the increase in performance
using a language model pre-trained with clinical embeddings compared to models
pre-trained with general English corpora such as English Wikipedia and Brown cor-
pus. The last implementation in Table 7, however, depicts the best performance
achieved for this task. The ClinicalBERT model, which is trained on 2 million clin-
ical notes in the MIMIC-III database, outperforms the previous implementations
in all the target labels considered. Particularly, for the BEFORE and OVERLAP la-
bels it achieves an F1-score of 89.01% and 83.21%, outperforming the BioBERT
implementation by 1.59 and 1.54 percentage points, respectively. For the AFTER

label, the ClinicalBERT configuration reached an F1-score of 36.69%, increasing
the score by 2.65 percentage points compared to BioBERT. More importantly, this
model overall attained an accuracy of 83.19, exceeding the performances of all the
previously considered implementation. Although these results seem to be promising
for the accomplishment of this task, one should notice that the achievements for
the AFTER label are still far below consideration and can’t be taken into account
when building a patient’s timeline. One of the possible reasons for this di↵erence in
performance can be attributed to the data availability for this specific label when
compared to the BEFORE and OVERLAP labels, however, further research must be
conducted in order to investigate the issue.

Precision Recall F1-score Support

BEFORE 87.31% 86.05% 86.68% 15113

OVERLAP 72.28% 91.42% 80.73% 9894

AFTER 64.51% 4.50% 8.41% 2729

Accuracy - - 80.28% 27736

Macro avg 75.38% 60.78% 59.22% 27736

Weighted avg 78.69% 80.26% 77.15% 27736

Table 5: Results using 1-d CNN + BERT uncased model on the merged i2b2

2012 data set.
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Precision Recall F1-score Support

BEFORE 88.03% 86.82% 87.42% 15113

OVERLAP 76.43% 87.69% 81.67% 9894

AFTER 59.41% 23.85% 34.04% 2729

Accuracy - - 82.21% 27736

Macro avg 72.95% 64.38% 68.18% 27736

Weighted avg 79.91% 80.79% 80.24% 27736

Table 6: Results using 1-d CNN + BioBERT cased model on the merged i2b2

2012 data set.

Precision Recall F1-score Support

BEFORE 87.73% 90.32% 89.01% 15113

OVERLAP 78.29% 88.79% 83.21% 9894

AFTER 62.38% 25.99% 36.69% 2729

Accuracy - - 83.19% 27736

Macro avg 76.21% 67.87% 70.32% 27736

Weighted avg 82.27% 82.79% 82.11% 27736

Table 7: Results using 1-d CNN + ClinicalBERT cased model on the merged

i2b2 2012 data set.

As the benchmark for the TRE task, we considered the results from the paper by
Tang et al. [40], whose system for the temporal relation extraction task was ranked
first at the 2012 i2b2 challenge. Table 8 depicts some performances from previous
works [25] and the comparison between the benchmark and the results from this
work. In their work, Tang et al. [40] implemented the temporal relation extraction
task into two di↵erent ways: a TLINK-only system, where they used the gold
standard events and temporal expressions, and an end-to-end system, where instead
of the gold standards events they used system-generated events. Both these systems
rely on the combination of a rule-based and machine learning based approach.
Specifically, the architecture implemented includes conditional random field (CRF)
and support vector machine (SVM) combined with rule-based pair selection. The
TLINK-only system was able to achieve an F1-score of 69.32%, outranking all
the other implementations presented at the challenge. When compared to the
implementation in this thesis, however, it is clear that the deep learning based
approach outperforms the feature-based machine learning one, in fact, the F1-score
of ClinicalBERT combined with 1-d CNN is 13.87 percentage points higher than
the benchmark. These results confirmed once again that, although deep learning
approaches have been only recently considered for information extraction tasks,
they can be extremely useful and help improving accuracy as well as releasing the
researcher from complex feature engineering.
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Approach Precision Recall F1-score

ClinicalBERT + 1-d CNN - - 83.19%

CRF+SVM+Rule based by Tang et al. [40] 71.43% 67.33% 69.32%

SVM by Lee et al. [25] 63.93% 63.62% 63.77%

Table 8: Performance comparison between di↵erent approaches for the Tempo-

ral Relation Extraction task on the merged i2b2 2012 test data set.

Following the same approach as for the above-mentioned experiments, we tested
the same architectures on the unmerged i2b2 2012 data set. Table 9 reports the
results for BERT/BioBERT/ClinicalBERT + 1-d CNN implementations. As ex-
pected, these performances, compared to those achieved on the merged data set,
are considerably lower, in fact, if we consider the 1-d CNN + ClinicalBERT imple-
mentation, the overall accuracy reached by the model is only 65.36%, with 17.8
percentage points less than the same implementation on the merged version of
the data set. This is not a surprise since the data available per label are di↵erent
between the two versions of the data set, making the experiments relatively uncom-
parable. However, it is worth to notice that the results on the unmerged data set
resemble the same trend as for those on the merged version, where ClinicalBERT
outperforms the other BERT implementations. (For a more detailed overview of
the results per TLINK type, see Appendix C.)

Precision Recall F1-score

BERT uncased

Accuracy - - 64.37%

Macro avg 58.35% 50.23% 49.40%

Weighted avg 65.88% 65.41% 63.37%

BioBERT cased

Accuracy - - 65.36%

Macro avg 53.46% 49.84% 50.48%

Weighted avg 64.46% 64.79% 64.49%

ClinicalBERT cased

Accuracy - - 66.46%

Macro avg 55.89% 52.24% 53.36%

Weighted avg 65.34% 67.10% 65.26%

Table 9: Results using 1-d CNN combined with BERT, BioBERT and Clinical-

BERT models on the unmerged i2b2 2012 data set. The result in bold refers

to the best achievement for this task.

Among previous work for the TRE task on the unmerged 2012 i2b2 data set, we
considered the LSTM-based implementation by Patel et al. [35]. In this LSTM-
based architecture, the input vector consists of three merged embedding vectors,
one word vector for the temporal expression tags, one word vector for the event
tags and one sentence vector. This merged single vector is applied as input to the
LSTM model, which consists of three layers. The first LSTM layer uses tanh acti-
vation function for mapping words with the corresponding sentences and lowers the
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dimension of words. In the second layer (dense layer) sigmoid or ReLU activation
function is used. The last layer uses the softmax activation function which lowers
the dimension of the vector and yields the final output. With this implementation,
the authors claimed to achieve an F1-score of 78% on the i2b2 2012 unmerged
data set. Although the authors declared to achieve state-of-the-art results on the
unmerged data set, some of their work and results remain arguable and unclear,
such as the real number of classes used in the experiments as well as the temporal
relation types definitions, which di↵er from the o�cial i2b2 2012 documentation.
Moreover, in their project, no open-source implementation was shared, leaving the
results hardly reproducible. Hence, a real comparison between the work in this thesis
and the LSTM-based implementation by Patel et al. [35] cannot be established.

5 Discussion

The extensive testing performed on various configurations and settings has shown
relevant results and has demonstrated that these models can e↵ectively contribute
towards the ultimate goal of creating a patient’s clinical timeline. However, this
large amount of data collected from the experiments needs to be summarised and
evaluated. Therefore, this section briefly discusses the results achieved for both the
NER and TRE tasks, focusing on their applications in real-world settings as well as
their limitations. Moreover, to better understand the insights from this work, some
examples of the results achieved are given, followed by the main take-away.

Fig. 13: Example of the extraction of problem, test and treatment entities on

unseen clinical text using the best NER model.
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For the NER task, the model implemented demonstrated to achieve interesting re-
sults on the 2010 i2b2 test data set, attaining similar performance to the benchmark
considered (F1-score of 86.54% for the proposed model and F1-score of 88.13%
for the benchmark considered). Figure 13 shows the application of the best NER
model on an unseen clinical narrative. The highlighted text in red refers to problem
entities, while blue and green highlighted text refer to test and treatment enti-
ties, respectively. As one can see, the e↵ectiveness of the model in discriminating
domain-specific entities is remarkable even with unseen clinical terminology.
Considering this task alone, we see a number of possible practical applications
that this system can contribute to, from supporting physicians in extracting key
entities to categorising entire clinical narratives and establishing new solid back-
grounds for further NER research. The ability for a system to accurately extract
this information from large medical text represents not only an important achieve-
ment in clinical NER but also a fundamental intermediate step for the success of
further challenges, such as Temporal Relation Extraction in this work. Nonethe-
less, this task implemented has its limitations in real-world settings. An accuracy
of about 87% on a domain-specific problem could be considered a significant end
goal. However, from a medical point of view, these results are far not su�cient
for a full autonomous deployment of the model in production since a margin of
about 13% error in accuracy is still not acceptable, especially when it involves the
health of a patient. Nevertheless, even though the performance of the model are
not su�cient for a completely autonomous system, it can certainly provide support
to the di�cult decision-making process of a physician and positively contribute to
the further development of clinical NER systems.
For the TRE task, the model considered was based on a 1-d CNN model combined
with ClinicalBERT. The model showed good results on the 2012 i2b2 temporal
relation extraction corpus, being able to classify the three TLINK types, BEFORE,
OVERLAP and AFTER, with an overall F1-score of 83.19% on the test set.

PREDICTION
Total

BEFORE OVERLAP AFTER n = 27736

ACTUAL

BEFORE 13530 1321 262 15113

OVERLAP 933 8778 183 9894

AFTER 911 1105 713 2729

Table 10: Confusion matrix for the three TLINK types from the 1-d CNN

+ ClinicalBERT classification on the 2012 i2b2 data set. Rows represent the

actual classes, while columns represent the predicted classes.

To better understand the results from this task, Table 10 depicts the confusion
matrix for the classification of the three TLINK types using the above-mentioned
model. As one might notice, the classification performance varies between TLINK
type. With 90% and 89% of true positives respectively, the BEFORE and OVERLAP

labels are fairly straightforward for the model to correctly classify, whereas, the
AFTER label, with only 26% of correct classifications, seems to be more challenging
for the model to categorise, representing one of the limitations of this task. One
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of the reasons for this low performance on the AFTER label can be tied to the
unbalance of data between labels used in the training process, however, further
investigation is needed to address this issue.

In order to have an idea of the implications of this task for the practical application
as well as gain some insights from the results, we consider as an example the
following medical narrative extract from the 2012 i2b2 data set.

Fig. 14: Clinical narrative extract from the 2012 i2b2 data set. The
yellow-marked text refers to clinical entities, namely TEST, TREATMENT and
PROBLEM, while the green-marked text relates to temporal expressions.

Admission Date : 2015-08-10 Discharge Date : 2015-08-15 [...] The patient
was taken to the Operating Room the day of admission . He underwent
a left bronchoscopy and lower lobectomy of the left side. [...] The patient
was then transferred to the CSRU, intubated in stable condition. [...] The
patient remained to be stable on the floor with subsequent monitoring of
hematocrit within a normal stable range. He is successfully extubated on
08-12 and hypertension transferred to the floor in stable condition where
the Pain Service is managing his epidural with very good e↵ect and he
is tolerating a regular p.o. diet and is making adequate amount of urine.
His recovery was essentially unremarkable. His epidural was successfully
discontinued and he is discharged to home on 08-15 with instructions
to follow-up with Dr. Rodriguez in the o�ce within the next one to two
weeks. He is discharged to home with pain medication which is percocet.

Figure 15 represents the constructed timeline of some of the events extracted from
the above clinical narrative and their relations to the temporal expressions. To have
a better understanding of the timeline structure, Table 11 shows the extracted en-
tities and the relation types classified by the model referring to the example at
hand. Specifically, for each clinical entity and temporal expression pair, the model
assigns the relation type of BEFORE if the first entity refers to a period of time
preceding the second entity, OVERLAP if the first entity refers to a period of time
overlapping with the second entity and AFTER if the first entity refers to a period of
time following the second entity. For instance, reading Figure 15 from left to right,
the relation between the TEST entities left bronchoscopy, lower lobectomy

and intubated and the temporal expression the day of the admission, cor-
responding to the 2015-08-10, is classified by the model as OVERLAP. Similarly,
the following entities, such as extubated and epidural are successfully related
to 08-12 and 08-15 with TLINK types OVERLAP and BEFORE, respectively. Finally,
the TREATMENT entity percocet is related to the temporal expression 08-15 with
a type AFTER, since this medication was prescribed after the patient was discharged
on the 08-15.
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Entity 1 Type Chunk 1 Entity 2 Type Chunk 2 Relation Type

TEST left bronchoscopy DATE the day of admission OVERLAP

TEST lower lobectomy DATE the day of admission OVERLAP

TEST intubated DATE the day of admission OVERLAP

TEST intubated DATE 08-12 BEFORE

TEST extubated DATE 08-12 OVERLAP

TEST epidural DATE 08-15 OVERLAP

TREATMENT percocet DATE 08-15 AFTER

Table 11: Classification of the relation type (TLINK) between extracted entities from the text

in Figure 14. Columns 1 to 4 represent the entity types followed by the corresponding text. The

last column defines the classified relation types.

This example, in summary, represents the important implications that this task
has in the real-world implementations. The ability of a model to accurately dis-
criminate the chronological relation between entities and temporal expression can
have a large number of applications in the medical field and can certainly help
physicians not only on di�cult decision-making tasks but also in making accurate
predictions based on the patient’s chronological history. However, although this
model achieved important results on the 2012 i2b2 data set, it also bears some
limitations. As for the NER task, also in this case even with a model achieving an
accuracy of 83.19% on unseen data, the model is not fully autonomous to deploy it
in complex systems such as the healthcare one, but, as previously mentioned, it can
definitely assist physicians in many daily situations. It is also important to notice
that this timeline was constructed from the predictions of the model, however, for
the model to physically build the timeline from the categorised relations, further
implementations, that were not possible in this work due to time constraints, are
needed.

Fig. 15: Example of a constructed timeline with the temporal events and clinical

entities extracted from the above-given medical narrative.
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6 Conclusion & Further Research

Information Extraction, and specifically Temporal Relation Extraction from a large
bulk of raw clinical text data, represents a challenging and crucial task in the
biomedical research area. Temporal Information Extraction used to process patient
information in clinical narratives can positively contribute to the process of making
accurate decisions in vital patient care tasks such as forecasting the e↵ects of
therapies, preventing the spread of a disease or diagnosing the nature of a medical
condition. Moreover, constructing a reliable and accurate timeline can facilitate
physicians during the process of making important decisions and help increase
medical accuracy.
In this thesis, we attempted to develop and evaluate an NLP pipeline that is able to
pre-process raw clinical narratives, extract clinical named entities and relate them
to specific temporal entities. Specifically, we firstly showed that our CoNLL parser
is able to pre-process and transform raw clinical notes into training set following the
CoNLL-2003 file format with an accuracy close to the licensed version in SparkNLP.
Secondly, we tried to address the following research questions:

1. What is the performance of a Named Entity Recognition method trained to
specifically extract clinical entities such as treatments, tests and diseases from
medical narratives?

From the results of our experiments, we demonstrated that the trained Named
Entity Recognition model is able to extract problem, treatment and test entities
from clinical narratives with an F1-score of 86.54%, close to the state-of-the-art
implementation by Zhang et al. [50]. Moreover, we discussed the implications of
this work in practical applications and we showed some examples of the results
achieved, followed by main insights.

2. To what extent is Temporal Relation Extraction able to e�ciently categorise
temporal relations between the extracted clinical entities? Specifically, to what
degree are BERT methods more suitable for this task compared to other
feature-based methods?

To address this research question, we implemented a Temporal Relation Extrac-
tion model based on Chen et al. [8] BERT + 1-d CNN model architecture, to
which di↵erent versions of BERT were applied. We demonstrated that 1-d CNN
combined with ClinicalBERT pre-trained model achieved an F1-score of 83.19% on
the merged 2012 i2b2 data set and an F1-score of 66.46% on the unmerged 2012
i2b2 data set. These results showcase the ability of this NLP pipeline to e↵ectively
process raw medical narratives, extract fundamental clinical entities with a per-
formance close to state-of-the-art systems and accurately relate them to temporal
events. Moreover, for the TRE task in clinical text, we proved the e↵ectiveness of
BERT models compared to previous feature-based methods, showing once again
the potentiality of deep learning based approaches. Until recently, the majority
of NLP problems have been addressed with shallow machine learning models and
hand-crafted, time-consuming features. However, new projects and research in NLP,
such as recent achievements of BERT models or studies like this work, are reveal-
ing positive prospects for employment of deep learning methods which proved to
achieve superior results in several NLP tasks compared to more traditional machine
learning methods such as logistic regression or SVM.
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Future research could look into the optimisation and improvements of part of the
tasks implemented for this paper. First, as for the pre-processing task, a closer
look should be given to the implementation of the CoNLL training file which per-
haps represents one of the most important processes for the achievement of higher
performances. Specifically, a more e�cient procedure, that was not possible here
due to time constraints, should be implemented in the token-tags matching task
in order to potentially scale up this project to production. Furthermore, for the
NER task, an interesting improvement would be to apply di↵erent word embed-
dings when training the NER model. Recently, SparkNLP, on its latest 2.5.0 re-
lease, published new word embeddings specifically for biomedical and clinical words,
such as biobert clinical base cased and biobert pubmed pmc base cased

among many, which can significantly help improve the model accuracy.
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A Appendix - Python Information

In order to make use of the implemented techniques the version of Python has to
be 3.7.1 or higher. Setups with Python versions below 3.7.1 were not tested.
The following Python libraries were used with their recommended versions:

1. PySpark 2.4.5 [49]
2. Spark 2.4.5 [49]
3. SparkNLP 2.4.3 [22]
4. Numpy 1.17.2 [34]
5. Pandas 0.25.1 [32]
6. Nltk 3.4.5 [30]

Though not necessary for making use of the NER and Temporal Relation Extraction
algorithms, the following libraries are useful for plotting and creating tables:

1. Matplotlib 3.1.1 [19]
2. Seaborn 0.10.1 [45]

B Implementations availability

The python implementations of the CoNLL parser, NER model training and Tem-
poral Relation Extraction tool and additional functions are made available and can
be found here: b Page Link
Instructions on how to run the python scripts as well as a documentation of all the
available functions are included.

C Further visualisation and results for both NER
and TRE tasks
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(a) F1-score on the test set for the 3 named entities: B-problem, B-test and

B-treatment.

(b) Recall on the test set for the 3 named entities: B-problem, B-test and

B-treatment.

(c) Precision on the test set for the 3 named entities: B-problem, B-test and

B-treatment.

Fig. 16: Performances of the model with same parameters as the best NER

model, however, trained with batch size of 64

44



Precision Recall F1-score Support

ENDED BY 38.34% 48.41% 42.73% 688

BEFORE OVERLAP 59.64% 37.08% 45.73% 3636

BEFORE 80.45% 86.89% 83.55% 10789

BEGUN BY 76.03% 10.45% 18.37% 788

DURING 47.34% 69.48% 56.31% 875

OVERLAP 47.34% 69.48% 56.31% 4877

AFTER 40.48% 24.37% 30.42% 1941

SIMULTANEOUS 72.89% 56.12% 63.42% 4142

Accuracy - - 64.37% 27736

Macro avg 58.35% 50.23% 49.40% 27736

Weighted avg 65.88% 65.41% 63.37% 27736

Table 12: Results using 1-d CNN + BERT uncased model on the unmerged

i2b2 2012 data set.

Precision Recall F1-score Support

ENDED BY 38.19% 25.88% 30.85% 688

BEFORE OVERLAP 63.39% 38.72% 48.07% 3636

BEFORE 78.76% 89.28% 83.69% 10789

BEGUN BY 34.96% 45.31% 39.47% 788

DURING 56.38% 51.87% 54.03% 875

OVERLAP 50.45% 55.68% 52.94% 4877

AFTER 39.45% 21.87% 28.14% 1941

SIMULTANEOUS 63.68% 69.08% 66.27% 4142

Accuracy - - 65.36% 27736

Macro avg 53.46% 49.84% 50.48% 27736

Weighted avg 64.46% 64.79% 64.49% 27736

Table 13: Results using 1-d CNN + BioBERT cased model on the unmerged

i2b2 2012 data set.
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Precision Recall F1-score Support

ENDED BY 42.38% 42.01% 42.19% 688

BEFORE OVERLAP 61.43% 39.78% 48.28% 3636

BEFORE 78.45% 92.78% 85.02% 10789

BEGUN BY 50.31% 38.69% 43.74% 788

DURING 54.78% 61.45% 57.92% 875

OVERLAP 54.15% 52.61% 53.37% 4877

AFTER 50.16% 18.95% 27.51% 1941

SIMULTANEOUS 62.87% 70.21% 66.34% 4142

Accuracy - - 66.46% 27736

Macro avg 55.89% 52.24% 53.36% 27736

Weighted avg 65.34% 67.10% 65.26% 27736

Table 14: Results using 1-d CNN + ClinicalBERT cased model on the unmerged

i2b2 2012 data set.
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