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Abstract

General practitioners (GPs) use the International Classification of Primary Care
(ICPC) system as a tool for classifying the reason for encounter (RFE) and med-
ical diagnosis for episodes of care. These codes are recorded after every patient
visit, accompanied by a short summary in free-text form. Clinical experts within
the LUMC observed under-reporting and general noisiness of these codes in the
electronic records, while the corresponding free-text entry often contains valuable
information such as the diagnosis or elements strongly related to a diagnosis such
as prescriptions. Both the annotation of missing data and automatic labeling of
future records requires an automated classification tool, which is the focus of this
research project. For developing this classification model the relatively new natural
language processing technique BERT will be compared with a more traditional ap-
proach using the Support Vector Machines (SVM). The results show both models
reach a 90% precision, while the SVM outperforms the BERT model on the recall
and F1-score. While the results based on these commonly used metrics are similar,
the BERT model faces several challenges compared to the SVM most notably the
failure to predict under-supported classes while also requiring substantially more
computing resources and development time. Therefore the SVM is the preferable
technique given the data and problem as presented in this project.
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Chapter 1

Introduction

1.1 Problem statement

In the Netherlands, general practitioners (GPs) report patient visits in an elec-
tronic medical record. One of the attributes of this record is the diagnosis made
by the GP summarizing the nature of the visit which is encoded according to the
International Classification of Primary Care (ICPC). This standardized coding sys-
tem is able to cover a wide spectrum of possible diagnoses. Additional information
which does not fit in this encoding system, or any other additional information
the GP finds relevant, can be added manually in a free-text field and is stored
alongside the ICPC code in the same record.

ICPC codes are not human interpretable and GPs either have to memorize the
codes or use external tooling in order to find the suitable ICPC code. Clinical
experts within the LUMC point to external factors such as time pressure and
manual errors as the cause for the under-reported and noisy ICPC codes. This
hypothesis is supported by the observation of certain high interest ICPC codes
(e.g. hypertension and migraine) being under-reported when their prevalence in
these medical records is compared with the prevalence in other national studies.
In addition to under-reporting, there is also no mechanism in place to verify the
correctness of registered ICPC codes. Both the noisiness and the quality of the
reported ICPC codes result in a methodological limitation in the use of these ICPC
codes for other observational studies. Furthermore, given the volume, variety and
velocity of these electronic records, it is not feasible to manually encode missing
ICPC codes or verify existing instances. Therefore, this problem requires an au-
tomated natural language processing solution using machine learning, capable of
accurately determining the diagnosis based on the free-text notes.

There are several challenges in classifying text in general, but also for clinical or
biomedical text data [5]. Given the active developments in the machine learning
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domain there are different approaches to which yield different outcomes depend-
ing on the problem. In general, prior academic research on the topic report that
it is possible to classify clinical text data showing that machine learning models
are able to learn from the data with varying levels of success given different ap-
proaches and models [17] [13] [14]. Apart from the classification accuracy other
factors also play a role in the search for the most optimal approach. While novel
techniques, such as deep learning, can show incremental accuracy improvements
they can face other challenges such as increased training time or their improve-
ments are tied to the size of the dataset [13].

In recent years there have been several advancements in the natural language pro-
cessing (NLP) field. Improvements on language models are continuing to push
state-of-the-art benchmarks results and the concept of pre-training and transfer
learning allow for models to be reused and distributed which increases the acces-
sibility of these techniques [3]. The Bidirectional Encoder Representations from
Transformers (BERT) language model is one the the most recent developments
to the natural language processing field. However, benchmark results do not re-
flect the performance on real life tasks. Some argue for BERT to be used as
the default technique for NLP tasks while other research show that, especially for
classification tasks, the results of the BERT model are comparable to traditional
machine learning techniques [6] [12].

The machine learning and NLP domain enjoy active development and academic
research. And while these techniques are also applied in the medical field on clinical
text, there is little to no consensus on the (overall) best performing methods. In
addition to this, there is also little research done on applying these techniques
on Dutch clinical text data. This research project will attempt to contribute to
the search for the most optimal approach on Dutch data while also providing the
LUMC with the foundation on applying these techniques in the future to solve the
problem of missing ICPC codes in their medical records.

1.2 Goal of this research

The main goal of this research is to develop a model using machine learning capa-
ble of predicting ICPC codes given a free-text entry from a patient visit to the GP.
In practice, the model and the corresponding development code should provide
a scalable solution for annotating missing data and predicting the ICPC code for
new entries while also providing the groundwork for future applications such as
anomaly detection.

In order for this research project to also provide academic relevance in the field of
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natural language processing, the performance of these (relatively) new techniques
will be compared to more traditional machine learning algorithm: the Support Vec-
tor Machine (SVM). The reason for choosing the SVM specifically in this research
project is due to its good general performance for text classifications tasks [17] [8].
And also due to its performance on multi-label classification problems compared
to other algorithms[16]. The research question is therefore formulated as follows:

“To what degree can machine learning algorithms predict ICPC encoded
diagnoses based on free-text notes and how do traditional techniques compare to

pre-trained language models?”

1.3 Thesis overview

The research project is divided in several chapters. Chapter 2 will elaborate on
the used techniques and algorithms, such as the nature of the ICPC codes as well
as the machine learning techniques. The chapter will conclude with an analysis on
existing literature relevant for this project. In Chapter 3 an in-depth exploratory
data analysis will be conducted and the corresponding preprocessing steps will
be discussed. The chapter will also describe the methodology for both models
and the evaluation metrics used to evaluate and compare their performances of
the models on the data. After the methodology the results for both models will
be reported separately followed by the comparison discussion. The final part of
the report will evaluate the practically and applicability of the best performing
model in the medical domain. The report will conclude with a discussion about
the results followed by the conclusion.
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Chapter 2

Background & related work

2.1 ICPC codes

Policy-makers and other providers in healthcare require accurate information on
the epidemiology of their communities. Without this information it is difficult
to get a high level overview of the epidemiological environment which hinders
the ability to improve health care services. In order for health providers to effec-
tively record information as part of their clinical routine, as well as standardizing
communication of this information to other areas of the health domain, a robust
classification tool for diagnoses needed to be developed.

In 1987, the International Classification of Primary Care (ICPC) was developed
for this purpose as a tool to order the domain of general practitioners. It was
designed from family medicine data in order to not only classify but also define
relationships between the nature of episodes of care. An episode of care refers
to a health problem from the first presentation to the health care up until the
last presentation of the same problem. After growing in popularity, the World
Health Organization (WHO) accepted the format as a member of the Family of
International Classifications (WHO/FIC). The ICPC allows health care providers
to classify three important elements of the health care encounter: reasons for
encounter (RFE), diagnoses or problems, and the further process of care.

The ICPC is based on a bi-axial structure in which symptoms, procedures and
diseases are coded into chapters represented by letters and recorded in the first
axis [2]. On the second axis, a two digit numeric code refers to one of seven diag-
nostic components. For example, Component 1 provides rubrics for symptoms and
complaints while Component 7 reflects the diagnosis or disease for each chapter.
This component will only be used when there is sufficient information to support
this medical diagnosis in order to record it [22].
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Figure 2.1: 4 decision boundaries of different classification models trained on the
iris dataset. The plot on the right shows the decision boundary produced by the
SVM.

2.2 Models for text classification

2.2.1 Support vector machines

A support vector machine (SVM, or support-vector-network) is an algorithm for
supervised machine learning capable of performing linear or nonlinear classifica-
tion, regression and outlier detection and has shown to be a robust algorithm for
learning text classifiers [8]. As further described in Chapter 3, in this research
project the algorithm will be trained to solve a multi-label classification problem.
To illustrate the workings of the SVM, Figure 2.1 shows the plot of the famous iris
dataset with two classes which are linearly separable [4]. The left plot shows three
different linear classifiers with their respective decision boundaries. The classifier
represented by the dashed line fails to separate the two classes from each other
while the other two classifiers (the red and purple lines) perform this task with
100% accuracy. The right plot shows the decision boundary of the SVM. Com-
pared to the classifiers of the left plot, the decision boundary of the SVM stays as
far away from the closest training instances of the two classes. This characteristic
of the SVM leads to a model that generalizes well and will therefore be more likely
to perform on unseen data. These closest training instances, highlighted in the
right plot, are also referred to as the support vectors hence the name Support
Vector Machine.

In the figure the two classes are linearly separable, however in reality this is often
not the case due to noise, outliers or just due to the nature of the data. In this
case there needs to be a balance between maximizing the distance between the
classes and the number of violations over the decision boundary. This value can
be adjusted to find the best model for a specific problem while it also provides the
possibility the reduce overfitting.
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2.2.2 Bidirectional Encoder Representations from Transform-
ers

Bidirectional Encoder Representations from Transformers (BERT) attempt to
solve some of the limitations experienced with neural network types such as Re-
current Neural Networks (RNN) and Long Short-Term Memory Networks (LSTM)
which were often used for NLP tasks. Given a dataset of sentences for a NLP
task, RNNs and LSTMs iterate over each word in the sentence in one direction
(in this case left to right) and derive the meaning of the words from all preceding
words in the sentence. The networks typically consist of an encoder and a de-
coder where the encoder converts the sequence to a vector representation while
the decoder converts the same vector to a sequence of words. RNNs and LSTMs
require two inputs: an input vector (a vectorized representation of a word) and
a hidden state. At each training step in the neural network both inputs are pro-
cessed and two new output vectors are produced: the output vector and a new
hidden state. This new hidden state is then used for processing the next input
vector and the cycle continues. This process leads to the first limitation of these
networks as they are unidirectional and can therefore only defer the meaning for
a word from the preceding tokens in the sequence. The second limitation stems
from regenerating the hidden state at each time step in the network. For a given
input vector this means the preceding tokens are summarized by the hidden state
and the final output of the encoder is the hidden state from the last step. This
leads to a situation where it becomes difficult to capture the relations between
tokens that are separated by a greater distance in a sentence.

Luong et al. argued that the use of this encoder-decoder architecture bottlenecks
the improvement of language model performance and proposed a new technique for
interpreting longer sentences which is referred to as attention [11]. The attention
mechanism is used as an improvement upon the previously describer encoder-
decoder architecture. Using a sequence-to-sequence task as an example, the two
differences between a classic sequence-to-sequence model and the attention model
can be summarized as follows:

• Instead of passing only the last hidden state from the encoder to the decoder,
the attention model passes all hidden states from the words in the input
sentence to the decoder.

• The decoder uses a scoring function to assign scores to all hidden states
it receives from the encoder. These scores are softmaxed in order to am-
plify high scores and penalize low scores. This is were the attention terms
originated from since these hidden states represent input tokens and this
mechanic puts extra emphasis (attention) on these tokens. Lastly, the hid-
den states are multiplied by their softmax score and summed up creating
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Figure 2.2: The image on the left shows the unsupervised pre-training task for
generating the word embeddings, the image on the right shows different fine-tuning
tasks for example question answer pairs.

the context vector for the remainder of the decoding task.

In 2017 Google published the paper “Attention is all you need” where they in-
troduced a new network architecture based on the attention mechanic called the
Transformer [21]. This network architecture does not rely on recurrence or convo-
lutions but uses a slightly modified attention mechanic called self-attention. The
main benefit of this approach is that the training tasks are parallelizable which
requires significantly less processing power and time to train, while also outper-
forming the best models from literature [21].

The previously described techniques and mechanisms have lead to the introduction
of a new language representation model: the Bidirectional Encoder Representa-
tions from Transformers (BERT) [3]. The implementation of BERT models for
NLP tasks consists of two steps: pre-training and fine-tuning. In the pre-training
step the model is trained on a large corpus of unlabeled data for a given language,
for example the full English Wikipedia, wordpiece vocabularies, or other custom
sources. Section 3 will elaborate further on the chosen pre-trained models for this
research project and their origin. For the fine-tuning, the pre-trained language
models parameters are fine-tuned using labeled data for a specific downstream
task such as classification or named entity recognition (NER). Downstream tasks
is what the field calls those supervised-learning tasks that utilize a pre-trained
model or component. Each fine-tuning task results in a task-specific model, while
the pre-trained models can be reused for other fine-tuning tasks given that the
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Figure 2.3: The before example (left) fails to capture the meaning of “for some-
one” while the example on the right using BERT does and provides relevant search
results [7]

language of the pre-trained model aligns with the downstream task. BERT can
be used for a wide variety of NLP tasks such as classification, question and an-
swering and named entity recognition. Figure 2.2 visualized the pre-training and
fine-tuning task for a question and answer pair task.

In October 2019 Google published a blog explaining the improvements BERT
made within the natural language field for their Search functionality [7]. Users of
the Search product are not always confident in how they formulate their question.
This is partly due to the fact that most NLP implementations struggle with more
natural conversational queries. For this reason, Google noticed many users falling
back to building queries using keywords instead of conversational language. In
most cases, this approach yields better search results even though it is not how
people naturally ask questions.

Within conversational queries and general complex natural language prepositions
such as “for” or “to” carry significant meaning. Google used the following example
in their introduction blog. Consider the search query “2019 brazil traveler to usa
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need a visa”. In this context, the preposition “to” refers to traveling from Brazil
to the USA, and not the other way around. Previously, Google’s algorithms and
most other NLP techniques struggled to grasp the meaning of “to” since it de-
pends on the words used and the order of these words in the sentence. Figure 2.3
shows a second example. The before result shows that the “for someone” is not
properly understood by the original model while on the right the BERT model is
able to detect this subtle nuance and provide the user with the correct results.

2.3 Prior research

In the paper “Classifying Encounter Notes in the Primary Care Patient Record”,
Rost et al. conducted research with a problem similar to the problem statement
in this project as they attempt to classify free-text of clinical encounters with an
ICPC code [17]. The data used consisted of roughly 500,000 unique encounters
from a medium-sized general practice office in Norway however only 175,167 en-
counters were fit for training. The resulting SVM classifier was able to correctly
predict 994 of the 2,000 instances in the test set yielding an overall accuracy rate
of 49.7%. In comparison, a classifier which assigns the most frequent ICPC code
in the training dataset to each test instance, has an accuracy of 20.8%. The
authors argue that improvements can be made with a more balanced dataset, but
also with improved text processing techniques such as stemming or lemmatiza-
tion as the free-text not only varies in length but is also subject to spelling errors
and (medical) abbreviations. The noisy characteristic of the free-text is also vis-
ible in the data used for this research project and therefore these text processing
techniques could benefit the models performance. The most important difference
compared to this research project is that Rost et al. use all 726 distinct ICPC
codes divided in a multi-class classification problem with two classes whereas this
research project focuses on a small subset of target ICPC codes. Therefore while
the problem is similar, the results will be difficult to compare.

Pre-trained language models are often trained on large corpora such as Wikipedia
or a collection of literature [20]. This results in models which can be trained for
a variety of downstream tasks since their embeddings are not domain specific. In
the context of this research, a language model trained on Wikipedia should include
a wide spectrum of clinical text however the fraction of relevant (clinical) text is
small which may increase the time of fine-tuning and decrease the performance
due to time constraints.

Lee et al. evaluated the performance differences between general BERT models
and BERT models trained on biomedical data (BioBERT) of which the word em-
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beddings are derived from domain specific (clinical) sources [10]. The BioBERT
model was trained on a collection of PubMed abstracts and PMC full-text arti-
cles and fine-tuned for three popular biomedical text mining tasks: Named Entity
Recognition, Relation Extraction, and Question Answering. The results show that
the BioBERT model outperforms the standard BERT model on all biomedical text
mining tasks even though the improvement are marginal. In the paper “Publicly
Available Clinical BERT Embeddings” Alsentzer et al. perform similar research
using the MIMIC-III critical care database [9] [1]. The MIMIC-III database con-
tains information on patients admitted in to critical care units at a large tertiary
hospital. The data includes numeric attributes such as fluid balance, procedure
codes and diagnostic codes but also natural text data originating from nursery and
physicians. In the paper they argue the relevance of using this database compared
to the sources used for the BioBERT model as clinical narratives (e.g. physician
notes) have known differences in linguistic characteristics compared to the general
text from the default BERT model but also from the non-clinical sources used for
the BioBERT model. In the paper, the BERT model is trained on all note types
in the model “Clinical BERT” while a variety is trained on the discharge summary
of patients and is referred to as the “Discharge Summary BERT”.

Table 2.1: A comparison of the performance of BERT models trained on domain
specific (biomedical) text and the default BERT model [1]

Model MedNLI

BERT 77.6%
BioBERT 80.8%
Clinical BERT 80.8%
Discharge Summary BERT 80.6%
Bio+Clinical BERT 82.7%
Bio+Discharge Summary BERT 82.7%

Table 2.1 displays the results of the experiments using different combinations
of the Clinical BERT, Discharge Summary BERT and BioBERT model for the
MedNLI natural language gauge inference task. The results show that all of the
models trained on a clinical or biomedical source outperform the default BERT
model. The paper also reported significant computational costs as they estimate
the embedding modeling procedure to have taken approximately 17 - 18 days.
Even though the paper and resulting model are publicly released, these pre-trained
models can not be reused in this research project as they are trained on English
text.
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Chapter 3

Data & Methods

In this Chapter the data used will be analyzed and the methods used for training
both models will be further explained. Sections 3.1 and 3.2 will provide and
overview and a in-depth analysis of the data respectively. Section 3.3 will describe
the preprocessing steps taken the convert the unprocessed dataset to a dataset
fit for both algorithms to train on. The proceeding Section 3.4 will describe the
training for both models. This section is divided in two subsections for both
models as there is some model specific tasks. In the last part, Section 3.5 the
metrics used to compare the results of both models will be explained.

3.1 Data source

In order to build a model and answer the research question, the LUMC provided
a large dataset containing visits to general practitioners. The dataset is a product
of the previously conducted NEO study which started in 2008. The NEO study
is a population-based, prospective cohort study designed to investigate pathways
that lead to obesity-related diseases. Men and women living in the greater area
of Leiden were invited to respond only if their age is between 45 and 65 years and
if they had a self-reported BMI of 27kg/m2 or higher. In addition, all inhabitants
aged between 45 and 65 years from one municipality (Leiderdorp) were invited to
participate, regardless of their BMI (n=8,229 invited, response rate 20.3%). In
total, 6.671 participants agreed to join the study.

This research project is conducted on a static copy of this dataset which was ex-
ported to CSV format. Before exploring the data in depth in Section 3.2, Table 3.1
shows an overview of all columns in the CSV dataset with their corresponding data
type and a short description.

The text column contains a short description summarizing the patients visit. This
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Table 3.1: An overview of the column names, data type and an optional description
of the unprocessed dataset

Column name Type Description

ID int Instance identifier
NEONR int Patient identifier
soep string -
volgnummer float -
icpc string ICPC code
probleemnummer float -
actiecode string -
consultsoort string -
icpcprobleem string -
contactdatum string Date in %Y%m%d format
tekst string General practitioner notes
artscode string -
actietxt string -
mdwcode string -
consulttxt string -

text is entered in the system by the GP manually. In general, there are no input
requirements regarding null values, input length, or formatting rules and in prac-
tise, the use of the field varies between GPs. Early observations show that the text
data is relatively noisy. GPs often enter a small amount of keywords regarding
the nature of the visit accompanied with the description of a prescription and dosis.

3.2 Exploratory data analysis

This section contains an in-depth exploratory data analysis on the raw data. The
goal of this analysis is to provide a high level overview and visual summary of the
data. Furthermore, it will also inspect the data and highlight areas that may hin-
der the performance of machine learning models later in the project. This section
will limit itself to exploring the data while Section 3.3 describes the data cleaning
and transformation.

The first step of the analysis is to determine the subset of the data which can be
used during this research project. As described in Chapter 1, the goal of this re-
search is to predict the ICPC code, given the text notes of the general practitioner.
The most important columns are the ICPC code and the text, and as will be de-
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Table 3.2: An overview of missing values and duplicate instances in the data

Field Absolute count Percentage of total

Missing ICPC values 3,043,013 89.48%
Missing text values 36,103 1.06%
Missing NEONR values 0 0.00%
Missing dates values 618 0.02%
Duplicate instances 78,056 2.30%

Total instances 3,400,946 100.00%

Remaining instances 341,464 10.04%

scribed in Section ??, the project will also use the “NEONR” (patient identifier)
and “contactdatum” columns for data transformation purposes. Table 3.2 shows
a summary of the missing values and duplicate instances. An instance is marked
duplicate when the combination of all four described target fields (ICPC, tekst,
NEONR and contactdatum) have multiple occurrences in the dataset. Note that
the values of the missing fields and duplicate instances (the absolute count and
the percentage of total) are not accumulated but calculated independently from
the rest of the table. The table shows that roughly 10% of the dataset, equal to
341,464 instances, can be used for training the ICPC classifiers.

Table 3.3: Distinct ICPC codes and NEO numbers

Unique Total

ICPC codes 1,784 341,464
ICPC codes (first 3 characters) 875 341,464
NEO numbers 4,807 341,464

As described in Chapter 2, the ICPC codes follow a predefined format. The main
component consists of the first 3 characters of the code which captures the med-
ical diagnosis type for the specific GP visit. Optionally, an extra number can be
added in addition to the main component separated by a dot. This number in-
dicates a variation on the main diagnosis. For example, the ICPC codes T90.01
and T90.02 refer to diabetes mellitus type 1 and diabetes mellitus type 2 respec-
tively. In the dataset, all three variations (T90, T90.01, T90.02) are used which
increases the distinct number of ICPC codes. Table 3.3 contains an overview of
the distinct values of both the ICPC values variations and the distinct number of
NEO numbers. The table shows that roughly half of all unique ICPC codes are
variations on the main diagnosis. Furthermore, since the NEO numbers serve as
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unique patient identifiers, this value represents the number of distinct patients in
the dataset after removing duplicate and missing data.

Figure 3.1: Relative frequency histogram for the appointments per year
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The cleaning process involved removing instances containing missing values and
removing duplicate rows. Table 3.2 shows that 90% of the dataset contains either
missing values or are a duplicates and these instances can not be used for train-
ing the classifier. Figure 3.1 shows the distribution of remaining instances in the
dataset by year. The figures shows that the majority of the visits are relatively
new as they took place after 2010. There is also a smaller subset of data ranging
back to 1990. In order to investigate the use of the older data, the next part will
analyze the follow up time of patients in the dataset.

Figure 3.2: Relative frequency diagram for the follow up time in months
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Figure 3.3: Relative frequency histogram for the total visits per patient
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The follow up time (in the context of this part of the exploratory data analysis) is
the duration between the first and last registered visit in the dataset. This metric
reflects the time period patients are active within the data. However, a long follow
up time does not show the density of visits within this time frame, therefore we
are also interested in the visits per patient. Figure 3.2 shows the follow up time
distribution in months while Figure 3.3 contains the distribution of the number of
visits per patient.

Figure 3.4: Relative frequency histogram for the token count per appointment
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The second part of the exploratory data analysis will focus on the natural language
column tekst. Figure 3.4 and Figure 3.5 show the frequency distribution for
tokens and characters respectively. The results show that the average token count
for visits is relatively small. This corresponds with the early observations made in
Section 3.1 about the text data containing mostly keywords.
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Figure 3.5: Relative frequency histogram for the character count per appointment
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Table 3.4: Overview of the target ICPC codes

Absolute Percentage of total

Hypertension 20,799 6.09%
Diabetes 10,759 3.15%
Social issues 3,617 1.06%
Myocardinfarct 1,212 0.35%
Migraine 1,171 0.34%
Stroke 452 0.13%
Pre-eclampsie 1 0.00%

Other 303,453 88.87%
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The dataset contains 1700 unique ICPC codes. In order to reduce the dimension-
ality of the classification problem this research project will focus on classifying a
preselected subset of ICPC codes. These ICPC codes where chosen in collabo-
ration with clinical experts from the LUMC. The target ICPC codes are of high
interest since in practice they are often under-reported even though they have
a large impact on patients, research, and health services. To conclude the ex-
ploratory data analysis, Table 3.4 provides an overview of these target diagnoses
with their ICPC code and presence in the data. Note that the ICPC code for
“pre-eclampsie” (preeclampsia) was labeled as a target ICPC code but it is not
sufficiently represented in the dataset used for this research project. Therefore,
in the remainder of this project this ICPC code will not be used as target ICPC
code.

3.3 Preprocessing

The preprocessing of the data consist of two parts: cleaning and transforming.
The first part of the data cleaning is partly described in Section 3.2 where missing
values and duplicate data are removed from the dataset. The second part of the
cleaning in process involved filtering older instances from the dataset. Figure 3.3
shows that the majority of the data in the dataset is recorded after 2007. As
noted by clinical experts from the LUMC, the older data in this dataset is not
reliable in terms of the recorded ICPC codes therefore the decision was made to
filter out all instances that are recorded before 2007.

The second part of the data cleaning will focus on reducing the noise from the
text data. All text data is processed as follows:

1. All digits are removed. The use of numbers in the text field seem to provide
little to no valuable information. In most text instances numbers are only
used to refer to a date or used for volumetric units.

2. All special characters are removed as the few special characters in the data
are not used for punctuation. Contrary to the previous cleaning step, in this
step the removed character is replaced by a white space.

3. All characters are converted to lowercase as the majority of the text is already
lower case and capitalization is not used for starting sentences.

It is likely that the digits in the text contain information about the possible diag-
nosis. For example, the occurrences of “20mg” in the text in combination with
the ICPC code for diagnosis might indicate that this volumetric unit is used in
the treatment for diabetes. The models can use this extra information to improve
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Figure 3.6: The split-apply-combine method visualized

the classification. However since the scalability of the model is one of the require-
ments, the model should also be developed with the larger subset of target ICPC
codes in mind. With more target ICPC codes, or all of them, classifying based on
these volumetric units becomes more unreliable given the likelihood of overlapping
units without a relation between the diagnoses.

The next step of the preprocessing is data transformation. The transformation
technique will follow the well known split-apply-combine mechanism [24]. On a
high level, the dataset will be split into separate partitions based on a key. To
each of these groups, a custom function is applied which in this case performs a
grouping operation within the partition. The last step combines all instances and
returns a new dataset. Figure 3.6 visualizes these 3 sequential steps given some
(randomized) input data. Note that the “Neonr” column is an unique identifier
for patients.

In summary, the split-apply-combine operations in this research projects follow the
steps shown in the example and is implemented as follows:

1. Split The data is split on NEONR. Each partition represent all visits for a
given patient.

2. Apply Each partition is grouped by a three year period (e.g. 2012-2015)
as requested by clinical experts within the LUMC. As shown in Figure 3.6
in the Apply step, this grouping requires some sort of concatenation of the
remaining fields. The text values of all visits that occurred in this three
year period are concatenated in one large string whereas the ICPC codes
are joined together in a list. In this step the non-target ICPC codes are
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also removed. Instances without a target ICPC codes are given an empty
list. For demonstration purposes, the Year attribute is also concatenated.
In practice however, the Year is derived from the Date field and after the
Apply step this attribute is discarded since the models are only trained on
the text data.

3. Combine Each partition now contains the visits per 3 year period for each
patient. In this last step, all partitions are joined together.

Table 3.5: Target ICPC codes overview after preprocessing

Absolute Percentage of total

Diabetes 1,082 6.38%
Hypertension 2,625 15.48%
Migraine 237 1.40%
Myocardinfarct 257 1.52%
Social issues 1,409 8.31%
Other 12,083 71.25%

Total 16,958 100.00%

The split-apply-combine operations change the interpretation of an instance in
the dataset. Prior to these operations each instance (or row) represented a visit
by one patient to the GP which was labeled with the corresponding ICPC code.
After the transforming operations, each instance represents a three year period of
visits for a given patient. The ICPC label over this time period is the list of all
ICPC label occurrences in this time range. Table 3.5 provides an overview of the
representation of the target ICPC codes in the processed dataset. At this point,
the data is saved as a new copy. Both of the machine learning models (SVM and
BERT) will read from the same processed data.

3.4 Training

3.4.1 SVM

Before the SVM is able to perform any type of classification task on this data
the text needs to be converted to numerical feature vectors. The “Bag-of-words”
approach is the first step in this conversion and consists of two steps [18]:

1. Assign a fixed integer to every distinct token in the corpus. This fixed integer
will serve as an unique identifier for the token.
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2. For each document i in the dataset X, count the number of occurrences
for each token w and store the integer value in X[i, j] where j is the index
of the word w in the vocabulary.

Note that the resulting document will only hold the information regarding the
tokens and their occurrences. During this step of the training the order of the
tokens is lost. Figure 3.4 shows that the average token length of the documents
is relatively small in general with outliers with token counts up to 50. The token
counts for these document will be greater than average even though they might
contain the same information. To scale the feature vectors the occurrences are
converted to frequencies using the “Term Frequency” (TF) method. The TF
tft,d of term t in document d is defined as the number of times that t occurs in
d. This will scale the originally high occurrences to normalized frequency values.
Furthermore, rare terms that might contain valuable information are overshadowed
by more common words (e.g. stop words). The “Inverse Document Frequency”
weights down common words that carry little valuable information. The document
frequency dft of term t is defined as the number of documents that contain t.
Given the entire corpus N , dft/N can be seen as the likelihood of the occurrence
of t in any document. The inverse document frequency quantifies the probability
of term t in a document and is defined as follows:

idf(t) = log( N
df(t)

) + 1

To conclude the weighting scheme, the final tf-idf weight is the product of both
the TF and IDF weights:

tf -idf(t,d) = tf(t,d) · idf(t)
Including the SVM model training, the training process follows three steps which
are compounded into one pipeline:

1. Vectorizing (Bag-of-words)

2. Transforming (Tf-Idf)

3. Classifying (SVM)

The SVM training concludes with a hyper parameter experiment. The sklearn

library allows for optimizing the parameters for each step in the pipeline. Since the
count vectorizer and the tf-idf transformer are also implemented in this pipeline,
these parameters can also be optimized using a single parameter grid. The
GridSearchCV method performs an exhaustive search over all possible parameter
combinations and cross-validates the results. For this experiment, the following
parameters are used:
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• N-gram range (count vectorizer) By default, the ngram range is set to
1 which implies that a single token is converted to a column. For some use
cases it can be beneficial to also evaluate the performance of bigrams which
consists of two words. In this case the combination of the two unigrams
“blood” and “pressure” are combined in to a single bigram “blood pressure”.

• Use idf (tf-idf transformer) This flag controls the use of the inverse
document frequency during the tf-idf method.

• C parameter (SVM) The C parameter tells the SVM optimization to
what degree classifications are penalized. The SVM example in Figure 2.1
visualized the decision boundaries by the SVM algorithm. A high C value
would lead to a smaller margin for the support vectors and vice-versa.

One of the dangers of this hyper parameter optimization is overfitting on the test
data. When this is the case, the parameters will be optimized to perform best on
the given test data which is undesirable as these performance increases will not
translate to new, unseen data. To validate the performance differences the hyper
parameter optimization will be cross-validated on the training data only. While
this prevents overfitting, it also allows for using one test dataset for both models
which will result in a more consistent comparison.

Table 3.6: The hyperparameter grid for the SVM

Hyperparameter Default value Gridsearch range

ngram range (1,1) [(1, 1), (1, 2)]
use idf True [True, False]
C parameter 1 [0.1, 0.5, 1, 1.5, 2]

Table 3.6 provides the complete overview of the used hyperparameters, the default
value used for the baseline model and their corresponding ranges for the optimiza-
tion. The sklearn class GridSearchCV provides a grid search which exhaustively
generates candidates from a grid of parameter values. In order to prevent the pre-
viously described risk of overfitting the method also cross-validates the training
data using a 5-fold cross-validation generator.

The background information of the SVM in Subsection 2.2.1 demonstrates the
basic mechanics of a SVM using a binary classification problem. However, the
SVM can also be applied for a multiclass classification problem as is the case in
this research project. Given a classification problem with N classes, there are two
approaches for training the SVM:
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• “One-vs-One” A binary classifier is trained for every combination of two
classes in N . Each classifier is trained using only the samples from the two
selected classes. While predicting, a voting function assigns labels to test
data. This methods results in N(N−1)

2
classifiers.

• “One-vs-Rest” A binary classifier is trained for every class in N with the
samples of the selected class and all other samples. Each classifier is trained
to distinguish the selected class with all other classes. During testing, test
data is labeled with the selected class if the binary classifier in question
returns this class and not the “rest”. In this method only N classifiers are
used.

In this project, the Python package scikit-learn (sklearn) is used for im-
plementing the SVM. In the built-in SVM class, multi-label support is handled
according to the One-vs-Rest scheme [19].

3.4.2 BERT

The implementation for the BERT model is based on the Transformers library
developed by the Huggingface team [25]. The library provides a unified API for
handling NLP tasks such as configuration, tokenization and the use of pre-trained
models. This unified API allows for smooth interchangeability between different
pre-trained models, tokenizers and configurations which is beneficial for experi-
menting with different setups in this research project. The Transformers library
is deeply compatible with the two popular deep learning frameworks PyTorch and
Tensorflow (from version 2.0). This improves the transition for models from re-
search to a production environment as the models also support TorchScript

which is able to serialize and optimize models for PyTorch which can be used to
deploy or incorporate models in to a production environment using the Tensorflow
Extended framework.

One of the powerful features of the Transformers library is the use of pre-trained
language models. As explained in more detail in Chapter 2 these models are trained
on a large corpus of text and can be fine-tuned for downstream tasks. This re-
search project will utilize this feature by using a pre-trained model and fine-tuning
it with the classification tasks of labeling GP notes with an ICPC code. The
pre-trained language models are mostly language specific with the exception of
the multilingual model which consists of the top 100 languages with the largest
Wikipedias as measured by the number of articles and includes Dutch. To account
for the difference in Wikipedia sizes, exponentially smoothed weighting of the data
during pre-training was performed. This results in high-resource languages such as
English to be under-sampled while low-resource language such as Icelandic were
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over-sampled. Intuitively it seems inefficient to apply a language model contain-
ing 100 language to a Dutch classification problem. However, experiments have
shown that the results are similar to Dutch language models used on Dutch train-
ing data [23]. In order to speed up the development process, and since the results
are very similar, this research project will only use a Dutch BERT language model.

BERTje is a Dutch pre-trained BERT model developed at the University of Gronin-
gen [23] and will be used in this project. While the multilingual models training
data is limited to Wikipedia, BERTje used data from other sources including the
Dutch Wikipedia. The corpora used for pre-training the BERTje model are as
follows:

• Books: a collection of contemporary and historical fiction novels

• TwNC: a Dutch news corpus

• SoNaR-500: a multi-genre reference corpus

• Web news: all articles of four Dutch news websites from January 1, 2015
to October 1, 2019

• Wikipedia: the October 2019 dump

The implementation of the BERT model is done using the simple-transformers
package which is a wrapper around the original Huggingface Python package for
transformers [15]. The wrapper allows for faster development while also providing
essential hyperparameter options to configure the model. As for the BERT model,
the following hyperparameters were used in the optimization process:

• Training batch size Defines the number of instances to be propagated
through the neural network in each batch.

• Number of epochs Defines the number of complete passes (of the entire
training set) through the neural network

• Learning rate Controls the weights adjustments of the neural network after
each batch.

Table 3.7 provides the complete overview of the used hyperparameters and their
corresponding range. Note that the implementation used for evaluating the pa-
rameters resembles the implementation of the sklearn GridSearchCV class where
the approach uses an exhaustive (or brute force) search to generate and evaluate
all possible combinations of the parameters.
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Table 3.7: The hyperparameter grid for the BERT model

Hyperparameter Range

train batch size [8 , 16, 32, 64]
learning rate [1e-3, 1e-4 , 1e-5, 1e-6]
num train epochs [1, 2]

3.5 Evaluation & Metrics

3.5.1 Metrics

The goal of this research project is to develop a model that is able to correctly
predict the ICPC codes given a sample of GP visits. Evaluating the models is
an important step in the machine learning process. It is important to select the
“best” model during training in order to get the most information of the training
data while preventing overfitting on the training data which leads to the model
not being able to generalize well on unseen data. There are several techniques for
evaluating the performance of the model and most of these metrics can be used in
conjunction to provide a more general overview of the model performance. Most
of the metrics used are based on true positives, false positives, true negatives and
false negatives:

• A true positive (TP) is an outcome where the model correctly predicts the
positive class. A true negative (TN) is an outcome where the model correctly
predicts the negative class.

• A false positive (FP) is an outcome where the model incorrectly predicts
the positive class and the false negative (FN) is, subsequently, the outcome
where the model incorrectly predicts the negative class.

The examples above describes a binary classification problem with a positive and
a negative class. In this research project the model is trained for a multi-label
classification problem with N classes. In this case the four prediction outcomes
(TP, TN, FP, FN) are calculated separately for each class and averaged. During
evaluation, the prediction outcomes can be summarized by different metrics. In
the next subsection the most relevant metrics for the research project will be
described.

Accuracy

The most popular (and most intuitive) metric used for evaluating machine learning
models is accuracy. Accuracy defined as follows:
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Accuracy = TP+TN
TP+FP+TN+FN

In other words, accuracy is the fraction of correctly classified instances over the
total amount of instances. While intuitive, a high accuracy does not automatically
imply a well performing model. For example, given a model trained to classify
spam (from non-spam) email where the testing data consist of 9.000 non spam
email and 1.000 spam emails. A model which labels every test instance as a non-
spam email will achieve an accuracy score of 90% while the model fails to perform
the indented task and is useless in practice. This example shows that accuracy
does not always correctly reflect the performance of classifiers when working with
unbalanced data. Therefore, it is preferable to use precision and recall instead of
accuracy.

Precision, Recall and F1 score

Precision is a metric that defines the fraction of true positive classes over the
total amount of positive classes. In other words, what portion of the positive
identifications were actually correct. Given the evaluation of a spam classifier, the
precision is high when the majority of the emails classified as spam, were actually
spam emails. The precision metric is defined as follows:

Precision = TP
TP+FP

The recall metric on the other hand attempts to answer what proportion of the
actual positives classes was identified correctly. Again using the spam email classi-
fier as an example, the recall is high when the majority of the actual spam emails,
were correctly identified as spam. In other words the recall reflects how many
of the actual spam emails the classifier was able to catch. The recall metric is
defined as follows:

Recall = TP
TP+FN

Lastly, the F1 score (also knows as F-score of F-measure) can be interpreted as
the weighted average of the precision and recall. More specifically, the F1 is
the harmonic mean of the precision and recall. Instead of computing the regular
means the F1 score gives more weight to low values from either the precision or
the recall. Therefore in order to het a high F1 score, both the recall and precision
need to be high. The F1 score is less intuitive than the precision and recall metric
but for completeness sake this metric will also be reported in this research project.
The F1 score is defined as follows:

F1 =
recall−1 + precision−1

2 = 2 · recall · precision
recall + precision
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To fully evaluate the performance of a model both the precision and recall have to
be examined. However, the precision and recall are often in tension meaning that
increasing one is likely to decrease the other. Choosing the right balance between
these two metrics depends on the nature of the classification problem. Given the
spam email classifier working in a production environment, incorrectly classifying
email as non-spam in undesirable but it the impact is relatively small. Contrarily,
classifying a non-spam email as spam has a big impact since this email will be
placed in the spam folder and missed by the user. Therefore in this example, the
precision is more important than the recall. On the other hand, for a classifier
trained to detect shop lifters from video surveillance the recall should be optimized
since catching most shoplifters is more important than the accuracy (precision) of
shoplifting instances.

3.5.2 Train-test split

For both models, the dataset is split according to the 80:20 train-test split ratio
where 80% of the data is used to train the model while the other 20% is used
for testing. The same training and testing data is used for both models to ensure
consistent results. As explained in Section 4.2, the BERT model uses a variation
on this principle where 20% of the training data will be used for validating the
model during training resulting in a slightly smaller training set while keeping the
testing set consistent between the models. For optimizing the hyperparameters of
the SVM model, the same principle is used where 20% of the training data is used
for finding the most optimal hyperparameters while the resulting model is tested
on the original test set.
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Chapter 4

Results

In this section the results of both machine learning algorithms will be evaluated
and compared. Both models will consume the same preprocessed dataset exported
from Chapter 3 and will use this as the starting point for training, while further
model specific preprocessing will be explained in the corresponding sections.

4.1 SVM

The first objective of the SVM evaluation is to develop a baseline model. This
model will be trained and evaluated on the preprocessed dataset without further
configurations to the options and hyperparameters of the model. Contrary to the
data preparation of the BERT model, the preprocessed data will be vectorized
and transformed using the count vectorizer and the tf-idf transformer before the
training process starts.

Table 4.1: The classification report for the SVM classifier

Precision Recall F1-score Support

Diabetes 0.935 0.642 0.761 226
Hypertension 0.917 0.726 0.810 533
Migraine 0.788 0.605 0.684 43
Myocardinfarct 1.000 0.415 0.587 53
Social issues 0.850 0.526 0.650 270

micro avg 0.904 0.642 0.751 1,125
macro avg 0.998 0.583 0.698 1,125

Table 4.1 provides the classification report for the baseline SVM model. The
report shows that the precision of all target ICPC codes is relatively high which
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indicates that the false positive rate of the model low. Compared to precision,
the model performs worse when evaluating recall. In terms of recall, the model
performs best for the target ICPC code Hypertension where approximately 75% of
all instances are correctly predicted by the model whereas the model is only able
to predict less than half of all the Myocardinfarct instances in the test set.

Table 4.2: Top 20 SVM feature coefficients

Diabetes Hypertension Migraine Myocardinfarct Social issues

1 metformine hypertensie migraine myocardinfarct partner
2 mellitus hydrochloorthiazid imigran coronairsclerose relatieproblemen
3 gliclazide hypertens flikkerscotoom coronair burn
4 glimepiride amlodipine zolmitriptan infarct zorgen
5 hbac losartan smelttabl nstemi problemen
6 diabetes beschad rizatriptan onderwandinfarct echtgenoot
7 type chloortalidon sumat hartinfarct arbeidsconflict
8 gereguleerd cozaar zomig cabg moeder
9 insuline hydrochl propranolol stent relatieprobleem
10 behandelplan losart orod acuut relatieproblematiek
11 dmii metoprololsucc neurapraxie myocard werksituatie
12 tolbutamide valsartan oxynorm stemi vader
13 solos hydrochloorthiazide reinigen vatslijden dochter
14 lantus orgaanbeschadiging endocarditisprofylaxe omeprazolgebruik werk
15 diabetische enalapril ftab voorwandinfarct ontslag
16 afhankelijke triamter cluster ischemische probleem
17 glycohb perindopril dingen mell relatie
18 diab lisinopril aura pravastatinenatr overlijden
19 jaarcontrole hydroch endometriumcarcinoom coronairlijden ouders
20 flexpen tensie oxycodon lijden werkproblemen

The SVM is a linear classifier where its features are represented by all the tokens in
the corpus of document. One of the options of the SVM is the ability to rank these
features by relevance for the prediction of a certain ICPC code. In other words, this
makes it possible to print a list of words which are most informative for each class.
Table 4.2 shows the top-20 features for all target ICPC codes in order to provide
a more visual insight in the decision making process of the SVM model. For most
cases the most informative features are the diagnosis name followed by related
medical prescriptions. Examples are “Tolbutamide” which is a potassium channel
blocker used for the management of diabetes type 2 or “Chloortalidon” which is
used to treat high blood pressure. Besides the various medicine related to the di-
agnosis there are also terms which seem out of place as highly informative feature
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coefficients. Examples are “afhankelijke” (dependent), “dingen” (things) and “li-
jden” (suffering) which may indicate that the model is overfitting on the training
data. Lastly, the table also shows multiple occurrences of the same concept as
different features. An example of this can be found for the Social issues diagnosis
were “Relatieproblemen” (relationship problems), “Relatieprobleem” (relationship
problem), “Relatieproblematiek” (relationship problems) and even the conjunction
of “Relatie” (relation) and “Probleem” (problem) all refer to the same concept
while being separated over 5 different features.

Table 4.3: The SVM results before and after the hyperparameter optimization

Precision Recall F1-score Support

Before optimization 0.904 0.642 0.751 1,125
After optimization 0.887 0.675 0.766 1,125

In the final experiment the effect of hyperparameter optimization is evaluated and
compared with the baseline model. The sklearn SVM class allows for configuring
the regularization parameter and loss function the algorithm uses during training.
In addition to optimizing the SVM both the count vectorizer and tf-idf transform-
ers can also be optimized in the same process. The most relevant parameter for the
count vectorizer is the n-gram range which enables the count vectorizer to treat
multiple words as one feature. Given the parameter n, n = 1 are unigrams, n = 2
bigrams and so forth. During this experiment 1 ≤ n ≤ 4 is used during the hyper-
parameter optimization. Table 4.3 shows that the hyper-parameter optimization
leads to a minimal increase of the recall and f1-scores at a slight costs of precision.

The classification report of Table 4.1 reports the precision and recall of the target
ICPC codes. Figure 4.1 shows the confusion matrix results of the (optimized) SVM
model providing better insight in what happens in the cases where the model is
wrong. When observing the columns left to right the results show that when the
model predicts one on the target ICPC codes it generally aligns with the actual
ICPC label. For the majority of the classes in the case the model assigned a wrong
ICPC label it was the “Other” class. Only for the Hypertension class it can be
seen that in a small amount of cases the model wrongly assigned instances with
the Diabetes class. Similar results can be observed when evaluating the recall
represented by the rows in the figure. For the target ICPC codes, cases which are
not correctly predicted are generally assigned with the “Other” class.
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Figure 4.1: The confusion matrix for the SVM model

4.2 BERT

The first experiment, the hyper parameter optimization, attempts to find the
optimal combination of hyperparameters for training the BERT model. For the
BERT model, it was slightly more difficult to start with a baseline model as the
simple-transformers library does not provide default parameter suitable for this
project. Therefore instead of starting with a baseline model this experiment starts
with the hyperparameter optimization. Initially, the learning rate, training batch
size and the number of epochs were labeled as the target parameters used in the
optimization process. One of the challenges encountered during this experiment
was the increased training time for multiple epochs. To illustrate, each epoch
takes roughly 10 minutes to complete. Given a parameter grid with only 4 values
for each of the 3 target parameters, and given the fact that the majority of the runs
would then consist of multiple epochs, this experiment would take a couple hours
to complete. Furthermore, the experiments are conducted via a remote desktop
client in order to work within the LUMC environment which (by default) features
automatic timeouts and disconnects making longer (or overnight) runs difficult.
Lastly, the memory of the GPU occasionally failed to clear in between runs which
required a restart of the notebook kernel. In practice the combination of these
challenges causes this experiment to fail at every attempt. Therefore the decision
was made to remove the number of epochs parameter from the experiment and
evaluate it manually by running 2 experiments for different epoch values. This
manual experiment confirmed that the number of epochs after 1 had little to no
effect on the performance of the model.

Contrary to the SVM, the BERT model is a deep neural network which requires
training on the training data while keeping track of the loss metric in order to
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Figure 4.2: The loss of the BERT model for three separate runs
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move to a minimum in which the network is able to converge to the point were
the returned loss metrics does not decrease any further. The objective of the
second experiment is to confirm the model is able to reach this minimum in which
there is no more improvement possible given the provided data and configuration
options. Before this minimum is reached the network is in theory able to learn
more and perform better therefore skewing the results of the model comparison in
this research project. Figure 4.2 visualizes the loss calculated over the validation
set given 30 evaluation batch steps. Due to the nature of neural networks and
their random weight initialization, this experiment was repeated several times to
ensure consistent results. The figure shows that in all three experiment runs the
network starts at slightly different initial losses but is then able to converge to a
minimum in which the loss metric stops decreasing.

Table 4.4 provides the classification report for the BERT model with the optimal
parameters as reported in the previous experiment. The report shows that the
model is not able to learn the two ICPC codes with the lowest support. Both
“Migraine” and “Myocardinfarct” have only 50 instances in the test set. Given
the 80:20 train test split ratio with an additional 20% of the training set reserved
for validation, this amounts to approximately 150 instances per ICPC code be-
ing used during training which seems to be insufficient for the neural network to
properly train. Figure 4.3 provides the confusion matrix of the BERT model. The
confusion matrix provides more insight in the misclassified instances. The results
show that in the majority of the misclassified instances the model predicts the
“Other” category.
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Table 4.4: The classification report BERT classifier

Precision Recall F1-score Support

Diabetes 0.874 0.491 0.629 226
Hypertension 0.952 0.638 0.764 533
Migraine 0.000 0.000 0.000 43
Myocardinfarct 0.000 0.000 0.000 53
Social issues 0.840 0.389 0.532 270

micro avg 0.913 0.494 0.641 1,125
macro avg 0.533 0.304 0.385 1,125

Figure 4.3: The confusion matrix for the BERT model

For the larger target ICPC codes (Diabetes, Hypertension, Social issues) the mod-
els performs well in terms of the precision which ranges from 75% to 90%. The
recall however shows that the model struggles to “catch” all of the instances with
target ICPC codes as the recall is at 62% on average. Both metrics generate and
average F1-score of 72%.

4.3 Comparison

Table 4.5 provides the results for both models with the micro and the macro met-
ric averages. The macro average is the unweighted average of both the precision
and recall of all classes and the BERT models scores substantially worse than
the SVM since the model was unable to predict two of the five classes. For the
micro average, the two models score relatively similar in terms of the precision
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Table 4.5: The precision, recall and f1-score of the SVM compared with the BERT
model

Precision Recall F1-score Support

Micro SVM 0.877 0.675 0.766 1,125
BERT 0.900 0.444 0.594 1,125

Macro SVM 0.889 0.585 0.688 1,125
BERT 0.529 0.254 0.321 1,125

Figure 4.4: AUC/ROC curve for the SVM model
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but overall the SVM model outperforms the BERT model in every other measured
aspect of this experiment.

The importance of the precision compared to the recall varies between different
applications for machine learning models. The main problem which led to the
development of the models in this research project is the inability to conduct
research based on the recorded ICPC codes in the past. Therefore one of the
possible applications of a model is annotating historic data in the medical records.
When evaluating the trade-off between precision and recall in this scenario the
precision is arguably more important than the recall. When annotating missing
data every correctly predicted ICPC code is an improvement over the initial sit-
uation, whereas each incorrect prediction deteriorates the quality of the medical
records even further.
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Table 4.6: Time comparison between training on the training set and predicting
on the data with missing ICPC codes

SVM BERT

Annotating missing ICPC codes 8.07s 331.34s

One of the causes of the under-reporting of the ICPC codes in the medical records
as identified by clinical experts is the time-pressure GPs experience during their
work. Therefore a different application would be a suggestion or recommendation
engine built into their routine. That is, after entering the free text an application
would read the text and suggest the most likely diagnoses. In this scenario pre-
dictions would be presented as suggestions and it is up to the GP to evaluate and
assign the correct ICPC code. A wrong prediction leads to one or more suggested
diagnoses which are unrelated to the presented case. This however only has a
negative impact if the GP assigns this label. In contrary, systematically not sug-
gesting the correct diagnosis, which is the case with a low recall, leads to the same
under-reporting problem due to time-pressure. In this case the recall is expected
to be more important compared to the recall.

4.4 Labeling the unlabeled data

The exploratory data analysis of Section 3.2 describes how roughly 90% of the
data is not labeled with a ICPC code and therefore can not be used for training
the models in this project. In the last part of this section the trained models on
this unlabeled data. As described in Section 3.3, the instances in the dataset are
not trained separately but instead are grouped by patient and in intervals of 3
years. To ensure consistent results, the same preprocessing steps are applied to
this unlabeled dataset.

Table 4.6 shows the evaluation time of both models.This evaluation time corre-
sponds to the time it takes for a single model to make predictions on the remaining
unlabeled data. This value therefore excludes preprocessing and grouping as the
steps are the same for both models. Due to the random weight initialization of
the BERT model the value for this model is the average of 3 runs. Lastly, all ex-
periments are conducted on the LUMC provided virtual machine. This means the
values should be evaluated relative to each other since the actual time in seconds
can vary between machines or servers. The results shows that the SVM completes
the task in 8 seconds while the BERT model takes 5 minutes and 30 seconds to
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Figure 4.5: Target ICPC codes distribution on the unlabeled data compared to
the training data (reference)
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complete making the SVM model almost 40 times faster.
Since the remaining data is unlabeled it is not possible to evaluate the perfor-
mance metrics as could be done with the training data in the preceding result
sections. What can be done is visualize the distribution of the labels on this unla-
beled dataset in order to compare them to the distribution of the labeled dataset.
Figure 4.5 shows the distribution of the target ICPC codes for both the SVM
model and BERT model. In the figure, these values are compared to the training
data which is labeled as reference in the figure. For the BERT model, the results
align with the results reported in Section 4.4. The model is unable to predict both
Migraine and Myocardinfarct due to their low support during training while it is
able to predict roughly half of the Diabetes and Hypertension instances. Contrary
to the previously reported results, the BERT model also seems to under report
the Social issues ICPC code.
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Chapter 5

Discussion

The final results of Table 4.5 show that both models score well in this classification
task in terms of their precision while both models struggle with the recall. Con-
trary to other types of multi-label classification problems the model in this project
is allowed to return an empty prediction. In this case the presented text does not
fit with any of the target ICPC codes which explains the imbalance between the
precision and recall. For the BERT model the low recall performance drags the
F1-score down to the point where it can not compete with the SVM model. The
low recall metric reflect the inability of models to “catch” all target ICPC codes
but it does not provide the cause of this imbalance between the precision and the
recall. The confusion matrices for both models in Figure 4.1 and Figure 4.3 show
not only the high precision but also that the misclassified examples are mostly la-
beled with “Other”. In a use case where the “Other” label is treated as unknown,
and every correctly classified instance provides business value in its own, both
models can be used to improve the annotation of the data. However, the lower
recall implies that the models struggle to catch all target ICPC codes which means
the annotated data would not give an accurate overview of the epidemiological
environment.

Table 5.1 highlights some instances in the test dataset where both models failed
to predict the target ICPC code(s) but instead predicted “Other”. Note that the
data in the table is a very small sample of handpicked instances with the two
most important criteria being that the text does not include any potential privacy
sensitive information (hence Social issues is excluded) and relatively short text
was used for clarity. Two observations can be made from the limited amount of
data presented in table 5.1. First, the data from the table, and a manual in-
spection, show that in some cases the labeled ICPC code does not align with the
corresponding text. Given the problem statement of this project however, which
notes the incompleteness and the current inability to verify ICPC codes, this is
not surprising. The second observation is the lack of natural language in the text

36



Table 5.1: Sample of instances both models failed to predict the target ICPC code
but instead predicted “other”

Text Actual label

andere tendovaginitis tendinitis knie wratjes voetklachten
otitis externa pravastatine tabl kenacort bursitis subacromialis

Hypertension

zwelling knie griepvaccinatie batchnr oordopje gehoorgang
verhoogd atenolol tabl prostaatcarcinoom tanmx kattanscore
griepvaccinatie gegeven batch

Hypertension

selokeen tabl Diabetes

bovenste luchtweg infectie dieetiste vind niet nodig gaat naar oogarts
contr glaucoom diabetes mellitus type niddm ooglidklachten amoxicilline
caps otitis otitis media codeine phosphas tabl domperidon zetp codeine tabl
zolpidemtart tabl slapeloosheid andere slaapstoornis

Diabetes, Migraine

bloedond veneuze insufficiantie lichte polyneuropathie werkdiagnose mogelijk
lichte arthrose ezetimib gewijzigd medicatie historie psoriasis arthrose pols cellulitis
secundair geinfecteerd krabeffecten cave droge otitis externa werkdiagnose
lwinf sinusitis tevens bronchitis myalgie bijwerking ascal status

Hypertension

verrucae seborroica amoxicilline caps ventolin diskus parestesie restklachten dyspnoe
affort pijn teen prednisolon tabl allopurinol tabl lanol gycerine neusza droge neus
tramadol caps ischias oxycodon caps oxycodon tabl colchicine tabl colch jicht furabid
caps nortriptyline tabl

Diabetes

reactie viraal infect chalazion atorvastatine tabl voetcontrole oproep juli pijn bovenbuik
hydrochloorthiazid ofloxacine oogdr amoxicilline caps zure oordr triam meroc oortamp
odta flucloxacilline caps miconazol oordruppel haematoom been zweten oproep
eerst bloed urineonderzoek schouderklachten snijwond benauwd borst

Diabetes, Hypertension

verruca seborroica griep redelijk tractus iliotibialis excisie weer verwijderd ribcontusie
spastisch colon griepcampagne

Hypertension

schouderklacht links griepvaccinatie gegeven batch nagel probleem duim artrose
handen verruca seborroica atorvastatine tabl vergeetachtigheid griepvaccinatie lotnummer

Myocardial infarction
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field. This is partly due to the grouping process during preprocessing but it also
applies to single instances which shows that GPs in most cases fall back to using
keywords instead of full grammatically correct sentences. As described in-depth in
Section 2.2.2, the main advantage of the BERT model stems from the attention
mechanism which enables the model to defer the meaning from a words from the
words around it in the same sentence, similar to how humans interpret words.
This advantage however is mostly wasted due to the absence of natural language
in the training text. This characteristic of the training text might explain the
performance differences between both models as the SVM model is based on the
bag-of-words model and therefore does not require sentence structure and word
order.

The BERT model faces several challenges compared to the SVM model. Table 4.4
show that the model is unable to predict two of the five classes in the dataset used
for this project. The Migraine and Myocardifarct class have roughly 150 training
instances each which seems to be an insufficient amount for the model to properly
train and at this point in the research it is also unclear if this problem would have
been resolved with more instances. Regardless of the size of the training data, it
does show that the model struggles with under-supported classes which is likely
to occur when the target ICPC codes are expanded in future research. Secondly,
the BERT model requires significant computational power compared to SVM. The
fine-tuning task requires a specialized GPU as consumer grade CPUs (and even
consumer grade GPUs) are not capable of performing this task in reasonable time.
This places several constraints on the flexibility and scalability of this model. Given
the size of the dataset used in this project, system requirements for training the
SVM model are low enough for average consumer laptops to run comfortably. The
lack of the GPU requirement significantly improves development time and overall
(development) costs as it makes it easier to continuously improve the model by
running experiments with more data, better feature engineering or a wider subset
of target ICPC codes. Lastly, Table 4.5 also shows that the evaluation time, the
time it takes for the model to perform predictions, is roughly 40 times slower then
the SVM model when performed on the remaining ICPC codes. Depending on
the use case but especially where batch predictions are performed this could also
prove to be a disadvantage of the model.

Table 2.1 from the prior work analysis showed that for clinical NLP tasks the BERT
models trained on domain specific tasks generally outperform general BERT mod-
els however at this time of writing there are no public biomedical BERT models
in Dutch available. Pre-training a BERT model requires a large corpus of text
and significantly more computational power than the fine-tuning tasks. Given the
scope and time of this research project, both collecting a large biomedical corpus
and pre-training the BERT model were not realistic. However, given the similarity
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of the both models in this task, and the differences of the domain specific models
this does provide interesting future work.

In the evaluation of the SVM performance the observation was made that the
top coefficients of the SVM model in Table 4.2 show multiple occurrences of the
same concept as different features such as “Relatieproblemen” (relationship prob-
lems), “Relatieprobleem” (relationship problem), “Relatieproblematiek” (relation-
ship problems) existed. These features all refer to the same concept and should
ideally be combined. In this case techniques such as stemming, lemmatization
but also regular text correction can be used in order to reduce the dimensionality
of the feature vectors. In this research project however, no suitable implementa-
tion could be found which works on Dutch biomedical text data and developing
such solution from scratch was outside the scope of this project. Fortunately, the
target ICPC codes used are unlikely to have much overlap in the features as the
diagnosis are not closely related en Table 4.2 which provides the overview of the
most informative features support this hypothesis. For further research however
with more data, and especially when working with more target ICPC codes which
might share some overlap in features, these type of techniques can could benefit
the performance of the model.

Subsection 3.5.2 describes the train-test split method used in this project. The
initial data (suitable for training the classifier) is split randomly in a 80%-20%
ratio. At this point the data is already preprocessed which included cleaning the
data but also the transforming and grouping process described in Section 3.3.
After transforming, each record the models will be trained on a combination of a
patients visits spanning a three year period. Given the follow up time and total
visits per patient as seen in Figure 3.2 and Figure 3.3 respectively, the visits of the
patients are likely to span multiple blocks of three years. The danger of the random
split of the data is that these blocks per patient can fall into both the training
data and test data, therefore potentially “leaking” data between the datasets. For
example, given a patient with a rare description of a (target) diagnosis not found
in the data of other patients, it is possible for this text to fall in both the training
data and test data. For classifiers it is now possible to train on this training data
and accurately predict the instances in the test data as the classifier has already
been trained on this part of the test data. In order to develop a model which is able
to generalize better the data should have been split on patient level preventing
potential leakage between the training and test set. This would lead to a more
accurate and reliable view of the model performance on real-world and unseen
data.
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Chapter 6

Conclusions

The research question as defined in Chapter 1 consists of two sub questions. The
first part of the research question is formulated as follows:

“To what degree can machine learning algorithms predict ICPC encoded
diagnoses based on free-text notes”

The capability to predict is a combination of both the precision and the recall.
Both models share the same characteristic in this aspect as the precision is gener-
ally very high with the exception of the macro precision of the BERT model. As
this is an weighted average of all 5 target classes, this is negatively affected by
the models inability to predict 2 of the 5 classes and at this point in the research
it is unclear if more training data would resolve this issue. The SVM model, at
least given the dataset in this research project, has little to no problems correctly
predicting under supported classes and therefore reports high micro and macro
precision scores. Compared to the precision, the recall of both models is signifi-
cantly lower and while the importance of the recall generally depends on the use
case, the 0.44 (micro) recall of the BERT model is likely to hinder practical use.
Given the high precision of both models, and the acceptable recall of the SVM
model, this research project has shown that machine learning algorithms are ca-
pable of predicting ICPC encoded diagnoses based on free text.

Finally, the second part of the research question:

“How do traditional techniques compare to pre-trained language models”

In terms of the performance of both models as measured by the precision, recall
and F1-score, the SVM model outperforms the BERT model in every aspect. The
lack of natural language in the training data might be the cause of this disparity as
understanding natural language is one of the key improvements BERT introduces
compared to other techniques and algorithms. Performance is only one side of the
story, the discussion in the Chapter 5 elaborated further on the different trade-offs
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between the two models. The BERT model requires significant computational
resources and specialized hardware in order to train the model. This requirement
severely hinders the flexibility of the model as further development, with more data
or better feature engineering, requires more resources and costs. Therefore given
the problem as presented in this research project, the research has shown that
when comparing SVMs with BERT models, the SVM is the favorable algorithm
for classifying the free-text notes of GPs.
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