
Master Computer Science

Broad Language Support for Automatic Translation
Insight Extractors of Complex Language Patterns

Name: Olzhas Aldabergenov
Student ID: s1928643
Date: 27/07/2021
Specialisation: Computer Science and Science-
: Based Business
1st supervisor: Dr. Bas van Stein
2nd supervisor: Dr. Suzan Verberne

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Machine learning algorithms can now handle a wide range of natural language pro-
cessing (NLP) tasks in order to extract meaningful information. The ability to obtain
valuable information, on the other hand, is heavily reliant on the proper representation
of language properties. Many techniques have been developed to convert lexical units
such as sentences and words into numerical form while retaining their meaning. One of
the most recent and practical approaches is language-independent or multilingual repre-
sentations, which can handle multiple languages with a single technique. We conducted
experiments with existing approaches such as LASER and LaBSE in this study and an-
alyzed their performance to determine whether they are truly language-independent. In
addition, we investigated the effect of language characteristics on the performance of
machine learning models. ZyLAB, an eDiscovery software company, employs machine
learning models to detect complex verbal patterns. These classifiers are trained on anno-
tated data sets, one for each language. Language-independent data sets are critical for
dealing with multilingual NLP tasks.

2

Contents

1 Introduction 6
1.1 Problem statement . 7
1.2 Thesis contributions and scope . 7
1.3 Research question . 8
1.4 Thesis structure . 8

2 Background and related work 9
2.1 Word Embeddings . 9

2.1.1 Bag of Words and TF-IDF . 9
2.1.2 Word2Vec and GloVe . 10
2.1.3 FastText . 11
2.1.4 Transformers . 12

2.2 Multilingual natural language processing . 14
2.2.1 Machine translation . 14
2.2.2 Cross-lingual embeddings . 14
2.2.3 Sequence-to-sequence encoder and decoder 15

2.3 Language properties . 16
2.3.1 Multilingual properties . 17

2.4 Multilingual NLP tasks . 17
2.4.1 Named entity recognition . 18
2.4.2 Sentiment analysis . 18
2.4.3 Emotion classification . 19

3 Proposed pipeline 21
3.1 Overall Architecture . 21
3.2 Dataset . 22

3.2.1 SST5 . 23
3.2.2 SemEval 2018 . 24

3.3 Machine translation . 25
3.4 Text preprocessing . 26

3.4.1 Basic cleaning operations . 26
3.4.2 Text tokenization and normalization 26

3.5 Representation learning . 27
3.5.1 Langauge Agnostic Sentence Representation 27
3.5.2 Language Agnostic BERT Sentence Embedding 29

3.6 Text classifier . 29
3.6.1 Support Vector Machines (SVM) . 29

3.6.1.1 Parameter tuning . 30
3.6.1.2 Kernel . 31
3.6.1.3 Multiclass classification . 31

3.7 Evaluation . 31
3.7.1 Micro Averaged F1 Score . 32

3

4 Results 33
4.1 Baseline . 33

4.1.1 FastText results . 34
4.2 LASER . 37

4.2.1 Similarity analysis . 37
4.2.2 LASER results . 39

4.3 LASER Family Group (LASER-FG) . 41
4.4 LaBSE . 44

5 Conclusion and Discussion 45

6 Future work 49

7 References 50

4

List of Tables

1 SST5’s five randomly chosen sentences with their labels 24
2 New distribution of SST5 dataset . 24
3 Five randomly chosen sentences with their labels from SemEval 2018 task 1EC

dataset . 25
4 Micro averaged F1 scores on the SST5 test ran once when SVM classifier

with Gaussian kernel trained SST5 training dataset by using FastText word
embeddings. 34

5 Micro averaged F1 scores on the SemEval 2018 task 1EC test ran once when
SVM classifier with Gaussian kernel trained SemEval 2018 task 1EC training
dataset by using FastText word embedding. 35

6 SST5 all language pairs similarity errors in percentage (langs - languages, de-
German, nl-Dutch, sv-Swedish, en-Englis, es-Spanish, fr-French, it-Italian, pt-
Portuguese, pl-Polish, ru-Russia, cs-Czech, sk-Slovak). 36

7 SemEval 2018 task 1EC all language pairs similarity errors in percentage (langs -
languages, de-German, nl-Dutch, sv-Swedish, en-Englis, es-Spanish, fr-French,
it-Italian, pt-Portuguese, pl-Polish, ru-Russia, cs-Czech, sk-Slovak). 37

8 Micro averaged F1 scores on the SST5 test ran once when SVM classifier with
Gaussian kernel trained SST5 training dataset by using LASER embeddings. . 39

9 Micro averaged F1 scores on the Semeval 2018 task 1EC test ran once when
SVM classifier with Gaussian kernel trained Semeval 2018 task 1EC training
dataset by using LASER embeddings. 40

10 The results of LASER-FG compare to the SST5 baseline and LASER in per-
centage. 41

11 The results of LASER-FG compare to the SemEval 2018 task 1EC baseline and
LASER in percentage. 41

12 Micro averaged F1 scores on the SST5 test ran once when SVM classifier
with Gaussian kernel trained SST5 family groups training dataset using LASER
embedding. 42

13 Micro averaged F1 scores on the SemEval 2018 task 1EC test ran once when
SVM classifier with Gaussian kernel trained emEval 2018 task 1EC family
groups training dataset using LASER embedding. 43

14 Micro averaged F1 scores on the SST5 test ran once when SVM classifier with
Gaussian kernel trained SST5 training dataset by using LaBSE embedding. . . 44

15 Averaged F1 scores of FastText, LASER, LASER-FG and LaBSE results. . . . 46

5

1 Introduction

Natural Language Processing (NLP) has seen rapid improvements in recent years, resulting
in significant performance gains on a broad range of downstream NLP tasks. A large part of
this success can be attributed to the development of large-scale pretraining methods for word
representations [1], [2]. Furthermore, there has been a rise of research info continuous vector
representations of sentences [3], [4]. In most cases, word embeddings are obtained through
the use of a Recurrent Neural Network (RNN) encoder, which is typically trained in an un-
supervised manner over extensive collections of unlabeled corpora. Then, Natural Language
Inference (NLI) data could result in more competitive results by training the encoder [5]. In
later years, it was eventually extended to multitask learning, which included integrating several
training objectives such as skip-thought training, NLI training, and machine translation train-
ing [6], [7]. These strategies generate priors that are informed by linguistic information, which
allows for fine-tuning to more task-specific word and sentence representations to be produced.

Nevertheless, these pretrained representations are monolingual, and the pretraining procedures
necessitate a large quantity of training data to be implemented successfully. As a result, many
of these models and the success they bring to NLP are in reality largely restricted to a high-
resource languages [8]. Recent studies have focused on the construction of models with more
extensive cross-lingual applicability, bringing a new surge to the field of multilingual NLP. So
far, research in this area has resulted in the creation of multilingual word embeddings [9],
where most of the studies focus on cross-lingual word embeddings [10]. As an increasingly
common alternative, using word embeddings which share knowledge of multiple languages in
a common space [11] or even without supervision [12].

A more competitive strategy uses sequence-to-sequence encoder-decoder architecture [13].
Encoder-decoder is trained end-to-end using parallel corpora comparable to multilingual neu-
ral machine translation [14]. This decoder is then destroyed, while the encoder is preserving
embed sentences in any training language. Finally, the transformer model was one of the in-
novations that led to significant advancements in NLP [15], [16]. It is accomplished by using
a multi-head self-attention mechanism and various positional encodings to signal token order.
As a result, models such as Language Agnostic Sentence Representation (LASER)[17] and
Language Agnostic BERT Sentence Embedding (LaBSE)[18] were produced.

These multilingual models are collaboratively trained to execute NLP tasks for several lan-
guages to project semantically related words and phrases from different languages into a
common multilingual semantic space. Because of this, they provide encodings in which words
and phrases with similar meanings receive comparable representations, regardless of the lan-
guage from which they originate. As a result, they strive to capture semantic meaning more
universally. However, even though this work has been successful in that it has enabled effective
model transfer across a wide range of languages [19], significant effort is still being put into
strengthening the language-agnosticism of multilingual encoders even further. Some studies
suggest that multilingual NLP systems benefit from typological knowledge [20], [21]. As a
result, it can benefit from improvement in a task such as POS tagging and named entity
recognition (NER).

6

1.1 Problem statement

ZyLAB is an eDiscovery[22] software company that uses artificial intelligence and data science
to automate mundane processes and tedious tasks and enable data-driven decision-making in
the legal industry. It has developed a number of binary extractors to detect complex verbal pat-
terns such as attitudes, emotions, profanity, intimidation, pressure, and other similar patterns
of expression. These binary classifiers make use of a variety of machine learning techniques
that are trained on annotated data sets to achieve their classification accuracy. It is necessary
to construct a separate data set for each language. Such data sets are created using various
hybrid manual-automatic processes in ZyLAB, utilizing tools such as Snorkel[23] and machine
translation[24], among other things.

Recent experiments with language-independent representations have revealed that, under cer-
tain conditions, for instance, teaching an English classifier with a German annotated dataset
can also improve the quality of the model, but French and Spanish, according to the results
of the experiments, decrease performance [25]. Additionally, training French classifiers with
language-independent English and Italian data improves performance, whereas training French
classifiers with German or Dutch data causes the systems to become confused and malfunction.
It has been demonstrated that additional preprocessing and postprocessing can alleviate these
issues. Clearly, specific linguistic properties of language families such as concatenate words,
phonetic and other parameters have an impact on the classifier behavior.

1.2 Thesis contributions and scope

We want to study as many as possible languages from the beginning of our study, and we select
37 of them. Here is a list of these languages: Basque, Bulgarian, Catalan, Croatian, Czech,
Danish, Dutch, English, Estonian, Finnish, French, Galician, German, Greek, Hungarian, Irish,
Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovene, Spanish,
Swedish, Russian, Turkish, Arabic, Farsi, Chinese, Korean, Japanese, Hindi, Urdu, and Tamil.

The main point of this thesis is to understand the relative merits of several language-independent
representations. Before commencing, we wanted to set our performance benchmarks for each
NLP task to use for our investigation. For us, the best approach was the FastText word embed-
dings. It utilizes a single pre-trained model for each language, and there is no shared knowledge
between the languages. The second main topic of research was to choose required datasets
as we consider complex NLP tasks such as sentiment analysis and emotion classification. We
chose SemEval 2017 task 4a [26], SemEval 2018 task 1EC[27], and Stanford Sentiment Tree-
bank (SST5)[28] for this goal. Those datasets have different contexts; for instance, SemEval
datasets collection of tweets and SST5 is movie reviews. We translated all these datasets to
37 languages using Google Translator’s cloud API as original datasets have covered several
languages. Afterward, we trained the SVM classifier with all listed datasets of 37 languages and
evaluated the model using a running test. Then, we decide to scope the number of languages
to 12 as it was hard to handle the training classifier with different combinations. The twelve
languages are: Enlgish, Dutch, German, Swedish, Russian, Slovak, Polish, Czech, Spanish,
French, Italian and Portuguese.

7

1.3 Research question

Specifically, we are interested in conducting an experiment employing existing language-independent
methodologies and analyzing their performance in order to determine whether they are actu-
ally language-independent or not in this study. For this purpose, we selected two methods
as LASER[17] and LaBSE[18]. Then, we used their pre-trained models and considered them
feature extractors. At the same time, we would like to investigate the impact of language
attributes on the classifier’s performance. By answering following research questions of this
thesis:

Q1 How can language-independent word representations be used for more complex linguistic
tasks such as sentiment analysis and emotion classification?

Q2 What are the results of the classifier trained with language-independent representations
for selected twelve languages?

Q3 Do the linguistic properties have an effect on the classifier? In case it does:

Q3.1 What type of linguistic properties is responsible for specific errors?

Q3.2 Is it possible to address classifier errors by using pre-processing or post-processing
methods?

1.4 Thesis structure

The following is the order in which we completed our thesis. First and foremost, in Chapter 2,
we provided background information on the variety of related works. Then, in Chapter 3, we
went over our proposed approach in greater detail. The results of the experiments that were
carried out are presented in Chapter 4. Finally, in Chapter 5, we concluded and offered some
suggestions for feature work in Chapter 6.

8

2 Background and related work

Nowadays, machine learning algorithms can handle a wide range of natural language processing
(NLP) tasks, such as extracting meaningful information from text[29], [30]. This extracted data
may take the form of objects, relations, events, or entities. Obtaining valuable information,
on the other hand, is highly dependent on the proper representation of language properties.
Many techniques had been developed to convert language units like sentences and words into
numerical form while retaining lexical meaning [1], [2]. Language-independent or multilingual
representations, which can handle multiple languages with a single technique, are one of the
most recent and practical approaches [17], [18]. Working with models that can transfer knowl-
edge to as many languages as possible is critical in today’s globalized world. Because most
NLP algorithms rely on the supervised algorithm, which is highly dependent on the annotated
dataset, low-resource languages can benefit significantly from language-independent models. In
this study, we want to run experiments with existing approaches and analyze their performance
to see if they are truly language-independent. Furthermore, we would like to investigate the
impact of language properties on the performance of machine learning models. This chapter
will provide an overview of the evolution of word and sentence representations, as well as how
they are used in various NLP tasks.

2.1 Word Embeddings

As we mentioned before terms (words) and expressions can be constituted with word repre-
sentations in the form of word embeddings. In the early stage, Clark and Pulman [31] adapted
a method from cognitive science to combine the symbolic and distributional approach to
represent words using tensor products. Mitchell and Lapata [32] proposed a framework us-
ing additive and multiplicative functions to represent phrases and sentences in vector space.
Mikolov and Sutskever[1] presented different extensions to improve the training speed and
the vectors’ quality by using subsampling of frequent words. Their study showed that learning
good vector representation for millions of phrases is possible by presenting a simple algorithm
for finding expression in the text. Then, Pennington [2] offered a global log bilinear regression
model, which efficiently takes advantage of mathematical information by training non-zero ele-
ments in a word-to-word matrix and generating a meaningful dimensional space out-performing
the related models in entity recognition. This section will give detailed information regarding
embeddings, which are primarily used in practice.

2.1.1 Bag of Words and TF-IDF

One of the widely-used models used for representing words is called the bag of words (BoW).
It refers to a method of representing text with a focus on the frequency of words in any given
document. Listing each unique word starts with the first word to appear in the document thus
does not consider the order in which words occur [33]. Word count determines the frequency of
occurrence of each word. However, it leads to the sparse matrix problem, especially when there
are many new words represented as 0s, and at the same time, vectorial representation becomes
longer. Term Frequency-Inverse Document Frequency (TF-IDF) is an advanced version of the
BoW. It is focusing on the importance of any particular word and its frequency of occurrence.
The TF-IDF is dot product Term Frequency (TF) and the Inverse Document Frequency (IDF)
as shown following equation:

9

tfidf(t, d,D) = tf(t, d)× idf(t,D)

Where the t refers to the number of the word we counting in documents d inside document
collections of D. Term frequency (TF) involves calculating the frequency of any given word
[34].

tf(t, d) =
nt,d∑
k nk,d

In a turn of inverse document frequency (IDF), it is determining the importance of a word
by calculating the IDF score or value. Rarely occurring words have higher values than those
occurring more frequently.

idf(t,D) = log
|D|

|d ∈ D : t ∈ d|

TF-IDF also has certain limitations. For instance, the technique fails to identify similar words
when minor changes such as tense or plural are made [34]. In addition, it fails to compare
different words or show simultaneously occurring words. Overall, both BoW andTF-IDF do
not consider contexts such as semantics, grammatical structure, or order of words [34], [35].

2.1.2 Word2Vec and GloVe

Word2Vec is the next level of embeddings that consider the context of words where TF-IDF
and BoW have a problem. It can utilize unsupervised training to help encode words into useful
dimensional vectors [36]. Word2Vec representation model derives the meanings of words and
sentences using the skip-gram model [37]. It is more effective in providing representations for
limited data and also for less used words. Word2Vec also uses CBOW(Continuous Bag of
Words), which is beneficial. It is quicker to use and more effective than statistical language
modeling in providing representations of words that occur more often.
An exciting alternative to Word2Vec is GloVe embeddings which consider whether two or more
words co-occur using global data. It uses global matrix factorization methods and local con-
text window methods. An example of models used in the former is the latent semantic analysis
(LSA). An example of models used in the latter is the skip-gram model [2]. The use of these
representation models presents particular challenges. LSA effectively analyzes statistical data
but fails to provide a practical comparison or similarity analysis for words [2]. Additionally, the
use of the skip-gram model is effective in providing comparison or similarity of words. However,
the skim-gram model does not provide a good analysis of the statistical data since it considers
local context rather than the global data in providing word analogy.

Both Word2Vec and GloVe models also present another problem. Word analogy only consid-
ers specific contexts [38], [39]. It makes the models ineffective as words are used in diverse
contexts. It is also unreliable when providing an analogy for words with different meanings but
coming from or used in the same place. Addressing these challenges involved making different
representations for different meanings of a word [39]. Also, researchers considered deriving
subwords to help provide better word analogy [38]. These challenges impeded further research
in distributional representations.

10

Figure 1: Word2Vec architecture: CBOW and Skip-Gram

2.1.3 FastText

For technical reasons, we did not use the previously mentioned vector representations and
word embeddings in our study. Along with the limitations we have already discussed, it has
one additional significant limitation that hinders the progress of our investigation. The fact
that they are all language-dependent means that they cannot be considered in our study as
we looking for the opposite. Fortunately, FastText was able to resolve the issue.

FastText is an extension of the Word2Vec model. It is a representation method that uses
vectors developed by the artificial intelligence (AI) team of Facebook. It helps to ensure ef-
fective and quick execution of tasks it is designed to do. While Word2Vec is more effective in
generating semantics, FastText has a different role. FastText is designed to learn how words
are composed or their syntax by analyzing the morphological data of the text. Compared to
Word2Vec and Glove, FastText is more effective as it can do tasks using new or rare words,
while Word2Vec and Glove only work with words included in their dictionaries. FastText does
this by subdividing the new or rare word into n-grams. It is then used to generate word em-
beddings.

According to the authors [40], the model is a simple neural network with only one layer. The
BoW representation of the text is first filled into a lookup layer, where the embeddings for
each word are fetched. The word embeddings are then averaged to create a single averaged
embedding for the entire text. We end up with n x d number of parameters at the hidden layer,
where d is the size of the embeddings and n is the words in the vocabulary size. Then, a single
vector is left after averaging, which is then fed to a linear classifier. We apply the softmax
over a linear transformation of the input layer’s output. The final log-likelihood function shown
below:

− 1

N

N∑
n=1

yn log(f(BAxn)

11

Where the f is the softmax function, A is look up matrix, B is the linear transformation, and
xn is the one-hot-encoded word representation.

Figure 2: Model architecture of FastText

FastText helps to enhance accurate text classification. Text classification requires taking spe-
cific pre-processing steps such as cleaning text from unnecessary items and conducting a
tokenization process that increases the risk of inaccuracy in text classification [41]. However,
FastText is effective than some other algorithms even when the pre-processing steps are ex-
cluded [42]. It can help in data classification in different fields, and also can be used for several
other purposes. For instance, it helps to efficiently and effectively provide sentiment analysis
and handle tasks such as making the most appropriate recommendations for music or videos.

2.1.4 Transformers

The transformer model of neural machine translation was suggested by Vaswani[15] after not-
ing the impact of the attention mechanism. At a high level, this architectural setup could be as
efficient as the encoder and decoder model when applied to the sequence-to-sequence tasks.
Before its development, the Recurrent Neural Networks and the Long Short-term Memory had
been voted the most suitable option for the transduction and modeling of sequence problems
since they gather and sequentially incorporate the data. These techniques could also easily
manage long-term dependencies with the aid of in-built memory mechanisms [43], [44]. How-
ever, the main setback exhibited by the Recurrent Neural Networks is their inability to represent
longer sequence representation vectors of consistent lengths efficiently and accurately.
The transformer framework incorporates similar operational principles as the encoder and de-
coder framework. The encoder enciphers the input sequence representation, followed by the
decoder deciphering the intermediary information to generate the output sequence represen-
tation. Nonetheless, Vaswani and his team found a means through which the attention mech-
anism could be used within the encoder, in a unique process referred to as the self-attention
mechanism [15]. Thus, similar to the functionality of the attention mechanism, this newly
developed approach can efficiently assist in transmitting information from the encoder to the
decoder from both ends. Additionally, the self-attention mechanism was found to enhance the

12

Figure 3: Transformer architecture

effectiveness and efficiency levels of the enciphering processes conducted by the encoder.

The Bidirectional Encoder Representations from Transformers will be evaluated as another
decision mechanism in this thesis (BERT). Google’s research department introduces it in 2018
as a new model of its kind. It is intended to be a pre-trained deep learning model capable
of performing a wide range of different NLP tasks. It is possible because it has been so
thoroughly pre-trained that it fully understands how a language is constructed and used [16].
The implementation of the BERT representation is accomplished by using the architecture
of a Multi-Layer Bidirectional Transformer Encoder that employs the same configuration as
that presented by Vaswani et al.[15]. It is first pre-trained on two unsupervised prediction
tasks, namely "Masked Language Modelling" and "Next Sentence Prediction," before being
put through its paces. In the case of the former, a percentage of the input tokens is first
masked in random before being predicted. The latter examines the relationship that exists
between two different sentences. Overall, pre-trained BERT can be used in two different ways:
fine-tuning and extracting features. Fine-tuning involves using BERT as the classifier itself
while extracting features results in the embeddings being produced as a result. The BERT
algorithm is only used as a feature extractor in this study, not as a classifier, and more detailed
information about its application can be found in Section 3.5.2.

13

2.2 Multilingual natural language processing

The success of monolingual representation led to applying the same pretrained methods to the
other languages and had attracted significant attention in the development of multilingualism.
The multilingual representation uses the extended version of the traditional skip-gram model
to predict words from monolingual and cross-lingual languages. In the traditional skip-gram
model, monolingual representation neighbors a given word, and cross-lingual neighbors the
target word in a parallel sentence and word pair [45]. Pham [46] introduced an approach
for distributed embeddings having variable-length text in multiple languages. Their model
learned distributed embeddings for phrases and sentences by extending to the bilingual context
and efficiently encoding the text sequences of multiple languages. Singla[45] presented an
approach to learning multilingual distributed embeddings of text where their system trains the
multilingual skip-gram jointly with words and sentence representations. According to Ruder[10],
multilingual representations, unlike the other methods involving joint and mapping models,
concurrently learn respective representations with the assistance of joint cross-lingual and
monolingual functions, as well as parallel train corpora. Many approaches have been developed
to handle multilingual tasks. This section explained several of them in detail, including machine
translation, cross-lingual embeddings, sentence encoders and decoders, and transformers.

2.2.1 Machine translation

Machine translation formally known as MT, can be used to transfer learning. It is character-
ized as interpretation from a source language to another target language utilizing automated
frameworks and, with or without human assistance [5]. By using MT, the monolingual dataset
can be extended to other languages and trained with a classifier. There are different types of
machine translation available today. Rule-based machine translation (RBMT) uses linguistic
and bilingual rules for the grammatical content of source language into the target language and
for every pair set. Statistical machine translation (SMT) works by using a statistical translation
algorithm and is translated by using training data with algorithms also selecting commonly ob-
served words from analysis of training data. It learns and compares the training files, and then
the source text is translated based on the probability of appearing in the target text. Neural
machine translation is another machine translation that works by using a deep learning model.

2.2.2 Cross-lingual embeddings

Cross-lingual embeddings represent words and reason about terms (words) and their mean-
ingfulness in multilingual contexts. So we can say that cross-lingual representations are n-
dimensional space embeddings of similar words from multiple languages [10]. Adams[47] stud-
ied how to use lexicons to improve language models when there is a total of one thousand
sentences in the training dataset. The model learns to cross-lingual word representations for
training the monolingual language. Doval[48] applied a transformation after the first alignment
step by moving cross-lingual synonyms in the middle. Their purpose was to get a better cross-
lingual vector. Lin[49] contributed to the automatic selection of optimal transfer languages
and considered it a ranking problem. They also built models to consider the features that are
mentioned after for the prediction task. Their model predicted better transfer languages than
the extemporary baselines by having a feature separation and providing insights on informative
features. The Cruz[50] presented WikiText-TL-39, a new language modeling benchmark in
Filipino. Where the language model finetuning techniques like BERT and ULMFiT can consis-

14

tently train robust classifiers in low-resource settings, with only a 0.0782 increase in validation
error when the number of training examples is reduced from 10K to 1K when using a privately
held sentiment dataset.

2.2.3 Sequence-to-sequence encoder and decoder

The encoder-decoder architectural model was initially suggested in 2014 by a group of re-
searchers led by Cho and Sutskever [43], [51]. This particular framework supposedly enables
a learning process that involves multilingual representations through training objectives using
a series transduction problem in the form of machine translation. These two models can be
acknowledged as distinct forms of Gated Recurrent Unit networks (GRU) or Recurrent Neural
Networks (RNN) [43], [44]. A typical example of RNNs is long-short term memory.

Figure 4: Sequence-to-sequence encoder and decoder architecture

Fundamentally, an input sequence consisting of a source language is fed into the encoder. Af-
ter receiving this information, the encoder learns to encipher the relative semantics involved,
producing an incessant representation vector of a consistent length. The transitional repre-
sentation is then transmitted to the decoder architectural setup, whose primary function is
reconstructing the semantics of the series into a specific language separate from the original
one [52]. Simultaneously, the decoder also acts as a source of helpful feedback to the encoder
model, especially when the representations do not adequately capture the needed information.
Ultimately, both models can be combined with various forms of attention mechanisms for sta-
tistical machine translation. The encoder and decoder frameworks were later integrated into
the neural machine translation concept in 2014 by Bahdanau and his colleagues [53].

In 2020, a group of researchers conducted a study that analyzed the general performance
levels of a specific multilingual translation framework to develop sentences that were consis-
tent in size [54]. The suggested framework used an allotted attention bridge amid encoders
and decoders, each based on a specific unconventional language. According to the reports pro-
vided, the researchers noted that the classification tasks registered a performance improvement.
Synonymously, the translation quality was also enhanced in the high-dimensional sentence rep-
resentations. On the other hand, the researchers reported that the precision in non-trainable

15

similarity tasks increased when shorter sentence representations were applied.

The most significant aspect regarding the findings is that encoding in sentence-level linguistic
properties can be enhanced through multilingual learning. These conclusive results also align
with other similar research findings, which reiterate the premium use of multiple encoder and
decoder frameworks in neural machine translation (NMT) to learn joint sentence representa-
tions of consistent sizes [13]. In subsequence, the suggested attention bridge layers could be
advantageous in retrieving both syntactic and semantic information.

2.3 Language properties

Language is known as an emblematical system, and representation is the illustrative process
of any written idea. Linguistic typology can be used to check and identify the similarities
and differences between languages. It involves studying the structural composition of differ-
ent languages across the world and categorizing them accordingly. While there are at least 8
000 languages in the world today, researchers have never agreed on the exact number due to
the complex nature of the linguistic typology [55]. One of the reasons is that some different
languages or dialects have certain similarities making it possible for people speaking different
languages to easily understand each other even when they do not have prior knowledge of
the other language [56]. In addition, linguistic typology also involves the study of word order
for different languages. The constituents or constituent structure of the language are studied
through syntactic analysis. According to Dryer [57], this may involve analyzing the grammat-
ical structure by considering aspects such as how subject, verb, and object (SVO) occur in
a sentence. Different languages have different SVO arrangements. There are six main word
orders: SVO, SOV, VSO, VOS, OVS, and OSV.

Most languages are spoken in Europe, including English, follow the SVO word order. It means
that a grammatically correct sentence should start with the subject, followed by the verb, and
then the object. An example of a sentence is ‘The baby ate the food’. Here, ‘the baby’ is
the subject, ‘ate’ is the verb, and ‘the food’ is the object. In comparison, most languages are
spoken in Asia. For instance, Korean and Hindi languages follow a different word order, SOV.
In the sentence example provided, SOV order would translate to ‘The baby the food ate” in
English and as such would be wrong considering the grammatical structure or word order.

Categorization is not limited to the word order only. Researchers also consider studying the
structure of different languages by considering the sub-domains of the syntactic constituents.
For instance, the structural features in the use of adverbs and noun modifiers such as adjec-
tives, adjunctions, and possessives. These help to categorize language better.

Developing a typological method to categorize languages effectively is impossible. According
to O’Horan [58], the language features considered during syntactic analysis cannot be reliably
used to categorize languages fully and, as such, should only be used as valuable measures
for linguistic typology. While different syntactic structures or structure orders can be used for
typological purposes, some are more effective than others. Similarly, there might be a lack
of a dominant typological order. In studying and categorizing the French language, the SVO
order is more dominant. However, the SOV word order is used if the object in the sentence is
a pronoun. Therefore, linguistic typology is a complex field in which many features should be

16

considered.

2.3.1 Multilingual properties

Typological information may or may not be helpful in multilingual NLP. If the task involving
multilingual NLP only focuses on critical concepts without considering language structure,
then typological information is not essential. For instance, to retrieve data, the system only
considers the keywords entered, and as such only semantic understanding is needed and not
typological features [59]. It also applies when researchers need to show universal representa-
tions without considering the language structure or typological features of the source language.

In a study done by Cohen [60], typology is proven critical in multilingual NLP. Analyzing the
language structure from unannotated sentences of one language is easier and more effective
when studied while considering the typological structure of annotated sentences of other lan-
guages. Furthermore, studies show that typological information can help to make it easy to
effectively do different tasks executed using multilingual NLP systems [20], [21]. As a result,
POS tagging and other tasks can be done more effectively.

Different studies discuss the use of data from linguistic typology to execute tasks involved in
multilingual NLP. In a study done by Naseem [21], typological data is used to facilitate mul-
tilingual dependency parsing. This involved NPL, whereby the syntactic features, particularly
word order of the different languages, were considered to ensure that sharing of information
was done selectively. Similarly, another study conducted by Zhang [61] also considered typo-
logical information in part-of-speech (POS) tagging. Researchers considering using typological
information in multilingual dependency parsing postulate that different languages may have
some similar syntactic features. They also note that certain syntactic features are only found
in some languages. As such, selective sharing possible by using typological information during
multilingual dependency parsing can be more effective if the languages have certain typological
features in common. In this study, we grouped languages based on their language family group
and tried to train the classifier in order to check the performance of the machine learning
model.

2.4 Multilingual NLP tasks

Natural language allows for various pragmatic and semantic processes that enable people to
communicate in a specific language to express their behavior, feelings, or sentiments. Related
processes, such as multilingual representations of words or sentences, allow people to classify
the meaning of different words in a diverse context.

Many studies have been conducted on multilingual NLP tasks by involving different languages
such as English and German. In order to validate the performance of classifiers, researchers
indicate the importance of MLDoc, Reuters, and other corpora in making text classification,
particularly cross-lingual classification [25], [62]. It helps text categorization for enormous data
resources to identify incorrect information and make appropriate corrections in the model.
However, we used a different approach in this thesis. We made a translation of the dataset
from one language to other languages and trained the classifier. The motivation behind it is
to work on datasets that we are interested in on one side; on another side, we are also inter-

17

ested in checking how neural machine translation works. As it also considered the language-
independent approach. In this section, we made an overview of complex tasks in NLP which
can be performed in a multilingual context, including sentiment analysis, emotion classification,
and named entity recognition.

2.4.1 Named entity recognition

Named Entity Recognition (NER) is helpful in the extraction of information. Rules help in the
detection or recognition of identities and can be developed manually or automatically. Studies
indicate that manually developed rules are less applicable for new domains [63]. Different
approaches were used, including rule and dictionary-based methodologies which were most
common when NER was introduced. The technique involves domain experts, following specific
rules, and using multilingual or bilingual approaches [29]. The approach is not portable and
may also not include many linguistic data [29], [63], [64]. Second, statistical methods involve
developing statistical models by relying on machine learning and using labeled linguistic data
from the corpus [29]. Examples include hidden Markov models (HMM) and CFR models. While
this model is portable, it relies on data used from the corpus; thus, it is limited in its use [29],
[63]. It also requires enormous amounts of data. Lastly, the mixed-methods model is a hybrid of
the other two models using the rules of both [29], [63]. It is more advantageous as identifying
the target word is easier and faster. Hybrid models help to ensure recognition is based not only
on initial names or time but also on recognition based on phrases that may have particular
meanings.

2.4.2 Sentiment analysis

Sentiment analysis helps to make emotion classification and also helps in detecting polarities.
Research studies show that sentiment analysis focuses on extracting data on two comparable
aspects: like or dislike and negative or positive [30], [65]. The technique also involves polarity
classification for binary sentiments. As such, this can help in choosing whether identical or
different labels should be used. Polarity classification is essential in that it can provide more
specific and detailed analysis, for instance, understanding the benefits and drawbacks of a
given factor [30], [65]. By classifying polarity or mood, researchers can analyze opinions or
sentiments.

Different studies also show that sentiment analysis may present challenges. Poor classification
or inaccuracies may occur due to the lack of proper preprocessing of data [66]. Noteworthy,
relying on the recognition of emotions using sensors is less effective when compared to senti-
ment analysis that relies on textual data [66], [67]. Text data is easier to collect and does not
require sophisticated equipment to collect. Researchers also note that particular sentiments
may not be opinionated but may have a polarity; thus, understanding whether it is subjective
or objective is vital to ensure text classification is done effectively [65]. Sufficient data should
be collected and appropriately labeled.

Research studies describe the different methods of carrying out sentiment analysis. It includes
the machine learning approach, lexical-based approach, and multilingual sentiment analysis
[30], [68]. Also, there are different levels of sentiment analysis, including document and sen-
tence level analyses which do not consider the choices or preference of the individual. It may

18

involve checking whether the sentiment is opinionated or neutral. Aspect level analysis consid-
ers the opinions of the person.

Many approaches can be used in sentiment analysis. One of them is a Naive Bayesian classifier
that involves determining the probability of classifying a document in any particular class [69].
The model is easier to train and use in classification. The model also determines the polarity
of the text. The maximum entropy approach is also used in classification by determining
conditional probability distribution. It determines distribution in different classes. This model
also analyzes the polarity of the text. A more advanced method is a Support Vector Machines
(SVM), which involves finding the decision boundaries while considering the maximum margin
possible for any different classes. Compared to the other approaches, SVM enhances precision
and accuracy [69]. It helps in classification while also more effectively analyzing margin for any
different classes.

2.4.3 Emotion classification

Emotion categorization is vital in emotion classification. Studies conducted by Shao[70] dis-
cuss how emotions can be categorized to help multilingual text classification. Researchers use
different algorithms to extract texts or speech expressing emotions [71]. The emotion extrac-
tor model may also consider the nature or quality of emotions, degree, and intensity [70].
Researchers define six emotions, including anger, sadness, fear, disgust, anxiety, and shame,
as negative emotions [68], [70], [72]. Similarly, words such as joy, pride, comfort, affection,
satisfaction, and excitement as positive emotions. Other emotions can be considered empathy,
calm, surprise, cheerfulness, and enthusiasm [73]. Multilingual text classification thus considers
the categorization of different words that define emotions.

Multilingual text classification also involves emotion detection, as described in different studies.
Different studies show that each method of emotion classification presents certain drawbacks.
First, the lexicon-based method involves tagging inspirational words and collecting statistical
data [68]. However, this method is ineffective if a word or phrase is reversed and when a word
is not included as a tagged lexicon. Second, rule-based identifications help show or analyze
emotions in sentences [70]. However, designing this model is challenging, and it may also lead
to ineffectiveness as it only identifies some instances. Lastly, thesaurus-based clustering helps
to identify emotions by determining and clustering words that show emotions and have similar
meanings [70]. Studies show that some synonyms may be used in different contexts to show
emotions or present facts, thus leading to inaccuracies of the model.

Different machine learning approaches are used in emotion classification. First, the Multinomial
Naive Bayesian classifier uses the Bayes’ theory to classify text by considering the probability
of a document being categorized in any given class [74]. The class with the highest probability
is calculated. The advantage of this approach is that it is comparatively faster than the other
approaches. Second, the Artificial Neural Network refers to classification based on a model
that assimilates the neural network of the human brain [74]. It has perceptrons to calculate
the value of the input. Three, the K-Nearest Neighbors (KNN) is a technique that identifies
similarity metrics to determine K instances that are more common [75]. The model then uses
this for classification.

19

Lastly, the Support Vector Machine (SVM) involves the classification of data using a supervised
approach. It involves considering the decision boundary and the ordered sequence of text from
different classes. Of the four approaches, SVM is the most effective in classifying emotions as
it is more accurate [74], [75]. It properly analyzes the differences between different classes.

20

3 Proposed pipeline

As previously stated, the primary goal of this thesis is to evaluate language-independent rep-
resentations in complex NLP tasks. It means that in order to conduct a thorough analysis, our
experiment must include as many languages as possible from various families. As a result, we
chose 12 languages and divided them into three groups based on their language family group:

• Germanic: English, Dutch, German, Swedish

• Romance: Spanish, Italian, Portugues, and Catalan

• Slavic: Russian, Polish, Slovak, and Czech

The languages in the same group have similarities that they share. On the other hand, they
are different comparing with other family groups. We think that this scope gives us enough
information to make a conclusion at the end. The second that we focused on in our research is
NLP tasks such as sentiment analysis and emotion classification. We decided to exclude doubt
that the language-independent representation can also perform differently based on conducted
tasks.

3.1 Overall Architecture

Due to the fact that we are not using parallel corpora1 in our study, it is not easy to evaluate
the classifier’s performance in each language separately. It is for this reason that we must have
a support system in order to complete our research successfully. We decide to translate datasets
into other languages as a starting point. After that, train classifiers with different languages
and evaluate the performance of classifier performance. English is the source language for both
our dataset and Figure 5 illustrates how the English language is used as the source language
and then translated into other languages by other languages. It is possible that this approach
will have drawbacks because the translation may not be accurate enough, and the classifier
may produce only mediocre results. On the contrary, we consider it as a support point, as
well as an opportunity to test how well machine-translated data can be used in the machine
learning model as a training dataset. In addition, we will have the results of a classifier trained
with the English language, which will allow us to compare the results of the source language
to those of other translated datasets, which will be helpful at the end.

The overall architecture of our approach is visualized in Figure 6. Many machine learning
algorithm pipelines follow the same structure and include all of these steps:

1. Dataset used to train model

2. Text preprocessing

3. Extract features by using embeddings

4. Machine learning model training

5. Evaluation of the machine learning model
1Collection of texts that have been translated into one or more languages other than the original.

21

However, we would like to highlight step 3, which contains two different language-independent
embeddings. The distinction is that in our baseline, we use FastText for word representation
and sentence representation in our primary experimentation.

Figure 5: Machine translation

Figure 6: The overall pipeline architecture

3.2 Dataset

Sentiment analysis and emotion classification are two tasks on which we decided to conduct
research and experiment. As a result, classifiers required appropriate datasets in order to train
the model. We came to the conclusion that the Stanford Sentiment Treebank fine-grained

22

(SST5)[28] and SemEval 2018 [27] were the best candidates for the tasks we had set for
ourselves. Detailed descriptions of each dataset will be provided in this section.

3.2.1 SST5

A popular dataset for working with sentiment analysis is SST5[28], which provides the ability
to learn about sentence structure rather than simply observing a single word in isolation. It
includes the 11855 movie reviews with 215154 phrases collected from a service called Rotten
Tomates2. Human annotators labeled each sentence from Amazon Mechanical Turk 3 work-
ers, and they were given a slider with 25 different levels of sentiment. It is critical to remind
them that the human perception of text classification has always been the case. It means that
the dataset and classification model will never be perfect in a real-world application and thus
will always contain some biases. However, as illustrated in Figure 7, we can rely on specific
similarities in general. Consider the fact that the shorter phrases are primarily neutral, while
the longer phrases have a good distribution of positive and negative classes. The authors were
able to do this by creating a fine-grained version of the collected dataset and then segmenting
the 25 levels of sentiments into five groups. They reduced the number of sentiment classes
from ten to five (very positive, positive, very negative, negative, and neutral). In Table 1, it
can be seen how the actual dataset appears, and this is the result.

Figure 7: The distribution of SST5 labels

We chose this dataset because it contains only clean human sentiments that have been col-
lected and because the source is the point at which people intend to express their opinions
about a particular movie in greater depth. In addition, we want to broaden the scope of this
dataset’s utility by including data from other languages, as the original dataset only included
data from a few languages. The original dataset, on the other hand, is fine-grained, and we
have been interested in binary classification from the beginning of our research. Despite the
fact that fine-grained classifications are fascinating, they are also known to be more challenging
to implement than binary classifications. We want to make the task for our model as simple
as possible because we believe it is challenging to convey the same sentiment in different

2https://www.rottentomatoes.com/
3https://www.mturk.com/

23

Text Label
The Rock is destined to be the 21st Century ’s new “ Conan ”
and that he ’s going to make a splash even greater than Arnold
Schwarzenegger , Jean-Claud Van Damme or Steven Segal .

Positive

The gorgeously elaborate continuation of “ The Lord of the Rings
” trilogy is so huge that a column of words can not adequately de-
scribe co-writer/director Peter Jackson ’s expanded vision of J.R.R.
Tolkien ’s Middle-earth .

Very positive

You ’d think by now America would have had enough of plucky
British eccentrics with hearts of gold .

o

It ’s only in fairy tales that princesses that are married for political
reason live happily ever after .

Negative

By no means a slam-dunk and sure to ultimately disappoint the
action fans who will be moved to the edge of their seats by the
dynamic first act , it still comes off as a touching , transcendent
love story .

Negative

Table 1: SST5’s five randomly chosen sentences with their labels

languages. We went one step further and decided to create two labels out of five by merging
classes such as very positive and positive in one class, then very negative and negative in the
same bucket, resulting in two labels out of five. Consequently, we have three labels (positive,
negative and neutral) with the new distribution shown in Table 2, which contains 8,544 training
samples and 2,210 testing samples, for a total of two labels.

Sample Label Quantity
Training Positive 3610
Training Negative 3310
Training o 1624
Testing Positive 1743
Testing o 350
Testing Negative 117

Table 2: New distribution of SST5 dataset

3.2.2 SemEval 2018

The purpose of this research is to evaluate the performance of language-independent represen-
tation in complex natural language processing tasks. As a result, we conducted experiments
involving emotion classification. It is a method of demonstrating that language-independent
representation is effective in a variety of tasks. In order to accomplish this, we train our model
using the SemEval 2018 [27] dataset.

In this dataset, tweets from the English, Spanish, and Arabic languages are labeled and grouped
together. It is further subdivided into individual tasks such as emotion intensity regression (EI-
reg), emotion intensity ordinal classification (EI-oc), sentiment intensity (V-reg), sentiment
analysis and ordinal classification (V-oc), and emotion classification (E-c). However, in our

24

thesis, we only address the E-c task. The main distinction between this task and the SST5
dataset is that it provides labels in the form of emotion and has multiple labels for each
tweet. It is more complicated than having a single label for a sentence, as in SST5. Because
each tweet may contain multiple emotions at the same time, and some emotions may contain
multiple other emotions. Consider the emotion of surprise, which can be positive or negative
depending on the context. Overall, the SemEval 2018 task 1EC includes six emotions: disgust,
fear, sadness, surprise, joy, and anger, as shown in Table 3. However, in this study, we are only
concentrating on four of them (anger, joy, disgust, surprise)

Text disgust fear sadness surprise joy anger
@Max_Kellerman it also helps that
the majority of NFL coaching is inept.
Some of Bill O’Brien’s play calling was
wow, ! #GOPATS

1 0 0 0 1 1

Accept the challenges so that you can
literally even feel the exhilaration of
victory.’ – George S. Patton

0 0 0 0 1 0

it’s pretty depressing when u hit pan
on ur favourite highlighter

1 0 1 0 0 0

@BossUpJaee but your pussy was weak
from what I heard so stfu up to me
bitch . You got to threaten him that
your pregnant .

1 0 0 0 0 1

Making that yearly transition from ex-
cited and hopeful college returner to
sick and exhausted pessimist. #college

1 0 1 0 0 0

Table 3: Five randomly chosen sentences with their labels from SemEval 2018 task 1EC
dataset

3.3 Machine translation

For the purpose of converting our datasets from the English language to other languages,
we decided to use Google Translate. It is a service that provides translation of text from one
language to another nearly instantly because they have sophisticated algorithms and billions of
documents that have been expertly translated. However, this does not imply that translation
is error-free or without flaws of any kind, which means that there is still room for improvement
and that it is in the process of improving. For instance, historically, it used statistical machine
translation until google introduced the Google Neural Translation System (GNMT) that uses
state-of-the-art training methods to get tremendous improvements regarding the quality of
machine translation [24]. The engineers at the company came up with a Recurrent Neural
Network (RNN) that helped in learning the manner of mapping a sentence sequence as it is
input in one language to the sequence when it is output in another language [76]. Google
Translate now supports a total of 108 languages in total. Additionally, they create interfaces
in the form of APIs, such as the Translation API4, that make it easier to use for a variety of
purposes, and we also used this interface to translate the data from one language to another.

4https://cloud.google.com/translate

25

3.4 Text preprocessing

Naturally, text preprocessing is a critical component of the field of natural language processing
(NLP). It transforms text into a more desirable form, which allows it to be used in machine
learning algorithms to produce better results. In our research, we are looking into the world of
tweeters and movie reviews. Accordingly, we employ methods to clean and process text that
is dependent on the context of the data. In this study, we will take a look at three steps that
are commonly used in text preprocessing: 1) Text noise removal, 2) Text tokenization, and 3)
Text normalization.

Primary cleaning operations are performed on the text to make it easier to read by a machine.
This process involves removing unnecessary and distracting parts of the text to make it easier
to read by a machine. Following that, the strings are divided into smaller tokens, from which
large text can be divided into sentences, and sentences can be tokenized into small words.
Finally, the text must be normalized, which means that all of the characters within the text
must be lowercased.

3.4.1 Basic cleaning operations

We performed a series of steps to clean text, and the first is cleaning unnecessary things from
the text:

• We are eliminating URLs from the text as they do not contain valuable information for
the model.

• Eliminating symbol "#" from hashtags (e.g., #veryhappy).

• Eliminating username mentions as the name of a person is not providing valuable infor-
mation regarding sentiment or emotion (e.g., @JoeBiden)

• We are eliminating emojis from the text. However, it is possible to convert emojis to
corresponding emotional words. We just removed it in our experiment as it is not the
main object of this study.

We also cleaned the symbols, such as ’'’, which appear after using a translator. Below,
we gave a result of the translation dataset from English to the Dutch language.

The Rock is voorbestemd om de nieuwe “ Conan '' van de 21e eeuw
te worden en dat hij nog meer indruk zal maken dan Arnold Schwarzenegger,
Jean-Claud Van Damme of Steven Segal.

3.4.2 Text tokenization and normalization

Tokenization is the technique of breaking a text into smaller units referred to as tokens used in
input processes like mining of text or parsing. It is used to comprehend patterns with readers
that enable the achievement of tasks that include named entity recognition, POS tagging, and
sentiment analysis [77], [78]. In this study, we used different tokenizers such as NLTK5, and

5https://www.nltk.org/index.html

26

Moses6.

NLTK is a subset of the Python programming language with utilities and functions that are
prebuilt to make it easier to implement and use the program. When looking at the libraries
with natural language computational and processing linguistics, it is one of the most used
[79]). There are various techniques of using the NLTK tokenizer:

• Character tokenization - text is broken into characters

• Word tokenization - long text brokes into words

• Sentence tokenization - divides paragraphs into a list of sentences

• Whitespace tokenization - tokenizing whitespace through a string

• Word punctuation tokenization - uses a series of punctuations to tokenize sentences

We used NLTK with word tokenization method in all languages that we focus on this study.
Then, we used MOSES tokenizer to implement one of our language-independent sentence
representers.

The MOSES tokenizer comes in the toolkit called Moses, which is mainly used to separate
words and punctuations from text, hence preserving some tokens that are regarded as excep-
tional, including dates and URLs [80]. As it does so, it normalizes the characters, hence making
it easier to implement with any language.

Finally, we transformed all text to lowercase and removed all stopwords to normalize our
dataset.

3.5 Representation learning

Following the completion of text preprocessing, we will proceed with feature extraction. In
a baseline, we were employing fastText, which provides pre-trained embeddings for each lan-
guage. In spite of the fact that it is considered to be a multilingual approach, we used monolin-
gual pre-trained embedding, which was provided by FastText, and trained the machine learning
model for each language separately. Therefore, this approach, to some extent, inefficient in
terms of time and memory planning in the future. As an alternative, we also used sentence
embeddings such as the Language Agnostic Sentence Representation (LASER)[17] and the
Language-agnostic BERT sentence embedding (LaBSE)[18].

3.5.1 Langauge Agnostic Sentence Representation

The vector representations of sentences employed by LASER are universal in that they can be
used regardless of the language of the input or the NLP task. The tool translates a sentence
in any language into a location in a high-dimensional space, with the goal of putting the
identical statement in any language in the same neighborhood as the converted sentence. It
is possible because of the technology of neural machine translation, known as the encoder-
decoder method that we explained in Chapter 2.

6https://github.com/luismsgomes/mosestokenizer

27

Figure 8: LASER architecture [17]

Based on Schwenk’s[25] work, the LASER’s system architecture is depicted in Figure 8. A five-
layer bidirectional LSTM (long short-term memory) network serves as the encoder. In contrast
to neural machine translation, the LASER does not use an attention mechanism and instead
represents the input sentence with a 1,024-dimension fixed-size vector. Sentence embeddings
are constructed, as shown in the example, by applying a max-pooling operation to a BiLSTM
encoder’s output to obtain a sentence embedding. These embeddings are used to initialize
the decoder LSTM via a linear transformation and are concatenated to its input embeddings
at each step. We can also notice that there is no other connection between the encoder and
the decoder because the sentence embedding has to capture all relevant information from the
input sequence. The encoder does not receive a clear signal indicating what language the input
is in; it is encouraged to learn representations independent of the input language. A language
ID embedding, on the other hand, specifies the language to generate and is concatenated with
the input and sentence embeddings at each time step in the decoding process. LASER utilizes
a joint byte-pair encoding (BPE) vocabulary with 50k operations, which learns sub-words by
observing frequent words in n-grams [17]. It is required because the system only has one en-
coder and decoder where all languages are involved.

The LASER encoder takes advantage of the parallel corpora data, which means that they
benefit from the associations that exist between parallel sentences. The goal is to provide the
model with opportunities to translate from the source language to any other target languages
based on the knowledge gained. It is possible because the model can predict masked tokens in
both the source and target languages at the same time. For example, consider the sentences
below:

English: Dramas like this [MASK] it human.

Russian: Подобные драмы [MASK] его человечным.

It masked the word "make" in the source language, and "дeлaют" in the target language. The
process of masking tokens happens randomly and for all words in sentences. Furthermore, the
model can leverage information from both language context to predict masked words. Conse-
quently, the model able to calculate how similar the sentence and can extend it to measure
the relationship between different language datasets. Thus, it is a handy function that we also
harnessed in our study and presented in a coming section.

28

In total, LASER was trained using a dataset of 93 different languages. These languages were
written in 28 different scripts and belonged to 30 different families of languages. Through the
use of a single encoder, BiLSTM, they were able to train the vocabulary of all languages using
publicly available datasets. Despite the fact that the original paper also provides a classifier[17],
this study only makes use of the LASER pre-trained model as a feature extractor in the future.

3.5.2 Language Agnostic BERT Sentence Embedding

LaBSE is a multilingual BERT embedding model which supports 109 languages ([18]). Six
billion bilingual sentence pairs and 17 billion monolingual sentences were used to train it.

The dual encoder architecture encodes the source and target text separately using a shared
transformer embedding network, as illustrated in figure 9. The model uses bidirectional dual
encoders with additive margin softmax loss with in-batch negative sampling [81], as shown in
following equation:

L = − 1

N

N∑
i=1

eφ(xi,yi)
−m

eφ(xi,yi)−m +
∑N
n=1,n6=1 e

φ(xi,yn)

φ(x, y) given as space similarity of x and y embeddings. Even when φ(xi, yi) is discounted by
margin m, the loss attempts to rank yi, the true translation of xi, overall N − 1 alternatives
in the same batch. The final loss function adds the source to target L and target to source L′

loss functions, as shown below:

L = L+ L′

Large training batch sizes benefit cross-lingual embedding models trained within batch negative
samples [82]. Then, a transformer encoder is used [15]. On the monolingual data and bilingual
translation pairs, the encoder is pre-trained with Masked Language Model (MLM) [16] and
Translation Language Model (TLM) [83] training. Finally, the model trained with a L layer
transformer encoder using a three-stage progressive stacking algorithm [84]. As with the LASER
model, the LaBSE pre-trained model is being used as a feature extractor.

3.6 Text classifier

Different machine learning algorithms can be employed when it comes to sentiment analysis
and emotion classification. Similarly, Support Vector Machines (SVMs) offers a simple and
powerful approach to solve practical problems. They are acknowledged extensively by many
machine learning experts globally due to their propensity to produce significantly accurate
data using minimal computation power[85]. This thesis used SVM with Gaussian kernel as a
machine-learning algorithm to conduct experiments due to simplicity and memory efficiency.

3.6.1 Support Vector Machines (SVM)

The SVM machine language algorithm makes use of a specific hyperplane or line in an N-
dimensional space that vividly classifies the data points, where N represents the total sum
of the features. When separating two groups or classes of data points, a number of different
hyperplanes or lines can be used to accomplish this. The Support Vector Machine learning

29

Figure 9: LaBSE architecture [18]

algorithm necessitates the discovery of the point that is representative of both classes and is
closest to the line. These specific points are referred to as Support vectors[86]. Subsequently,
it is imperative to calculate the distance between the support vectors and the hyperplane.
This distance is referred to as the margin. As a result, the primary objective is to identify a
line that has the optimal margin. The optimal margin is defined as the distance between the
data points from both groups that is the greatest possible. So optimizing the margin distance
provides some level of reinforcement to ensure that data points can be classified more confi-
dently in the feature, thereby increasing their likelihood of being classified correctly. The term
"optimal hyperplane" refers to an instance in which the line for which the margin is at its
maximum is the best line possible.

3.6.1.1 Parameter tuning
The SVM has several parameters to control training strategies. For instance, parameters such
as gamma and c define the decision boundaries of the classifier. However, we have not focused
on fine-tuning these parameters. Instead, we used CalibratedClassifierCV7 in order to tackle the
problem regarding calibration of probabilities of class. Not all machine algorithms can handle
it, and SVM is one of them where a class is uncalibrated because it cannot predict class proba-
bilities natively. CalibratedClassifierCV estimates the optimal parameters for the classifier and
calibrates it. In our experiment, we used the cross-validation method of CalibratedClassifierCV
with 5-folds. Typically, the application of SVM is restricted to two-dimensional cases in which
the classifier can distinguish between labels using a straight line. However, it is incapable of
dealing with problems with a large number of dimensions. As a result, it makes use of Kernel

7https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html

30

Trick, and there are many of them.

3.6.1.2 Kernel
A kernel is a mathematical function that transforms input feature vectors into the required
dimensional space to process them more effectively—there various types of the kernel.

• Basic formulation of kernel function:

K(X, y) =< f(x), f(y) >

• The linear function uses the dot product of features and makes a prediction with the
classifier’s decision boundary in another dimensional space.

K(x, y) = xi · xj

• Radial Basic Function (RBF) is another standard kernel used in SVM. RBF kernel is a
function that uses the Gaussian function to separate classes.

K(x, y) = exp(−γ|xi − xj|2)

In the thesis, we used RBF as it is most generally used because of high performance.

3.6.1.3 Multiclass classification
Multiclass classification is predicting classes that have more than two labels. The SVM does
not support multiclass classification as it is binary-oriented and can classify a maximum of two
classes. However, SVM handles it by breaking down the multiclass problem into many binary
classifications. There two techniques to achieve that:

1. One-to-one classification is creating a binary classifier for every two classes separately.
It is computationally expensive as it will have N(N-1)N classifiers.

2. One-to-all classification is creating a binary classifier by training one class against others.
It means that other classes will be assigned as one same label.

We used LASER and LaBSE as a feature extractor, trained RBF kernel SVM classifier. The
Gaussian itself shows that it can handle dense embeddings, and ZyLAB’s experience also proves
it. Furthermore, we used one-to-all classification in our experiment as we find it most suitable
from perspective time and memory.

3.7 Evaluation

F1-Score was used as the evaluation metric as our tasks considered as a classification problem.
It is a form of measurement used to gauge the overall efficiency levels of a particular classifier
in terms of accomplishing its set goals and objectives. Primarily, it combines both recall and
precision for every tag involved. The F1 score differs from other kinds of measuring tools, such
as accuracy, in that it produces more efficient results by vindicating any disparities during the
dissemination of text amongst tags. Therefore, the F1 Score function becomes quite essential
when seeking a balance between recall and precision.

31

F1 = 2 ∗ precision ∗ recall
precision+ recall

A recall is often used to determine the percentage of texts predicted by a particular classifier
from a more significant sum of texts that it should have predicted for those particular tags.
Thus, it calculates the number of Actual Positives that the specific model captures by iden-
tifying it as a True positive (TP) [87]. For example, suppose a bank predicts a counterfeit
transaction as a genuine one. It can encounter various challenges, assuming the counterfeit
transaction is the True Positive, and the genuine one is the Predicted Negative. Incorporating
a synonymous analogy, it is pretty clear that the recall refers to the metric model applied to
identify the best model in instances where a False-negative (FN) is associated with high cost.

Recall =
TP

TP + FN

Unlike Recall, Precision can be described as the actual percentage of texts that the classifier
model identified correctly from the general sum of texts predicted from a particular tag.
Moreover, this concept relates to determining how accurate or precise the model is from
the various predicted positives. It is also an effective means of measuring and determining high
costs regarding False Positives (FP). For instance, a non-spam email sent and detected as a
spam email can be termed a False Positive. In such a scenario, the email owner will most likely
lose several essential emails if the Precision is relatively low for the particular spam-detection
model.

Precision =
TP

TP + FP

3.7.1 Micro Averaged F1 Score

In this thesis, we are using a micro average F1 score which aggregates all labels contributions
to calculate the average metric. But, it can completely dominate the poor performance of
smaller classes if the majority class performs significantly well. Of course, this is unfair to
minority groups because their low individual scores would be masked by a high overall metric.
Nevertheless, we decide to take the micro average F1 score, as it is a preferable way to handle
a class imbalance in a multi-class classification setup. Same as we have classification with
one-to-all context with imbalanced classes.

F1µ =

∑N−1
i=0 F1i
|all|

Where the N is a number of classes, and all is the number of instances.

32

4 Results

4.1 Baseline

In this thesis, we study several language-independent representations and conduct experiments
to understand better how they perform in various natural language processing tasks. However,
before we start, we wanted to establish our benchmark for each NLP task and use that as a
starting point for our investigation. From our perspective, the most appropriate way, to be-
gin with, was the fastText word embeddings. It provides a single pre-trained model for each
language, and there is no use of shared knowledge between the languages in this system. Fur-
thermore, it is language sensitive and can only be used in the dataset with the same language
as the pre-trained model. As a result, it seemed the most straightforward and logical strategy
because we train a classifier with only one language and evaluate it with the corresponding
language.

To use the fastText pre-trained model, we need a separate dataset for each of the 12 lan-
guages listed above. Both SST5 and SemEval 2018 task 1EC datasets provide datasets in
several languages. However, we selected only English as the source language in order to bypass
complications in our methodology. It is much easier to follow the data transfer when there is
only one source. We were able to complete this knowledge transfer task using Google Trans-
lation, and it is carried out by using the cloud translation API. First, we designated English
as the source language and the other 12 languages as the target languages. However, before
we start translating, we divided the dataset into buckets, each containing 100 sentences as a
separate item in a list. It is done to avoid having too many requests in google service. One
thing to keep in mind is that when we send a list of sentences to the cloud, each item in the
list is considered and translated separately. It means that the context of the bucket does not
affect the context of sentences. Finally, we able to translate our datasets to all languages we
considered as target languages. The result of translation for Russian and Spanish languages
are shown below:

English - source language: Australian actor/director John Polson and award-
winning English cinematographer Giles Nuttgens make a terrific effort at disguising
the obvious with energy and innovation.

Russian - target language: Австралийский актер и режиссер Джон Полсон и
отмеченный наградами английский кинематографист Джайлс Наттгенс прилагают
огромные усилия, чтобы замаскировать очевидное с помощью энергии и
новаторства.

Spanish - target language: El actor y director australiano John Polson y el galar-
donado director de fotograf́ıa inglés Giles Nuttgens hacen un tremendo esfuerzo
por disfrazar lo obvio con enerǵıa e innovación.

As we can see from the example, Google Translate was able to provide accurate translations
for both target languages used. It can even recognize symbols such as the "/" symbol, which
in English represents the word "or," and replace it with the appropriate word in the target
language. However, in terms of word order, the translator maintained the same structure as in

33

English, which, for example, may not sound natural in Russian but still conveys the primary
meaning. Finally, we used the machine-translated datasets to train our SVM classifier, which
resulted in the creation of a model for each language. The experimental results of those
classifiers will be presented in the following section.

Language Label Precision Recall F1
English Positive 0.74 0.75 0.76
English Negative 0.76 0.57 0.65
Dutch Positive 0.74 0.68 0.71
Dutch Negative 0.74 0.54 0.63
German Positive 0.73 0.67 0.70
German Negative 0.72 0.52 0.60
Swedish Positive 0.72 0.68 0.70
Swedish Negative 0.71 0.50 0.59
Russia Positive 0.72 0.69 0.70
Russia Negative 0.71 0.52 0.60
Slovak Positive 0.73 0.65 0.69
Slovak Negative 0.71 0.51 0.59
Polish Positive 0.74 0.66 0.70
Polish Negative 0.74 0.53 0.62
Czech Positive 0.74 0.66 0.70
Czech Negative 0.71 0.52 0.60
Italian Positive 0.73 0.69 0.71
Italian Negative 0.73 0.52 0.61
French Positive 0.74 0.66 0.70
French Negative 0.70 0.52 0.59
Portuguese Positive 0.73 0.67 0.70
Portuguese Negative 0.72 0.55 0.62
Spanish Positive 0.73 0.69 0.71
Spanish Negative 0.72 0.54 0.62

Table 4: Micro averaged F1 scores on the SST5 test ran once when SVM classifier with
Gaussian kernel trained SST5 training dataset by using FastText word embeddings.

4.1.1 FastText results

We used a gaussian kernel to train the SVM classifier and only ran the test once to evaluate the
results. Then, we obtained micro averaged F1 score, recall, and precision results and recorded
them in tables. In the following sections, we refer to F1 score rather than the micro average
F1 score. The meaning, however, remains the same. To be clear, the results of the neutral
label are not presented in this thesis because we are primarily interested in the labels on which
we are concentrating our efforts.

34

Language Label Precision Recall F1
English Anger 0.73 0.60 0.66
English Joy 0.84 0.68 0.75
English Disgust 0.70 0.57 0.63
English Surprise 0.50 0.01 0.01
Dutch Anger 0.71 0.55 0.62
Dutch Joy 0.81 0.63 0.71
Dutch Disgust 0.67 0.52 0.58
Dutch Surprise 0.33 0.01 0.01
German Anger 0.70 0.58 0.62
German Joy 0.82 0.64 0.72
German Disgust 0.67 0.52 0.58
German Surprise 0.00 0.00 0.00
Swedish Anger 0.69 0.54 0.61
Swedish Joy 0.81 0.62 0.71
Swedish Disgust 0.65 0.52 0.58
Swedish Surprise 0.00 0.00 0.00
Russia Anger 0.70 0.58 0.63
Russia Joy 0.81 0.62 0.70
Russia Disgust 0.67 0.54 0.60
Russia Surprise 0.00 0.00 0.00
Slovak Anger 0.65 0.48 0.56
Slovak Joy 0.79 0.60 0.68
Slovak Disgust 0.63 0.47 0.53
Slovak Surprise 0.00 0.00 0.00
Polish Anger 0.68 0.52 0.59
Polish Joy 0.80 0.61 0.69
Polish Disgust 0.64 0.49 0.55
Polish Surprise 0.00 0.00 0.00
Czech Anger 0.68 0.52 0.59
Czech Joy 0.80 0.62 0.70
Czech Disgust 0.63 0.47 0.53
Czech Surprise 0.00 0.00 0.00
Italian Anger 0.72 0.56 0.63
Italian Joy 0.82 0.62 0.71
Italian Disgust 0.68 0.53 0.59
Italian Surprise 0.00 0.00 0.00
French Anger 0.71 0.56 0.63
French Joy 0.84 0.62 0.71
French Disgust 0.67 0.52 0.59
French Surprise 0.00 0.00 0.00
Portuguese Anger 0.72 0.56 0.63
Portuguese Joy 0.83 0.64 0.72
Portuguese Disgust 0.66 0.52 0.58
Portuguese Surprise 0.00 0.00 0.00
Spanish Anger 0.73 0.58 0.65
Spanish Joy 0.84 0.64 0.73
Spanish Disgust 0.68 0.54 0.60
Spanish Surprise 0.00 0.00 0.00

Table 5: Micro averaged F1 scores on the SemEval 2018 task 1EC test ran once when
SVM classifier with Gaussian kernel trained SemEval 2018 task 1EC training dataset by
using FastText word embedding.

35

Table 4 shows the results of the SST5 dataset for each of the 12 languages in which we used
it. In this case, we can see that the F1-score for the positive label is on average 0.71, with a
maximum score of 0.76 in English and a minimum score of 0.69 in Slovak, on average. The
average F1-score for a negative label is 0.61, with a maximum score of 0.65 in English, and
the maximum score for a negative label is 0.61 in Spanish. The bare minimum of 0.59 points
was shared by three languages: Swedish, Slovak, and French, respectively. The results of the
classifier are nearly identical in all languages, giving the impression that Google translation
is effective once more. After that, let us take a closer look at precision and recall. We can
see that recall is generally lower than precision, with the exception of English with a positive
label, which maintains the same level of precision and recall at 0.74 and 0.75, respectively.
The precision for positive numbers is 0.73 on average, and for negative numbers, it is 0.72.

On the other hand, recall is 0.67 for positive labels and 0.52 for negative labels, which is lower
than precision for 0.06 points and 0.2 points, respectively. We can also see that the negative
label has a lower overall score than the positive label when compared to the positive label. It is
possible that this is due to the fact that fastText word embeddings are unable to handle things
such as negations. Typically, it is dealt with during the text pre-processing stage by replacing
negations with words that have similar meanings. For example, the word "can’t" could be
substituted with the word "cannot," which is the most basic example.

The result of SemEval 2018 task 1EC in Table 5 clearly shows that the gap between precision
and recall remains unchanged as it was in SST5. The "angry" label has an average precision of
0.7 and recall of 0.55. Next, "disgust" has a precision of 0.66 and a recall of 0.51. Then, 0.82
precision and 0.62 recall have the label "joy". Only label "surprise" has a recall and precision
of zero, as previously stated. It could be due to the complexities of this emotion.

langs de nl sv en es fr it pt pl ru cs sk avg
de 0.00 1.60 1.58 3.56 1.79 8.74 4.08 1.88 1.85 2.67 1.58 1.93 2.84
nl 2.04 0.00 2.28 4.11 2.36 8.33 4.23 2.34 2.73 3.57 3.44 3.32 3.52
sv 1.80 1.91 0.00 4.17 1.73 7.84 3.76 1.94 2.11 2.69 2.93 3.65 3.14
en 5.30 5.45 6.19 0.00 3.66 6.25 4.48 4.35 6.29 7.14 6.07 5.83 5.55
es 1.98 2.01 1.74 2.40 0.00 5.57 2.35 0.94 1.80 2.13 2.31 2.94 2.38
fr 21.43 23.36 24.67 21.59 18.56 0.00 15.43 19.94 25.76 26.36 24.58 20.45 22.01
it 7.61 8.52 8.70 7.54 5.47 6.23 0.00 6.11 8.95 9.57 8.85 7.85 7.76
pt 2.04 2.08 1.88 2.76 1.03 6.29 2.52 0.00 1.99 2.68 2.39 2.79 2.59
pl 2.45 2.50 2.15 4.72 2.18 10.14 4.76 2.38 0.00 2.22 2.29 2.55 3.49
ru 2.75 2.97 2.73 5.31 2.33 11.12 5.27 2.54 1.81 0.00 2.68 3.24 3.89
cs 1.64 2.48 1.85 3.86 1.94 9.38 4.25 1.94 1.53 2.12 0.00 1.21 2.93
sk 1.72 2.27 2.49 4.27 2.12 9.40 4.53 1.97 1.59 2.15 0.98 0.00 3.05
avg 4.61 5.02 5.12 5.84 3.93 8.12 5.06 4.21 5.13 5.76 5.28 5.07 5.26

Table 6: SST5 all language pairs similarity errors in percentage (langs - languages, de-
German, nl-Dutch, sv-Swedish, en-Englis, es-Spanish, fr-French, it-Italian, pt-Portuguese,
pl-Polish, ru-Russia, cs-Czech, sk-Slovak).

Nonetheless, we can clearly see the difference in results between English and other languages
in this task. For example, the F1-score for the angry label is 0.66 in English, while the other

36

languages average 0.61, with the exception of Spanish, which has 0.65. The F1 score has
dropped by at least 0.03 points. When we consider the context in which the dataset was
translated, we can conclude that it is not a significant drop.

4.2 LASER

We already know that the LASER model keeps the sentences in common space for all 93
languages it supports. For our experimentation, we are only using 12 languages, and we have
translated datasets for each language. Consequently, we need to encode them with a pre-trained
LASER model. The encoding process is covered following steps: 1) We used the fastBPE8

package that uses neural machine translation to make subword units from rare words. 2) We
used LASER pre-trained model implemented by fairseq9 to encode the datasets, which at
the end returned in N × 1024 vector space in NumPy10 array format. The N is the number
of sentences in the dataset. After completion of encoding, we had 12 languages encoded
datasets, which contains training and testing samples. This section examines the similarity of
our translated dataset and gives the results of the SVM classifier with LASER embedding.

langs de nl sv en es fr it pt pl ru cs sk avg
de 0.00 2.49 3.88 4.33 3.55 5.34 2.92 2.54 3.45 3.60 4.05 4.24 3.67
nl 2.87 0.00 3.45 4.14 2.97 4.75 2.81 2.09 3.60 3.71 4.08 4.40 3.53
sv 3.83 3.00 0.00 4.75 3.95 5.44 3.50 3.13 3.48 3.76 3.60 4.04 3.86
en 6.04 4.87 6.42 0.00 4.28 5.09 3.89 3.93 6.03 6.42 6.42 6.57 5.45
es 3.35 2.54 3.99 3.39 0.00 4.28 2.47 2.09 3.66 3.88 4.62 4.49 3.52
fr 15.94 15.03 17.36 13.47 13.37 0.00 10.87 12.75 16.22 16.89 16.41 16.32 14.97
it 4.91 3.99 5.47 4.49 3.58 3.92 0.00 2.90 4.91 5.15 5.48 5.47 4.57
pt 2.60 1.93 3.44 3.10 2.30 3.66 1.73 0.00 3.00 3.69 3.89 4.12 3.04
pl 3.36 2.88 3.71 4.53 3.42 5.12 2.98 2.43 0.00 3.04 3.14 3.38 3.46
ru 3.61 3.04 3.86 4.71 3.57 5.75 3.14 2.54 3.07 0.00 3.29 3.48 3.64
cs 3.99 3.60 3.47 4.59 4.07 5.62 3.39 3.06 3.04 3.31 0.00 2.22 3.67
sk 3.67 3.29 3.35 4.46 3.99 5.57 3.19 2.97 3.04 3.26 1.89 0.00 3.52
avg 4.93 4.24 5.31 5.09 4.46 4.96 3.72 3.68 4.86 5.15 5.17 5.34 4.74

Table 7: SemEval 2018 task 1EC all language pairs similarity errors in percentage (langs -
languages, de-German, nl-Dutch, sv-Swedish, en-Englis, es-Spanish, fr-French, it-Italian,
pt-Portuguese, pl-Polish, ru-Russia, cs-Czech, sk-Slovak).

4.2.1 Similarity analysis

Before we get into the interpretation of the results, we would like to share the results of the
similarity error analyses we performed to see how well the translation went. We accomplished
this with the help of LASER and the library faiss11, which are both efficient in their ability to
find similarities and provide errors between languages in the form of percentages. The similarity
error is the vectors that are compared using Euclidean distances or dot products. Then, it is

8https://github.com/glample/fastBPE
9https://github.com/pytorch/fairseq

10https://numpy.org/
11https://github.com/facebookresearch/faiss

37

the least distance between two query vectors or the highest dot product between two query
vectors similar to each other in the form of a percentage. Tables 6 and 7 show the percentage
of errors made by each language pair when compared to other languages. Based on two of
these tables, we can conclude that the vast majority of errors are less than 9 percent; only in
the French language does it reach 18 percent in SemEval 2018 task 1EC and SST5 does it
reach 27 percent. It is possible that this is due to the complexity of the French language, which
might have unique language properties that Google Translator cannot handle. We translated
text from English to French and then the exact same text from French to English in order to
figure out what might be causing the significant error to occur. As an illustration, consider the
following three sentences that were chosen at random:

Example #1:

English - source: If you love reading and/or poetry , then by all means check it
out .

French - target/source: Si vous aimez la lecture et / ou la poésie, alors jetez-y
un œil.

English - target: If you like reading and / or poetry, then check it out.

Example #2:

English - source: The path Ice Age follows most closely , though , is the one
established by Warner Bros. giant Chuck Jones , who died a matter of weeks
before the movie ’s release.

French - target/source: Le chemin que Ice Age suit de plus près, cependant, est
celui établi par le géant de Warner Bros. Chuck Jones, décédé quelques semaines
avant la sortie du film.

English - target: The path that Ice Age is most closely following, however, is one
established by the Warner Bros. giant. Chuck Jones, who died a few weeks before
the film’s release.

Example #3:

English - source: For those who pride themselves on sophisticated , discerning
taste , this might not seem like the proper cup of tea , however it is almost
guaranteed that even the stuffiest cinema goers will laugh their *** off for an
hour-and-a-half.

French - target/source: Pour ceux qui sont fiers de leur goût sophistiqué et per-
spicace, cela peut ne pas sembler être la bonne tasse de thé, mais il est presque
garanti que même les cinéphiles les plus étouffants riront de leur *** pendant une
heure et demie.

English - target: For those who pride themselves on their sophisticated and insight-
ful taste, this may not sound like the right cup of tea, but it’s almost guaranteed
that even the most stuffy moviegoers will laugh at their *** for an hour and a
half.

In general, it appears that Google Translation is adequate for most purposes, with only a few
minor errors. Then, it makes it more challenging to determine why the similarity analysis yields
such a high error rate when compared to other languages.

38

Language Label Precision Recall F1
English Positive 0.76 0.70 0,73
English Negative 0.74 0.60 0,66
Dutch Positive 0.78 0.68 0,73
Dutch Negative 0.71 0.68 0,69
German Positive 0.76 0.71 0,74
German Negative 0.72 0.70 0,71
Swedish Positive 0.77 0.69 0,73
Swedish Negative 0.71 0.67 0,69
Russia Positive 0.78 0.71 0,74
Russia Negative 0.71 0.70 0,71
Slovak Positive 0.76 0.71 0,74
Slovak Negative 0.72 0.67 0,70
Polish Positive 0.78 0.71 0,74
Polish Negative 0.73 0.70 0,72
Czech Positive 0.74 0.72 0,73
Czech Negative 0.76 0.60 0,67
Italian Positive 0.77 0.68 0,72
Italian Negative 0.73 0.63 0,68
French Positive 0.80 0.63 0,70
French Negative 0.77 0.53 0,62
Portuguese Positive 0.77 0.70 0,73
Portuguese Negative 0.72 0.67 0,69
Spanish Positive 0.77 0.71 0,74
Spanish Negative 0.72 0.67 0,62

Table 8: Micro averaged F1 scores on the SST5 test ran once when SVM classifier with
Gaussian kernel trained SST5 training dataset by using LASER embeddings.

4.2.2 LASER results

Finally, the SVM classifier with a gaussian kernel that was trained only with English encoded
embeddings and tested in other encoded language datasets, including English itself, was found
to be effective. Looking at the results of LASER for SST5 in Table 8, we can see that the
results have significantly improved. For example, the F1-score improved outcomes by 7 percent
when compared to the baseline, while the precision and recall improved by 2.97 percent and
11,59 percent, respectively. We obtained these results by using only a training model with
English encoded embedding as the only feature. As of now, the average F1-score is 0.73 in
the positive category and 0.68 in the negative category. The results of task 1EC of SemEval
2018 are then shown in Table 9. Similarly, we can see an improvement in this task; for exam-
ple, the F1-score has improved by 7.94 percent, recalls have improved by 9.95 percent, and
precision has improved by 3.07 percent. However, the emotion "surprise" remains at zero in
all languages, which is the same as the results of FastText embedding. Therefore, we removed
it from the table because there was no helpful information contained within. Overall, we can
conclude that LASER embedding performs significantly better than our baseline.

39

Language Label Precision Recall F1
English Anger 0.74 0.60 0.66
English Joy 0.84 0.74 0.79
English Disgust 0.70 0.57 0.63
Dutch Anger 0.75 0.58 0.66
Dutch Joy 0.85 0.72 0.78
Dutch Disgust 0.71 0.58 0.64
German Anger 0.76 0.57 0.65
German Joy 0.86 0.70 0.77
German Disgust 0.70 0.55 0.62
Swedish Anger 0.75 0.57 0.65
Swedish Joy 0.84 0.72 0.77
Swedish Disgust 0.70 0.56 0.62
Russia Anger 0.75 0.61 0.67
Russia Joy 0.86 0.70 0.77
Russia Disgust 0.69 0.58 0.63
Slovak Anger 0.75 0.59 0.66
Slovak Joy 0.85 0.72 0.78
Slovak Disgust 0.71 0.56 0.62
Polish Anger 0.77 0.58 0.66
Polish Joy 0.85 0.70 0.77
Polish Disgust 0.70 0.56 0.62
Czech Anger 0.75 0.57 0.65
Czech Joy 0.85 0.71 0.77
Czech Disgust 0.72 0.55 0.62
Italian Anger 0.74 0.60 0.66
Italian Joy 0.83 0.72 0.77
Italian Disgust 0.68 0.60 0.64
French Anger 0.76 0.55 0.64
French Joy 0.83 0.74 0.78
French Disgust 0.70 0.55 0.62
Portuguese Anger 0.75 0.60 0.67
Portuguese Joy 0.84 0.71 0.77
Portuguese Disgust 0.69 0.58 0.63
Spanish Anger 0.73 0.59 0.65
Spanish Joy 0.86 0.71 0.78
Spanish Disgust 0.68 0.56 0.62

Table 9: Micro averaged F1 scores on the Semeval 2018 task 1EC test ran once when SVM
classifier with Gaussian kernel trained Semeval 2018 task 1EC training dataset by using
LASER embeddings.

40

Type Metrics Germanic Romance Slavic Mix
Baseline F1-score 10.95 9.94 10.19 10.82
Baseline Precision 2.98 3.26 3.15 3.04
Baseline Recall 18.50 16.15 16.98 17.87
LASER F1-score 3.54 2.60 2.84 3.43
LASER Precision 0.00 0.28 0.17 0.06
LASER Recall 6.18 4.08 4.82 5.63

Table 10: The results of LASER-FG compare to the SST5 baseline and LASER in per-
centage.

4.3 LASER Family Group (LASER-FG)

Based on the performance of the LASER, we came up with the idea of training a classifier
with multiple encoded datasets to try to improve its accuracy. We believe that it will improve
the performance of the results classifier because some studies have shown that classifier per-
formance is significantly better across similar languages [88]. In addition, it is attractive to
determining whether or not language properties have an impact on the model’s results. That
is one of the reasons to try to train the model using language family groups as a basis for
training.

Type Metrics Germanic Romance Slavic Mix
Baseline F1-score 19.29 19.60 20.78 19.42
Baseline Precision 7.37 8.26 8.63 12.00
Baseline Recall 28.73 28.04 30.00 26.81
LASER F1-score 10.51 10.80 11.89 10.63
LASER Precision 4.17 5.03 5.39 8.66
LASER Recall 17.08 16.45 18.23 15.34

Table 11: The results of LASER-FG compare to the SemEval 2018 task 1EC baseline and
LASER in percentage.

In total, we had four groups, including Germanic, Romance, Slavic, and Mixed. We decided to
collect different language families such as English, Russian and Spanish into the mixed group.
We believe that it has the potential to improve the model’s performance because it could
cover a broader range of language parameters. Table 10 and Table 11 show how the family
group model performed compared to baseline and SVM model, which trained with only En-
glish LASER encoded dataset; we name as LASER. We can see that, on average, the F1-score,
precision, and recall in SST5 among the different family groups similar but with a slight devia-
tion. For instance, the Germanic group has made significant gains in both F1-score and recall,
with increases of 10.95 percent and 18.5 percent, respectively, compared to the baseline. The
least F1 score gained Romance group with 9.94 percent increase. However, it has the most
increase in precision. On the other hand, the LASER-FG show growth in F1-score compared
to LASER, with the most significant rise occurring in the Germanic group once again. It has
a 3.54 percent increase. In general, we can understand that this improvement comes from an
increase in recall in all family groups on average for 5.1 percent. However, precision has no
significant change.

41

Language Label Germanic Romance Slavic Mix
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

English Positive 0.75 0.74 0.75 0.81 0.60 0.69 0.8 0.65 0.72 0.74 0.74 0.74
English Negative 0.75 0.62 0.68 0.72 0.68 0.70 0.74 0.65 0.69 0.76 0.62 0.68
Dutch Positive 0.76 0.75 0.76 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75
Dutch Negative 0.73 0.68 0.70 0.74 0.66 0.7 0.73 0.67 0.70 0.74 0.69 0.72
German Positive 0.75 0.77 0.76 0.74 0.76 0.75 0.74 0.77 0.76 0.75 0.76 0.75
German Negative 0.73 0.69 0.71 0.76 0.67 0.71 0.74 0.67 0.7 0.74 0.68 0.71
Swedish Positive 0.77 0.76 0.76 0.75 0.76 0.76 0.75 0.78 0.76 0.76 0.75 0.76
Swedish Negative 0.73 0.68 0.70 0.73 0.65 0.68 0.73 0.66 0.69 0.73 0.68 0.70
Russia Positive 0.77 0.73 0.75 0.76 0.74 0.75 0.76 0.77 0.76 0.77 0.75 0.76
Russia Negative 0.72 0.69 0.71 0.74 0.68 0.71 0.73 0.68 0.70 0.73 0.70 0.72
Slovak Positive 0.76 0.75 0.76 0.76 0.75 0.75 0.78 0.76 0.77 0.77 0.76 0.77
Slovak Negative 0.73 0.68 0.70 0.74 0.66 0.70 0.72 0.67 0.69 0.73 0.67 0.70
Polish Positive 0.77 0.77 0.77 0.75 0.77 0.76 0.77 0.79 0.78 0.77 0.78 0.77
Polish Negative 0.75 0.70 0.72 0.75 0.67 0.71 0.74 0.69 0.71 0.75 0.71 0.73
Czech Positive 0.75 0.76 0.75 0.82 0.63 0.71 0.78 0.74 0.76 0.75 0.76 0.75
Czech Negative 0.76 0.74 0.75 0.73 0.68 0.70 0.75 0.64 0.69 0.76 0.58 0.66
Italian Positive 0.76 0.75 0.75 0.75 0.76 0.76 0.77 0.74 0.75 0.77 0.74 0.75
Italian Negative 0.73 0.66 0.69 0.75 0.68 0.71 0.72 0.67 0.69 0.72 0.68 0.70
French Positive 0.76 0.72 0.74 0.75 0.75 0.75 0.77 0.71 0.74 0.77 0.71 0.74
French Negative 0.74 0.64 0.69 0.75 0.66 0.70 0.73 0.65 0.68 0.72 0.67 0.69
Portuguese Positive 0.75 0.76 0.75 0.76 0.76 0.76 0.77 0.75 0.76 0.75 0.76 0.76
Portuguese Negative 0.75 0.68 0.71 0.74 0.68 0.71 0.73 0.66 0.69 0.75 0.68 0.71
Spanish Positive 0.77 0.78 0.77 0.75 0.77 0.76 0.78 0.76 0.77 0.77 0.78 0.78
Spanish Negative 0.74 0.67 0.70 0.74 0.67 0.70 0.74 0.67 0.70 0.74 0.68 0.71

Table 12: Micro averaged F1 scores on the SST5 test ran once when SVM classifier with
Gaussian kernel trained SST5 family groups training dataset using LASER embedding.

By taking a closer look at the results of LASER-FG, shown in Table 12, we can recognize that
groups such as Romance poorly work compare to other groups in the English and Czech lan-
guages. For instance, the positive label has a 0.69 and 0.71 F1 score—generally, the classifier
results higher than 0.74 F1 scores in the positive label. We can also see that the Mixed group
gets up to a 0.78 F1 score in the Spanish language.

When we look at the results of SemEval 2018 task 1EC, we notice a significant difference
when compared to the SST5 dataset. It is surprising to see that performance improves in
some groups, such as Slavic, by as much as 20 percent in F1-score with a recall rate of 30
percent in the baseline. We can also see significant differences when compared to the LASER;
the F1-score increased by nearly 12 percent, with recall 19 percent in the Slavic group. This
anomaly, on the other hand, can be easily explained by looking at Table 13. When we train the
model with multiple languages, we can apparently see an improvement in the model’s ability
to capture difficult emotions such as "surprise." It is activated, and on average, we received a
0.15 in F1-score for this emotion; we can conclude that this factor can now explain the vast
difference in results between SST5 and SemEval 2018 task 1EC results.

42

Language Label Germanic Romance Slavic Mix
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

English Anger 0.70 0.65 0.67 0.70 0.67 0.69 0.70 0.63 0.67 0.71 0.67 0.69
English Joy 0.82 0.78 0.80 0.82 0.78 0.80 0.81 0.77 0.79 0.83 0.78 0.80
English Disgust 0.67 0.64 0.65 0.66 0.66 0.66 0.65 0.64 0.65 0.67 0.63 0.65
English Surprise 0.28 0.12 0.14 0.19 0.14 0.16 0.23 0.15 0.18 0.23 0.09 0.13
Dutch Anger 0.71 0.66 0.68 0.73 0.65 0.69 0.72 0.66 0.69 0.72 0.67 0.69
Dutch Joy 0.81 0.77 0.79 0.81 0.78 0.80 0.81 0.78 0.79 0.82 0.77 0.80
Dutch Disgust 0.68 0.64 0.66 0.69 0.63 0.66 0.67 0.64 0.66 0.68 0.63 0.66
Dutch Surprise 0.24 0.14 0.17 0.20 0.09 0.13 0.25 0.14 0.18 0.33 0.10 0.15
German Anger 0.72 0.67 0.69 0.72 0.66 0.69 0.72 0.66 0.68 0.73 0.66 0.69
German Joy 0.82 0.75 0.78 0.81 0.76 0.78 0.81 0.76 0.78 0.83 0.75 0.79
German Disgust 0.68 0.64 0.66 0.69 0.62 0.65 0.68 0.65 0.66 0.69 0.63 0.66
German Surprise 0.20 0.10 0.13 0.23 0.12 0.16 0.25 0.14 0.18 0.33 0.11 0.16
Swedish Anger 0.71 0.63 0.67 0.73 0.63 0.68 0.70 0.63 0.67 0.73 0.64 0.68
Swedish Joy 0.81 0.77 0.79 0.80 0.79 0.79 0.80 0.77 0.78 0.82 0.76 0.79
Swedish Disgust 0.68 0.63 0.66 0.69 0.61 0.65 0.68 0.65 0.66 0.68 0.63 0.66
Swedish Surprise 0.22 0.11 0.15 0.25 0.11 0.15 0.28 0.14 0.18 0.36 0.09 0.15
Russian Anger 0.71 0.68 0.69 0.72 0.66 0.69 0.72 0.68 0.70 0.72 0.66 0.69
Russian Joy 0.83 0.77 0.79 0.81 0.77 0.79 0.82 0.76 0.79 0.83 0.76 0.79
Russian Disgust 0.67 0.65 0.66 0.69 0.64 0.66 0.67 0.65 0.66 0.68 0.65 0.67
Russian Surprise 0.24 0.12 0.16 0.24 0.12 0.16 0.27 0.14 0.18 0.31 0.10 0.15
Slovak Anger 0.71 0.67 0.69 0.72 0.65 0.68 0.71 0.65 0.68 0.72 0.65 0.68
Slovak Joy 0.81 0.77 0.79 0.8 0.78 0.79 0.81 0.77 0.79 0.83 0.76 0.79
Slovak Disgust 0.66 0.61 0.64 0.69 0.60 0.64 0.67 0.63 0.65 0.69 0.62 0.65
Slovak Surprise 0.19 0.09 0.12 0.25 0.09 0.14 0.23 0.12 0.16 0.32 0.08 0.13
Polish Anger 0.71 0.67 0.69 0.73 0.66 0.69 0.70 0.66 0.68 0.73 0.66 0.70
Polish Joy 0.82 0.77 0.79 0.81 0.78 0.79 0.81 0.77 0.79 0.82 0.75 0.79
Polish Disgust 0.68 0.64 0.66 0.68 0.61 0.64 0.68 0.65 0.66 0.68 0.61 0.64
Polish Surprise 0.26 0.13 0.17 0.28 0.12 0.17 0.27 0.15 0.19 0.29 0.09 0.14
Czech Anger 0.71 0.66 0.68 0.72 0.64 0.68 0.72 0.66 0.69 0.73 0.65 0.69
Czech Joy 0.81 0.76 0.79 0.80 0.78 0.79 0.81 0.78 0.79 0.82 0.76 0.78
Czech Disgust 0.69 0.62 0.65 0.70 0.60 0.65 0.68 0.63 0.65 0.70 0.61 0.65
Czech Surprise 0.23 0.09 0.13 0.25 0.08 0.12 0.30 0.14 0.19 0.31 0.07 0.11
Italian Anger 0.69 0.67 0.68 0.70 0.68 0.69 0.70 0.67 0.68 0.71 0.68 0.69
Italian Joy 0.81 0.77 0.79 0.81 0.77 0.79 0.81 0.77 0.79 0.82 0.76 0.79
Italian Disgust 0.66 0.67 0.66 0.68 0.66 0.67 0.66 0.67 0.67 0.67 0.68 0.67
Italian Surprise 0.19 0.12 0.15 0.23 0.14 0.17 0.25 0.15 0.19 0.28 0.10 0.15
French Anger 0.70 0.67 0.69 0.72 0.66 0.69 0.71 0.64 0.67 0.71 0.66 0.69
French Joy 0.80 0.78 0.79 0.82 0.77 0.79 0.80 0.78 0.79 0.81 0.77 0.79
French Disgust 0.65 0.68 0.67 0.68 0.66 0.67 0.65 0.67 0.66 0.65 0.70 0.67
French Surprise 0.24 0.14 0.17 0.23 0.11 0.15 0.29 0.15 0.20 0.23 0.11 0.15
Portuguese Anger 0.71 0.67 0.69 0.7 0.67 0.69 0.71 0.66 0.69 0.72 0.68 0.70
Portuguese Joy 0.81 0.76 0.79 0.81 0.76 0.78 0.81 0.75 0.78 0.83 0.75 0.79
Portuguese Disgust 0.66 0.63 0.64 0.67 0.65 0.66 0.65 0.65 0.65 0.66 0.64 0.65
Portuguese Surprise 0.20 0.12 0.15 0.19 0.12 0.15 0.25 0.14 0.17 0.30 0.09 0.14
Spanish Anger 0.70 0.66 0.68 0.70 0.66 0.68 0.7 0.63 0.66 0.71 0.66 0.68
Spanish Joy 0.82 0.76 0.79 0.82 0.76 0.79 0.82 0.76 0.79 0.83 0.76 0.80
Spanish Disgust 0.66 0.64 0.65 0.67 0.65 0.66 0.67 0.65 0.66 0.67 0.64 0.65
Spanish Surprise 0.22 0.12 0.15 0.2 0.12 0.15 0.23 0.13 0.17 0.31 0.10 0.15

Table 13: Micro averaged F1 scores on the SemEval 2018 task 1EC test ran once when
SVM classifier with Gaussian kernel trained emEval 2018 task 1EC family groups training
dataset using LASER embedding. 43

4.4 LaBSE

Language-agnostic BERT sentence embedding is a method that uses masked language model
(MLM) and translation language model (TLM) techniques to achieve the results. One of
the main differences except architecture compared to the LASER is that it predicts the next
masked word without relying on the parallel data. It allows the self-attention layer to draw on
information from both the left and right contexts of a word to make its prediction. Then, we
also used different pre-processing techniques, such as the original Multilingual Preprocessor12

after cleaning noise from the text.

For this experiment, we used three different implementations of the LaBSE model, including the
official approach13. All of them retrieved the same results at the end. However, unfortunately,
we could not reach the same results as the LASER model does. See Table 14, which shows
that, on average, the model provides a 0.35 F1 score. It is interesting to see that the precision
is very high, on average 0.95, which is much higher than it appeared LASER results. However,
it is easily explained by the fact that a high recall rate was associated with the label "neutral."
In general, it is hard to explain why we got these results by using LaBSE embeddings, and we
want to leave it for future work due to time limits.

Language Label Precision Recall F1
English Positive 0.98 0.22 0.35
English Negative 0.94 0.12 0.21
Dutch Positive 0.95 0.21 0.34
Dutch Negative 0.97 0.07 0.13
German Positive 0.97 0.20 0.34
German Negative 0.90 0.09 0.16
Swedish Positive 0.96 0.20 0.33
Swedish Negative 0.87 0.09 0.16

Table 14: Micro averaged F1 scores on the SST5 test ran once when SVM classifier with
Gaussian kernel trained SST5 training dataset by using LaBSE embedding.

12https://tfhub.dev/google/universal-sentence-encoder-cmlm/multilingual-preprocess/2
13https://tfhub.dev/google/LaBSE/2

44

5 Conclusion and Discussion

In this study, we ran an experiment with existing language-independent methodologies and an-
alyzed their performance to see if they are truly language-independent. We chose two cutting-
edge methods for this task: LASER and LaBSE. We also tested the performance of FastText
word embeddings trained on translated datasets. Most importantly, we are able to answer the
study’s research questions.

Q1: How can language-independent word representations be used for more complex linguistic
tasks such as sentiment analysis and emotion classification?

As an example of how language-independent word representation can be used in sentiment
analysis or emotion classification, we demonstrated several different approaches. The most
straightforward method is to use FastText word embedding, which extracts features from
datasets. However, the main disadvantage of this technique is that it uses a pre-trained model
for each language separately, and it requires an average of 1.7 GB of memory on a single com-
puter. For instance, to train models for 12 languages, we had to use 20.4 GB of pre-trained
models. It means that we will be unable to easily and inexpensively expand our classifier to
include more languages.

On the other hand, we made use of sentence representations that were not dependent on
the language being used, such as LASER and LaBSE. Both of these techniques provide a
universal pre-trained model that can be used to learn a variety of languages in a single ses-
sion. Overall, we can train a classifier with only one encoded embedded representation and
predict the sentence labels in other languages. In practice, this means that we can only use
datasets that are in a single language and then use machine learning model knowledge to clas-
sify datasets from different languages. Nevertheless, the number of languages supported by a
particular pre-trained model is also a consideration. LASER, for example, supports 93 different
languages, while LaBSE supports 109 different languages. We can also train a classifier with
multiple language datasets in order to improve its performance, as we did in the case of the
LASER-FG. Despite the fact that this approach did not achieve significant improvement in
F1 score with 3 percent in the SST5 dataset. It remained almost the same as the classifier
trained only with an English encoded dataset. However, we can still see good improvement in
recall, which is essential to note. A company such as ZyLAB, for example, examines a large
number of documents, making it critical to have fewer errors in classifier prediction and a high
recall rate, which means this approach still an excellent candidate to consider. Furthermore,
it demonstrated that it was capable of dealing with emotions such as "surprise" and that it
could be applied in the same situation when a classifier for similar classes was required.

Q2 What are the results of the classifier trained with language-independent representations
for selected twelve languages?

With a Gaussian kernel and several language-independent representations, we train our SVM
classifier to recognize patterns in data. Despite the fact that the datasets had been translated,
the results of FastText word embedding in Table 4 and Table 5 showed promising results.
For example, the original dataset in English yielded results that were nearly identical to those
obtained in other languages, with a small amount of variation. While this deviation may seem

45

Language FastText LASER LASER-FG LaBSE
Czech 0.55 0.61 0.64 0.21
Dutch 0.58 0.62 0.65 0.23
English 0.61 0.61 0.64 0.28
French 0.56 0.59 0.65 0.23
German 0.57 0.62 0.65 0.24
Italian 0.57 0.61 0.65 0.23
Polish 0.56 0.62 0.66 0.21
Portuguese 0.57 0.61 0.65 0.22
Russia 0.57 0.62 0.65 0.22
Slovak 0.54 0.62 0.65 0.23
Spanish 0.58 0.60 0.65 0.24
Swedish 0.56 0.61 0.65 0.24

Table 15: Averaged F1 scores of FastText, LASER, LASER-FG and LaBSE results.

significant in theory, in practice, it may not be nearly as significant as the fact that it can be
used in other languages.

When compared to the baseline, the LASER approach produces excellent results. During SST5
and SemEval 2018 task 1EC, it improved by 7 percent and 7.9 percent, respectively. Further-
more, it does not necessitate the translation of datasets or the use of multiple pre-trained
models, and it eliminates the need for manual labor.

As shown in Table 11, the LASER-FG approach achieved even better results in SemEval 2018
1EC, achieving up to a 20% improvement over the baseline and approximately a 12 percent
improvement over the LASER approach. The fact that it is a Slavic group is the most surpris-
ing aspect. However, when compared to the LASER dataset, the results of the SST5 dataset
show a 3 percent improvement. Before employing this strategy, it is necessary to consider the
context in which it will be used. Because, in practice, it may not be worthwhile to train a
classifier with three languages for a 3 percent increase in classification accuracy. However, it
may be worthwhile to train classifiers in order to improve recall or to capture some classes
that are difficult to capture in a textual format.

The results of LaBSE are shown in Table 14, and it is clear that it was unable to achieve results
that were comparable to those of LASER. We are unable to determine the cause of this behavior
because we rule out differences in implementation and maintain it at the same level as LASER.

It is clear that when compared to the other techniques, LASER-FG yields more favorable re-
sults in the majority of cases, as shown in Table 15. The average F1 score is 0.65, which is
the highest score that provides more quality results. To consider is the perspective of time and
memory, which we do have available to us. More resources are required than with LASER to
accomplish this task. It means that the LASER model is the quickest and easiest to use while
still providing good performance. The objective of application plays a vital role, based on the
needs of the company can be used LASER or LASER-FG.

Q3 Do the linguistic properties have an effect on the classifier?

46

We came to the conclusion that language properties have no effect on the classifier based on
the results shown in Tables 12 and 13. Only a few insignificant points, for example, the Ro-
mance group performing less well in the English language when compared to the other groups,
but still achieving acceptable results in the end. It is possible that the fact that our datasets
were translated has something to do with the fact that the language properties have little
influence on the classifier. As previously stated, Google Translation and LASER both employ
the encode-decode architecture of neural machine translation in their operations. It is possible
that this is the reason why it is not possible to transfer the unique properties and knowledge
of these datasets that are the same.

Q3.1 What type of linguistic properties is responsible for specific errors?

As our LASER approach performed well in all languages. As a result, we could not find any
pattern of errors did the classifier. However, in general, When it comes to classification in a
multilingual context, there are several mistakes that might occur. One of the reasons might
be the problem of translation. It is possible that the translation will provide words that do
not have standard translations but rather have vulgar or colloquial meanings as a result of the
translation [89], [90]. Ambiguity can also occur after a translation has been completed; for
example, the word "remarks" in the English language may be incorrectly translated into the
Spanish language to mean "observation," resulting in ambiguity [89]. Two words combined to
convey a specific meaning can appear to be misspelled even when the translation is correct, as
in the case of the Spanish word "legislaciones nacionales," which is translated from "national
rulings" and appears to be misspelled [89]. In addition, fluency errors can appear as well in the
sense of lexicon or grammar[90]. Furthermore, researchers proved that translation performance
depending on sentence length and more number of words has more translation results could
be degraded[91], [92].

Q3.2 Is it possible to address classifier errors by using pre-processing or post-processing meth-
ods?

When performing multilingual analysis, it is critical to use pre-processing techniques. There
are a variety of techniques available and, consequently, differences in the effectiveness of the
various techniques. We consider some of them. For instance, stemming improves the accuracy
of classification during the classification process. It involves providing the root form or meaning
of a word, for instance, removing suffixes. However, in some instances, it can result in the loss
of emotional significance [93].

Similarly, lemmatization can be used in classification by finding the root form of the word [93].
This technique is essential as it improves accuracy levels. Lemmatization is more effective in
ensuring that the actual word is found. Another technique that is employed is the removal
of punctuation. It should be removed or replaced with words that provide better descriptions.
Additionally, negative words or shortened forms of words can be substituted in order to improve
accuracy. It entails filtering out specific words from the text.

We could generalize the texts to a kind of formal language, which would be a step forward
[94], for instance, when you deal with tweets. Then, automatic spelling corrections can also

47

be considered in such context [95].

Meemi is a post-processing method that is used in cross-lingual classification. This technique,
which takes into account the linear transformation of each language. As a result, it is pos-
sible to analyze multilingual information and use it to more effectively create more accurate
embeddings[89]. In addition, the different strategies of whitening can also be used to arrive
at the initial co-variances [89].

We can recommend the development of a production-ready language-independent model after
taking all of the factors into consideration. We can see that LASER trained with a single lan-
guage improves by 7 percent when compared to the Baseline with FastText, and LASER-FG
improves by more than 10 percent in the SST5 dataset and by approximately 21 percent in the
SemEval 2018 task 1EC dataset, respectively. However, it is possible that the results do not
appear to be significant enough to be used for real-world tasks such as those in production;
software companies such as ZyLAB, for example, may neglect accuracy over other parameters
such as memory or the cost of model maintenance.

The LASER, for example, provides high-speed performance, with the ability to process up to
2,000 sentences per second when the GPU machines are used to process. The LASER pre-
trained model, which is approximately 200 MB in size, costs nine times less than the FastText
one-language pre-trained model. If there are parallel corpora available, it is also possible to
create a custom pre-trained model using the LASER architecture. For example, ZyLAB is a
company that specializes in eDiscovery in the legal industry. It means that they need models
that recognize specific terms of the law field. A multilingual pre-trained model focusing on
law terms might improve the accuracy of provided eDiscovery services. In addition, LASER
uses a few external dependencies on the PyTorch implementation of the sentence encoder,
which is also an essential aspect. In terms of money, it also demonstrates cost-effectiveness
when compared to services such as Google Translator, where companies must pay per 10000
characters while using their services.

Besides providing all of the previously mentioned benefits, it also includes additional NLP tasks
that may be beneficial for the ZyLAB. For example, it can be used to mine parallel data in
large collections of monolingual data, or in multilingual similarity search, or in cross-lingual
document classification and cross-lingual natural language inference.

Finally, multilingual joint training can be beneficial for languages with limited resources be-
cause it allows them to learn more than one language at the same time. When more than one
language is used in a single sentence, the model allows for that. As more languages are added,
the system’s performance improves as it learns to recognize the characteristics of different
language families and as it becomes more efficient. Furthermore, As long as all of these lan-
guages are encoded by the same BiLSTM encoder, there is no need to specify which language
is being input. As far as we can tell from our experience, the sentence encoder also supports
code-switching, which means that the same sentences can contain words in multiple languages
at the same time. The authors [17] also have evidence that the encoder can generalize to other
languages that have not been seen during training but are members of a language family cov-
ered by other languages, which we are currently investigating.

48

6 Future work

Based on the results of the experiments we conducted, we came to the conclusion that it may
be beneficial to use more datasets with original languages and train the classifier in order to
improve accuracy. Because we used translated datasets, it is possible that the original datasets
contain more comprehensive information about language properties. Then we will be able to
see clearly how the language properties influence the classifier. Aside from that, it might be
beneficial to combine datasets from different contexts. For example, data collected from a
tweeter concatenate with a customer review dataset. It has the potential to either improve
or degrade the outcome of the classifier. However, it is a fascinating subject to look into,
regardless of the outcome. More pre-processing techniques, such as removing negation from
the text, should be attempted as a counter-example.

49

7 References

[1] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representa-
tions of words and phrases and their compositionality,” arXiv preprint arXiv:1310.4546,
2013.

[2] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[3] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”
in International conference on machine learning, PMLR, 2014, pp. 1188–1196.

[4] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun, and S.
Fidler, “Skip-thought vectors,” arXiv preprint arXiv:1506.06726, 2015.

[5] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised learning
of universal sentence representations from natural language inference data,” arXiv
preprint arXiv:1705.02364, 2017.

[6] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M.
Guajardo-Cespedes, S. Yuan, C. Tar, et al., “Universal sentence encoder for english,”
in Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, 2018, pp. 169–174.

[7] S. Subramanian, A. Trischler, Y. Bengio, and C. J. Pal, “Learning general pur-
pose distributed sentence representations via large scale multi-task learning,” arXiv
preprint arXiv:1804.00079, 2018.

[8] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J.
Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush, “Trans-
formers: State-of-the-art natural language processing,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45.
[Online]. Available: https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[9] W. Ammar, G. Mulcaire, Y. Tsvetkov, G. Lample, C. Dyer, and N. A. Smith,
“Massively multilingual word embeddings,” arXiv preprint arXiv:1602.01925, 2016.

[10] S. Ruder, I. Vulić, and A. Søgaard, “A survey of cross-lingual word embedding
models,” Journal of Artificial Intelligence Research, vol. 65, pp. 569–631, 2019.

[11] M. Artetxe, G. Labaka, and E. Agirre, “Generalizing and improving bilingual word
embedding mappings with a multi-step framework of linear transformations,” in
Thirty-second AAAI conference on artificial intelligence, 2018.

[12] ——, “A robust self-learning method for fully unsupervised cross-lingual mappings
of word embeddings,” arXiv preprint arXiv:1805.06297, 2018.

[13] H. Schwenk and M. Douze, “Learning joint multilingual sentence representations
with neural machine translation,” arXiv preprint arXiv:1704.04154, 2017.

50

https://www.aclweb.org/anthology/2020.emnlp-demos.6

[14] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F.
Viégas, M. Wattenberg, G. Corrado, et al., “Google’s multilingual neural machine
translation system: Enabling zero-shot translation,” Transactions of the Association
for Computational Linguistics, vol. 5, pp. 339–351, 2017.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762,
2017.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[17] M. Artetxe and H. Schwenk, “Massively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond,” Transactions of the Association for Com-
putational Linguistics, vol. 7, pp. 597–610, 2019.

[18] F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang, “Language-agnostic bert
sentence embedding,” arXiv preprint arXiv:2007.01852, 2020.

[19] S. Wu and M. Dredze, “Beto, bentz, becas: The surprising cross-lingual effectiveness
of bert,” arXiv preprint arXiv:1904.09077, 2019.

[20] E. M. Bender, “Linguistically naıve!= language independent: Why nlp needs lin-
guistic typology,” in Proceedings of the EACL 2009 Workshop on the Interaction
between Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous?,
2009, pp. 26–32.

[21] T. Naseem, R. Barzilay, and A. Globerson, “Selective sharing for multilingual de-
pendency parsing,” The Association for Computational Linguistics, 2012.

[22] D. W. Oard, J. R. Baron, B. Hedin, D. D. Lewis, and S. Tomlinson, “Evaluation of
information retrieval for e-discovery,” Artificial Intelligence and Law, vol. 18, no. 4,
pp. 347–386, 2010.

[23] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: Rapid
training data creation with weak supervision,” in Proceedings of the VLDB En-
dowment. International Conference on Very Large Data Bases, NIH Public Access,
vol. 11, 2017, p. 269.

[24] I. Caswell and B. Liang, “Recent advances in google translate,” Google AI Blog,
2020.

[25] H. Schwenk and X. Li, “A corpus for multilingual document classification in eight
languages,” arXiv preprint arXiv:1805.09821, 2018.

[26] S. Rosenthal, N. Farra, and P. Nakov, “Semeval-2017 task 4: Sentiment analysis in
twitter,” in Proceedings of the 11th international workshop on semantic evaluation
(SemEval-2017), 2017, pp. 502–518.

[27] S. Mohammad, F. Bravo-Marquez, M. Salameh, and S. Kiritchenko, “Semeval-2018
task 1: Affect in tweets,” in Proceedings of the 12th international workshop on se-
mantic evaluation, 2018, pp. 1–17.

51

[28] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts,
“Recursive deep models for semantic compositionality over a sentiment treebank,”
in Proceedings of the 2013 conference on empirical methods in natural language
processing, 2013, pp. 1631–1642.

[29] H. Huang, H. Wang, and D. Jin, “A low-cost named entity recognition research
based on active learning,” Scientific Programming, vol. 2018, 2018.

[30] M. Devika, C. Sunitha, and A. Ganesh, “Sentiment analysis: A comparative study
on different approaches,” Procedia Computer Science, vol. 87, pp. 44–49, 2016.

[31] S. Clark and S. Pulman, “Combining symbolic and distributional models of mean-
ing,” 2007.

[32] J. Mitchell and M. Lapata, “Vector-based models of semantic composition,” in pro-
ceedings of ACL-08: HLT, 2008, pp. 236–244.

[33] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model: A statistical
framework,” International Journal of Machine Learning and Cybernetics, vol. 1,
no. 1-4, pp. 43–52, 2010.

[34] S. Qaiser and R. Ali, “Text mining: Use of tf-idf to examine the relevance of words
to documents,” International Journal of Computer Applications, vol. 181, no. 1,
pp. 25–29, 2018.

[35] D. M. El-Din, “Enhancement bag-of-words model for solving the challenges of sen-
timent analysis,” International Journal of Advanced Computer Science and Appli-
cations, vol. 7, no. 1, 2016.

[36] D. Ho, A. S. Shkolnik, N. J. Ferraro, B. A. Rizkin, and R. L. Hartman, “Using
word embeddings in abstracts to accelerate metallocene catalysis polymerization
research,” Computers & Chemical Engineering, vol. 141, p. 107 026, 2020.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-
resentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[38] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the Association for Computational Linguis-
tics, vol. 5, pp. 135–146, 2017.

[39] A. Neelakantan, J. Shankar, A. Passos, and A. McCallum, “Efficient non-parametric
estimation of multiple embeddings per word in vector space,” arXiv preprint arXiv:1504.06654,
2015.

[40] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” arXiv preprint arXiv:1607.01759, 2016.

[41] B. Kuyumcu, C. Aksakalli, and S. Delil, “An automated new approach in fast text
classification (fasttext) a case study for turkish text classification without pre-
processing,” in Proceedings of the 2019 3rd International Conference on Natural
Language Processing and Information Retrieval, 2019, pp. 1–4.

[42] A. Agibetov, K. Blagec, H. Xu, and M. Samwald, “Fast and scalable neural embed-
ding models for biomedical sentence classification,” BMC bioinformatics, vol. 19,
no. 1, pp. 1–9, 2018.

52

[43] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[44] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, 2013.

[45] K. Singla, D. Can, and S. Narayanan, “A multi-task approach to learning multilin-
gual representations,” in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), 2018, pp. 214–220.

[46] H. Pham, M.-T. Luong, and C. D. Manning, “Learning distributed representations
for multilingual text sequences,” in Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing, 2015, pp. 88–94.

[47] O. Adams, A. Makarucha, G. Neubig, S. Bird, and T. Cohn, “Cross-lingual word
embeddings for low-resource language modeling,” in Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers, 2017, pp. 937–947.

[48] Y. Doval, J. Camacho-Collados, L. Espinosa-Anke, and S. Schockaert, “Improving
cross-lingual word embeddings by meeting in the middle,” arXiv preprint arXiv:1808.08780,
2018.

[49] Y.-H. Lin, C.-Y. Chen, J. Lee, Z. Li, Y. Zhang, M. Xia, S. Rijhwani, J. He, Z. Zhang,
X. Ma, et al., “Choosing transfer languages for cross-lingual learning,” arXiv preprint
arXiv:1905.12688, 2019.

[50] J. C. B. Cruz and C. Cheng, “Evaluating language model finetuning techniques for
low-resource languages,” arXiv preprint arXiv:1907.00409, 2019.

[51] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” arXiv preprint arXiv:1409.3215, 2014.

[52] A. Saha, M. M. Khapra, S. Chandar, J. Rajendran, and K. Cho, “A correlational
encoder decoder architecture for pivot based sequence generation,” arXiv preprint
arXiv:1606.04754, 2016.

[53] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-
ing to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[54] R. Vázquez, A. Raganato, M. Creutz, and J. Tiedemann, “A systematic study of
inner-attention-based sentence representations in multilingual neural machine trans-
lation,” Computational Linguistics, vol. 46, no. 2, pp. 387–424, 2020.

[55] H. Hammarström, R. Forkel, and M. Haspelmath, “Glottolog 3.0,” Max Planck
Institute for the Science of Human History, 2017.

[56] E. M. Ponti, H. O’horan, Y. Berzak, I. Vulić, R. Reichart, T. Poibeau, E. Shutova,
and A. Korhonen, “Modeling language variation and universals: A survey on ty-
pological linguistics for natural language processing,” Computational Linguistics,
vol. 45, no. 3, pp. 559–601, 2019.

[57] M. S. Dryer and M. Haspelmath, “The world atlas of language structures online.
leipzig: Max planck institute for evolutionary anthropology,” Online: http://wals.
info, 2013.

53

[58] H. O’Horan, Y. Berzak, I. Vulić, R. Reichart, and A. Korhonen, “Survey on the use of
typological information in natural language processing,” arXiv preprint arXiv:1610.03349,
2016.

[59] G. Zuccon, B. Koopman, P. Bruza, and L. Azzopardi, “Integrating and evaluat-
ing neural word embeddings in information retrieval,” in Proceedings of the 20th
Australasian document computing symposium, 2015, pp. 1–8.

[60] S. B. Cohen, D. Das, and N. A. Smith, “Unsupervised structure prediction with non-
parallel multilingual guidance,” in Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, 2011, pp. 50–61.

[61] D. M. Gaddy, Y. Zhang, R. Barzilay, and T. S. Jaakkola, “Ten pairs to tag-
multilingual pos tagging via coarse mapping between embeddings,” Association for
Computational Linguistics, 2016.

[62] A. Klementiev, I. Titov, and B. Bhattarai, “Inducing crosslingual distributed rep-
resentations of words,” in Proceedings of COLING 2012, 2012, pp. 1459–1474.

[63] V. N. Gudivada, D. Rao, and V. V. Raghavan, “Big data driven natural language
processing research and applications,” in Handbook of Statistics, vol. 33, Elsevier,
2015, pp. 203–238.

[64] H. Shi-lin, Z. Xiao-lin, and C. De-ren, “A semi-supervised learning method for prod-
uct named entity recognition,” Journal of Beijing University of Posts and Telecom-
munications, vol. 36, no. 2, p. 20, 2013.

[65] E. Cambria, D. Das, S. Bandyopadhyay, and A. Feraco, A practical guide to senti-
ment analysis. Springer, 2017.

[66] J. Zhou and J.-m. Ye, “Sentiment analysis in education research: A review of journal
publications,” Interactive Learning Environments, pp. 1–13, 2020.

[67] S. D’Mello and A. Graesser, “Dynamics of affective states during complex learning,”
Learning and Instruction, vol. 22, no. 2, pp. 145–157, 2012.

[68] L. Nahar, Z. Sultana, N. Iqbal, and A. Chowdhury, “Sentiment analysis and emotion
extraction: A review of research paradigm,” in 2019 1st International Conference
on Advances in Science, Engineering and Robotics Technology (ICASERT), IEEE,
2019, pp. 1–8.

[69] G. Gautam and D. Yadav, “Sentiment analysis of twitter data using machine learn-
ing approaches and semantic analysis,” in 2014 Seventh International Conference
on Contemporary Computing (IC3), IEEE, 2014, pp. 437–442.

[70] Z. Shao, R. Chandramouli, K. Subbalakshmi, and C. T. Boyadjiev, “An analytical
system for user emotion extraction, mental state modeling, and rating,” Expert
Systems with Applications, vol. 124, pp. 82–96, 2019.

[71] C. Argueta, F. H. Calderon, and Y.-S. Chen, “Multilingual emotion classifier using
unsupervised pattern extraction from microblog data,” Intelligent Data Analysis,
vol. 20, no. 6, pp. 1477–1502, 2016.

[72] P. Gilbert, “The relationship of shame, social anxiety and depression: The role of the
evaluation of social rank,” Clinical Psychology & Psychotherapy: An International
Journal of Theory & Practice, vol. 7, no. 3, pp. 174–189, 2000.

54

[73] D. Chatzakou, A. Vakali, and K. Kafetsios, “Detecting variation of emotions in
online activities,” Expert Systems with Applications, vol. 89, pp. 318–332, 2017.

[74] M. A. Azim and M. H. Bhuiyan, “Text to emotion extraction using supervised
machine learning techniques,” Telkomnika, vol. 16, no. 3, pp. 1394–1401, 2018.

[75] M. Gjoreski, H. Gjoreski, and A. Kulakov, “Machine learning approach for emotion
recognition in speech,” Informatica, vol. 38, no. 4, 2014.

[76] Q. V. Le and M. Schuster, “A neural network for machine translation, at production
scale,” Google research blog, vol. 27, 2016.

[77] M. Z. Asghar, A. Khan, S. Ahmad, and F. M. Kundi, “A review of feature extraction
in sentiment analysis,” Journal of Basic and Applied Scientific Research, vol. 4, no. 3,
pp. 181–186, 2014.

[78] S. Vychegzhanin and E. Kotelnikov, “Comparison of named entity recognition tools
applied to news articles,” in 2019 Ivannikov Ispras Open Conference (ISPRAS),
IEEE, 2019, pp. 72–77.

[79] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons: On sentiment
analysis tools for software engineering research,” in 2015 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), IEEE, 2015, pp. 531–
535.

[80] U. Malik, Python for nlp: Tokenization, stemming, and lemmatization with spacy li-
brary. [Online]. Available: https://stackabuse.com/python-for-nlp-tokenization-
stemming-and-lemmatization-with-spacy-library/..

[81] Y. Yang, G. H. Abrego, S. Yuan, M. Guo, Q. Shen, D. Cer, Y.-H. Sung, B. Strope,
and R. Kurzweil, “Improving multilingual sentence embedding using bi-directional
dual encoder with additive margin softmax,” arXiv preprint arXiv:1902.08564, 2019.

[82] M. Guo, Q. Shen, Y. Yang, H. Ge, D. Cer, G. H. Abrego, K. Stevens, N. Constant,
Y.-H. Sung, B. Strope, et al., “Effective parallel corpus mining using bilingual sen-
tence embeddings,” arXiv preprint arXiv:1807.11906, 2018.

[83] G. Lample and A. Conneau, “Cross-lingual language model pretraining,” arXiv
preprint arXiv:1901.07291, 2019.

[84] L. Gong, D. He, Z. Li, T. Qin, L. Wang, and T. Liu, “Efficient training of bert by
progressively stacking,” in International Conference on Machine Learning, PMLR,
2019, pp. 2337–2346.

[85] H. William, S. Teukolsky, W. Vetterling, and B. Flannery, “What is a support vector
machine,” Nat Biotechnol, vol. 24, pp. 1565–1567, 2006.

[86] Q. Wu and D.-X. Zhou, “Analysis of support vector machine classification.,” Journal
of Computational Analysis & Applications, vol. 8, no. 2, 2006.

[87] N. Tatbul, T. J. Lee, S. Zdonik, M. Alam, and J. Gottschlich, “Precision and recall
for time series,” arXiv preprint arXiv:1803.03639, 2018.

[88] T. Pires, E. Schlinger, and D. Garrette, “How multilingual is multilingual bert?”
arXiv preprint arXiv:1906.01502, 2019.

55

https://stackabuse.com/python-for-nlp-tokenization-stemming-and-lemmatization-with-spacy-library/.
https://stackabuse.com/python-for-nlp-tokenization-stemming-and-lemmatization-with-spacy-library/.

[89] Y. Doval, J. Camacho-Collados, L. E. Anke, and S. Schockaert, “Meemi: A simple
method for post-processing cross-lingual word embeddings,” arXiv preprint arXiv:1910.07221,
2019.

[90] L. Van Brussel, A. Tezcan, and L. Macken, “A fine-grained error analysis of nmt, smt
and rbmt output for english-to-dutch,” in Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), 2018.

[91] L. Bentivogli, A. Bisazza, M. Cettolo, and M. Federico, “Neural versus phrase-based
machine translation quality: A case study,” arXiv preprint arXiv:1608.04631, 2016.

[92] A. Toral and V. M. Sánchez-Cartagena, “A multifaceted evaluation of neural ver-
sus phrase-based machine translation for 9 language directions,” arXiv preprint
arXiv:1701.02901, 2017.

[93] N. Babanejad, A. Agrawal, A. An, and M. Papagelis, “A comprehensive analysis
of preprocessing for word representation learning in affective tasks,” in Proceedings
of the 58th annual meeting of the association for computational linguistics, 2020,
pp. 5799–5810.

[94] W. De Smet and M.-F. Moens, “Generating a topic hierarchy from dialect texts,” in
18th International Workshop on Database and Expert Systems Applications (DEXA
2007), IEEE, 2007, pp. 249–253.

[95] T. Mullen and R. Malouf, “A preliminary investigation into sentiment analysis of in-
formal political discourse.,” in AAAI Spring Symposium: Computational Approaches
to Analyzing Weblogs, 2006, pp. 159–162.

56

	Introduction
	Problem statement
	Thesis contributions and scope
	Research question
	Thesis structure

	Background and related work
	Word Embeddings
	Bag of Words and TF-IDF
	Word2Vec and GloVe
	FastText
	Transformers

	Multilingual natural language processing
	Machine translation
	Cross-lingual embeddings
	Sequence-to-sequence encoder and decoder

	Language properties
	Multilingual properties

	Multilingual NLP tasks
	Named entity recognition
	Sentiment analysis
	Emotion classification

	Proposed pipeline
	Overall Architecture
	Dataset
	SST5
	SemEval 2018

	Machine translation
	Text preprocessing
	Basic cleaning operations
	Text tokenization and normalization

	Representation learning
	Langauge Agnostic Sentence Representation
	Language Agnostic BERT Sentence Embedding

	Text classifier
	Support Vector Machines (SVM)
	Parameter tuning
	Kernel
	Multiclass classification

	Evaluation
	Micro Averaged F1 Score

	Results
	Baseline
	FastText results

	LASER
	Similarity analysis
	LASER results

	LASER Family Group (LASER-FG)
	LaBSE

	Conclusion and Discussion
	Future work
	References

