
Master Computer Science

Dynamic Configuration of Operators and

Parameters in Differential Evolution through

Combined Fitness and Diversity-Driven

Adaptation Methods

Name: Rick Boks

Student ID: 1862979

Date: July 5, 2021

Specialisation: Artificial Intelligence

1st supervisor: Anna V. Kononova

2nd supervisor: Hao Wang

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

The widespread success of metaheuristics can be partially credited to the develop-
ments in the realm of hyper-heuristics, where the automation of the otherwise man-
ual, problem-specific tuning of a metaheuristic is studied. While some hyper-heuristics
tune the algorithm prior to its application, they can also be leveraged to adapt the
algorithm’s behavior during the optimization process, in response to changes in the
environment. The metaheuristic known as Differential Evolution (DE) has endured
many modifications aiming to adaptively control its parameters, and more recently, to
adaptively select the operators employed to generate new candidate solutions. Most
such methods greedily select strategies that give the most rapid improvements with
regard to the objective function, risking convergence on a local optimum. This the-
sis sets up a framework for intertwined adaptation of operators and parameters for
population-based metaheuristics, where the adaptation process addresses the explo-
ration/exploitation dilemma by explicitly encouraging exploratory behavior. In detail,
we devise diversity-based metrics that capture the exploratory or exploitative tendency
of a single individual, which can then be used to reward or penalize its associated
strategy. Several methods for balancing the fitness- and diversity-based metrics are
considered, as well as different methods that determine which operators are applied in
future iterations. Through an extensive tuning process, seven adaptive DE algorithms
are obtained, which are then benchmarked on BBOB/COCO to assess their empirical
performances, and analyzed with regard to several aspects of the algorithmic behav-
ior. Further, we perform an elaborate experiment to assess the optimal composition
of the configuration space, which holds the operator configurations available to the
hyper-heuristic. The results show the efficiency of the joint parameter and operator
adaptation, driven by both fitness- and diversity-related metrics, making DE more ver-
satile across different problem types. In addition, we provide practical recommendations
regarding the composition of the configuration space.

1



Contents

1 Introduction 3

2 Differential Evolution 4
2.1 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Boundary constraint handling . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Stopping criteria and independent restarts . . . . . . . . . . . . . . . . . 7

3 Strategy adaptation 7
3.1 Adaptive operator selection . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Existing AOS methods . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Credit: an individual-wise improvement metric . . . . . . . . . . 9
3.1.4 Reward: a configuration-wise improvement metric . . . . . . . . 12
3.1.5 Quality: a configuration-wise performance indicator . . . . . . . 13
3.1.6 Application probability . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Adaptation of control parameters . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Tying it all together: the adaptation manager . . . . . . . . . . . . . . . 16

4 Parameter tuning 17

5 Benchmarking tuned adaptive DEs 19
5.1 Fixed-budget comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Fixed-target comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Behavioral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.1 Operator configuration activations . . . . . . . . . . . . . . . . . 27
5.3.2 Transitions between operator configurations . . . . . . . . . . . . 27
5.3.3 Generated parameter values . . . . . . . . . . . . . . . . . . . . . 29
5.3.4 Single-run analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Comparing configuration spaces 35

7 Conclusion 43

8 Future work 44

2



1 Introduction

Metaheuristics are stochastic algorithms capable of finding (near-)optimal solutions to
non-linear problems without any prior knowledge about the problem at hand. Although
metaheuristics do not guarantee that the optimal solution is found, they have been
widely successful in solving highly complex real-world problems [70, 61] in relatively
little time, by intelligently sampling a subset of the search space, when exploring it
entirely is simply not an option.

Despite the widespread success of this class of algorithms, there is still difficulty in
selecting the correct metaheuristic for a particular (unseen) problem, and tuning its
control parameters. Although there is no hope for finding the best algorithm for all
optimization problems, as dictated by the No Free Lunch theorem [74], recent efforts in
the field of hyper-heuristics have shown significant progress in algorithm selection and
tuning [12], making it much simpler to find and configure an appropriate algorithm to
apply to a new problem.

Instead of operating directly on the search space of the optimization problem’s
solutions, hyper-heuristics operate on a space of (meta)heuristics. One might wonder
what the benefit of such hyper-heuristics is, as they, in turn, also introduce additional
hyperparameters. Is it worth replacing a metaheuristic’s parameters with those of the
hyper-heuristic? Generally, a hyper-heuristic can provide two main benefits [47]:

• A hyper-heuristic acts as an abstraction layer on top of the metaheuristic, con-
trolling it from a higher level. Generally, the result is that the parameters have a
less direct impact on the performance of the algorithm, making it perform more
consistently across different types of problems, but perhaps worse on a specific
(type of) problem.

• The parameters of a hyper-heuristic are generally more comprehensible for a hu-
man. For example, a hyper-heuristic might have a parameter that directly controls
the exploitation-exploration balance, which abstracts underlying parameters that
require more technical knowledge about the algorithm, such as a mutation or
crossover rate.

Two main types of hyper-heuristics can be discerned: offline and online approaches.
Offline hyper-heuristics are concerned with tuning the algorithm on a certain problem
or a class of problems, before actually applying it to the problem at hand. Although
offline methods have been successful in the past (e.g. [37, 40, 43]), there is commonly a
significant computational overhead associated with them. Further, once a tuned algo-
rithm configuration is returned by the hyper-heuristic, it cannot alter the algorithm’s
strategy in real time, to react to changes in the environment during the various stages
of the search.

Online approaches, on the other hand, tune the algorithm during the search, fur-
ther reducing the total effort of applying an optimization algorithm to a problem,
and allowing the hyper-heuristic to adapt its strategy throughout the search. Online
methods have in particular shown their merit in the context of adaptive parameter
control [16, 41], and, more recently, in Adaptive Operator Selection (AOS) [17], where
the aim is to select variation operators of Evolutionary Algorithms (EAs) in an online
fashion [45].

One EA, which gained wide popularity after its introduction by Storn and Price
in 1997, is Differential Evolution (DE) [64]. The algorithm was originally proposed
for single-objective optimization in continuous (real-valued) search spaces, but many
variants have surfaced since, including DEs for discrete and mixed-integer optimiza-
tion [39], and multi-objective optimization [4]. An extensive survey of many more DE
variants can be found in [15]. For the purposes of this research, only the single-objective
continuous case is considered here:

f : F ∈ Rn → R, (1)

where f is the function to be minimized and F is the feasible region of the search
space, subject to box constraints: ∀x = {xj}nj=1 : ∀j ∈ [1..n]xj ∈ [xmin

j , xmax
j ]. Differ-

ential Evolution has elegantly simple inner workings (as outlined in Section 2), relying
mostly on vector differences between candidate solutions in the population. This simple

3



structure, coupled with its highly competitive performance, makes DE a good test-bed
for hyper-heuristics, which is perhaps the reason why many hyper-heuristic techniques
have been proposed and tested for DE. Significant progress was made in the adaptation
of DE’s control parameters (e.g. [57, 11, 76, 66]), and it has recently become one of the
main test-beds for AOS methods (e.g. [60, 27, 28, 21]).

Most AOS and parameter adaptation methods in the current literature solely aim
to maximize the improvements w.r.t. the objective function values. While this is gen-
erally an effective strategy to accelerate convergence, it can also cause the algorithm
to converge prematurely, which is an issue DE already suffers from [63]. Some pro-
posals [47, 46] suggest simultaneously balancing metrics related to solution fitness and
population diversity, in order to better tackle the notorious exploration versus exploita-
tion trade-off. This thesis builds on these works and sets up a general framework for
diversity-based online tuning of DE, in which we implement novel and existing AOS
methods in a modular fashion. Further, we intertwine the AOS component with the
adaptation of DE’s control parameters. The adaptive algorithms resulting from the
framework are then compared to each other and to the state-of-the-art in terms of
performance. Furthermore, several aspects of the algorithmic behavior are analyzed.

The structure of the remainder of this thesis is as follows: Section 2 outlines the
structure of Differential Evolution and describes its individual components. Section 3
covers the adaptation of DE’s operators and parameters, and describes how both com-
ponents are integrated into the proposed framework. In Section 4, we perform a tun-
ing experiment to find the best settings for each considered AOS method. Section 5
describes the experiments performed with the tuned algorithms, and analyzes the per-
formance results and the algorithmic behavior. The impact of the configuration space,
containing the strategies available to the AOS, is assessed in Section 6. Finally, we
summarize the main findings of the thesis in Section 7, and give directions for future
work in Section 8.

2 Differential Evolution

Like most other Evolutionary Algorithms [5], Differential Evolution (DE) [64] itera-
tively evolves a population of candidate solutions by means of mutation, crossover, and
selection. In a black-box scenario, where there is no knowledge about the fitness land-
scape of the problem to be optimized, the population P is usually initialized uniformly
at random (u.a.r.) subject to the boundary constraints:

P = {x1,x2, . . . ,xM} ⊂ F , (2)

whereM denotes the population size and xi is a candidate solution, i.e., a n-dimensional
vector representing a potential solution to the optimization problem. Hereinafter, we
will indicate the jth component of the ith candidate solution as xi,j .

For each individual xi, a donor vector vi (a.k.a. mutant) is generated through muta-
tion, a process where scaled difference vectors are added to some member of the current
population, which is called the base vector. See Section 2.1 for a selection of DE’s mu-
tation strategies which are used in this thesis. Afterwards, for each donor vector vi,
a trial vector x′i is created by means of crossover, where components are exchanged
between the target vector xi and the donor vector vi. Two crossover methods are most
prominent in DE literature, both of which are described in Section 2.2. Elitist selection
is applied between xi and x′i, where the better individual of the two, w.r.t. the objec-
tive function, progresses to the next iteration. The pseudocode of DE with binomial
crossover and rand/1 mutation, which is commonly referred to as DE/rand/1/bin, is
outlined in Alg. 1.

2.1 Mutation

In the mutation step, M donor vectors are generated by adding one or more scaled
difference vectors to a base vector. Typically, vectors with indices r1, r2, . . . , rj are
selected uniformly at random without replacement, where ∀j : rj 6= i. Depending
on the chosen mutation scheme, these randomly selected vectors can appear both in

4



Algorithm 1 Differential Evolution using rand/1 Mutation and Binomial Crossover

1: xi ← U(xmin,xmax), i = 1, . . . ,M. . Initialize
2: while termination criteria are not met do
3: for i = 1→M do
4: Choose r1 6= r2 6= r3 6= i ∈ [1..M ] u.a.r.
5: vi ← xr1 + F · (xr2 − xr3) . Mutate
6: Choose jrand ∈ [1..n] u.a.r.
7: for j = 1→ n do
8: if U(0, 1) ≤ Cr or j = jrand then
9: x′i,j ← vi,j . Crossover

10: else
11: x′i,j ← xi,j
12: end if
13: end for
14: end for
15: for i = 1→M do
16: if f(x′

i) < f(xi) then
17: xi ← x′

i . Select
18: end if
19: end for
20: end while

the difference vectors and as the base vector. The difference vectors are scaled by the
so-called mutation rate F > 0, which controls the strength of the mutation operator.
Although there is no upper limit, F > 1 is considered rarely effective [54]. This research
utilizes the following six mutation schemes:

Rand/1 [54] A scaled difference vector of two randomly selected vectors is added
to another randomly selected vector.

vi ← xr1 + F · (xr2 − xr3) (3)

Best/1 [54] The base vector is chosen as the best member of the population, xbest:

vi ← xbest + F · (xr1 − xr2) (4)

Target-to-pbest/1 [66, 76] The base vector is chosen as the target vector, and
in addition to the difference vector with randomly selected indices, a difference vector
between xpbest and the target vector is used. xpbest is selected uniformly at random from
the best p · 100% members of the population, p ∈ (0, 1]. As recommended in [66], we
generate a new value for p every time the operator is applied: p = U( 2

M
, 0.2).

vi ← xi + F · (xpbest − xi) + F · (xr1 − xr2) (5)

Target-to-best/2 [26] Compared to target-to-pbest/1, another differential vector
of vectors with randomly selected indices is used, and xpbest is replaced by the very best
vector in the current population, xbest.

vi ← xi + F · (xbest − xi) + F · (xr1 − xr2) + F · (xr3 − xr4) (6)

Target-to-rand/1 [55, 60, 56] A more exploratory version of target-to-pbest/1,
moving the target vector towards a randomly selected vector instead of xpbest:

vi ← xi + F · (xr1 − xi) + F · (xr2 − xr3) (7)

5



2-Opt/1 In desire to accelerate the convergence of DE, 2-Opt based DE was pro-
posed in [13]. One of the mutation schemes which was proposed as part of this algo-
rithm, 2-Opt/1, is shown in Eq. 8. The mutation scheme modifies rand/1 by swapping
the roles of xr1 and xr2 if the latter has a better objective function value.

vi ←

{
xr1 + F · (xr2 − xr3) if f(xr1) < f(xr2)

xr2 + F · (xr1 − xr3) otherwise
(8)

2.2 Crossover

The crossover step in DE exchanges elements between the target vector xi and the
donor vector vi (resulting from the mutation step). The resulting vector is called the
trial vector, denotes as x′i. Here, we describe the two crossover strategies which are
most commonly used: binomial and exponential.

Binomial Crossover In the so-called binomial crossover [64], each component x′i,j
(j = 1, . . . , n) of x′i is copied from vi,j with a probability Cr ∈ [0, 1] (a.k.a. crossover
rate), or when j equals an index jrand ∈ [1..n] chosen u.a.r.:

x′i,j ←
{
vi,j if U(0, 1) ≤ Cr or j = jrand
xi,j otherwise

(9)

Exponential Crossover In exponential crossover [64], two integers p, q ∈ {1, . . . , n}
are chosen. The integer p acts as the starting point where the exchange of components
begins, and is chosen uniformly at random. q represents the number of elements that
will be inherited from the donor vector, and is chosen using the procedure outlined in
Algorithm 2.

Algorithm 2 Assigning a value to q in exponential crossover

1: q ← 0
2: do
3: q ← q + 1

4: while U(0, 1) ≤ Cr and q < n

The trial vector x′i is generated as:

x′i,j ←
{
vi,j for j = 〈p〉n, 〈p+ 1〉n, . . . , 〈p+ q − 1〉n
xi,j for all other j ∈ {1, . . . , n} (10)

The angular brackets 〈〉n denote the modulo operator with modulus n.

2.3 Boundary constraint handling

As we are dealing with box constraints, a boundary constraint handling method (BCHM)
needs to be implemented to repair, penalize, or handle infeasible solution vectors, that
violate the boundaries of the search space, in some other way. The authors of [38, 9]
show that, perhaps contrary to the beliefs of many practitioners, situations where 100%
of candidate solutions were originally generated outside of the feasible domain are far
from unthinkable, especially when dealing with highly dimensional problems. It is easy
to understand the importance of the BCHM with this knowledge, considering that, in
such situations, nearly all of the generated solutions are a product of this operator.
An extensive empirical study was performed in [9], where many BCHMs were tested in
combination with a large number of DE variants. The so-called ‘Resampling’ BCHM [1]
showed the best overall performance, which is why it is employed in the experiments
for this thesis.

When an infeasible trial vector is generated, the mutation operator is simply re-
applied (on all vector components) until the resulting vector is located in the feasible
domain. Because this process of resampling can potentially go on endlessly, we set the

6



maximum number of resamples to 100, after which the violating components are placed
on their respective boundaries.

2.4 Stopping criteria and independent restarts

Independent restarts are encouraged by the benchmarking procedure guidelines of
BBOB/COCO [35], to ensure that function evaluations are not wasted when the al-
gorithm has converged prematurely on a local optimum. Such a restart ‘resets’ the
internal state of the algorithm, losing all the accumulated knowledge about the fitness
landscape. It is possible for the algorithm to ‘learn’ from a failed run that results in a
restart, by, for example, increasing the population size [3]. For the sake of simplicity,
we do not change DEs parameters between restarts.

Of course, it is important that the algorithm is not restarted too early, potentially
preventing the algorithm to converge at all. On the other hand, a restart should be
triggered early enough such that as few objective function evaluations as possible are
wasted, because they can be extremely time-consuming, especially in real-world situa-
tions.

In [77], a thorough examination of many stopping criteria was performed. We adopt
the criterion that yielded the best result, named Diff in [77]. Let xbest and xworst

denote the best and worst individuals in the current population, respectively. The
criterion determines if the algorithm has converged as follows:

converged =

{
true if f(xworst)− f(xbest) < ε

false otherwise
(11)

According to [77], setting ε one order of magnitude smaller than the desired accuracy of
the returned solution is sufficient. Since, in this thesis, we enforce a target precision of
fopt +10−8, we set ε = 10−9. A disadvantage of this criterion is that it can be triggered
prematurely on problems with plateaus in the fitness landscape.

The algorithm is conclusively terminated if any of the following conditions is satis-
fied:

• The evaluation budget is exhausted;

• The final target is hit.

3 Strategy adaptation

As mentioned previously, the present work aims to intertwine the adaptation of oper-
ators and parameters, and let them work towards a common goal. In the following, we
describe the two components – adaptive operator selection (AOS) and parameter adap-
tation – in detail, and discuss how they are integrated into our proposed framework.
An overview of our proposed adaptation framework is shown in Figure 2.

3.1 Adaptive operator selection

Differential Evolution has endured many proposed modifications, which mostly come
in the shape of a modified mutation or crossover operator. While such a wide array
of strategies is extremely beneficial for tackling problems with different characteris-
tics, making DE more versatile, it also introduces a difficulty: selecting an appropriate
strategy becomes an intimidating task, especially if the characteristics of the problem
to solve are unknown. Motivated by this, a growing body of literature is dedicated to
Adaptive Operator Selection (AOS), where the aim is to select an appropriate strat-
egy for a given problem in an online fasion, i.e., during the search. Further, such AOS
methods can adapt the strategy throughout the stages of the search when needed. This
is a considerable advantage over offline tuning methods, which are not only very time-
consuming, but are also incapable of tuning the algorithm in real-time, in response to
changes in the environment.

7



3.1.1 Existing AOS methods

To the best of our knowledge, SaDE [57] is the first Differential Evolution algorithm
involving adaptive selection of trial vector generation strategies. Due to their com-
plementing strengths, the strategies rand/1/bin and best/2/bin are considered in the
strategy pool, and their application probabilities are adapted based on their respective
success rates in a predefined learning period of 50 iterations. The success rates are reset
at the start of each learning period so the algorithm can find the optimal strategy for
each stage of the search. Additionally, the crossover rate Cr is adapted using previously
successful values, and the mutation rate F is generated at random using a normal dis-
tribution with mean 0.5 and standard deviation 0.3. SaDE was later improved in [56],
by including more operator configurations and enhancing the parameter adaptation
procedure.

A completely different approach is EPSDE [44], where a predetermined set of mu-
tation operators and parameter values is used. Initially, each individual is assigned a
mutation operator and a parameter settings which is randomly selected from these
pools. Individuals that produce improved offspring pass on their configuration of muta-
tion operator and parameter values to the next iteration, while unsuccessful individuals
have their configurations reinitialized at random.

CoDE [72] is a relatively simple paradigm, where three popular operator config-
urations are selected, as well as three commonly used parameter settings. Instead of
generating a single trial vector, three trial vectors are generated for each target vec-
tor, using each of the three strategies once, and each with a parameter configuration
selected at random from the available three. Only the best of the three trial vectors is
then considered in the selection step. Due to the tripled number of function evaluations
per iteration, with the same function evaluation budget, the number of iterations in a
run of CoDE will be a third of that of traditional DE.

In SspDE [51], successful values of F and Cr, i.e., values that produced improved
offspring, as well as successful operators, are recorded in a set of ‘winners’. Parameter
values and operators are then either selected from a list, which is refilled with the
‘winners’ at predetermined intervals, or uniformly at random in order to explore new
configurations.

AdapSS-DE [27] considers four trial vector generation strategies, and several reward
assignment methods are assessed in combination with the Probability Matching [25]
algorithm, which is responsible for assigning the selection probability of each trial vector
generation strategy based on their empirically estimated qualities. Later, in [28], the
algorithm is extended with parameter adaptation from JADE [76], and another method
for assigning application probabilities is used: Adaptive Pursuit [69].

An AOS method based on the multi-armed bandit framework [2] is proposed in [14],
in the context of Genetic Algorithms. The algorithm uses the well-known Upper Con-
fidence Bound (UCB) formula [2] to balance exploration and exploitation when se-
lecting strategies. It is acknowledged in [14] that traditional multi-armed bandits are
not suitable for the dynamic environment which is encountered when applying AOS
to optimization algorithms. Therefore, a dynamic multi-armed bandit strategy is pro-
posed, where the multi-armed bandit is restarted when any change in the environment
is detected. Such a change in the distribution of rewards is detected by Page-Hinkley
test [50]. The robustness of the bandit-based AOS was later reinforced [19] by reward-
ing configurations based on an Area Under Curve (AUC) scheme, calculating the area
under the curve of decayed previous impact measures. This idea was applied to DE
in [21], resulting in the algorithm called DE-F-AUC, which yielded competitive results.

In [46], in addition to adaptive operator selection (AOS), the problem of adaptive
operator management (AOM) is tackled. The so-called ‘Blacksmith’, responsible for
the AOM component, can dynamically add and remove operator configurations from
the pool, from which the AOS component, in turn, selects configurations to apply
to the population. A constant number of configurations is maintained in the pool of
configurations. Operator configurations are removed from the pool if they have been
applied for a sufficient number of times and show poor performance. The replacing
configurations are then selected uniformly at random.

A classification and survey of many AOS methods can be found in [60]. The authors
propose a framework for generating AOS methods, and use this framework to generate

8



a single AOS method for DE using a racing algorithm. This algorithm, termed U-AOS-
FW, is then benchmarked along with several existing AOS methods and other DE
variants, yielding favorable results on various classes of problems. The U-AOS-FW is
used as a reference algorithm during the performance comparison in Section 5.2.

3.1.2 Proposed approach

We propose a novel AOS framework, the structure of which builds on the aforemen-
tioned AdapSS-DE algorithm, especially in the sense that individual-wise rewards (i.e.,
per candidate solution) are used, which are then aggregated to obtain the reward for
each operator configuration. Such an approach has additional benefits, including the
intuitive integration with parameter adaptation schemes, discussed later. The main
contributions of our AOS framework (compared to existing methods) are:

• We devise a diversity-based metric which captures the direction of movement of
a single individual, relative to the mean position of the entire population. This
metric is then used to develop several novel credit assignment schemes, as well as
to adapt some well-known existing methods. Most such credit assignment schemes
are intended to stimulate operators and parameter settings that successfully ex-
plore the search space, i.e., those that moved the individual away from the current
population and found an improved solution (in terms of the objective function)
as a result. The diversity-based metric offers high flexibility for implementation
in combination with methods that aggregate diversity and fitness related metrics,
as will become evident later. Further, it allows direct integration with existing
state-of-the art parameter adaptation schemes, that rely on individual-wise per-
formance indicators. The AOS framework of [60] does not consider the population
diversity in the adaptation process, but it does include a diversity measure over
fitness-related metrics. Population diversity management is a core component of
our framework, as the direction of the entire adaptation process is controlled by
the diversity-based credit values.

• The adaptation of operators is intertwined with the adaptation of parameters,
such that both work towards the same goal, which is dictated by the credit as-
signment scheme. Further, parameter adaptation is performed for each operator
configuration individually. Previous works have considered using parameter adap-
tation in combination with AOS, but, to the best of our knowledge, these works
adapted the parameters collectively for all operator configurations, and the adap-
tation always relied exclusively on fitness improvements. In the framework of [60],
parameter adaptation is not considered, and static values of F and Cr are used.

• Contrary to existing approaches, which only adapt the mutation operator, our im-
plementation allows adaptation of mutation and crossover operators. An operator
configuration is considered a combination of a mutation and crossover operator. In
the framework of [60], nine mutation operators are involved in the AOS process,
and only binomial crossover is considered.

The remainder of this section covers the four main components of the proposed
AOS framework (credit, reward, quality, and probability), and discusses the considered
variants of each component.

3.1.3 Credit: an individual-wise improvement metric

In the literature (e.g., [27, 28, 45, 60]), ‘credit’ and ‘reward’ are commonly used inter-
changeably in the context of AOS, but we make a clear distinction between the two.
In this thesis, ‘credit’ will be used to refer to an individual-wise metric based on a
difference in fitness, diversity, or both, between a trial vector and its parent: the tar-
get vector. A high credit value indicates that the trial vector generation was deemed
successful by the employed credit assignment scheme.

Although population diversity is a metric that is computed over the entire popula-
tion, we need a way to measure ‘diversity’ for a single individual. Population diversity
can be measured in many different ways [49], one of which is the standard deviation of
positions of candidate solutions in the search space:

9



δ =

∑M
i=1 ||xi − x̄||

M
, (12)

where ||a − b|| denotes the Euclidean distance between individuals a and b, and x̄ is
the mean position of the population:

x̄j =

∑M
i=1 xi,j

M
. (13)

Clearly, the ‘contribution’ of one individual (i) to the population diversity is propor-
tional to the distance from that individual to the mean position of the population:
||xi− x̄||. To measure the relative impact of one individual on the population diversity,
we define the diversity ratio as the ratio between (1) the distance between the trial
vector and the mean position and (2) the distance between the target vector and the
mean position:

rdi =
||x′i − x̄||
||xi − x̄|| (14)

A diversity ratio of 0 ≤ rdi < 1 indicates that the individual moved towards the mean,
and thus contributed to reducing the population diversity, while a diversity ratio of
rdi > 1 indicates that the individual moved away from the mean, and thereby poten-
tially increased the population diversity. Of course, whether the individual has actually
increased the population diversity also depends on the positions of the rest of the pop-
ulation, in the next iteration. It is important to consider that, with small population
sizes, the mean position can be heavily affected by outliers, which can have an un-
desirable effect on the resulting diversity ratios. Seven credit assignment methods are
assessed in this work, some of which use this diversity ratio. Additionally, each of them
uses the fitness difference w.r.t. the target vector:

∆fi = f(xi)− f(x′i) (15)

Diversity Ratio This method simply assigns the diversity ratio of a trial vector
to its credit, but only if it has improved w.r.t. the corresponding target vector. If the
individual has deteriorated in terms of fitness, a null credit value is assigned. This
way, the highest rewards are associated with individuals that successfully explored the
search space. Individuals that successfully exploit the current best position(s) and, as
a result, move towards the mean position of the population, still get rewarded, but to
a lesser extent. Note that the magnitude of the fitness improvement has no influence
on this credit value at all.

ci =

{
rdi if ∆fi > 0

0 otherwise
(16)

Squared Diversity Ratio To amplify the reward for exploring the search space,
and reward exploitative behavior even less, the diversity ratio is squared:

ci =

{
(rdi )2 if ∆fi > 0

0 otherwise
(17)

Fitness Improvement This is the only credit assignment method considered in
this thesis which does not take into account diversity, and simply assigns the fitness
difference w.r.t. the target vector, if is positive. This, or something similar, is the
approach most AOS and parameter adaptation methods in the current literature take
(e.g. [66, 76, 28, 18]).

ci =

{
∆fi if ∆fi > 0

0 otherwise
(18)

10



Combined Fitness and Diversity Here, we combine the fitness and diversity
measures by scaling the fitness improvement with the diversity ratio:

ci =

{
∆fi · rdi if ∆fi > 0

0 otherwise
(19)

Combined Fitness and Squared Diversity Here, the fitness improvement is
scaled by the squared diversity ratio:

ci =

{
∆fi · (rdi )2 if ∆fi > 0

0 otherwise
(20)

Compass We propose a slightly modified version of the Compass method proposed
in [47], which balances the fitness and diversity. Instead of the diversity ratio, here we
use the diversity difference, denoted ∆di:

∆di = ||x′i − x̄|| − ||xi − x̄||, (21)

as it is more compatible with the Compass method. For the fitness measure, we use the
fitness difference ∆fi (Eq. 15). First, the diversity and fitness differences are normalized
to the range [−1, 1] using the respective largest absolute values in the current trial
population:

∆d′i =
∆di

maxj |∆dj |
, ∆f ′i =

∆fi
maxj |∆fj |

(22)

The coordinates Vi = (∆d′i,∆f
′
i) are interpreted as vectors. The desired balance be-

tween exploration and exploitation is defined by a unit vector C, obtained from pa-
rameter Θ ∈ [0, π

2
], the angle of this vector in radians:

C = (cos(Θ), sin(Θ)) (23)

The amount of credit for each individual is then based on the ‘similarity’ of Vi to C.
Thus, it is computed as the scalar projection of Vi in the direction of C:

ci = Vi ·C, (24)

where the ‘·’ operator denotes the dot product. We choose an angle of Θ = π
4

, signaling
an equal importance of the fitness and diversity metrics. The authors of [45] found that
other values cause an undesirable positive-feedback phenomenon, where no balance is
maintained between exploration and exploitation, but the adaptation moves toward
one of the extremes.

An important modification we make w.r.t. the Compass method proposed in [47], is
that the method is applied in an individual-wise manner, instead of configuration-wise.
In other words, the original paper used the method to assign a reward to operator
configurations based on their most recent applications, while we use it to measure the
improvement of a trail vector compared to its parent.

For clarification, Figure 1 shows a simple example of the inner workings of the
Compass method. The values of ∆f ′i and ∆d′i of four individuals are shown in this
case, and the derivation of ci is only shown for the vector Vi, which is closest to the
‘needle of the compass’ C.

It is worth noting that the original Compass method [47] also takes into account
the wall clock time that elapsed during the application of each operator, to reward
operators with a short execution time. We discard this aspect, as we are not interested
in the execution time of operators.

Pareto Dominance This credit assignment scheme is adapted from the Pareto
Dominance method proposed in [46]. Similar to the Compass method described here-
inbefore, the diversity difference (Eq. 21) and the fitness difference (Eq. 15) are used
here. Since we want to simultaneously maximize fitness and diversity, a coordinate
Vi = (∆di,∆fi) dominates another coordinate Vj if all of its components are larger or

11



Figure 1: Illustration of the inner workings of the Compass credit method.

equal than the respective components of Vj , and at least one component is larger. In
this case, it can be expressed as follows:

dominates(i, j) ={
true if (∆di > ∆dj and ∆fi ≥ ∆fj) or (∆fi > ∆fj and ∆di ≥ ∆dj)

false otherwise
(25)

Now, each individual’s credit is computed as the number of other individuals it domi-
nates. Again, the original paper [46] used this method to compare configurations, while
we employ it in an individual-wise manner.

3.1.4 Reward: a configuration-wise improvement metric

After computing the individual-wise credit metric, these values need to be aggregated
into configuration-wise reward values, to be able to assess the performance of each
configuration in the past iteration. Let Ck denote the set of nonzero credit values
of individuals that were generated by configuration k in the previous iteration. We
consider six schemes that aggregate the credit values in Ck into a reward value rk
for the associated configuration. In all cases, if Ck = ∅, then rk = 0. The first four
methods listed here were proposed in [20] and later also used in AdapSS-DE [27] and
AdapSS-JADE [28]:

Average Absolute (AA)

rk =

∑|Ck|
j=1 Ck,j

|Ck|
, (26)

where |Ck| denotes the size of Ck.

Average Normalized (AN)

rk =
r′k

maxj r′j
, where r′k =

∑|Ck|
j=1 Ck,j

|Ck|
(27)

12



Extreme Absolute (EA)
rk = maxj Ck,j (28)

Extreme Normalized (EN)

r′k
maxj r′j

, where r′k = maxj Ck,j (29)

Finally, we propose two ranking-based reward schemes. The offspring is ranked in
ascending order according to their credit values ci. The reward rk is then based on the
ranks Rk of the individuals that are associated with configuration k. Individuals with
a null credit obtain Rk,j = 0. The ranking of individuals with positive credit starts
at 1, and individuals with equal credit obtain the same rank. The ranks can then be
aggregated in two ways:

Average Rank (AR)

rk =

∑|Rk|
j=1 Rk,j

|Rk|
(30)

Extreme Rank (ER)
rk = maxj Rk,j (31)

Since the ranking-based rewards are always approximately in the same range, there is
no need to also consider normalized variants.

3.1.5 Quality: a configuration-wise performance indicator

The rewards which are generated for each configuration are accumulated in the quality
metric, which is meant to capture the quality of the configuration in the current stage of
the search. It is initialized as qk = 0 (k = 1, . . . ,K), where K is the number of operator
configurations. We employ a simple weighted sum [69], which takes into account the
current quality and the newly acquired reward:

qk ← qk + α · (rk − qk) (32)

The parameter α (where 0 < α ≤ 1) controls the speed at which the quality is changed.
Intuitively, the parameter should be sufficiently high such that the algorithm can react
quickly when strategy adaptation is required due to, for example, changes in the fitness
landscape. On the other hand, α should not be too large, to ensure that the empirical
qualities are not heavily affected by randomness.

We only update the quality of an operator configuration if it was used by at least one
individual in the previous iteration, as it is unfair to reduce the quality of a configuration
if it was, by chance, not selected for application.

3.1.6 Application probability

The final step in our framework of adaptive operator selection is assigning the appli-
cation probability of each configuration based on the empirical quality measures. We
consider two methods for adapting this probability. Both methods ensure that a config-
uration never obtains a null probability. This is necessary, because such a configuration
would never be able to re-enter the pool of available configurations, as it is impossible
to increase its quality measure by accumulating rewards, if it is never selected. In a
stationary environment, this property may not be problematic, as such a poorly per-
forming configuration might better be avoided. However, it is important to consider
that we are dealing with a dynamic environment, where the optimal configuration not
only depends on the problem to solve, but also on the stage of the search. An operator
configuration that performs poorly at the start of the search might still become superior
in a later stage. The probabilities pk are initially all equal: pk = 1

K
(k = 1, . . . ,K).

13



Probability Matching (PM) Probability Matching [25] is a simple method
where each configuration is assigned at least the minimal probability pmin, and the
remaining probability is distributed proportionally according to the empirical quality
estimates qi.

pk ← pmin + (1−K · pmin) · qk∑K
j=1 qj

, (33)

Adaptive Pursuit (AP) In desire to accelerate the convergence on the optimal
operator configuration, Adaptive Pursuit [69] was proposed in the context of Genetic
Algorithms. The algorithm is inspired by pursuit algorithms for learning automata.
Adaptive Pursuit is made suitable for an adaptive environment by enforcing minimal
application probabilities, similar to Probability Matching. First, the index of the con-
figuration with the current highest quality estimate is denoted as θ:

θ = argmaxkqk (34)

Then, the application probabilities are computed as follows:

pk ←

{
pk + β · (pmax − pk) if k = θ

pk + β · (pmin − pk) otherwise
, (35)

where pmax is the maximum application probability, simply computed as:

pmax = 1− (K − 1) · pmin (36)

A configuration that has the highest quality in consecutive iterations will eventually
converge to pmax, at a rate dictated by the parameter β. All other configurations will
converge to pmin.

3.2 Adaptation of control parameters

An ongoing problem in the field of Evolutionary Algorithms is the sensitivity to con-
trol parameters [16]. Standard Differential Evolution has relatively few parameters,
namely the mutation rate F , crossover rate Cr, and population size M . Still, as the
optimal settings of control parameters is problem-dependent [64, 29, 48, 58], tuning
these parameters is essential in order to obtain the desired result.

For this reason, much effort has gone toward adapting the parameter values during
the optimization process, for example in jDE [10], JADE [76], and SaDE [57]. In our ex-
periments, we use the state-of-the-art adaptation scheme of SHADE [66], which adapts
the parameters F and Cr. The population size M is kept constant at a constant value
in our framework. Two important modifications are made w.r.t. the original SHADE:

• Parameters are adapted per operator configuration. There have been previous
works, e.g. [27, 57], which combined AOS with parameter adaptation. However,
these methods did not take into account that the optimal parameter values might
also be dependent on the employed mutation and crossover operators.

• Originally, SHADE was designed to produce parameter values to maximize fit-
ness improvements. Considering the direction of the present research, we adapt the
parameters based on the values produced by the credit assignment method (see
Section 3.1.3), such that the adaptation of operators and the adaptation of pa-
rameters work towards a common goal. When the ‘Fitness Improvement’ credit
is employed, adaptation occurs based on the same values as in original SHADE.

In the original version of SHADE, two memories MCr and MF , both of size H, are
maintained, which are used to generate values for Cr and F , respectively. Because we
need to adapt the parameters per operator configuration, such a memory is maintained
for each configuration individually. The original paper [66] reported good results when
using H = M . Since, in our implementation, each operator configuration maintains its
own memory, we need to make the memory size dependent on the number of config-
urations, such that adaptation does not slow down for large K. For this reason, and

14



because H should not be too small (to avoid oscillations due to randomness), we use
H = max(M

K
, 10). The memories for each configuration k are initialized as:

MCr
k ,MF

k ← 0.5 · 1 (37)

The successful values of Cr and F , of the most recent iteration only, are recorded in
SCrk and SFk , respectively. In original SHADE, parameter values are considered to be
successful when the generated offspring has an improved fitness value compared to its
parent. In the light of our generalized approach, where we aim to tune the parameters
for maximizing the offspring’s credit values, we consider a pair of F and Cr successful
if it generated an individual with a positive credit value.

At the end of each iteration of the DE algorithm, the hth component of both memory
vectors is updated. The index h is initialized as 1, and updated each iteration as:

h←

{
h+ 1 if h < H

1 otherwise
(38)

The memory of crossover rates is then updated as:

MCr
k,h ←

{
meanWA(SCrk ) if SCrk 6= ∅
MCr
k,h otherwise

, (39)

where meanWA denotes the weighted mean:

meanWA =

|SCr
k |∑
i=1

wki · SCrk,i , (40)

and wki is a weight proportional to the relative amount of credit of the ith individual
associated with configuration k, compared to other successful individuals associated
with the same configuration:

wki =
Ck,i∑|Ck|
j=1 Ck,j

(41)

The memory of mutation rates is updated as:

MF
k,h ←

{
meanWL(SFk ) if SFk 6= ∅
MF
k,h otherwise

, (42)

where meanWL is the weighted Lehmer mean:

meanWL(SFk ) =

∑|SF
k |

i=1 wki · (SFk,i)2∑|SF
k
|

i=1 wki · SFk,i
(43)

The actual crossover and mutation rates in each iteration are then generated using the
memories. For an individual that will use configuration k in the next iteration, they
are generated as follows:

Cri ← max(min[N (MCr
k,ri , 0.1), 1], 0) (44)

Fi ← min(C[MCr
k,ri , 0.1], 1) (45)

Where C is a Cauchy distribution,N is a normal distribution, and ri is chosen uniformly
at random in [1, H] for each individual. When Fi ≤ 0, Eq. 45 is re-applied until a valid
value is obtained.

15



3.3 Tying it all together: the adaptation manager

The discussed adaptation of operators and parameters is combined in an elegant and
modular algorithmic framework. The source code of the software, which is written in
C++, is available under the GNU GPLv3 license at https://github.com/rickboks/

auto-DE. Figure 2 outlines the general structure of the framework and the interaction
between the individual components.

Crossover

Mutation

Selection

Start iteration

Stop?

Trial population

Population

Fitness improvements Distances to mean

Credit

Reward

Quality

Application probability

Update sampling
distributions

Sample next
parameters

Select next
configurations

Update state Return next configurations and
parameters

Parameters              and operator
configurations for each individual

Fitness values, population mean,
distances to population mean of

parent population

DE

Adaptation
manager

Configuration-
wise

Individual-
wise

Figure 2: Diagram of the interaction between the (standard) Differential Evolution algo-
rithm, the ‘adaptation manager’ and their inner workings.

The two components – the DE algorithm and the so-called ‘adaptation manager’
– communicate at two stages of each iteration. At the start of each iteration, the
DE algorithm passes its current population with the associated fitness values to the
adaptation manager. The adaptation manager then internally stores the fitness values,
computes the mean position of the population, and computes the distance to this
population mean for each individual. It then returns the next values of F and Cr, as
well as the operator configurations for each individual, to the DE algorithm.

After the crossover step, the trial population (with associated fitness values) is
passed to the adaptation manager, which computes the distances of each trial vector to
the previous population mean. We now have access to, for each individual, the distance
to the population mean before and after application of the mutation and crossover
operators. In addition, the fitness improvements of the trial population compared to
the parent population are computed. The diversity-related data and fitness improve-
ments are used to compute the credit values, which indicate the improvements of each
trial individual compared to their parents according to the employed credit assignment
scheme.

The credit values have a central role in the strategy adaptation: they steer both the
adaptation of operators and the adaptation of parameters. For the AOS component,

16

https://github.com/rickboks/auto-DE
https://github.com/rickboks/auto-DE


they are aggregated into reward values, which are in turn used to update the quality of
each operator configuration. The quality values are then used to update the application
probability of each configuration in the next iteration.

Simultaneously, the parameter adaptation scheme utilizes the credit values to de-
termine which parameter values were most successful. This information is then used to
update the sampling distributions which are used to generate future values of F and
Cr.

It is worth mentioning that, while we use a modified SHADE parameter adaptation
scheme in our AOS framework, the individual-wise credit values can also be directly
integrated into most other parameter adaptation schemes. The reason for this is that
most parameter adaptation schemes in the current literature rely on the individual-wise
fitness improvement values. These values can be replaced by the values generated by a
credit assignment scheme of choice, by which the objective of the parameter adaptation
scheme is essentially modified. It should also be fairly trivial to transfer the proposed
adaptation manager to different population-based metaheuristics altogether.

4 Parameter tuning

While the AOS mechanism is meant to reduce the manual tuning effort, it actually
introduces additional parameters itself. However, instead of directly controlling DE’s
search strategy, these parameters control the adaptation behavior. The performance of
DE across different problems should, therefore, be much less sensitive to these AOS-
related parameters.

For the scope of the present research, we are mainly interested in the credit assign-
ment scheme, which controls the degree at which diversity and fitness improvements
are rewarded, respectively. In an attempt to find optimal settings for each credit as-
signment scheme, a racing algorithm is used to automatically tune the AOS-related
parameters for each credit assignment scheme individually. This will allow us to fairly
compare the performance of the seven resulting AOS methods afterwards.

Specifically, we use the irace package [43] for R, which implements the iterated
racing procedure [6, 7]. Iterated racing is an example of offline tuning, where there is
a clear distinction between the tuning phase, where it is attempted to find the optimal
configuration of an algorithm, and a testing phase, where the tuned algorithm is assessed
on unseen problem instances, or, in a real-world scenario, where it is used to optimize
the problem at hand.

The algorithm consists of races, the number of which depends on the number of
parameters to be tuned. At the start of each race, a finite set of configurations is
sampled at random. Until a minimum number of configurations remains or a maximum
number of experiments is performed, each configuration is tested on a problem instance,
and configurations that perform significantly worse than at least one other configuration
are discarded. The parameters’ sampling distributions are iteratively updated towards
the best found configurations, in an attempt to find better configurations in the future.
To identify which configurations perform significantly worse, the Friedman test [24] is
employed.

irace is given a budget of 105 experiments, where each experiment entails a single
run (which may include restarts) on a single benchmark function, which in turn is given
a budget of 105 ·n function evaluations. The 24 benchmark functions from the BBOB/-
COCO [35] suite are incorporated in the so-called training set, with a dimensionality of
n = 20. To avoid overfitting on a specific function instance, the training set includes the
first two instances of each benchmark function. irace randomly samples new problem
instances from this training set at the start of each race.

Since we are dealing with a heterogeneous set of problems, i.e., it is expected that
the performance of each algorithm can vary greatly across different problems, five new
problem instances from the training set are introduced at the start of each race instead
of the default setting of 1. This setting is recommended in the documentation of the
irace package [42], in order to find configurations which perform best overall, but not
necessarily on any individual problem. The remaining parameters of irace are left at
their default values.

17



irace requires a metric to be returned after each run, indicating the performance
of the generated configuration on the current problem instance. The objective function
value of the best found solution is used for this purpose. Considering the extremely
high computational load of the described tuning experiment, it is parallelized within
irace, and the seven tuning experiments, one for each credit assignment scheme, are
further parallelized using GNU Parallel [68].

There are five parameters to be tuned by irace, listed in Table 1. The parameter γ
controls the pmin parameter used in Probability Matching and Adaptive Pursuit. Such
a parameter is employed to make the setting of pmin valid for all configuration space
sizes. For example, a setting of pmin = 0.1 might be reasonable for a scenario with a
number of K = 4 configurations, but for K = 12, the value is invalid because 12·0.1 > 1.
Additionally, in most situations, it is probably desirable to set pmin sufficiently low such
that pmax is considerably larger, allowing the best configuration to be activated much
more frequently than the others.

The parameter γ indirectly controls the minimal total application probability of the
K − 1 inferior configurations:

pmin =
1

γ · (K − 1)
(46)

In this manner, the best configuration can attain an application probability of at most
γ−1
γ

, in which case the combined probability of all other configurations is 1
γ

.

Table 1: Parameters to be tuned by irace.

Parameter Valid settings Constraints

Reward {AN, AA, EN, EA, ER, AR} —
Probability {AP, PM} —

α {x ∈ R | 0 < x ≤ 1} —
β {x ∈ R | 0 < x ≤ 1} Probability = AP
γ {x ∈ R | 2 ≤ x ≤ 10} —

A population size of M = 5n = 100 is used following the findings of [52]. The algo-
rithms are run with a configuration space consisting of three mutation and two crossover
strategies, resulting in 3 ·2 = 6 operator configurations. We selected the rand/1, best/1,
and target-to-best/2 mutation strategies for this experiment, as they possess diverse
characteristics and showed good performance in specific function groups in our previ-
ous experiments [9], indicating that they, as an ‘ensemble’, might be successful across
a large variety of problems. The same experiments also showed a large advantage in
terms of performance for DE with either binomial or exponential crossover, depending
on the characteristics of the problem. For this reason we expect the AOS to benefit
from incorporating both of these crossover schemes in the configuration space.

Table 2: Abbreviations of the credit assignment methods. The last three columns indicate
which metrics (∆fi, r

d
i and ∆di) are used by each one. A black cell indicates that the

corresponding metric is used.

Credit assignment method Abbreviation ∆fi rdi ∆di

Fitness Improvement (Eq. 18) Fit
Combined Fitness and Diversity (Eq. 19) FitDiv
Combined Fitness and Squared Diversity (Eq. 20) FitSqDiv
Diversity Ratio (Eq. 16) Div
Squared Diversity Ratio (Eq. 17) SqDiv
Pareto Dominance (Eq. 25) Pareto
Compass (Eq. 24) Compass

18



In the following, we abbreviate some of the credit assignment methods described
in Section 3.1.3 in the interest of legibility. The abbreviations of the credit assignment
methods are listed in Table 2, as well as the diversity and fitness-related metrics they
each use. The tuned parameters, returned by irace, are listed in Table 3. Interestingly,
all seven algorithms converged on the Adaptive Pursuit probability scheme and a reward
scheme which uses the extreme credit values. All seven tuning experiments settled on
a high value of γ, signaling that it is beneficial to allow the best configuration to
obtain a high application probability of close to 90%. The algorithms with Compass
and Pareto Dominance credit have converged on a significantly higher value of α than
the others, indicating that a rapid adaptation of the quality metrics (qk) is desirable for
these algorithms. There are also huge differences in the values of β, which controls the
speed at which an operator configuration can increase its application probability once
its quality has surpassed all others. We expect this parameter to have a lesser impact
on the algorithm’s behavior compared to α, as Adaptive Pursuit adapts quite quickly,
even with a low value of β. The very low values of β for Div and SqDiv will, however,
certainly have an impact on the speed of adaptation.

Table 3: Parameters returned by the irace tuning procedure, tuned on the 24 functions of
BBOB/COCO

Credit assignment method
Parameter Fit FitDiv FitSqDiv Div SqDiv Compass Pareto

Reward ER EN EA EN EN EA EA
Probability AP AP AP AP AP AP AP

α 0.1 0.07 0.03 0.05 0.11 0.59 0.54
β 0.68 0.33 0.52 0.03 0.05 0.13 0.3
γ 9.65 8.74 8.15 9.92 8.38 9.52 8.98

5 Benchmarking tuned adaptive DEs

To find out which of the credit assignment schemes is most successful in directing the
course of DE’s strategy adaptation, the seven tuned adaptive DEs resulting from the
tuning procedure described in Section 4 are benchmarked on the 24 functions of the
BBOB suite, with dimensionality n = 20, an objective function evaluation budget of
105 ·n = 2 ·106, and the same further parameter settings as described in Section 4. Each
algorithm is run on the first five instances of each function, each of which is repeated
20 times, resulting in 100 independent runs of each algorithm on each function. In
addition, we include the six operator configurations used in the configuration space
of the AOS methods as ‘static’ DE instances. As a baseline for the AOS methods,
we consider a non-adaptive method that always assigns the application probability
uniformly across each of the six configurations and is termed ‘Uniform’. By considering
the Uniform method, we can determine if the AOS component actually has an impact
on the performance, or if any performance differences are simply caused by the fact
that multiple operator configurations are involved. The parameter adaptation of this,
and the six static DEs, is based on the fitness improvements, matching the ‘Fit’ credit
scheme and the original SHADE algorithm.

5.1 Fixed-budget comparison

Table 4 lists the mean best-reached error values and the number of successful runs (out
of 100) for each algorithm on each benchmark function. Here, the error value is the
objective function value of the best-found solution minus the objective function value
of the optimum, fopt. A trial was considered successful when an objective function value
of fopt+10−8 was obtained, after which the trial was terminated. Therefore, 10−8 is the
smallest possible mean error value. The statistical significance of the results is tested
with the one-sided Wilcoxon signed-rank test [73] from the scipy [71] package, which
tests if the distribution of best-reached function values (100 for each function) differs

19



between two algorithms with a confidence level of 5%. In Table 4, the lowest mean error
value(s) on each function are marked in bold. Cells are colored light gray when the
corresponding algorithm was found significantly worse than at least one other algorithm
on the function in question. A dark gray background is used if the corresponding
algorithm is significantly better than all other algorithms. In the table, ‘target-to-best’
is abbreviated as ‘ttb’.

Results From the ‘static’ DE algorithms (shown in the last 6 columns of Table 4),
i.e., those using only a single operator configuration, target-to-best/2/bin seems to show
to best overall performance. Apart from one failed trial on f13, it consistently solved
functions f1− f14. Target-to-best/2/exp performed slightly worse on these functions.
The other static DEs had varying success depending on the problem. The rand/1/∗ and
best/1/∗ DEs did not have a single successful run on functions f13 and f14, where the
target-to-best/∗ variants succeeded in most runs. Overall, it is clear that the different
operators can have a huge impact on the performance across different problems. For
example, rand/1/bin performs much better than the other static configurations on f17,
while best/1/bin, which underperforms on many other functions, outperforms the other
static DEs on f22.

Some algorithms, most notably best/1/∗, are seemingly suffering from the plateaus
in the fitness landscape of f7, which can trigger premature restarts due to the employed
restart criterion (see Section 2.4). However, for other algorithms, such as target-to-
best/2/∗, this appears not to be an issue, as they have a 100% success rate on this
problem.

The most competitive DE with AOS, and perhaps the best algorithm overall, seems
to be the Compass method, which has a 100% success rate on functions f1 − f14. It
solved several problems where the other AOS methods could not successfully complete
a single run. Interestingly, the Compass and Pareto methods were are able to solve
problems which the static DEs could not: for example, they hit f16’s final target 11
and 10 times respectively, where all other algorithms failed in every trial. Furthermore,
the same algorithms were also able to solve f23 several times where no other algorithm
could, and Compass was the only algorithm able to solve f18.

This might indicate that these AOS methods, instead of simply selecting the one
‘best’ strategy (which is already quite remarkable), are capable of utilizing the strengths
of the available strategies at the appropriate stages of the search, in such a way that it
performs better than any of the strategies individually. While Pareto shows this quality
on some functions, it also lagged behind on a number of other functions, making it much
less reliable than Compass. Another possible reason for the improved performance
compared to the static DEs is the modified ‘direction’ of the parameter adaptation,
dictated by the credit assignment scheme.

In general, the Uniform method performs considerably worse than the ‘real’ AOS
methods. At the very least, this shows that the AOS methods adapt their strategies in
some meaningful way. The three Fit∗ methods perform very similarly, as do the Div
and SqDiv methods. Div and SqDiv generally perform better that the Fit∗ variants on
most functions, indicating that the diversity ratio alone is already capable of steering the
direction of adaptation, without necessarily having to consider a second, fitness-related,
measure. The Fit∗ methods did however perform better on a few functions, showing
that both metrics have their merit in different situations. The Compass method seems
to be able to balance the fitness- and diversity-related measures the best out of all AOS
methods.

The statistical testing results are summarized in Table 5, which shows the number
of problems on which each algorithm is significantly better or worse than another
algorithm. It also shows the number of functions on which they are indistinguishable
(neither significantly better nor worse). The columns are compartmentalized into ‘wins’,
‘ties’, and ‘losses’ (W/T/L) from the perspective of the algorithm corresponding to the
row. For example, Compass is significantly better than Fit 9 times, indistinguishable
10 times, and worse 5 times. The table is symmetrical in the main diagonal, except the
wins and losses are swapped. The algorithms that have the most wins against a certain
algorithm are highlighted in bold, and those with the most losses are signified with a
light gray background.

20



Table 4: Mean best-reached error values and number of successful runs (out of 100) for seven AOS methods, a baseline method ‘Uniform’ and the six
static DEs. See Section 5.1 for an explanation of usage of boldface fonts and cell coloring.

Fit FitDiv FitSqDiv Div SqDiv Compass Pareto Uniform rand/1/bin rand/1/exp best/1/bin best/1/exp ttb/2/bin ttb/2/exp
function mean succ mean succ mean succ mean succ mean succ mean succ mean succ mean succ mean succ mean succ mean succ mean succ mean succ mean succ

f1 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100
f2 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100
f3 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 6.19 0 1e−8 100 1e−8 100 1e−8 100
f4 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1.17e+1 0 1e−8 100 1e−8 100 1e−8 100
f5 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100
f6 1e−8 100 1.0e−8 99 1e−8 100 1e−8 100 1e−8 100 1e−8 100 7.75e−3 88 1e−8 100 1e−8 100 2.33e−1 88 1e−8 100 7.36e−2 93 1e−8 100 1e−8 100
f7 1.96e−3 89 3.01e−3 85 9.0e−3 82 6.99e−3 83 1.08e−2 69 1e−8 100 1e−8 100 4.2e−1 1 2.45e−2 31 7.13e−3 62 1.02 0 2.67e−1 0 1e−8 100 1e−8 100
f8 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100
f9 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1e−8 100 5.2e−1 94 1e−8 100 1e−8 100 9.85e−2 99 1e−8 100 1e−8 100 1e−8 100 5.99 41

f10 2.57e−6 22 2.56e−6 24 7.16e−6 34 6.49e−7 80 6.17e−7 75 1e−8 100 5.5e−7 78 2.68e−6 0 7.21e+1 5 3.81e−3 1 1.17e−5 0 5.91e−1 0 1e−8 100 1e−8 100
f11 1.07e−8 90 1.02e−8 93 1.03e−8 91 1e−8 100 1e−8 100 1e−8 100 1e−8 100 1.12e−8 73 1.01e−8 95 1e−8 100 2.5e−8 11 2.01e−8 14 1e−8 100 1e−8 100
f12 1e−8 100 1e−8 100 1.0e−8 98 1e−8 100 1e−8 100 1e−8 100 1.86e−4 98 1e−8 100 1.01e−8 97 1.0e−8 98 1.01e−8 87 1.33e−8 34 1e−8 100 2.01e−4 96
f13 7.48e−8 12 2.16e−7 6 3.5e−6 7 2.25e−8 33 2.96e−8 23 1e−8 100 5.33e−7 41 2.18e−3 0 5.15e−4 0 5.09e−7 0 5.58e−3 0 3.83e−3 0 1.0e−8 99 1.04e−8 95
f14 4.43e−7 4 3.96e−7 5 6.32e−7 7 5.19e−8 51 1.6e−7 55 1e−8 100 1.75e−7 50 1.45e−6 0 1.42e−5 0 7.37e−4 0 1.96e−6 0 1.84e−5 0 1e−8 100 1.1e−8 89
f15 1.59e+1 0 1.67e+1 0 1.62e+1 0 1.62e+1 0 1.64e+1 0 1.87e+1 0 1.57e+1 0 1.62e+1 0 1.58e+1 0 4.12e+1 0 1.88e+1 0 2.85e+1 0 1.55e+1 0 4.15e+1 0
f16 2.35 0 1.9 0 1.55 0 1.28 0 1.51 0 1.31e−1 11 3.02e−1 10 1.25 0 2.81 0 3.48 0 2.08 0 1.79 0 3.59 0 3.63 0
f17 8.38e−4 0 1.13e−3 0 2.45e−3 0 3.63e−3 0 5.33e−3 0 1.07e−5 32 9.15e−2 7 3.66e−2 0 3.29e−5 35 9.78e−2 1 9.09e−3 0 1.55e−2 0 4.22e−3 1 1.69 0
f18 6.3e−2 0 5.88e−2 0 4.8e−2 0 7.26e−2 0 7.74e−2 0 3.74e−4 3 1.34e−1 0 3.57e−1 0 7.25e−3 0 9.1e−2 0 1.38e−1 0 2.18e−1 0 2.52e−2 0 5.57 0
f19 6.92e−1 0 6.78e−1 0 5.91e−1 0 6.14e−1 0 6.63e−1 0 9.74e−1 0 9.42e−1 0 4.44e−1 0 6.62e−1 0 8.54e−1 0 6.07e−1 0 6.49e−1 0 1.01 0 1.74 0
f20 3.43e−2 59 1.1e−1 26 8.25e−2 36 1.14e−2 83 8.42e−3 87 3.12e−2 60 2.73e−3 96 1.14e−1 19 1.13e−6 76 1e−8 100 5.73e−1 0 1e−8 100 1.69e−1 0 2.39e−3 43
f21 1e−8 100 1e−8 100 1e−8 100 7.07e−3 99 3.63e−5 99 1.77e−1 85 2.43e−1 82 1e−8 100 5.92e−1 62 1e−8 100 1e−8 100 1e−8 100 1.95e−2 99 1e−8 100
f22 3.46e−1 47 3.12e−1 51 3.82e−1 44 5.51e−1 18 5.72e−1 16 8.9e−1 1 8.98e−1 2 3.55e−1 49 1.53 0 5.8e−1 17 1.27e−1 66 3.68e−1 37 4.02e−1 21 3.08e−1 47
f23 3.26e−1 0 2.42e−1 0 2.53e−1 0 1.6e−1 0 2.07e−1 0 3.9e−2 6 5.35e−2 8 1.58e−1 0 3.34e−1 0 4.6e−1 0 1.72e−1 0 1.89e−1 0 4.03e−1 0 4.09e−1 0
f24 3.09e+1 0 3.01e+1 0 2.95e+1 0 3.17e+1 0 3.2e+1 0 3.91e+1 0 3.59e+1 0 2.3e+1 0 4.09e+1 0 5.08e+1 0 3.55e+1 0 3.2e+1 0 3.55e+1 0 5.86e+1 0

Table 5: Number of times the algorithm corresponding to the table’s row is significantly better (Win), significantly worse (Loss), or indistinguishable
(Tie) compared to the algorithm corresponding to a column, out of the 24 test functions. See Section 5.1 for an explanation of the usage of boldface
and cell coloring.

Fit FitDiv FitSqDiv Div SqDiv Compass Pareto Uniform rand/1/bin rand/1/exp best/1/bin best/1/exp ttb/2/bin ttb/2/exp total
algorithm W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L W T L

Fit — 3 18 3 5 16 3 3 14 7 4 13 7 5 10 9 7 9 8 7 13 4 7 12 5 9 11 4 13 9 2 10 11 3 7 11 6 9 9 6 89 156 67
FitDiv 3 18 3 — 3 19 2 2 15 7 4 14 6 5 9 10 7 9 8 6 14 4 8 12 4 9 11 4 13 9 2 10 12 2 7 10 7 9 9 6 86 161 65

FitSqDiv 3 16 5 2 19 3 — 3 15 6 4 14 6 5 9 10 7 8 9 7 14 3 7 13 4 10 10 4 14 8 2 10 12 2 6 12 6 9 9 6 87 159 66
Div 7 14 3 7 15 2 6 15 3 — 4 20 0 6 10 8 9 10 5 8 13 3 10 11 3 10 11 3 14 9 1 12 10 2 5 13 6 9 10 5 107 161 44

SqDiv 7 13 4 6 14 4 6 14 4 0 20 4 — 6 10 8 9 10 5 8 11 5 10 12 2 8 13 3 14 7 3 11 11 2 5 13 6 10 9 5 100 157 55
Compass 9 10 5 10 9 5 10 9 5 8 10 6 8 10 6 — 7 14 3 10 9 5 10 10 4 11 9 4 13 7 4 12 7 5 6 14 4 11 10 3 125 128 59

Pareto 8 9 7 8 9 7 9 8 7 5 10 9 5 10 9 3 14 7 — 9 9 6 11 8 5 10 8 6 13 5 6 10 7 7 4 12 8 9 9 6 104 118 90
Uniform 4 13 7 4 14 6 3 14 7 3 13 8 5 11 8 5 9 10 6 9 9 — 5 11 8 8 10 6 14 7 3 11 9 4 6 11 7 9 9 6 83 140 89

rand/1/bin 5 12 7 4 12 8 4 13 7 3 11 10 2 12 10 4 10 10 5 8 11 8 11 5 — 10 8 6 12 7 5 10 8 6 6 10 8 9 8 7 82 130 100
rand/1/exp 4 11 9 4 11 9 4 10 10 3 11 10 3 13 8 4 9 11 6 8 10 6 10 8 6 8 10 — 10 6 8 7 10 7 3 12 9 6 12 6 66 131 115
best/1/bin 2 9 13 2 9 13 2 8 14 1 9 14 3 7 14 4 7 13 6 5 13 3 7 14 5 7 12 8 6 10 — 8 9 7 4 8 12 9 7 8 57 98 157
best/1/exp 3 11 10 2 12 10 2 12 10 2 10 12 2 11 11 5 7 12 7 7 10 4 9 11 6 8 10 7 10 7 7 9 8 — 5 9 10 9 8 7 61 123 128

ttb/2/bin 6 11 7 7 10 7 6 12 6 6 13 5 6 13 5 4 14 6 8 12 4 7 11 6 8 10 6 9 12 3 12 8 4 10 9 5 — 9 14 1 98 149 65
ttb/2/exp 6 9 9 6 9 9 6 9 9 5 10 9 5 9 10 3 10 11 6 9 9 6 9 9 7 8 9 6 12 6 8 7 9 7 8 9 1 14 9 — 72 123 117

21



The algorithms Div, SqDiv, Compass and Pareto are significantly better than other
algorithms most frequently overall. Compass has the most total wins by a sizable mar-
gin, and also against most algorithms individually. Div has the fewest losses overall, and
it won about 2.5 times as often as it has lost. This is quite interesting, as Table 4 did
not necessarily showcase any functions on which Div excelled, but this statistic clearly
demonstrates the consistent performance of the algorithm across many problems. Div
is significantly better than SqDiv on 4 problems, and never significantly worse, suggest-
ing that SqDiv might be obsolete. On the other hand, FitSqDiv is significantly better
than FitDiv on 3 functions. It seems that, when only using the squared diversity ratio
as credit, the focus on stimulating diversity is too strong, but it still has merit when
combined with a fitness-based metric.

The best/1/bin and best/1/exp have considerably many losses, signaling that these
DEs are not very versatile. Pareto has more losses than the other AOS methods, as a
result of its sub-par performance on some functions, as discussed earlier. It is interesting
that none of the static DE configurations ever has the most wins against another
algorithm, while the AOS methods never have the most losses, indicating that the AOS
methods, Compass and Div in particular, are more versatile.

5.2 Fixed-target comparison

Figures 3 - 5 show the Empirical Cumulative Distribution Functions (ECDFs) of run-
times of all the algorithms on each of the 24 functions. The ECDFs show the proportion
of targets hit within a specified budget, aggregated over all runs on each function. A
total number of 51 targets ftarget = fopt + ∆f is used, where the ∆f are spaced uni-
formly on a logarithmic scale in [102, 10−8]. A large cross (×) in the ECDFs indicates
the median length of unsuccessful runs. In this case, unsuccessful runs always have the
same length: the evaluation budget, i.e., 2 · 106. Runtimes to the right of the cross have
at least one unsuccessful run, and have been computed artificially through simulated
restarts [34]. The small dots to the right side of the plot indicate, for each algorithm,
the fraction of targets which were hit at least once, across all independent runs.

In addition to the 15 algorithms shown in Table 4, we benchmark two other state-
of-the-art optimizers using the exact same evaluation budget, number of independent
runs, etc., as a reference:

• BIPOP-CMA-ES The Bi-Population Covariance Matrix Evolution Strate-
gies [32] is a highly competitive variant of the well-known CMA-ES [31], lever-
aging two restart strategies: one with increasing population size and one with a
small population size. The optimizer showed a considerable advantage over its
competitors on the more difficult BBOB functions in [36]. We used the pycma

package [33] to benchmark1 the algorithm on BBOB with its default parameters.

• U-AOS-FW The U-AOS-FW is a Differential Evolution algorithm with adaptive
operator selection resulting from a hyperparameter tuning experiment from the
Unified AOS Framework [60], which outperformed other prominent AOS meth-
ods. For this reason, the U-AOS-FW is included in the performance comparison as
the state-of-the art AOS method for DE. The most distinctive feature of the algo-
rithm is the recursive probability matching mechanism [59], which uses the well-
known Bellman equation, ubiquitous in the field of reinforcement learning [65].
The algorithm has nine different mutation methods at its disposal. U-AOS-FW
is benchmarked2using the source code provided by the original authors with the
hyperparameters listed in [60].

Note that the aim of this thesis is not necessarily to ‘beat’ these state-of-the art
optimizers, but rather to devise a robust adaptation methodology that is capable of
selecting an appropriate strategy for a given problem in real time, taking into account
the exploration-exploitation dilemma. While Differential Evolution is under consider-
ation in this work, the proposed approach could, if deemed successful, be applied to

1The source code for performing the BIPOP-CMA-ES benchmarking experiment is available at:
https://github.com/rickboks/benchmark-bipop-cmaes-bbob.

2The source code for performing the U-AOS-FW benchmarking experiment is available at:
https://github.com/rickboks/Tune-AOS-bbob.

22

https://github.com/rickboks/benchmark-bipop-cmaes-bbob
https://github.com/rickboks/Tune-AOS-bbob


other (state-of-the-art) optimizers to reinforce their robustness across problems with
varying characteristics.

Results From the ECDFs, we can see that the BIPOP-CMA-ES generally needs
fewer function evaluations to hit any target than any of the DE variants. In addition,
it is able to consistently solve f15, where all DEs failed, f16, where only Pareto and
Compass had a few successful runs, and f18, where only the Compass succeeded a few
times. However, the BIPOP-CMA-ES is also outperformed on a few functions, most
notably f3, f4 and f20.

On the ‘simple’ functions, which most algorithms solve consistently, we see that a
static DE method often converges faster than the best AOS method. This is not sur-
prising, as there is an overhead associated with finding the appropriate operator con-
figurations. However, on the harder functions, where static configurations show varying
performance depending on the problem, the AOS methods are much more consistent.
As we also saw in Table 4, the Compass method seems to perform best; its performance
is comparable to the best static DE algorithm on most functions, and on some func-
tions, it is even (significantly) better than any of the static DEs. This is a great result
for any AOS method: it signals that the AOS is at least able to successfully identify a
good operator configuration for a given problem, and in some cases, it is even able to
combine the strengths of different operators in such a way that the performance of the
‘ensemble’ is better than that of any of the individual configurations.

Most notable are the results on functions f16, f18 and f23, where the Compass DE
is able to solve problems where the static DEs were only able to reach about 50% of the
targets. The only problem where Compass has a considerable disadvantage compared
to most other DEs, is f22.

The U-AOS-FW outperformed all other DE methods on functions f17 and f18, but
performs rather poorly on a much larger number of functions. We find the performance
of the other AOS methods, and Compass in particular, to be much more competitive.

5.3 Behavioral analysis

During the experiments described in Section 5, we collected behavioral data to gain an
insight into the course of adaptation. Three types of data are collected at the end of
each iteration:

• Operator configuration activations: In each iteration, we record for each
configuration the number of individuals (out of M) which used that configuration
in that iteration. Not only does this give us an insight into which operators are
deemed most effective by each credit assignment scheme, but also into the course
of adaptation: how quickly does the algorithm converge on a certain operator
configuration, how many transitions occur during the search, etc. ?

• Mean parameter values: the mean values of the generated parameter values
of F and Cr across the population are logged. Of course, it is interesting to
observe the course of the adaptation of parameters on different problems, and
see if they follow the canonical recommendations in literature [62, 54, 75]. More
importantly, in our framework, the adaptation of parameters is based on the
generated credit values. We are interested in discovering whether the usage of
different credit assignment schemes results in different behavior of the employed
parameter adaptation scheme. For example, are large values of F more common
when using diversity-driven credit assignment schemes?

• Population diversity: the population diversity is computed as the mean of the
Euclidean distances of each individual to the mean position of the population (see
Eq. 12). It is especially interesting to study the course of the population diversity
when different credit assignment schemes are used. Also, we might gain knowledge
about how the population reacts when transitions in parameter values or operator
configurations occur. The perspective can also be flipped: how does the strategy
adaptation react when the population suddenly converges or diverges?

23



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

Compass
Pareto
U-AOS-FW
ttb 2 exp
rand 1 exp
Div
SqDiv
rand 1 bin
FitDiv
Fit
best 1 exp
FitSqDiv
ttb 2 bin
Uniform
best 1 bin
CMA-ESbbob f1, 20-D

51 targets: 100..1e-08
100 instances

v2.4

1 Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
Compass
ttb 2 exp
Pareto
rand 1 exp
SqDiv
Div
rand 1 bin
Fit
FitDiv
best 1 exp
FitSqDiv
ttb 2 bin
Uniform
best 1 bin
CMA-ESbbob f2, 20-D

51 targets: 100..1e-08
100 instances

v2.4

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

best 1 bin
CMA-ES
U-AOS-FW
Uniform
Compass
FitSqDiv
Fit
FitDiv
rand 1 bin
ttb 2 bin
best 1 exp
Pareto
ttb 2 exp
Div
SqDiv
rand 1 expbbob f3, 20-D

51 targets: 100..1e-08
100 instances

v2.4

3 Rastrigin separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES
best 1 bin
U-AOS-FW
Uniform
Compass
Fit
FitDiv
rand 1 bin
best 1 exp
Pareto
FitSqDiv
SqDiv
Div
ttb 2 bin
ttb 2 exp
rand 1 expbbob f4, 20-D

51 targets: 100..1e-08
100 instances

v2.4

4 Skew Rastrigin-Bueche separ

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

rand 1 bin
FitDiv
Fit
FitSqDiv
Div
ttb 2 bin
SqDiv
Pareto
Compass
best 1 bin
Uniform
rand 1 exp
best 1 exp
ttb 2 exp
U-AOS-FW
CMA-ESbbob f5, 20-D

51 targets: 100..1e-08
100 instances

v2.4

5 Linear slope

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

Pareto
rand 1 exp
best 1 exp
Div
SqDiv
Compass
ttb 2 exp
U-AOS-FW
Fit
rand 1 bin
best 1 bin
FitSqDiv
FitDiv
Uniform
ttb 2 bin
CMA-ESbbob f6, 20-D

51 targets: 100..1e-08
100 instances

v2.4

6 Attractive sector

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

best 1 bin
best 1 exp
Uniform
rand 1 bin
rand 1 exp
SqDiv
Div
FitDiv
Fit
FitSqDiv
Pareto
ttb 2 bin
Compass
ttb 2 exp
U-AOS-FW
CMA-ESbbob f7, 20-D

51 targets: 100..1e-08
100 instances

v2.4

7 Step-ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
Compass
Pareto
FitDiv
ttb 2 exp
rand 1 bin
best 1 bin
Fit
FitSqDiv
rand 1 exp
Div
SqDiv
best 1 exp
Uniform
ttb 2 bin
CMA-ESbbob f8, 20-D

51 targets: 100..1e-08
100 instances

v2.4

8 Rosenbrock original

Figure 3: Empirical Cumulative Distribution Functions of runtimes for functions f1− f8.

24



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

U-AOS-FW
ttb 2 exp
Pareto
rand 1 exp
Compass
best 1 bin
rand 1 bin
ttb 2 bin
Div
FitSqDiv
FitDiv
Fit
best 1 exp
SqDiv
Uniform
CMA-ESbbob f9, 20-D

51 targets: 100..1e-08
100 instances

v2.4

9 Rosenbrock rotated

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

best 1 exp
best 1 bin
Uniform
rand 1 exp
rand 1 bin
FitDiv
Fit
FitSqDiv
Pareto
SqDiv
Div
ttb 2 exp
Compass
U-AOS-FW
ttb 2 bin
CMA-ESbbob f10, 20-D

51 targets: 100..1e-08
100 instances

v2.4

10 Ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

best 1 bin
best 1 exp
Uniform
rand 1 bin
FitSqDiv
Fit
Div
FitDiv
SqDiv
Compass
Pareto
U-AOS-FW
rand 1 exp
ttb 2 bin
ttb 2 exp
CMA-ESbbob f11, 20-D

51 targets: 100..1e-08
100 instances

v2.4

11 Discus

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
best 1 exp
Pareto
FitSqDiv
ttb 2 exp
SqDiv
rand 1 exp
best 1 bin
Compass
Uniform
Fit
rand 1 bin
FitDiv
Div
ttb 2 bin
CMA-ESbbob f12, 20-D

51 targets: 100..1e-08
100 instances

v2.4

12 Bent cigar

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

best 1 exp
best 1 bin
rand 1 exp
Uniform
rand 1 bin
FitDiv
Fit
FitSqDiv
SqDiv
Div
Pareto
U-AOS-FW
ttb 2 exp
Compass
ttb 2 bin
CMA-ESbbob f13, 20-D

51 targets: 100..1e-08
100 instances

v2.4

13 Sharp ridge

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

best 1 exp
best 1 bin
Uniform
rand 1 exp
rand 1 bin
FitDiv
Fit
FitSqDiv
Div
Pareto
SqDiv
ttb 2 exp
U-AOS-FW
ttb 2 bin
Compass
CMA-ESbbob f14, 20-D

51 targets: 100..1e-08
100 instances

v2.4

14 Sum of different powers

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ttb 2 exp
rand 1 exp
U-AOS-FW
best 1 exp
Uniform
best 1 bin
FitDiv
ttb 2 bin
rand 1 bin
FitSqDiv
Fit
Compass
Div
SqDiv
Pareto
CMA-ESbbob f15, 20-D

51 targets: 100..1e-08
100 instances

v2.4

15 Rastrigin

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
ttb 2 bin
ttb 2 exp
best 1 bin
best 1 exp
Uniform
FitDiv
Fit
rand 1 exp
FitSqDiv
SqDiv
rand 1 bin
Div
Pareto
Compass
CMA-ESbbob f16, 20-D

51 targets: 100..1e-08
100 instances

v2.4

16 Weierstrass

Figure 4: Empirical Cumulative Distribution Functions of runtimes for functions f9− f16.

25



0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

ttb 2 exp
Uniform
best 1 exp
best 1 bin
SqDiv
FitSqDiv
Div
Fit
FitDiv
ttb 2 bin
rand 1 exp
Pareto
Compass
rand 1 bin
U-AOS-FW
CMA-ESbbob f17, 20-D

51 targets: 100..1e-08
100 instances

v2.4

17 Schaffer F7, condition 10

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ttb 2 exp
best 1 exp
Uniform
best 1 bin
FitSqDiv
Div
SqDiv
FitDiv
rand 1 exp
Fit
rand 1 bin
ttb 2 bin
Pareto
Compass
U-AOS-FW
CMA-ESbbob f18, 20-D

51 targets: 100..1e-08
100 instances

v2.4

18 Schaffer F7, condition 1000

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ttb 2 exp
ttb 2 bin
Pareto
rand 1 exp
Compass
U-AOS-FW
best 1 exp
best 1 bin
SqDiv
FitDiv
FitSqDiv
rand 1 bin
Uniform
Fit
Div
CMA-ESbbob f19, 20-D

51 targets: 100..1e-08
100 instances

v2.4

19 Griewank-Rosenbrock F8F2

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

best 1 bin
CMA-ES
ttb 2 bin
Uniform
U-AOS-FW
FitDiv
FitSqDiv
ttb 2 exp
Compass
Fit
Div
rand 1 bin
SqDiv
Pareto
best 1 exp
rand 1 expbbob f20, 20-D

51 targets: 100..1e-08
100 instances

v2.4

20 Schwefel x*sin(x)

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
rand 1 bin
CMA-ES
Compass
Pareto
SqDiv
Div
ttb 2 bin
Fit
ttb 2 exp
Uniform
best 1 exp
best 1 bin
FitSqDiv
rand 1 exp
FitDivbbob f21, 20-D

51 targets: 100..1e-08
100 instances

v2.4

21 Gallagher 101 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
rand 1 bin
Compass
Pareto
rand 1 exp
Div
SqDiv
ttb 2 bin
CMA-ES
Uniform
ttb 2 exp
best 1 exp
Fit
FitSqDiv
FitDiv
best 1 binbbob f22, 20-D

51 targets: 100..1e-08
100 instances

v2.4

22 Gallagher 21 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
ttb 2 exp
ttb 2 bin
best 1 exp
best 1 bin
Fit
Uniform
FitSqDiv
FitDiv
SqDiv
Div
rand 1 exp
rand 1 bin
Compass
Pareto
CMA-ESbbob f23, 20-D

51 targets: 100..1e-08
100 instances

v2.4

23 Katsuuras

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW
ttb 2 exp
rand 1 bin
ttb 2 bin
best 1 exp
Div
best 1 bin
rand 1 exp
SqDiv
FitDiv
Fit
Uniform
Compass
Pareto
FitSqDiv
CMA-ESbbob f24, 20-D

51 targets: 100..1e-08
100 instances

v2.4

24 Lunacek bi-Rastrigin

Figure 5: Empirical Cumulative Distribution Functions of runtimes for functions f17− f24.

26



5.3.1 Operator configuration activations

Figure 6 shows a heatmap for each of the seven AOS methods (excluding ‘Uniform’,
for obvious reasons), containing the proportion of activations for each of the six oper-
ator configurations, aggregated across all runs on each function. The proportions are
obtained simply by adding all activations of each operator across all 100 runs together,
and dividing by the combined number of activations, such that the proportions of ac-
tivations of the six configurations sums to 1.

From the figure, it is immediately evident that binomial crossover is, in general,
activated much more frequently than exponential crossover. On many functions, the
∗/exp configurations are only activated slightly more frequently than their minimal
application probability pmin. However, for all algorithms except Compass and Pareto,
target-to-best/2/exp still is used frequently on f15, f16, f23 and f24.

Within the Compass algorithm, target-to-best/2/bin is activated extremely fre-
quently, and it also consistently uses rand/1/bin (but to a lesser degree) on most func-
tions. Compared to the other algorithms, Compass’ activation rates are very similar
across all functions. It is very interesting that on f20, on which the static target-to-
best/2/bin DE performed very poorly (see Table 4), Compass activates this operator
configuration much less frequently, and uses rand/1/bin prominently instead. The other
six algorithms use all three of the ∗/bin configurations quite frequently, and the pro-
portions differ drastically across functions. It is surprising that the rand/1/exp and
best/1/exp configurations are not activated more frequently on f20, as they, as static
DEs, performed significantly better than the ∗/bin variants on this function, as shown
in Table 4. The only AOS method that did activate these configurations somewhat
frequently is Pareto, which out of the AOS methods also performed best on f20.

The activation rates are quite similar between the three Fit∗ algorithms, as are those
between Div and SqDiv. The diversity-driven Div and SqDiv activate best/1/bin less
frequently, which is understandable as this strategy is highly exploitative and will likely
produce small credit values. Instead, these two algorithms utilize target-to-best/2/bin
more prominently. Pareto uses the rand/1/bin strategy much more frequently than
other credit schemes, and also utilizes exponential crossover relatively often on some
functions.

Overall, it is clear that the selected credit assignment scheme has a real impact on
the activation of operators. The presented results do raise some questions, which will
be addressed in the remainder of this thesis:

• Since exponential crossover is activated so infrequently, can we assume that it is
unnecessary to include it in the configuration space, and that excluding it will
result in an improved performance?

• Should other operators be included in the configuration space to improve the
performance or robustness of the AOS methods?

• Do the AOS methods converge on one operator configuration and stick with it
during the entire run, or do ‘transitions’ between operator configurations occur
commonly? For example, does Compass converge on target-to-best/2/bin in ap-
proximately 75% of the runs and on rand/1/bin in 10% of the runs, or do most
runs consist of transitions between these two configurations (at certain stages)?

5.3.2 Transitions between operator configurations

Figure 6 gives a good insight into which operators are most prominent on certain
functions, but we are unable to extract knowledge about transitions between operator
configurations within a run. To address this, we measure the number of transitions
within each (restarted) run.

A transition is considered a change in the operator configuration which has the ma-
jority of activations during a streak of at least 10 iterations. The initial transition, i.e.,
the first time any operator configuration obtains a majority, is also counted. During the
tuning phase (see Section 4), all the AOS methods converged on the Adaptive Pursuit
method for probability assignment, which results in rapid and pronounced transitions
once the quality of the current best configuration is surpassed. Due to this, prolonged

27



f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
best/1/bin
rand/1/bin

target-to-best/2/bin
best/1/exp
rand/1/exp

target-to-best/2/exp

0.47 0.27 0.43 0.36 0.48 0.51 0.37 0.5 0.38 0.57 0.36 0.28 0.42 0.42 0.2 0.06 0.34 0.2 0.2 0.28 0.29 0.36 0.04 0.11
0.32 0.37 0.19 0.26 0.17 0.22 0.3 0.3 0.32 0.29 0.39 0.33 0.24 0.33 0.09 0.05 0.25 0.41 0.09 0.37 0.3 0.24 0.05 0.06
0.15 0.22 0.23 0.25 0.25 0.14 0.25 0.13 0.21 0.05 0.08 0.14 0.27 0.13 0.31 0.17 0.28 0.27 0.16 0.24 0.2 0.22 0.16 0.21
0.02 0.05 0.05 0.03 0.05 0.09 0.03 0.02 0.03 0.05 0.08 0.13 0.03 0.07 0.04 0.07 0.07 0.05 0.09 0.04 0.07 0.06 0.05 0.03
0.02 0.05 0.06 0.05 0.02 0.02 0.03 0.02 0.03 0.02 0.06 0.08 0.02 0.02 0.02 0.06 0.04 0.05 0.03 0.04 0.1 0.08 0.07 0.02
0.02 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.02 0.02 0.34 0.58 0.03 0.02 0.43 0.03 0.05 0.05 0.62 0.57

F
it

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
best/1/bin
rand/1/bin

target-to-best/2/bin
best/1/exp
rand/1/exp

target-to-best/2/exp

0.58 0.33 0.46 0.38 0.44 0.63 0.39 0.61 0.56 0.54 0.38 0.4 0.5 0.45 0.19 0.06 0.39 0.21 0.28 0.48 0.43 0.48 0.05 0.15
0.19 0.39 0.29 0.3 0.09 0.16 0.28 0.13 0.13 0.33 0.39 0.24 0.21 0.33 0.07 0.06 0.24 0.35 0.09 0.27 0.22 0.23 0.08 0.06
0.15 0.16 0.17 0.23 0.39 0.13 0.25 0.16 0.19 0.04 0.09 0.2 0.22 0.11 0.26 0.25 0.24 0.34 0.18 0.14 0.24 0.18 0.16 0.17
0.02 0.06 0.03 0.03 0.03 0.04 0.03 0.05 0.07 0.03 0.06 0.09 0.03 0.06 0.04 0.07 0.08 0.05 0.1 0.06 0.04 0.05 0.06 0.03
0.03 0.04 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.05 0.04 0.02 0.02 0.03 0.06 0.03 0.03 0.03 0.03 0.04 0.04 0.09 0.03
0.03 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.02 0.41 0.5 0.03 0.02 0.32 0.02 0.03 0.03 0.55 0.56

F
itD

iv

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
best/1/bin
rand/1/bin

target-to-best/2/bin
best/1/exp
rand/1/exp

target-to-best/2/exp

0.55 0.23 0.35 0.32 0.38 0.46 0.3 0.57 0.42 0.61 0.41 0.44 0.46 0.51 0.24 0.08 0.4 0.4 0.32 0.4 0.33 0.42 0.06 0.18
0.22 0.28 0.27 0.3 0.14 0.2 0.28 0.17 0.16 0.07 0.22 0.09 0.19 0.21 0.12 0.1 0.19 0.14 0.09 0.29 0.3 0.24 0.11 0.1
0.16 0.35 0.26 0.29 0.4 0.23 0.33 0.18 0.22 0.07 0.15 0.17 0.23 0.13 0.25 0.28 0.22 0.27 0.14 0.18 0.19 0.18 0.26 0.21
0.03 0.03 0.05 0.03 0.03 0.05 0.03 0.03 0.12 0.19 0.11 0.2 0.06 0.09 0.05 0.08 0.11 0.11 0.16 0.07 0.08 0.06 0.06 0.04
0.03 0.05 0.03 0.04 0.03 0.03 0.03 0.02 0.04 0.03 0.06 0.05 0.03 0.03 0.04 0.07 0.04 0.04 0.04 0.04 0.05 0.05 0.09 0.03
0.03 0.05 0.05 0.03 0.03 0.03 0.03 0.02 0.03 0.04 0.04 0.06 0.03 0.03 0.3 0.38 0.05 0.04 0.25 0.03 0.04 0.04 0.42 0.43

F
itS

q
D

iv

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
best/1/bin
rand/1/bin

target-to-best/2/bin
best/1/exp
rand/1/exp

target-to-best/2/exp

0.27 0.08 0.21 0.13 0.1 0.4 0.1 0.48 0.51 0.44 0.22 0.39 0.2 0.44 0.15 0.06 0.21 0.12 0.27 0.24 0.16 0.19 0.07 0.13
0.31 0.29 0.23 0.44 0.09 0.13 0.26 0.12 0.13 0.3 0.37 0.12 0.18 0.11 0.13 0.1 0.2 0.17 0.11 0.39 0.41 0.38 0.19 0.11
0.3 0.54 0.48 0.35 0.68 0.39 0.55 0.29 0.21 0.16 0.22 0.33 0.54 0.31 0.43 0.41 0.48 0.58 0.2 0.3 0.28 0.32 0.44 0.26
0.04 0.03 0.03 0.02 0.04 0.03 0.03 0.06 0.07 0.06 0.09 0.12 0.03 0.1 0.03 0.07 0.06 0.05 0.08 0.03 0.04 0.03 0.06 0.04
0.04 0.03 0.03 0.02 0.04 0.02 0.03 0.03 0.04 0.02 0.05 0.02 0.02 0.02 0.02 0.04 0.03 0.04 0.04 0.02 0.05 0.03 0.04 0.04
0.04 0.03 0.03 0.02 0.04 0.02 0.03 0.03 0.04 0.02 0.06 0.03 0.03 0.03 0.24 0.32 0.04 0.04 0.3 0.02 0.06 0.04 0.22 0.42

D
iv

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
best/1/bin
rand/1/bin

target-to-best/2/bin
best/1/exp
rand/1/exp

target-to-best/2/exp

0.3 0.1 0.16 0.17 0.07 0.35 0.12 0.5 0.61 0.39 0.18 0.48 0.28 0.56 0.11 0.07 0.34 0.28 0.26 0.26 0.17 0.2 0.06 0.1
0.2 0.27 0.23 0.38 0.08 0.15 0.25 0.12 0.14 0.32 0.39 0.07 0.11 0.08 0.08 0.07 0.15 0.15 0.08 0.29 0.45 0.38 0.14 0.09
0.4 0.54 0.53 0.37 0.74 0.31 0.54 0.24 0.11 0.14 0.22 0.3 0.51 0.2 0.46 0.38 0.3 0.43 0.18 0.33 0.27 0.32 0.35 0.25
0.03 0.03 0.03 0.03 0.04 0.14 0.03 0.08 0.06 0.1 0.09 0.08 0.05 0.11 0.03 0.06 0.11 0.07 0.09 0.05 0.03 0.03 0.08 0.04
0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.05 0.02 0.06 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.04 0.04
0.03 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.03 0.02 0.05 0.04 0.04 0.03 0.3 0.39 0.07 0.03 0.35 0.04 0.04 0.03 0.34 0.49

S
q
D

iv

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
best/1/bin
rand/1/bin

target-to-best/2/bin
best/1/exp
rand/1/exp

target-to-best/2/exp

0.08 0.06 0.04 0.02 0.18 0.02 0.03 0.03 0.06 0.02 0.02 0.03 0.05 0.02 0.02 0.03 0.02 0.02 0.03 0.03 0.08 0.08 0.03 0.03
0.32 0.21 0.19 0.11 0.05 0.54 0.12 0.13 0.13 0.02 0.03 0.09 0.11 0.05 0.17 0.11 0.13 0.08 0.16 0.59 0.34 0.34 0.11 0.27
0.53 0.66 0.69 0.8 0.69 0.37 0.75 0.77 0.72 0.89 0.87 0.75 0.7 0.85 0.74 0.78 0.78 0.82 0.72 0.31 0.44 0.46 0.77 0.62
0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02
0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.07 0.05 0.03 0.03
0.02 0.02 0.03 0.02 0.03 0.02 0.06 0.03 0.05 0.03 0.04 0.08 0.09 0.04 0.02 0.03 0.02 0.04 0.05 0.02 0.04 0.04 0.05 0.04

C
om

p
a
ss

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
best/1/bin
rand/1/bin

target-to-best/2/bin
best/1/exp
rand/1/exp

target-to-best/2/exp

0.28 0.48 0.34 0.19 0.3 0.09 0.14 0.4 0.3 0.46 0.07 0.38 0.27 0.39 0.18 0.04 0.19 0.2 0.23 0.07 0.21 0.31 0.05 0.21
0.51 0.2 0.34 0.4 0.12 0.54 0.34 0.25 0.25 0.15 0.17 0.24 0.44 0.34 0.56 0.27 0.2 0.47 0.52 0.54 0.17 0.19 0.25 0.5
0.14 0.25 0.22 0.26 0.5 0.09 0.43 0.12 0.1 0.25 0.55 0.15 0.16 0.13 0.18 0.54 0.17 0.13 0.09 0.04 0.11 0.14 0.56 0.15
0.03 0.03 0.05 0.04 0.03 0.09 0.02 0.12 0.12 0.07 0.04 0.08 0.05 0.06 0.03 0.06 0.15 0.06 0.09 0.14 0.14 0.12 0.05 0.05
0.03 0.02 0.03 0.07 0.03 0.12 0.04 0.05 0.17 0.04 0.05 0.09 0.05 0.05 0.03 0.05 0.12 0.08 0.04 0.17 0.13 0.1 0.06 0.06
0.02 0.02 0.03 0.04 0.03 0.07 0.03 0.06 0.06 0.03 0.11 0.06 0.03 0.03 0.03 0.03 0.18 0.07 0.04 0.04 0.25 0.14 0.04 0.03

P
areto

Figure 6: Activation rates of each operator configuration for each of the seven AOS methods,
aggregated over the 100 runs on each function.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
Fit

FitDiv
FitSqDiv

Div
SqDiv

Compass
Pareto

0.62 0.37 0.17 0.17 0.67 0.14 0.54 0.14 0.08 0.04 0.07 0.05 0.24 0.08 0.18 0.12 0.14 0.09 0.04 0.34 0.43 0.46 0.29 0.12
0.62 0.38 0.16 0.17 0.66 0.15 0.49 0.16 0.1 0.03 0.07 0.06 0.24 0.08 0.2 0.13 0.15 0.08 0.04 0.4 0.5 0.49 0.27 0.12
0.68 0.53 0.17 0.19 0.66 1.5 0.42 0.24 0.13 0.07 0.54 0.4 0.28 0.22 0.28 0.14 0.16 0.12 0.04 0.69 0.5 0.49 0.25 0.15
0.43 0.2 0.12 0.1 0.72 0.06 0.27 0.18 0.13 0.05 0.1 0.06 0.14 0.11 0.11 0.1 0.13 0.07 0.03 0.1 0.29 0.32 0.19 0.11
0.39 0.21 0.11 0.1 0.61 0.14 0.31 0.2 0.14 0.05 0.1 0.08 0.19 0.09 0.17 0.13 0.17 0.13 0.04 0.17 0.29 0.29 0.24 0.15
0.14 0.14 0.09 0.02 0.87 0.03 0.06 0.04 0.04 0.01 0.02 0.02 0.05 0.03 0.06 0.05 0.03 0.02 0.04 0.11 0.2 0.21 0.05 0.06
0.27 0.28 0.22 0.19 0.7 0.06 0.18 0.18 0.14 0.04 0.06 0.08 0.13 0.08 0.1 0.06 0.09 0.07 0.06 0.09 0.18 0.21 0.05 0.08

Figure 7: Number of transitions per 100 iterations for each AOS method, aggregated over
all the (restarted) runs on each function.

28



periods where no configuration has a large majority of applications are very uncommon.
All AOS methods allow a single operator configuration to have an application proba-
bility of at least 85% due to the high values of γ (see Table 3). Therefore, we consider
a configuration to have the current majority when it is responsible for at least 2

3
of the

applications. To ensure that the majority is not a result of randomness, short streaks
consisting of fewer than 10 iterations are ignored. To account for different run lengths,
which can vary wildly across different functions, we study the number of transitions
per 100 iterations, averaged over all (restarted) runs on a function. Figure 7 displays
this metric for the seven AOS methods and all 24 test functions.

The Fit and FitDiv algorithms have very similar transition rates to each other.
FitSqDiv, on the other hand, has much higher transition rates on some problems, most
notably on f6, f11, f12, f14 and f20. It is possible that these frequent transitions
are caused by the increased reward that can be obtained through exploration, and
the increased ‘penalty’ that is associated with exploitation. Perhaps, the algorithm is
constantly oscillating between exploration and exploitation, switching to exploration
when exploitation is no longer rewarding enough (i.e, the rewards are not large enough
to compensate for the penalty) and vice-versa. The fact that FitDiv has nearly identical
transition rates (and similar activation rates, as shown in Figure 6) to Fit might indicate
that its reward for exploration and the penalty for exploitation are not a strong enough
to alter the algorithm’s behavior. Compass has considerably lower transition rates on
most problems, compared to all other algorithms. This could either mean that on
these problems Compass is able to accurately converge on the optimal configuration
without having to switch, or conversely, that it is unable to react appropriately when
a change of strategy is needed. We find the first explanation more likely, due to its
good performance results. It should be noted that the relatively high transition rates
on some functions, most notably f5, are largely caused by the fact that the problems
are solved in very few iterations, making the initial transition have a large impact on
the transition frequency.

5.3.3 Generated parameter values

The employed parameter adaptation method generates values of F and Cr for each
individual in each iteration, adapting the parameters in an attempt to maximize the
credit values. To gain an insight into the generated parameter values, Figure 8 shows
the mean parameter values of each AOS method aggregated for each test function. It
is important to realize that the these mean parameters are indeed aggregated across all
runs of a problem, so the presented results could be deceptive. The parameter values
could vary wildly across different runs, and they can even fluctuate within a single
run, especially considering that the values are adapted for each operator configuration
individually.

The literature states that F should not be too small, as it can cause premature
convergence [75]. A value of 0.6 is recommended as a starting point, and it should be
increased if it is suspected that the algorithm converges on a local optimum [29].

The average values of F per function are very similar between all algorithms except
Compass and Pareto. These two algorithms have an average value of approximately
0.85 across all functions. A possible cause for the discrepancy is that Compass and
Pareto are the only credit assignment schemes that can assign a positive credit value
to an individual with a deteriorated fitness value, meaning that these deteriorated
individuals, too, can influence the adaptation of parameters. However, it is unclear
why all their mean values of F are approximately 0.85.

All other algorithms have a more varied mean value of F depending on the function,
but on most functions the values are around 0.6, which conforms to the recommendation
given in [29]. On some functions, the mean values are considerably lower, around 0.4.
The functions in question are, however, also the functions where these algorithms were
very unsuccessful, and have not hit the final target a single time. Div and SqDiv have
a slightly higher value than the Fit∗ algorithms some functions, possibly due to their
diversity-driven nature. The differences are, however, relatively small.

The general consensus in the literature is that low values of Cr ∈ (0, 0.2] are benefi-

29



cial for separable functions, while high values of Cr ∈ [0.9, 1] are more successful when
solving non-separable functions [54]. Looking at the separable functions (f1− f5), the
mean Cr values are overall indeed rather low. Some algorithms on f1 and f2, and all
algorithms on f5 have a mean value of Cr around 0.5. This likely has nothing to do
with the optimal value of Cr, but rather with the simplicity of these functions; they
are solved so quickly that the parameter adaptation scheme has no time (or pressure)
to find the optimal value of Cr (or F ). A clear exception to the rule of low Cr values
is Compass’ high mean value of 0.74 on f4. In general, Compass’ and Pareto’s mean
values of Cr are again quite different from the other algorithms. The algorithms Div
and SqDiv have a considerably lower value of Cr on a number of problems, especially
on f6. We speculate that the reason is that on these functions, the probability of find-
ing an improved solution away from the current population is larger when only a small
number of components is mutated at a time.

The convention of high Cr values on non-separable functions is not always followed.
Again, the problems on which the values deviate from the convention the most (f15,
f16, f23, f24) are also problems on which the ‘violating’ algorithms were very un-
successful, so it is likely that the parameter adaptation scheme was unable to do any
meaningful adaptation due to a lack of progress during the search. Apart from the
discrepancy on f4, Compass follows the convention of Cr values somewhat closely.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
Fit

FitDiv
FitSqDiv

Div
SqDiv

Compass
Pareto

0.56 0.58 0.73 0.71 0.76 0.6 0.55 0.62 0.61 0.68 0.66 0.64 0.57 0.66 0.41 0.34 0.62 0.61 0.41 0.64 0.61 0.59 0.34 0.32
0.58 0.59 0.73 0.72 0.77 0.6 0.57 0.64 0.64 0.7 0.68 0.65 0.59 0.68 0.38 0.35 0.64 0.62 0.46 0.62 0.59 0.59 0.38 0.33
0.59 0.58 0.74 0.72 0.78 0.58 0.57 0.64 0.65 0.72 0.69 0.65 0.6 0.7 0.43 0.38 0.66 0.67 0.52 0.63 0.62 0.61 0.4 0.37
0.62 0.64 0.77 0.77 0.79 0.7 0.53 0.65 0.66 0.69 0.65 0.65 0.59 0.67 0.47 0.43 0.62 0.59 0.47 0.74 0.69 0.66 0.46 0.41
0.61 0.65 0.77 0.77 0.8 0.69 0.53 0.66 0.69 0.7 0.67 0.64 0.59 0.7 0.41 0.38 0.66 0.64 0.46 0.72 0.7 0.67 0.43 0.37
0.86 0.83 0.86 0.87 0.81 0.86 0.86 0.86 0.86 0.86 0.87 0.86 0.85 0.86 0.86 0.86 0.85 0.85 0.86 0.85 0.85 0.85 0.86 0.86
0.83 0.8 0.85 0.85 0.81 0.84 0.84 0.81 0.83 0.86 0.88 0.84 0.83 0.86 0.84 0.86 0.84 0.84 0.85 0.83 0.84 0.84 0.86 0.85

F

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24
Fit

FitDiv
FitSqDiv

Div
SqDiv

Compass
Pareto

0.56 0.6 0.28 0.27 0.56 0.77 0.72 0.83 0.86 0.93 0.91 0.9 0.8 0.9 0.24 0.22 0.83 0.91 0.43 0.39 0.57 0.61 0.25 0.22
0.56 0.59 0.25 0.26 0.55 0.8 0.71 0.82 0.85 0.93 0.91 0.89 0.78 0.9 0.2 0.22 0.8 0.9 0.5 0.47 0.6 0.61 0.28 0.22
0.55 0.61 0.25 0.24 0.55 0.75 0.69 0.81 0.84 0.92 0.89 0.87 0.77 0.88 0.26 0.23 0.75 0.84 0.58 0.44 0.56 0.59 0.28 0.24
0.38 0.31 0.14 0.12 0.46 0.15 0.58 0.69 0.75 0.91 0.88 0.78 0.67 0.79 0.15 0.2 0.4 0.79 0.47 0.13 0.29 0.32 0.34 0.19
0.39 0.32 0.13 0.13 0.47 0.21 0.55 0.71 0.75 0.92 0.89 0.82 0.7 0.81 0.17 0.22 0.49 0.78 0.46 0.16 0.27 0.31 0.33 0.22
0.61 0.34 0.3 0.74 0.49 0.8 0.82 0.8 0.81 0.84 0.83 0.83 0.84 0.83 0.81 0.79 0.81 0.85 0.83 0.75 0.64 0.64 0.8 0.81
0.48 0.32 0.21 0.26 0.48 0.55 0.81 0.69 0.49 0.88 0.89 0.75 0.8 0.84 0.72 0.74 0.26 0.71 0.67 0.48 0.2 0.24 0.74 0.58

C
r

Figure 8: Mean values of F and Cr for each AOS method, aggregated over the 100 runs on
each function.

5.3.4 Single-run analyses

So far, we analyzed data aggregated over many runs. To gain a better insight into the
behavior of the algorithms within single runs, we create plots that show in detail how
the algorithm adapts during the run. Each ‘restart’ is considered a separate run here.
As there are, across all 7 algorithms and each function, about 105 (restarted) runs,
there is no way to analyze them all individually. We select a few interesting cases based
on the results of previous analyses in this thesis. In the following plots, we show the
activations of operator configurations over time, as well as the population diversity and
the mean values of F and Cr across the population in each iteration.

The AOS with Compass credit was able to solve f16 eleven times, where no other
algorithm was able to ever hit the final target. We therefore plot the successful runs
of Compass on f16 to see which adaptation strategy led to its success. Most of the
successful runs look similar to Figures 9a and 9b: they start with target-to-best/2/bin,
switch to rand/1/bin somewhere in the middle, and then switch back to target-to-
best/2/bin. A transition to rand/1/bin is always associated with a sharp decline in
population diversity. Considering the highly rugged and multi-modal landscape of f16,
it is possible that the rand/1/bin strategy was able to discover a solution near the
global optimum through its exploratory property, after which the rest of the population
quickly followed, explaining the sudden drop in population diversity. In Figure 9a, we
also see a sharp increase of Cr when rand/1/bin becomes dominant, as a result of the
configuration-wise parameter adaptation.

30



(a)

100 7228 14357 21485 28614 35742 42871 50000
Iteration

best/1/bin
best/1/exp
rand/1/bin
rand/1/exp
target-to-best/2/bin
target-to-best/2/exp
F
Cr
diversity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

m
et

er
 v

al
ue

10 4

10 3

10 2

10 1

100

101

Po
pu

la
tio

n 
di

ve
rs

ity

(b) (c)

Figure 9: Plots of three successful runs of Compass on f16, showing the adaptation behavior.

31



Four runs, however, look more similar to Figure 9c, where no longstanding transi-
tions between operator configurations occur, and target-to-best/2/bin is mostly used
throughout the entire run. This is very interesting, as target-to-best/2/bin (or any
other algorithm besides Compass) by itself was not able to solve f16. This could mean
that:

• the non-dominant operator configurations, although they are used by only about
2% of the population each, still have a vital role in the search process.

• the Compass credit is better at balancing exploration and exploitation in the
parameter adaptation, compared to the ‘Fit’ credit.

Overall, the values of F and Cr are comparatively very stable with Compass (also
on other functions, not shown here). On most functions, both F and Cr converge to a
value around 0.85. Another function on which Compass was the able to solve problems
which the static DEs could not, is f23, where the course of adaptation (not shown here)
is very similar to that of f16. Interestingly, f16 and f23 are also similar problems, in
the sense that they both have repetitive and rugged fitness landscapes. Pareto was
also able to solve f23 a few times, and the adaptation of both the configurations and
the parameters looks very similar to that of Compass in the successful runs on this
function.

As discussed in Section 5.3.2, the FitSqDiv credit scheme had comparatively huge
transition frequencies on several functions. We plot one ‘typical’ successful run each of
f6, f11, and f12, where frequencies of transitions were comparatively high, in Figure 11.
Although we attempted to select some representative runs, the course of adaptation
across different runs does vary greatly. The main operator configurations the algorithm
is transitioning between are target-to-best/2/bin, rand/1/bin and best/1/bin. There are
major fluctuations in the population diversity and the mutation rate, signaling that the
algorithm is indeed actively trying to balance the fitness improvements and the diversity
improvements, as hypothesized in Section 5.3.1. Operator configuration transitions can
be associated with huge changes in the mean values of F and Cr. However, this does
not necessarily mean that the other configuration prefers different parameter values.
Sometimes, the newly dominant configuration has not had many prior activations,
preventing it from adapting the parameter values appropriately. Once it is dominant
for a longer streak of iterations, the parameters may quickly adapt to different values,
which may or may not be similar to that of other configurations. A great example of
this behavior is shown in Figure 11b. When the initial transition to rand/1/bin occurs,
the mean crossover rate drops from ≈ 0.9 to ≈ 0.5. However, the parameter adaptation
of rand/1/bin now has a lot of performance data to work with, and as a result the Cr
rapidly rises back to ≈ 0.9. When the next transition to rand/1/bin occurs, the mean
Cr values are around this value.

Figure 10: Fitness landscape of BBOB’s Rosenbrock problems, original (f8, left) and rotated
(f9, right), in 2 dimensions. The dark blue peak is the optimum. Figures are taken from [23].

32



(a)

100 7228 14357 21485 28614 35742 42871 50000
Iteration

best/1/bin
best/1/exp
rand/1/bin
rand/1/exp
target-to-best/2/bin
target-to-best/2/exp
F
Cr
diversity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

m
et

er
 v

al
ue

10 4

10 3

10 2

10 1

100

101

Po
pu

la
tio

n 
di

ve
rs

ity

(b) (c)

Figure 11: Behavioral plots of three successful runs of FitSqDiv on three different functions, showcasing the high transition rates.

33



(a)

100 7228 14357 21485 28614 35742 42871 50000
Iteration

best/1/bin
best/1/exp
rand/1/bin
rand/1/exp
target-to-best/2/bin
target-to-best/2/exp
F
Cr
diversity

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

m
et

er
 v

al
ue

10 4

10 3

10 2

10 1

100

101

Po
pu

la
tio

n 
di

ve
rs

ity

(b) (c)

Figure 12: Plots of three selected successful runs of Div and SqDiv on BBOB’s two Rosenbrock functions: f8 and f9, showing the adaptation behavior.

34



Finally, we want to highlight an interesting pattern occurring on functions f8 and
f9. Both of these functions are the Rosenbrock function, but f9 is a rotated vari-
ant. The Div and SqDiv algorithms show very a similar pattern on about half of the
successful trials on these functions. Figure 12 shows three such runs. An exploratory
strategy (mostly rand/1/bin or target-to-best/2/bin) is dominant in the beginning, and
the parameter adaptation converges on a low value of Cr ≈ 0.1. Most commonly after
about 200 iterations, there is a transition to an exploitative strategy (best/1/bin or
best/1/exp), and the mean value of Cr quickly shifts to approximately 0.9. Then, the
population diversity drops slightly and stabilizes again for a while (with a small oscil-
lations). Finally, the population diversity drops quickly before the algorithm solves the
problem. If we look at the fitness landscape of the Rosenbrock problems in Figure 10,
we see that this switch in strategy makes sense intuitively: the algorithm needs to first
explore the search space to find the ridge, and then find the optimum by following the
ridge through exploitation. We expect that the initial low crossover rate is a result of
the algorithm aiming for high diversity ratios, which are most easily obtained by mod-
ifying few components at a time, as discussed in Section 5.3.3. Then, after switching to
best/1/∗ when the thin ridge is found, exploitation is the only way to improve, and the
high Cr accelerates the convergence. These example runs also clearly demonstrate the
merit of configuration-wise parameter adaptation, as different operator configurations
can converge on drastically different parameter values. In Figure 12, it is also evident
that Div and SqDiv use a much smaller value of β than other algorithms, as more
iterations are needed before a configuration reaches an application probability of pmax.

6 Comparing configuration spaces

Thus far, we experimented with a single ‘configuration space’ consisting of three mu-
tation operators and two crossover operators. Although this set of operators seems
sensible due to the diverse set of characteristics and strengths it possesses, it is pos-
sible that better results are obtained with different configuration spaces. The results
shown in Figure 6 show that exponential crossover is hardly used on most of the test
functions. This observation raises the question if the performance of the AOS could
be enhanced by omitting exponential crossover from the configuration space. Further,
it is interesting to experiment with different ensembles of operators and configuration
spaces of various sizes, and observe the performance differences.

The current literature has examples of AOS methods using small configuration
spaces, such as SaDE [57] and CoDE [72], using respectively 2 and 3 strategies, but
also of methods using more strategies, such as the original Compass [47], which uses
6 crossover methods, U-AOS-FW [60] which uses 9 mutation operators, and Black-
smith [46], which utilizes huge number of 307 different crossover operators. The con-
figuration space in current literature in most commonly compiled using intuition, i.e.,
by selecting a set of operators with diverse characteristics. However, the number of
operators that is considered is rarely justified. We aim to gain some insight into the
performance impact that the composition of the configuration space can have, by bench-
marking one AOS method with a large number of different configuration spaces.

In detail, we consider 6 mutation operators (see Section 2.1) and 2 crossover oper-
ators (see Section 2.2) for this experiment. By considering all possible sets of mutation
operators with sizes 1, 2, . . . 6, we obtain 63 different options. There are only three dif-
ferent sets of crossover operators: 1) only binomial, 2) only exponential, and 3) both
binomial and exponential. A total number of 189 operator configurations is then ob-
tained by combining all possible sets of mutation operators with all possible sets of
crossover operators: 63 · 3 = 189. The smallest configuration spaces have only 1 · 1 = 1
operator configurations at their disposal, while the largest has 6 · 2 = 12.

These configuration spaces are tested in combination with the Compass-based DE,
as it showed the best performance in our experiments described in Section 5.1. Note that
the ‘static’ DEs (those with only 1 operator configuration) are different from those we
experimented with in Section 5.1: while the Compass credit metric has no effect on the
adaptation of operators (since there is only 1), it does control adaptation of parameters.

An identical benchmarking procedure as the one described in Section 5 is followed,

35



using the same parameters (see Table 3). The 189 algorithms with different configura-
tion spaces are then ranked as follows. Conforming to the benchmarking procedure of
BBOB [22], we consider 51 target precisions, uniformly spaced on a logarithmic scale
between 102 and 10−8. For each of these targets and each algorithm-function pair, we
compute the Expected Running Time (ERT) [53, 3], which captures the expected num-
ber of function evaluations that an algorithm will need to reach a target for the first
time. It is computed as [22]:

ERT(ftarget) =
#FEs(fbest ≥ ftarget)

#succ
, (47)

where #FEs(fbest ≥ ftarget) is the number of function evaluations performed across all
runs while the target in question was not yet hit, and #succ is the number of trials
in which the target was successfully reached. If the target in question was not hit a
single time in any run, the ERT is set to infinity. We rank the 189 algorithms on each
of the 24 functions, according to the ERT values on the 51 targets. One algorithm (A)
is considered better than another algorithm (B) on a certain function, if:

• algorithm A has a greater number of finite ERT values than algorithm B on the
function in question; or

• the algorithms have an equal number of finite ERT values, but on the first target
(starting from the hardest one) on which the ERT values are not equal, that of
algorithm A is lower; or

• the algorithms have the same ERT values on all targets, and algorithm A has a
lower mean best-reached objective function value. Note that it is normally ex-
tremely unlikely that the ERT values of two algorithms are the same across all 51
targets, except when both algorithms have hit none of the targets across all runs
(making all ERT values infinite). We implemented this third criterion because
some algorithms were unable to hit a single target on f10.

BBOB divides its 24 test functions into five function groups, where the members of
each group share similar characteristics in terms of separability, multi-modality, condi-
tioning, etc. The five function groups are outlined in Table 6. A complete description
of the function groups and the 24 functions can be found in [23].

Table 6: BBOB function groups [23].

Group Description Functions

1 Separable functions 1, 2, 3, 4, 5
2 Functions with low or moderate conditioning 6, 7, 8, 9
3 Functions with high conditioning and unimodal 10, 11, 12, 13, 14
4 Multi-modal functions with adequate global structure 15, 16, 17, 18, 19
5 Multi-modal functions with weak global structure 20, 21, 22, 23, 24

To make the results more general and more easily interpretable, we aggregate the
algorithms’ ranks over each function group. Figures 13 through 18 show the mean ranks
for each configuration space in a way that is meant to be easy to interpret, considering
the large number of algorithms. Each column represents an operator, and each row,
shown as a thin line, a configuration space, which are ranked from top to bottom
(best to worst). When a cell is colored, it indicates that the operator is included in
the corresponding configuration space. The rightmost column does not represent an
operator, but instead indicates the size of each configuration space, where a darker
shade of gray indicates a larger configuration space. The figures allow us to see if certain
(combinations of) operators or certain sizes of configuration spaces are associated with
relatively high or low performance. Table 7 shows the top-5 highest ranked algorithms
for each function group and in total, where ‘target-to-pbest’ is abbreviated as ‘ttpb’,
target-to-best as ‘ttb’, and ‘target-to-rand’ as ‘ttr’. Of course, the top-5’s are also shown
in Figures 13 – 18, but it can be difficult to read exactly which operators are activated
in a particular configuration space.

36



best/1 rand/1 target-to-pbest/1 target-to-best/2 target-to-rand/1 2-opt/1
Mutation

14.0

33.8

50.0

62.2

80.4

110.2

126.4

140.2

159.4

180.4

M
ea

n 
ra

nk

binomial exponential
Crossover configuration

 space size

Figure 13: Ranking of DE configuration spaces in function group 1.

Function group 1 In function group 1 (see Figure 13), there is an evident prefer-
ence for exponential crossover. Clearly, in addition to including exponential crossover,
it is also beneficial to exclude binomial crossover from the configuration space. The
functions of this function group should be solved quite easily by the Compass DE (See
Table 4), and including binomial crossover in the configuration space likely extends
the overhead of finding the optimal operator configuration, and the overhead of finding
appropriate parameters for each configuration. Probably for the same reason, small
configuration spaces, in general, seem to show better performance. The highest-ranked
configuration space in fact has only one operator configuration: best/1/exp, where
no AOS takes place at all. Interestingly, the target-to-best/2 mutation scheme is not
included at all in the highest-ranked mutation schemes, and is associated with the
worst-performing configuration spaces, even though it was activated very frequently in
our previous experiments (see Figure 6). All of the most successful configuration spaces
include the best/1 mutation scheme, which makes sense considering the simple nature
(unimodal and separable) of three of the functions in this function group, on which a
highly exploitative strategy is very effective.

It is quite surprising that, in our previous experiment, binomial crossover was ac-
tivated most frequently on the functions of function group 1, rather than exponential
crossover, even though Figure 13 shows that better performance is obtained when ex-
cluding binomial crossover from the configuration space.

37



best/1 rand/1 target-to-pbest/1 target-to-best/2 target-to-rand/1 2-opt/1
Mutation

6.5

34.2

56.0

73.0

87.8

103.0

115.5

131.2

150.2

187.5

M
ea

n 
ra

nk

binomial exponential
Crossover configuration

 space size

Figure 14: Ranking of DE configuration spaces in function group 2.

Function group 2 In contrast to function group 1, the inclusion of binomial
crossover in the configuration space is clearly advantageous in function group 2 (see
Figure 14). Most of the best-performing configuration spaces use both binomial and
exponential crossover, and large configuration spaces generally perform better than
small ones. Again, target-to-best/2 is excluded from the best-performing configuration
spaces. The mutation operators best/1, target-to-pbest and target-to-rand/1 are most
often associated with high performance.

best/1 rand/1 target-to-pbest/1 target-to-best/2 target-to-rand/1 2-opt/1
Mutation

3.6

43.8

56.0

69.6

80.8

93.0

107.2

135.2

167.0

187.2

M
ea

n 
ra

nk

binomial exponential
Crossover configuration

 space size

Figure 15: Ranking of DE configuration spaces in function group 3.

Function group 3 The ranking of function group 3, which is shown in Figure 15, is
quite similar to that of function group 2. The largest difference is that target-to-best/2
is now more successful, but it is still not included in the very best configuration spaces.
Binomial crossover seems even more crucial in this function group, and there also seems
to be a stronger advantage for larger configuration space sizes.

38



best/1 rand/1 target-to-pbest/1 target-to-best/2 target-to-rand/1 2-opt/1
Mutation

14.6

39.6

54.2

65.0

77.4

94.6

121.0

144.4

158.4

183.6

M
ea

n 
ra

nk

binomial exponential
Crossover configuration

 space size

Figure 16: Ranking of DE configuration spaces in function group 4.

Function group 4 As shown in Figure 16, the advantage for binomial crossover
is very apparent in function group 4. The top 57% of configuration spaces all in-
clude binomial crossover, some in combination with the exponential variant, and some
without. The best/1 mutation scheme is much less prominent here, and most of the
best-performing configuration spaces have 3 to 6 operator configurations; neither very
large nor very small.

best/1 rand/1 target-to-pbest/1 target-to-best/2 target-to-rand/1 2-opt/1
Mutation

29.4

62.4

71.8

79.0

87.2

99.8

105.6

118.0

131.4

154.4

M
ea

n 
ra

nk

binomial exponential
Crossover configuration

 space size

Figure 17: Ranking of DE configuration spaces in function group 5.

Function group 5 Figure 17 shows that in function group 5, there is a very strong
preference towards large configuration spaces. Many of the highest ranked configuration
spaces use both exponential and binomial crossover, although exponential crossover
seems more crucial. Further, the best/1 mutation scheme is most often associated with
a high rank, and many of the highest-ranked configuration spaces also use target-to-
rand/1.

39



best/1 rand/1 target-to-pbest/1 target-to-best/2 target-to-rand/1 2-opt/1
Mutation

23.6

65.4

77.0

81.7

89.0

98.2

105.9

115.5

125.7

153.0

M
ea

n 
ra

nk

binomial exponential
Crossover configuration

 space size

Figure 18: Ranking of DE configuration spaces over all function groups.

All functions Finally, we consider the ranks across all 24 functions, as shown in
Figure 18. It seems that, in general, it is wise to include a larger number of operator
configurations in the configuration space for the most versatile performance. However,
the very best configuration spaces use about 6 operator configurations. The highest
ranked configuration space overall is the one using: best/1, target-to-pbest/1 and target-
to-rand/1 mutations, and both crossover types. This configuration space also ranked
highest in function groups 2 and 5 individually. All of its included operators individually
are also frequently included in other highly-ranked configuration spaces. Clearly, the
fact that exponential crossover was activated so infrequently in our previous experiment
does not mean it should be excluded from the configuration space. It seems especially
crucial in function groups 1 and 5, which corresponds to our findings in [9]. In fact, the
highest ranked configuration space in each function group, and across all functions, all
include the exponential crossover operator.

Again, it is very apparent that target-to-best/2 is not included in the highest ranked
configuration spaces, considering it was activated so frequently in our previous exper-
iments. We expect that target-to-rand/1 and target-to-pbest/1 are simply better op-
tions, rendering target-to-best/2 obsolete. It is harder to determine what impact the
rand/1 and 2-opt/1 mutation schemes have on the performance, as they are not neces-
sarily mostly associated with either high or low ranks.

Although we found that including all operators in the configuration space will not
result in the optimal performance, the large configuration spaces are generally still asso-
ciated with high performance ranks when considering all benchmark functions. Ideally,
the user of an AOS method would not have to worry about compiling a configuration
space, and should be able to simply include any operator that they think might con-
tribute to the performance of DE. The role of the AOS is then to determine which
operators are most valuable.

To determine if it is worth fine-tuning the configuration space, or if we can simply
include all operators and let the AOS figure out the best strategies during runtime, we
plot ECDF graphs aggregated for all runs on each function group and one across all
functions (see Figure 19). The algorithms are labeled by the function group(s) they had
the highest rank on. For example, G1 indicates the algorithm with the configuration
space that performed best in function group 1. Because the configuration space that
ranked highest overall also ranked highest in function groups 2 and 5 individually, it
is termed G2,G5,All. Further, we include the configuration space with all operators
activated (Complete), and the configuration space we used in Section 5 which was
simply compiled by intuition, denoted as Default.

40



Table 7: The five highest-ranked configuration spaces according to the ranking procedure
described in Section 6, for each function group and overall. When an operator is included
in the configuration space, the corresponding cell is colored black.

Function group 1

rank best/1 rand/1 ttpb/1 ttb/2 ttr/1 2-opt/1 bin exp

14.0
16.2
16.6
17.8
19.6

Function group 2

rank best/1 rand/1 ttpb/1 ttb/2 ttr/1 2-opt/1 bin exp

6.5
7.2
13.2
13.5
15.0

Function group 3

rank best/1 rand/1 ttpb/1 ttb/2 ttr/1 2-opt/1 bin exp

3.6
4.6
6.0
6.6
8.0

Function group 4

rank best/1 rand/1 ttpb/1 ttb/2 ttr/1 2-opt/1 bin exp

14.6
17.4
24.4
26.0
27.4

Function group 5

rank best/1 rand/1 ttpb/1 ttb/2 ttr/1 2-opt/1 bin exp

29.4
34.0
38.2
46.4
47.6

All functions

rank best/1 rand/1 ttpb/1 ttb/2 ttr/1 2-opt/1 bin exp

23.6
31.8
38.5
42.9
43.2

41



(a) function group 1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

Complete

Default

G2,G5,All

G3

G4

G1bbob f1-f5, 20-D
51 targets: 100..1e-08
100 instances

v2.4

(b) function group 2

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

G1

Default

G2,G5,All

Complete

G4

G3bbob f6-f9, 20-D
51 targets: 100..1e-08
100 instances

v2.4

(c) function group 3

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

G1

G4

G2,G5,All

Complete

G3

Defaultbbob f10-f14, 20-D
51 targets: 100..1e-08
100 instances

v2.4

(d) function group 4

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

G1

Default

Complete

G2,G5,All

G3

G4bbob f15-f19, 20-D
51 targets: 100..1e-08
100 instances

v2.4

(e) function group 5

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

G1

G4

G3

Default

Complete

G2,G5,Allbbob f20-f24, 20-D
51 targets: 100..1e-08
100 instances

v2.4

(f) all functions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

G1

G4

G3

Default

Complete

G2,G5,Allbbob f1-f24, 20-D
51 targets: 100..1e-08
100 instances

v2.4

Figure 19: ECDFs of the best configuration spaces for each function group and overall, com-
pared to the configuration space chosen by our intuition (Default), and the one containing
all operators (Complete).

42



In Figure 19, we see that G1 converges on the optimum faster than the other algo-
rithms on the functions of function group 1, but that it has a major disadvantage in
the other function groups. Further, it is evident that in function groups 1, 2, and 3,
the performances of the other configuration spaces are very similar, with only slight
differences in terms of convergence speed. In function group 4, G4 has a small advantage
over Complete and Default. The largest difference manifests itself in function group 5,
where G2,G5,All and Complete are able to solve over 10% more problems than the com-
petition. Overall, Complete has a slightly worse performance than the highest-ranked
configuration space of each function group, but it is very consistent across different
function groups. Considering that a main goal of AOS research is minimizing the need
to tune an algorithm before applying it to a new problem, and having to tune the
configuration space beforehand opposes this goal, we can conclude that it might not
be worth fine-tuning the configuration space for a specific problem, as the AOS with
Compass credit seems very capable of selecting an appropriate strategy or combina-
tions thereof out of a large configuration space, at the cost of a slightly deteriorated
convergence speed.

7 Conclusion

This thesis presents a novel algorithmic framework for Differential Evolution, with a
mechanism for adapting operators and parameters that balances exploration and ex-
ploitation, by rewarding individuals that successfully explore the search space. The
framework elegantly intertwines Adaptive Operator Selection (AOS) and parameter
adaptation, and lets both components work towards a common goal. The AOS com-
ponent selects the operator configurations, which are combinations of DE’s mutation
and crossover operators, to apply in each iteration, while the parameter adaptation at-
tempts to find the optimal values of the mutation and crossover rate for each operator
configuration individually.

A metric that captures the exploratory/exploitative tendency of an individual is
proposed, and it is steers the direction of both the adaptation of parameters and that
of operators. This diversity-based metric is combined with a fitness-based metric in
different ways to give rise to seven different so-called credit assignment schemes, which
measure the improvement of an offspring individual w.r.t. its parent in terms of fitness
and/or diversity.

The framework also implements several options for the other components of the
AOS procedure: generating reward for each operator configuration, quality assignment,
and updating of the application probabilities. For each credit assignment scheme, we
perform an extensive tuning experiment to find the optimal variant of each component
and set their respective hyperparameters.

A benchmarking experiment on the BBOB/COCO [35] benchmark suite revealed
that one of the resulting algorithms, which uses a credit assignment scheme modified
from the Compass [47] AOS method, significantly outperforms all ‘static’ DEs on three
difficult benchmark functions, and has comparable performance to the best static DE
on most other functions. This result demonstrates that the AOS is consistently capable
of selecting an appropriate strategy for a particular problem, and in some cases, it can
combine the strengths of several operators to surpass the performance of any of the
static DEs. The DE with Compass-inspired credit still lagged behind the BIPOP-CMA-
ES [32] in general, but on most functions outperformed the current state-of-the-art AOS
method for DE: U-AOS-FW [60]. Statistical testing results revealed that adaptation
based on Compass or Div credit increases DE’s versatility across different problems the
most.

Several behavioral aspects of the seven AOS methods were analyzed, including the
activation rates of each operator configuration, the number of transitions between con-
figurations, and the generated parameter values. It is clear that the selected credit
assignment scheme has a huge impact on the selection of operators. The Compass
credit shows a quite one-sided selection of operators across different problems, while
other credit assignment schemes use different (combinations of) configurations depend-
ing on the problem. Interestingly, the exponential crossover is in general utilized much

43



less frequently than the binomial variant. The analysis of transition frequencies showed
that usage of the Compass credit results in significantly fewer transitions, while FitSq-
Div is associated with the most transitions. Analyzing the generated F and Cr values
revealed that the credit assignment scheme has a huge impact on the parameter adap-
tation. Especially Compass and Pareto showed very different behavior compared to the
others.

In-depth behavioral analysis of individual runs on functions where only AOS meth-
ods were successful showed that certain combinations of operator configurations were
repeatedly used in the successful trials. However, there were also trials where only one
operator configuration was mainly used, hinting that the diversity-driven parameter
adaptation could also be (partially) responsible for the improved performance com-
pared to the static DEs. We also observed recurring patterns w.r.t. the adaptation of
parameters in the successful runs on certain problems.

An AOS method can only perform as well as the strategies in its configuration
space allow it to. Therefore, we benchmarked 189 configuration spaces of different
sizes in combination with Compass, and ranked them based on their performance on
each problem. We analyzed which configuration spaces performed best in each function
group and overall, and found that different (combinations of) operators were success-
ful in different function groups. However, a near-optimal performance in each function
group could be obtained by simply including all considered operators in the configu-
ration space. Considering that an AOS method is meant to reduce the manual tuning
effort, we recommend using a large configuration space containing operators with vary-
ing characteristics, rather than trying to fine-tune the configuration space with only
the ‘essential’ operators, especially if a consistent performance across different prob-
lem types is desired. The largest configuration space in our experiments contained 12
configurations. The Compass-based AOS seems to be very capable of selecting the ap-
propriate strategies from a set of this size. The ranking of configuration spaces also
revealed that the activation rates of a certain operator configuration do not necessarily
give an indication of its importance to be included in the configuration space.

8 Future work

Due to the promising results of the proposed AOS framework, especially when using
the Compass credit, future efforts should go towards transferring the methodology to
other metaheuristics, such as Genetic Algorithms (GAs) or Particle Swarm Optimiza-
tion (PSO). The proposed individual-wise diversity metrics (diversity ratio and diver-
sity difference) should be easily transferable to other population-based metaheuristics.
Since GAs typically operate on discrete search spaces, a different distance metric should
be employed, such as the Hamming distance [30], and the ‘mean position’ needs to be
computed differently (e.g., by taking the most common value for each component). For
PSO, on the other hand, the adaptation manager is compatible without any modifica-
tions.

Further, it would be interesting to see if the performance of AOS paradigms based
on the multi-armed bandit framework [14, 18, 45] can be improved by leveraging the
diversity-based metrics proposed in this thesis. Integration of these methods into the
existing framework might prove to be difficult, as the structure of these bandit-based
AOS methods is fundamentally different.

The diversity-based adaptation in this thesis makes use of the Euclidean distance of
coordinates in the search space. Due to the curse of dimensionality, this distance metric
will not give desirable results in higher dimensions, where the Euclidean distances
between any two pairs of points become more and more similar. It is plausible that
even in 20 dimensions, the dimensionality of the benchmark problems used in this
thesis, the Euclidean distance is not an optimal choice, making the diversity-based
metrics less ‘sensitive’. A distance metric that is less susceptible to this problem is
the Manhattan distance [8]. Future efforts should repeat the presented experiments
with this alternative distance metric, and analyze any differences in performance and
algorithmic behavior. It is also worthwhile to repeat the experiments with problems in
different dimensions, as results could vary.

44



The parameter adaptation scheme employed in our framework, which is extended
from the SHADE algorithm [66], only adapts the mutation and crossover rates, while the
population size is kept at a constant value. Future work should consider incorporating
the population size in the parameter adaptation. Another, perhaps simpler, possibility
is to follow the approach of L-SHADE [67], where the population size is linearly reduced
as the run progresses.

As the imperative role of the boundary constraint handling method (BCHM) was
established in [38, 9], an important avenue for future research is to include the BCHM
in the process of AOS. For the purposes of this thesis, we chose the BCHM which
performed the best overall in [9], but the performance of the AOS methods might be
improved by including several BCHMs in the configuration space, as it was showed
in [9] that the optimal choice of the BCHM depends on the problem to solve and the
operators used by DE.

Lastly, a much more in-depth study needs to be performed to identify patterns in the
adaptation behavior that lead to either desirable or undesirable performance results.
A better understanding of what desired characteristics the course of adaptation should
possess on certain problems can aid further development of adaptive algorithms. A next
step towards this goal would be to extract features characterizing the course of adap-
tation in individual runs, and correlating those features with the observed performance
of the adaptive algorithm.

References

[1] J. Arabas, A. Szczepankiewicz, and T. Wroniak. Experimental comparison of
methods to handle boundary constraints in differential evolution. In Parallel
Problem Solving from Nature, PPSN XI, pages 411–420, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2–3):235–256, May 2002.

[3] A. Auger and N. Hansen. A restart CMA evolution strategy with increasing
population size. In 2005 IEEE Congress on Evolutionary Computation, volume 2,
pages 1769–1776 Vol. 2, 2005.

[4] B. Babu, P. G. Chakole, and J. Syed Mubeen. Multiobjective differential evolu-
tion (MODE) for optimization of adiabatic styrene reactor. Chemical Engineering
Science, 60(17):4822–4837, 2005.

[5] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Inc.,
USA, 1996.

[6] P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the f-
race algorithm: Sampling design and iterative refinement. In T. Bartz-Beielstein,
M. J. Blesa Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M. Sampels,
editors, Hybrid Metaheuristics, pages 108–122, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[7] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-Race and Iterated F-Race:
An Overview, pages 311–336. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[8] P. E. Black. Manhattan distance. Dictionary of Algorithms and Data Structures,
2019. Accessed June 4, 2021.

[9] R. Boks, A. V. Kononova, and H. Wang. Quantifying the impact of boundary
constraint handling methods on differential evolution. In Proceedings of the 2021
Genetic and Evolutionary Computation Conference Companion, GECCO ’21, New
York, NY, USA, 2021. Association for Computing Machinery.

[10] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer. Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. Evolutionary Computation, IEEE Transactions on, 10:646 – 657, 01
2007.

45



[11] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer. Dynamic op-
timization using self-adaptive differential evolution. In 2009 IEEE Congress on
Evolutionary Computation, pages 415–422, 2009.

[12] E. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu.
Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society, 64:1695–1724, 07 2013.

[13] C.-W. Chiang, W.-P. Lee, and J.-S. Heh. A 2-opt based differential evolution for
global optimization. Applied Soft Computing, 10(4):1200 – 1207, 2010. Optimisa-
tion Methods & Applications in Decision-Making Processes.

[14] L. Da Costa, A. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selection
with dynamic multi-armed bandits. In Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’08, page 913–920, New York,
NY, USA, 2008. Association for Computing Machinery.

[15] S. Das and P. N. Suganthan. Differential evolution: A survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation, 15(1):4–31, 2011.

[16] A. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

[17] A. Fialho. Adaptive Operator Selection for Optimization. PhD thesis, Université
Paris-Sud, 2011.

[18] A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Analyzing bandit-based
adaptive operator selection mechanisms. Annals of Mathematics and Artificial
Intelligence, 60(1–2):25–64, Oct. 2010.

[19] A. Fialho, R. Ros, M. Schoenauer, and M. Sebag. Comparison-based adaptive
strategy selection with bandits in differential evolution. In R. Schaefer, C. Cotta,
J. Ko lodziej, and G. Rudolph, editors, Parallel Problem Solving from Nature,
PPSN XI, pages 194–203, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[20] A. Fialho, M. Schoenauer, and M. Sebag. Analysis of adaptive operator selection
techniques on the royal road and long k-path problems. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, page
779–786, New York, NY, USA, 2009. Association for Computing Machinery.

[21] A. Fialho, M. Schoenauer, and M. Sebag. Fitness-auc bandit adaptive strategy se-
lection vs. the probability matching one within differential evolution: An empirical
comparison on the bbob-2010 noiseless testbed. In Proceedings of the 12th Annual
Conference Companion on Genetic and Evolutionary Computation, GECCO ’10,
page 1535–1542, New York, NY, USA, 2010. Association for Computing Machin-
ery.

[22] S. Finck, N. Hansen, R. Ros, and A. Auger. Black-box optimization benchmark-
ing procedure. https://coco.gforge.inria.fr/COCOdoc/bbo_experiment.html.
Accessed May 26, 2021.

[23] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimiza-
tion benchmarking 2010: Presentation of the noiseless functions. http://coco.

gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf, 2010. Ac-
cessed May 24, 2021.

[24] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32(200):675–
701, 1937.

[25] D. Goldberg. Probability matching, the magnitude of reinforcement, and classifier
system bidding. Machine Learning, 5:407–425, 2005.

[26] W. Gong and Z. Cai. Differential evolution with ranking-based mutation operators.
IEEE Transactions on Cybernetics, 43(6):2066–2081, 2013.

[27] W. Gong, A. Fialho, and Z. Cai. Adaptive strategy selection in differential evolu-
tion. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’10, page 409–416, New York, NY, USA, 2010. Association
for Computing Machinery.

46

https://coco.gforge.inria.fr/COCOdoc/bbo_experiment.html
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf


[28] W. Gong, A. Fialho, Z. Cai, and H. Li. Adaptive strategy selection in dif-
ferential evolution for numerical optimization: An empirical study. Inf. Sci.,
181(24):5364–5386, Dec. 2011.

[29] R. Gämperle, S. D. Müller, and P. Koumoutsakos. A parameter study for differ-
ential evolution. In Advances in Intelligent Systems, Fuzzy Systems, Evolutionary
Computation, pages 293–298, 2002.

[30] R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, 1950.

[31] N. Hansen. The CMA Evolution Strategy: A Comparing Review, pages 75–102.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[32] N. Hansen. Benchmarking a bi-population cma-es on the bbob-2009 function
testbed. In Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers, GECCO ’09, page
2389–2396, New York, NY, USA, 2009. Association for Computing Machinery.

[33] N. Hansen, Y. Akimoto, and P. Baudis. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, Feb. 2019.

[34] N. Hansen, A. Auger, D. Brockhoff, D. Tušar, and T. Tušar. Coco: Performance
assessment, 2016.

[35] N. Hansen, A. Auger, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: A
platform for comparing continuous optimizers in a black-box setting. ArXiv e-
prints, arXiv:1603.08785, 2016.

[36] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık. Comparing results of 31 algo-
rithms from the black-box optimization benchmarking bbob-2009. In Proceedings
of the 12th Annual Conference Companion on Genetic and Evolutionary Compu-
tation, GECCO ’10, page 1689–1696, New York, NY, USA, 2010. Association for
Computing Machinery.

[37] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based
on local search. In Proceedings of the 22nd National Conference on Artificial
Intelligence - Volume 2, AAAI’07, page 1152–1157. AAAI Press, 2007.

[38] A. V. Kononova, F. Caraffini, and T. Bäck. Differential evolution outside the box.
ArXiv e-prints, arXiv:2004.10489, 2020.

[39] J. Lampinen and I. Zelinka. Mixed integer-discrete-continuous optimization by
differential evolution - part 1: the optimization method. In Czech Republic. Brno
University of Technology, pages 77–81, 1999.

[40] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

[41] F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors. Parameter Setting in Evolu-
tionary Algorithms, volume 54 of Studies in Computational Intelligence. Springer,
2007.

[42] M. López-Ibáñez. Documentation of the irace package for R. https://cran.

r-project.org/web/packages/irace/irace.pdf, 2020.

[43] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and
T. Stützle. The irace package: Iterated racing for automatic algorithm config-
uration. Operations Research Perspectives, 3:43–58, 2016.

[44] R. Mallipeddi and P. N. Suganthan. Differential evolution algorithm with ensemble
of parameters and mutation and crossover strategies. In B. K. Panigrahi, S. Das,
P. N. Suganthan, and S. S. Dash, editors, Swarm, Evolutionary, and Memetic
Computing, pages 71–78, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[45] J. Maturana, A. Fialho, F. Saubion, M. Schoenauer, and M. Sebag. Extreme
compass and dynamic multi-armed bandits for adaptive operator selection. In
2009 IEEE Congress on Evolutionary Computation, pages 365–372, 2009.

[46] J. Maturana, F. Lardeux, and F. Saubion. Controlling behavioral and structural
parameters in evolutionary algorithms. Evolutionary Algorithms, 5926, 01 2009.

47

https://cran.r-project.org/web/packages/irace/irace.pdf
https://cran.r-project.org/web/packages/irace/irace.pdf


[47] J. Maturana and F. Saubion. A compass to guide genetic algorithms. In
G. Rudolph, T. Jansen, N. Beume, S. Lucas, and C. Poloni, editors, Parallel Prob-
lem Solving from Nature – PPSN X, pages 256–265, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[48] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello. A comparative
study of differential evolution variants for global optimization. In Proceedings of the
8th Annual Conference on Genetic and Evolutionary Computation, GECCO ’06,
page 485–492, New York, NY, USA, 2006. Association for Computing Machinery.

[49] J. Mwaura, A. P. Engelbrecht, and F. V. Nepomuceno. Diversity measures for
niching algorithms. Algorithms, 14(2), 2021.

[50] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[51] Q.-K. Pan, P. Suganthan, L. Wang, L. Gao, and R. Mallipeddi. A differential evo-
lution algorithm with self-adapting strategy and control parameters. Computers &
Operations Research, 38(1):394–408, 2011. Project Management and Scheduling.

[52] A. P. Piotrowski. Review of differential evolution population size. Swarm and
Evolutionary Computation, 32:1 – 24, 2017.

[53] K. Price. Differential evolution vs. the functions of the 2/sup nd/ iceo. In Proceed-
ings of 1997 IEEE International Conference on Evolutionary Computation (ICEC
’97), pages 153–157, 1997.

[54] K. Price, R. Storn, and J. Lampinen. Differential Evolution: A Practical Approach
to Global Optimization. Natural Computing Series. Springer, 2005.

[55] J. Qijang. A unified differential evolution algorithm for global optimization. IEEE
Transactions on Evolutionary Computation, 2014.

[56] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transactions
on Evolutionary Computation, 13(2):398–417, 2009.

[57] A. K. Qin and P. N. Suganthan. Self-adaptive differential evolution algorithm for
numerical optimization. In 2005 IEEE Congress on Evolutionary Computation,
volume 2, pages 1785–1791 volume 2, 2005.

[58] J. Ronkkonen, S. Kukkonen, and K. V. Price. Real-parameter optimization with
differential evolution. In 2005 IEEE Congress on Evolutionary Computation, vol-
ume 1, pages 506–513 Vol.1, 2005.

[59] M. Sharma, M. López-Ibáñez, and D. Kazakov. Performance assessment of recur-
sive probability matching for adaptive operator selection in differential evolution.
In A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, and D. Whit-
ley, editors, Parallel Problem Solving from Nature – PPSN XV, pages 321–333,
Cham, 2018. Springer International Publishing.

[60] M. Sharma, M. Lopez-Ibanez, and D. Kazakov. Unified framework for the adaptive
operator selection of discrete parameters, 2020.

[61] A. Soler-Dominguez, A. A. Juan, and R. Kizys. A survey on financial applications
of metaheuristics. ACM Comput. Surv., 50(1), Apr. 2017.

[62] R. Storn. On the usage of differential evolution for function optimization. In Pro-
ceedings of North American Fuzzy Information Processing, pages 519–523, 1996.

[63] R. Storn. Differential Evolution Research – Trends and Open Questions, pages
1–31. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[64] R. Storn and K. Price. Differential evolution: A simple and efficient adaptive
scheme for global optimization over continuous spaces. Journal of Global Opti-
mization, 23, 01 1995.

[65] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA, 2018.

[66] R. Tanabe and A. Fukunaga. Success-history based parameter adaptation for
differential evolution. In 2013 IEEE Congress on Evolutionary Computation, pages
71–78, 2013.

48



[67] R. Tanabe and A. S. Fukunaga. Improving the search performance of SHADE
using linear population size reduction. In 2014 IEEE Congress on Evolutionary
Computation (CEC), pages 1658–1665, 2014.

[68] O. Tange. GNU Parallel 20201122 (‘Biden’), Nov. 2020. GNU Parallel is a gen-
eral parallelizer to run multiple serial command line programs in parallel without
changing them.

[69] D. Thierens. An adaptive pursuit strategy for allocating operator probabilities. In
Proceedings of the 7th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO ’05, page 1539–1546, New York, NY, USA, 2005. Association for
Computing Machinery.

[70] J. Valadi and P. Siarry. Applications of Metaheuristics in Process Engineering.
Springer Publishing Company, Incorporated, 2014.

[71] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contrib-
utors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272, 2020.

[72] Y. Wang, Z. Cai, and Q. Zhang. Differential evolution with composite trial vector
generation strategies and control parameters. IEEE Transactions on Evolutionary
Computation, 15(1):55–66, 2011.

[73] F. Wilcoxon. Individual Comparisons by Ranking Methods, pages 196–202.
Springer New York, New York, NY, 1992.

[74] D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[75] D. Zaharie. Critical values for the control parameters of differential evolution
algorithms. Critical Values for the Control Parameters of Differential Evolution
Algorithms, 2:62–67, 01 2002.

[76] J. Zhang and A. C. Sanderson. JADE: Self-adaptive differential evolution with fast
and reliable convergence performance. In 2007 IEEE Congress on Evolutionary
Computation, pages 2251–2258, 2007.

[77] K. Zielinski and R. Laur. Stopping Criteria for Differential Evolution in Con-
strained Single-Objective Optimization, pages 111–138. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

49


	Introduction
	Differential Evolution
	Mutation
	Crossover
	Boundary constraint handling
	Stopping criteria and independent restarts

	Strategy adaptation
	Adaptive operator selection
	Existing AOS methods
	Proposed approach
	Credit: an individual-wise improvement metric
	Reward: a configuration-wise improvement metric
	Quality: a configuration-wise performance indicator
	Application probability

	Adaptation of control parameters
	Tying it all together: the adaptation manager

	Parameter tuning
	Benchmarking tuned adaptive DEs
	Fixed-budget comparison
	Fixed-target comparison
	Behavioral analysis
	Operator configuration activations
	Transitions between operator configurations
	Generated parameter values
	Single-run analyses


	Comparing configuration spaces
	Conclusion
	Future work

