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Abstract

Solving a combinatorial two-player game is a difficult problem. This thesis
presents an approach to solving two-player games by modeling them as a sym-
bolic transition system. A model checking algorithm, IC3, which is meant for
such models and has proven to be a powerful verification method, was adapted
to solve them.

This novel algorithm was validated on a number of “toy” games, and the per-
formance of the algorithm was analyzed. The primary performance bottleneck
that was identified stems from a deficiency of the generalization step, which is
an important aspect of the efficiency of both the original as well as the adapted
two-player version of IC3.
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Chapter 1

Introduction

In computer science, two-player games are used as a means to model the be-
havior of competing agents. Such games are often used as a “stand-in” for real
problems. An example of such a problem is the “job scheduling game”, in which
multiple computer users compete for CPU time for their jobs. Algorithms for
analyzing two-player games therefore have applications beyond trying to win
board games: the goal is not necessarily to just solve a game, but to develop
strategies and methods that can be used to solve other problems.

An example of the usefulness of games research is DeepMind Technologies’
AlphaGo project. Winning the board game Go posed a challenging problem
to prevailing methods. For AlphaGo, novel methods were developed that not
only proved successful at solving Go, but were applicable in other fields, such
as the synthesis of organic molecules for the development of medicine [19].

This thesis will focus on the following problem: for a given two-player game,
determine if there is a strategy for the starting player such that, regardless of
any possible counter-moves by the opponent, the player is guaranteed a path
to victory. This is called “weakly solving” a game [8], and is a computationally
harder problem than finding finding moves that are good enough to beat a hu-
man player, like AlphaGo does.

The algorithm IC3 by Aaron Bradley [12] has proven successful in the area of
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6 CHAPTER 1. INTRODUCTION

model checking. Despite its unusual method of operation, which mirrors the
method of a human verifier and relies heavily on the use of SAT solvers, it
ranked third overall in the Hardware Model Checking Competition 2010 [14].

The main question of this thesis is: Can the algorithm IC3 be adapted to solve
games? To answer this question, an implementation of IC3 was written in
Python and modified to use two-player game models. This modified algorithm
was used to perform an experimental evaluation.

The new algorithm was evaluated using a number of small games, which al-
ready have been weakly solved, to test if the algorithm could give the correct
result. Experiments on these models show that the algorithm correctly decides
whether or not a game is winnable, but for models with a large state space it is
very slow.

Chapter 2 will give an overview of the relevant background topics used in this
thesis, including a formal description of two-player games. Chapter 3 describes
how IC3 was modified for use in such games. Chapter 4 compares this method
with some related work. Chapter 5 documents the experiments that were per-
formed to evaluate the algorithm. The final chapter is a summary of results and
a conclusion.



Chapter 2

Background

This chapter will cover some necessary background topics, including boolean
logic and SAT, as well as give a formal description of the concept of a two-player
game. Finally, model checking is discussed and a brief outline of the operation
of the algorithm IC3 is provided.

2.1 Boolean logic and the satisfiability problem

Boolean logic is a fundamental algebra used in computer science. This algebra
works exclusively with boolean variables: variables that have a value in the
boolean domain (B): either true (written > or 1) or false (written ⊥ or 0). A
boolean formula is a formula over a set of boolean variables, constructed from
the following elements:

• p or ¬p: a single literal, which represents the boolean variable p having
the value true (pmeans p = >) or false (¬pmeans p = ⊥).

• ϕ∧ψ, the conjunction (logical AND) of two formulas ϕ,ψ.

• ϕ∨ψ, the disjunction (logical OR) of two formulas ϕ,ψ.

• ¬ϕ, the negation of another formula ϕ.
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8 CHAPTER 2. BACKGROUND

Boolean formulas are often expressed as the conjunctive normal form or CNF.
In this form, a formula may only consist of a conjunction of clauses, where
a clause is a disjunction of literals; so the general form of a CNF formula is
(a1 ∨ · · ·∨an)∧ (b1 ∨ · · ·∨bm)∧ · · · . The negation of a clause gives a conjunc-
tion of literals, which is called a cube.

Any boolean formula can be encoded in CNF. A naı̈ve transformation by the re-
peated application of distributivity and De Morgan’s laws often causes an expo-
nential increase in the amount of literals. For example, the formula
(a∧ b)∨ (c∧ d) becomes (a∨ c)∧ (a∨ d)∧ (b∨ c)∧ (b∨ d).

However, this exponential increase in literals can be avoided by introducing
new variables. The Tseytin transformation [5] of a formula uses this method, and
gives a CNF formula with only a linear size increase compared to the original.

When a variable has a finite and discrete domain, it is possible to convert it into
multiple boolean variables. One method is by encoding the value in binary,
referred to as “bit-blasting”. Another possible method is to give each possible
value a unique bit, and add additional constraints to ensure only one bit of
the group is asserted; this encoding is called “one-hot”. In other words, for a
variable with a domain of size x, a one-hot encoding needs x bits (one per value)
to encode the variable, whereas bit-blasting only needs log2(x) bits.

Determining whether a boolean formula can be satisfied, that is, finding an
assignment to all variables such that the entire formula is true, is called the
boolean satisfiability problem (or SAT) [3]. A SAT solver is a program that, given
a formula (in CNF form), either returns a cube representing a satisfying assign-
ment, or declares the formula unsatisfiable if no such assignment exists.

SAT is an NP-complete problem, which ranks it amongst the most difficult prob-
lems in computer science. Nevertheless, much progress has been made in the
development of SAT solvers [3]. Because of this other such hard problems are
often expressed as SAT in order to utilize SAT solvers; model checking is an
example of such a problem.



2.1. BOOLEAN LOGIC AND THE SATISFIABILITY PROBLEM 9

Using the notion of satisfiability, a formula can be considered to represent a set:
namely, it represents the set of all variable assignments that satisfy the formula.
Consequently, the solutions of a SAT solver on a formula give elements of the
set it represents.

In this interpretation, the formula is called the “indicator function” for that set.
For example, the set given by a formula F is JFK = {v ∈ Bn | F(v) = >}. In this
thesis, the two interpretations will be used interchangeably, simply writing F to
represent the set of satisfying assignments of a formula F.

With this representation of sets as formulas, a binary relation can also be repre-
sented by a formula. A binary relation R over two sets A and B is a subset of
the set of tuples A× B. If a tuple 〈a,b〉 ∈ R, then a ∈ A is related by R to b ∈ B
(denoted aRb). The tuple is represented as an assignment to a set of variables.
This set of variables is divided into variables used to represent a, and variables
used to represent b.

If the setsA and B intersect, the variables used to represent b are counterparts to
those used to represent a. These counterparts, known as primed variables (and
denoted with a prime symbol), represent the value of the variable in the image
of the relation. After the relation is applied, the primed variables are renamed
back into the original domain.

A function is a kind of binary relation. For a function F, F(X) will be used
to represent the image of F over a set X, with this renaming applied: F(X) =̂

{w ∈ F | v ∈ X, 〈v,w〉 ∈ F}.

For example, let NOT : B→ B be a function mapping elements from the boolean
domain B =̂ {>,⊥} to B. Represented as a set, this function is {〈>,⊥〉 , 〈⊥,>〉}.
In a boolean formula, B is simply a single variable, say b. In its formula repre-
sentation, NOT can then be expressed with the constraint (b∧¬b ′)∨ (¬b∧b ′).

The game models used in this thesis will be encoded in this way. For a game
G with the domain of all its variables limited to booleans, a state can simply be
represented as a cube. The transition function, which is a binary relation from a
state to one or more states, is expressed in the manner described above.
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2.2 Games

For the purposes of this thesis, a game is defined as follows: A game consists
of a set of positions or states [10, 11]. There are two players, which will be called
A for Alice and B for Bob, of which only one can move at a time. The rules of
the game specify which player has the turn, and which moves each player may
perform from a given state. Player A (Alice) always moves first.

A game is assumed to be completely deterministic and have perfect informa-
tion. In other words: there is no aspect of chance (such as dice rolls or card
deals), and both players have complete knowledge of the current game state.
Games with these restrictions are known as “combinatorial games” [11].

If the set of valid moves is identical for both players, the game is called “im-
partial”. The game Notakto (introduced in Section 2.2.2) is an example of an
impartial game. If the set of valid moves differs depending on whose turn it
is, the game is called “partisan”. Tic-tac-toe is an example of a partisan game,
since players may only put down their own symbol.

A game is won if it reaches a state in which the win condition has been met. This
condition is specified by the rules of the game; furthermore, the rules specify
which player is the victor when such a state is reached. It is assumed that a
game can not continue indefinitely.

2.2.1 Formal definition of games

This section will give a formal definition of a game. A game is a graph, where
each vertex represents a game state. Each state is associated with either Alice or
Bob; that player has the turn.

The definition used here is adapted from that of the problem GAME described
by Greenlaw, Hoover, and Ruzzo [9]: pg. 208. To accommodate the approach used
in this thesis, GAME was extended by adding the variable domains over which
the game states and moves are defined. The transition function is defined over
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these variables.

Consider a two-player game G, played between Alice A and Bob B. A game is
represented in symbolic form as G =̂ 〈V ,S, turn, s0, T , wonA, wonB〉, where:

• V is the set of variables, used to represent the game state. It is assumed,
without loss of generality, that all variables have a boolean domain.

• S =̂ 2V is the finite set of all states. A state s ∈ S is an assignment to all
variables in the set V . The notation s[x] is used to denote the value of the
variable x in a state s.

• turn ∈ V is a variable that designates which player has the turn to move:
s[turn] ∈ {A,B}.

The notation Sp =̂ {s ∈ S | s[turn] = p} for p ∈ {A,B} is used to denote the
states where it’s player p’s turn to move.

• s0 ∈ SA is the initial state.

• T : S→ 2S is the transition function. The notation Tp for p ∈ {A,B} is used
to denote the transition function for each player, where the domain has
the restriction that turn = p.

• wonp ⊆ S for p ∈ {A,B} are all states where the win condition for the
game has been met (the game has been won) with player p as the victor.
Note that this does not necessarily mean that there are no more moves
possible from such a state.

Since there can be only one winning player, the sets of won states are dis-
joint. A tie or draw condition is not considered a win for either player;
such states are not explicitly captured in this model.

As described in Section 2.1, the sets of states and transition function used in G
can be expressed in the form of boolean formulas. For clarity, the variable turn
is expressed in {A,B} rather than {>,⊥}; the two forms are equivalent.
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2.2.2 An example game: Notakto

As an example, the game Notakto [18] is a variant of the well-known game tic-
tac-toe. This game was chosen as an example because of its simplicity; its states
and moves can easily be encoded as boolean variables.

A game of Notakto is played on a board of 3 by 3 squares. Two players take
turns placing a cross in an unoccupied square. The game ends when the board
has three crosses in the same row, column, or diagonal. When the game ends,
the last player to move loses (such a game is sometimes called a “misère game”),
so in order to win, a player must force the opponent to make the ending move.

A single-board game of Notakto is formalized as follows: each square on the
board has a boolean variable that represents whether that square is occupied
or not: {�xy | x,y ∈ {1, 2, 3}} ⊂ V . In the initial state, all squares are empty:
s0 =̂

(∧
x,y∈{1,2,3} ¬�xy

)
.

The win condition, forcing the other player to create a three-in-a-row, is defined
as:

wonA =̂W ∧ turn = B

wonB =̂W ∧ turn = A

where W is defined as:

W =̂

 ∨
x∈{1,2,3}

(�x1 ∧�x2 ∧�x3)∨ (�1x ∧�2x ∧�3x)


∨ (�11 ∧�22 ∧�33)∨ (�13 ∧�22 ∧�31)

The transition function consists of several parts. First of all, all squares except
for the one being filled remain unchanged. Secondly, the chosen square can not
already be occupied by a cross, and after the move it is occupied by a cross.
Finally, whenever a move is made, the turn goes to the other player.
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An additional constraint is used here that a move can only be made if the game
has not already ended, but generally this need not be the case. Combining these
constraints, the transition function T is then as follows:

T =̂
∨

x,y∈{1,2,3}

 ∧
〈a,b〉∈({1,2,3}2

\{〈x,y〉})

(�ab = � ′ab)∧ (¬�xy ∧� ′xy)


∧ ¬W ∧ (turn ′ = ¬turn)

As Notakto is an impartial game, the transition function Tp for either player p
is identical (excepting, of course, the fact that turn must have the appropriate
value): Tp = T for p ∈ {A,B}.

2.3 Model checking

Model checking is the problem of deciding whether or not a given hardware
design or software program conforms to a specification. The subject is modeled
by a symbolic transition system 〈V ,S, s0, T〉, where:

• V is a set of (boolean) variables.

• S =̂ 2V is the finite set of all states. A state s ∈ S is an assignment to all
variables in the set V .

• s0 ∈ S is a the initial state.

• T : S → 2S is the transition function. As described in Section 2.1, such a
function can be symbolically represented as a boolean formula.

In its most basic form, a specification for a model describes safety properties. A
safety property P is a contraint over the variables V , which represents the set of
“good” states. In order for a model to conform to P, all reachable states must
be in this set, or in other words, the property must always hold true in every
reachable state. A model that conforms to a safety property is called “safe”.
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Most model checking algorithms work by exploration of the reachable state
space. The size of the state space is, in the worst case, exponential in terms
of the number of variables in the model. However, only those states reachable
from the initial state have to be considered.

2.3.1 Reachability

The set of reachable states is the smallest fixpoint that includes the initial state.
A fixpoint is a point of a function where the input and output of the function
are identical. So, the set of reachable states is the smallest set X where s0 ∈ X
and T(X) = X. The reachable states can be computed by iteratively applying
the transition function T to a set of states, starting with only the initial state.
Pseudocode for computing the reachable states is shown in Algorithm 1.

1 set reach (V ,S, s0, T):

// R is the working set: start with s0

2 R := {s0};

3 R ′ := ∅;

4 while R 6= R ′:
// add all states reachable in one step from current

working set

5 R ′ := R;

6 R := T(R ′);

// no new states are added, all reachable states are in R

7 return R;

Algorithm 1: An algorithm to return the set of reachable states.

Backwards reachability is the same principle, but applied backwards. From the
set of states that violate P, the set of backwards reachable states can be com-
puted by iteratively applying the predecessor function pred(T ,X).

This function, defined as pred(T ,X) =̂ {v ∈ X |∃w ∈ X : 〈v,w〉 ∈ T }, gives all
states that are predecessors of states in X. The model is safe if the set of states
backward reachable from ¬P does not include the initial state s0.
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2.3.2 Floyd’s theorem

Another approach to proving a safety property P holds true is by making use
of Floyd’s theorem [2]. This theorem states that instead of finding the smallest
fixpoint, any pre-fixpoint will be sufficient:

Theorem 1 (Floyd) A symbolic transition system 〈V ,S, s0, T〉 satisfies a property P
if there is an inductive invariant F such that s0 ⊆ F and F ⊆ P. A constraint F is an
inductive invariant iff T(F) ⊆ F (i.e. F is a pre-fixpoint).

The major advantage of this method is that, unlike with reachability methods,
there is no need to traverse the entire state space.

2.4 IC3

IC3 (Incremental Construction of Inductive Clauses for Indubitable Correct-
ness) [12] is a model checking algorithm that decides the safety problem (see
Section 2.3). The approach of IC3 is based on Floyd’s Theorem (Theorem 1,
described in Section 2.3.2).

To construct the inductive invariant required by Floyd’s theorem, IC3 maintains
a sequence of CNF formulas called “frames”, F0 = s0, F1, · · · Fk. In all frames, the
following invariants are maintained:

1. s0 ⊆ F0

2. Fi ⊆ Fi+1 for all 0 6 i < k

3. Fi ⊆ P for all 0 6 i 6 k

4. T(Fi) ⊆ Fi+1 for all 0 6 i < k.

Due to these invariants a frame Fi can be considered to be an over-approximation
of the states of S reachable from the initial state in i steps, because F0 = s0, each
frame Fi is a strict superset of the previous frame Fi−1, and contains at least
T(Fi−1).
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The inductive invariant is constructed by maintaining relative inductiveness
of these frames: a constraint F is inductive relative to another constraint G if
s0 ⊆ F, and T(G ∧ F) ⊆ F. The invariants ensure that each frame is inductive
relative to the previous; so when two consecutive frames become equal, then
T(Fi) ⊆ (Fi+1 = Fi): an inductive invariant is found and the algorithm finishes.

Pseudocode for IC3 is shown in Algorithm 2. It begins (line 4) by ensuring
that the invariants 2, 3, and 4 apply for the initial state s0 (and by extension the
zeroth frame F0), as a base case for the proof.

For each frame, the algorithm consists of essentially two phases: a refinement
phase of finding and removing counterexamples to induction in the frame (lines
7–21), and a phase of propagating newly found constraints to later frames (lines
22–26). In the following subsections, the operation will be described in detail.

2.4.1 Searching and refining Fk

The frame Fk is the frontier of the search. Initially, k = 1 and Fk = P. Until
one of the frames becomes equal to its successor (meaning that it has become an
inductive invariant), the goal is to prove that T(Fk) ⊆ P, so that with Fk+1 = P,
invariant 2 and 4 apply for i 6 k and as a result k may be incremented and the
search expanded by another step.

Searching a counterexample

During the search, a set of “proof obligations” is maintained: a proof obligation
is a tuple 〈n,p〉 that represents the knowledge that a formula ¬p is inductive
relative to Fn−1, and that Fn ⊆ ¬p: in other words, p can not be reached from
F0 in n steps. It is known by invariants 3 and 4 that the property P is inductive
relative to Fk−1, and that Fk ⊆ P, so the initial set of obligations is {〈k,¬P〉} (line
8).

This initial proof obligation indicates that frame Fk (but not any earlier frame)
may still contain a state that leads to ¬P; such a state is known as a counterexam-
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ple to induction (CTI) for P. The presence of such a state means that T(Fk) 6⊆ P:
invariant 4 is not met for i = k yet, which is needed in order to increment k. In
order to prove this invariant, the over-approximation Fk must be strengthened
by removing these CTIs for P.

Until all obligations are handled, the obligation with the lowest n is taken (line
10). This tuple 〈n,p〉 indicates that p, which is a known CTI, may be reachable
from Fn (but not any earlier frame). To handle it, the frame Fn is searched for
any counterexample state s that causes T(Fn) 6⊆ ¬p (that is, s is a predecessor of
¬p; line 12).

By handling obligations sorted by n, this CTI can never already be present in
the set of obligations (because it is a predecessor); this ensures that any cycles
in the reachable state space of the model do not cause an infinite loop, ensuring
that the algorithm terminates on finite systems.

Removing the counterexample

The found counterexample must be removed from all frames. To remove a CTI
s from a frame, it is negated into a clause ¬s; this clause is generalized to cap-
ture a larger set of removable states (explained later). The (generalized) clause
is added to the frame as an additional constraint. However, ¬s may not be in-
ductive relative up to Fk immediately. The highest frame Fm is found where ¬s

is inductive relative to it (lines 14–16).

If m = 0 : s0 6⊆ ¬s (line 11), then the property P has been violated: there is a
path from the initial state to a state in ¬P, known as a “trace”. If not, the CTI
can be removed from all frames F0, · · · , Fm+1 from which it is known not to be
reachable.

However, it may be the case that m < k − 1, in which case s has not been
excluded from Fk. This happens when there are one or more states t in Fm that
lead to s (the situation shown in Figure 2.1). Such states need to be eliminated
before the removal of s is complete, so 〈m, s〉 is added as a new obligation to
handle these states.
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¬P¬sF0 = s0

Fm+2,··· ,kFm+1FmF1,··· ,Fm−1

t

s

Figure 2.1: Diagram showing an example of ¬s inductive relative up to anm <

k− 1.

If there are no CTIs for an obligation 〈n,p〉, then p itself can be excluded (as
above with s, lines 18–21) from Fn+1 and later frames, because it is now known
there are no transitions leading to it from Fn. The old obligation is removed; if p
is still not inductive relative to Fk, a new obligation 〈m,p〉 is added to handle p
in the new highest inductive frame Fm (essentially, the level of the old obligation
is increased).

As can be seen, when an obligation is handled, it either adds a new state not
already present in the set of obligations, or it increases the level of an old obli-
gation, removing it when that level exceeds k. This means that the number of
obligations per frame is bounded at (k+ 1)× the size of the state space.

2.4.2 Finishing a frame

When all outstanding obligations for the current frontier have been handled,
invariant 4 has been proven for Fk, so k can be incremented. The new frame Fk
is initialized to P.
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At this point, a clause which was not inductive at an earlier point may have
become inductive due to the addition of other clauses (these are called mutually
inductive clauses). Such clauses are now found and “pushed forward” as far as
possible, by taking each clause c ∈ Fi where 0 6 i 6 k, and adding it to Fi+1 if
T(Fi) ⊆ c ′ (there are no predecessors to ¬c in Fi). This is known as propagation.

The process of trying to increment k continues until any two consecutive frames
have become identical, at which point the inductivity has been proven; or until
a trace is found, at which point the property is found be be violated.

2.4.3 Generalization

While not needed for correctness, an important aspect of IC3 is the fact that
found counterexamples are generalized (in lines 15 and 19) before they are re-
moved from the frames.

A generalization for a state is a subclause of the original formula that retains
the same relative inductiveness. The advantage of this generalization process
is the fact that the new clause covers more states than just one, significantly
reducing the amount of work that needs to be done. The particulars of how
such a subclause can be computed are not discussed here.



20 CHAPTER 2. BACKGROUND

1 cube hasCTI(Fi,p):

// Returns a counterexample to induction for a property p

in a frame Fi.

2 return SAT(Fi ∧ T ∧ ¬p ′) projected to V ;

3 bool prove():

4 if (s0 6⊆ P)∨ (T(s0) 6⊆ P):
5 return Reachable;

6 F := [s0,P]; k := 1;

7 while True:

// Ob is a set of tuples 〈n,p〉 such that ¬p is inductive

relative up to Fn−1 and Fn excludes p.

8 Ob := {〈k,¬P〉};
9 while Ob is not empty:

10 〈n,p〉 := min(Ob);
11 if n = 0: return Reachable;

12 s := hasCTI(Fn,p);

13 if s exists:

14 find smallestm for which SAT(Fm ∧ ¬s∧ T ∧ ¬s ′);

15 remove generalized s from ∀0 6 i 6 m : Fi;

16 ifm 6 k: Ob := Ob ∪ {〈m, s〉};
17 else:

18 find smallestm for which SAT(Fm ∧ ¬p∧ T ∧ ¬p ′);

19 remove generalized p from ∀0 6 i 6 m : Fi;

20 Ob := Ob \ {〈n,p〉};
21 ifm 6 k: Ob := Ob ∪ {〈m,p〉};

22 k := k+ 1;

23 Fk := P;

24 propagate clauses F0 · · · Fk;

25 if ∃1 6 i 6 k : Fi+1 ⊆ Fi:
26 return Unreachable;

Algorithm 2: The general outline of the IC3 algorithm.



Chapter 3

Solving Two-Player Games

With a game expressed in symbolic form G =̂ 〈V ,S, turn, s0, T , wonA, wonB〉, as
described in Section 2.2.1, the problem of weakly solving a two-player game
can be approached similarly to a model checking problem: namely utilizing
retrograde analysis, which is a form of backward reachability (defined in 2.3.1)
applied to games.

In this case, the analysis starts with a set of states that are a guaranteed win
(wonp), traversing the state space backwards to determine all states that are
“winning”, defined as follows.

A game state s ∈ S is considered winning for Alice (s ∈ winningA) when there
is at least one sequence of moves for Alice from s that results in the game being
in a state s ′ ∈ wonA, and Bob can not make a move that results in there being
no such sequence; Alice can always reach wonA. The goal of the algorithm can
then be stated as: is s0 ∈ winningA?

Expressed more formally, winningp is the smallest fixpoint under the transition
function T , where:

• wonp ⊆ winningp.

• (pred(T , winningp) ∩ Sp) ⊆ winningp,
includes all states that player p can steer into winningp.
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• ∀∃pred(T , winningp) ⊆ winningp,
includes all states that can only move into winningp.

In the description above, the operator pred(T ,X) is the predecessor operator, as
defined in Section 2.3; and the operator ∀∃pred(T ,X) =̂ pred(T ,X)\pred(T ,¬X)
represents all states that have at least one successor in X, and no successors
outside X.

Note that it is not needed to restrict the result of ∀∃pred to one player (e.g.
∀∃pred(T , winningp)∩S¬p), because it doesn’t matter which player is forced to
move into winningp; such a state is part of winningp regardless.

Further, by requiring all states to have at least one successor, the result of ∀∃pred
excludes any deadlocked states (states that have no successors). Any dead-
locked states must either be won for either player, or a tie condition (which, as
noted in Section 2.2.1, are not a win for either player). As a result, deadlocked
states outside wonp can never be part of winningp.

3.1 Adapting IC3 for Games

The approach to solving games used in this thesis is to use a method like that of
IC3, using retrograde analysis with Floyd’s theorem. With this method, there is
no need for winningA to be the smallest fixpoint; any fixpoint will suffice. The
benefit is that by not requiring the smallest fixpoint, less constraints are needed
to describe the set of states in each frame.

The adaptation of IC3 for games uses the same invariants as described in Section
2.4, except for the invariant 4. This invariant, (which guarantees that transitions
from a frame Fi are all to states contained in Fi+1) is split into two separate
invariants, as follows:

4a. TA(Fi) ⊆ Fi+1 for 0 6 i < k,
Alice’s states must have all successors in Fi+1.

4b. TB(Fi) ∩ Fi+1 6= ∅ for 0 6 i < k,
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Bob’s states must have at least one successor in Fi+1.

In order to maintain these new invariants, the following modifications are made
to Algorithm 2. In regular IC3, when a counterexample to induction is sought
(line 2), such as when handling the obligation of a state s, a predecessor to s can
be found with the following test: ∃t ∈ Fi : T(t) 6⊆ ¬s. If a state has any outgoing
edge to s, it is a counterexample.

However, in the case of invariant 4b, a state with an outgoing edge to a bad
state does not necessarily need to be a counterexample. To determine this, the
other successors need to be considered as well. In other words, to invalidate
invariant 4b, a state must have all successors outside Fi+1 — not just s.

Take for example the transition system shown in Figure 3.1. When solving this
(artificial) miniature game, at a certain point, the state 0011 will be removed
from the frame F1, which is shown as an outline. Before its removal, the state
0001 does not violate any invariants, because it is a Bob state with at least one
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01010101
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1001

1101

0100

Figure 3.1: Transition system for a game “minigame”. Shaded nodes represent
states where Bob has the turn. States in wonA are indicated with a double out-
line.
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successor in F2, namely 0011. But when this state is removed, 0001 has no
other successors in F2: invariant 4b is now violated, and 0001 is a CTI.

To find counterexamples that invalidate the new invariants, the test must ex-
plicitly constrain ¬s to the following frame: ∃t ∈ Fi : T(t) ∩ (¬s ∩ Fi+1) = ∅, or
equivalently, ∃t ∈ ∀∃pred(¬s ∩ Fi+1). (This essentially tests if there is a CTI in
Fi if swere to be removed from Fi+1.)

This constraint was not necessary for the original IC3, nor for the test of invari-
ant 4a, as invariant 2 already guarantees that this constraint applies in these
cases.

Furthermore, in order to find counterexamples for invariant 4b, the algorithm
needs some way to apply the operator ∀∃pred. ∀∃pred is an instance of the
quantified boolean formula problem, specifically 2QBF. A solver for this opera-
tor can be implemented using two SAT solvers [4], shown in Algorithm 3.

1 cube ∀∃pred(T ,X):
2 C := S // the entire state space

3 while True:
// q := ∃q ∈ (C ∩ pred(T, X))

4 q := SAT(C∧ T ∧ X ′) projected to V ;
5 if no such q exists: return None;

// r := ∃r ∈ (T(q) ∩¬X’)
6 r := SAT(q∧ T ∧ ¬X ′) projected to V ;
7 if no such r exists: break;

8 compute generalized q̂, such that
1. q ⊆ q̂
2. ∀s ∈ q̂ : 〈s, r〉 ∈ T

9 C := C \ q̂;

10 return q;
Algorithm 3: Implementation of ∀∃pred using SAT solvers.

First, a candidate state is q found (line 4) that has a transition into X. The can-
didate q may have no transitions to any state r outside of X; this is verified in
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line 6. If there are no such transitions, then q is included in ∀∃pred(X), so it is
returned.

If there is a transition to such a state r, then q is not part of ∀∃pred(X). It must
be removed from the set of candidates; preferably, all states q̂ that lead to r
(that is, the set pred(q)) are removed as well. This process repeats until a valid
forall-exists predecessor is found, or there are no more candidates.

Summarized, the modified hasCTI is as shown in Algorithm 4. The ∀∃pred
operator is implemented using the method described in Algorithm 3. The rest
of the IC3 algorithm remains the same.

1 cube hasCTI(Fi,p):
// Returns a counterexample to induction for a

property p in a frame Fi.

// exists-predecessor

2 s := SAT(Fi ∧ (s[turn] = A)∧ T ∧ ¬p) projected to V ;
3 if such an s exists:
4 return s;

// forall-predecessor

5 C := Fi;
6 p := p∧ Fi+1;
7 while True:

// s := ∃s ∈ C: (T(s) ∩ (Fi+1 ∩ p)6= ∅
8 s := SAT(C∧ T ∧ ¬p) projected to V ;
9 if no such s exists: return None;

// t := ∃t ∈ (T(s) ∩ ¬p)

10 t := SAT(s∧ T ∧ p ′) projected to V ;
11 if no such t exists: break;
12 C := C \ pred(T , t);

13 return s;
Algorithm 4: hasCTI modified for two-player games.

In line 12, all predecessors of t are removed. The set of predecessors of t is
essentially the generalized form of s, as mentioned above.
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As mentioned in Section 2.4, generalization of found counterexamples to in-
duction (not to be confused with the generalization done within ∀∃pred) is an
important point for the efficiency of the algorithm. In IC3 for games, a dif-
ferent strategy for generalization is needed for counterexamples found as ∃-
predecessors and those found as ∀-predecessors.

For the ∃-step, the “down” algorithm described by Bradley [12] can be used;
however, care must be taken that the variable turn isn’t removed. Regrettably,
there was not enough time to develop a generalization method for the ∀-step.
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3.2 Step-by-step example: solving Minigame

This section gives a step-by-step worked example to illustrate how the algo-
rithm solves a game. The model used here is “minigame”, the toy game intro-
duced in Figure 3.1.

k = 1; Ob = {〈F1,wonA〉}

F2F1

0000

00010001

00100010

0011

0110

01110111

01010101

1111

1001

1101

0100

k = 1; Ob = {〈F1, wonA〉 , 〈F1,0111〉}
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The algorithm begins with the frames as shown
here. The frame F0, which is not explicitly drawn,
contains only the initial state 0000. The states
in wonA are drawn with a double outline, and
as shown F1 is equal to ¬wonA. The frame F2

is currently empty (contains everything).

At this point, the only obligation is 〈F1, wonA〉.
To handle this obligation, the algorithm searches
for a CTI for wona in F1, meaning: either an
Alice-state (drawn in white) that has a suc-
cessor outside of F2 ∩ ¬wonA, or a Bob-state
(drawn in gray) that has no successors in F2 ∩
¬wonA.

Is there such a state? Yes, the state 0111 is
in F1, and has no successors outside of F2 ∩
¬wonA.

To remove 0111, the first frame Fm is found
where ¬0111 is no longer inductive relative
to it, by searching for a CTI for Fi+1 ∩ ¬0111

in every frame Fi ∩ ¬0111.

In this case m = 1, because F1 ∩ ¬0111 still
contains a predecessor to 0111, namely 0011.
¬0111 is now added to all frames up to and
including Fm: F0, F1.

Because ¬0111 is not yet relatively inductive
to Fk, a new obligation 〈F1,0111〉 is added.
Another iteration for 〈F1, wonA〉 shows there
are no other counterexamples to P, so that obli-
gation is removed.
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k = 1; Ob = {〈F1,0111〉}
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k = 1; Ob = {〈F1,0111〉}
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k = 2; Ob = {〈F2,wonA〉}
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k = 3; Ob = {〈F3,wonA〉}
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Now 〈F1,0111〉 is handled: is there a CTI?
Yes, the state 0011 is in F1 and has 0111 as
a successor. There are no CTIs blocking its re-
moval, so it is removed from all frames, and
no new obligation is added.

The obligation for 0111 is still not done. This
time the state 0110 is found, and it too has
no blockers, so it is removed from all frames
without adding a new obligation.

A final check for 0111 reveals there are no
other counterexamples. It is now known to
be inductive relative to Fk, so the obligation
is removed. Since the set of obligations is now
empty, k is incremented to 2.

After propagation of clauses, F2 is as shown
here. The first obligation for this frame is 〈F2, wonA〉;
however, there are no counterexamples. The
obligation is removed, and k is incremented
to 3.

After propagation of clauses, F3 is as shown
here. Handling the obligation 〈F3, wonA〉 re-
veals that 0111 is a counterexample state.

The highest frame Fm is found where ¬0111

is no longer inductive relative to it, which is
F2. ¬0111 is added to all frames up to and in-
cluding F2 (already the case), and a new obli-
gation 〈F2,0111〉 is added.
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Ob = {〈F1,0011〉 , 〈F2,0111〉 , 〈F3, wonA〉}

F3F2F1

0000

00010001

00100010

0011

0110

01110111

01010101

1111

1001

1101

0100

The smallest obligation is 〈F2,0111〉; and it
has a counterexample state, namely 0011. This
state is inductive relative up to F1, and like
the last obligation it is already excluded from
those frames. A new obligation 〈F1,0011〉 is
added.

The smallest obligation is 〈F1,0011〉; and search-
ing for a counterexample state reveals 0001.
But this time, the state 0001 is not even in-
ductive relative to F0 (because it is reachable
from s0). Because this counterexample state
is reachable from F0, the algorithm has found
a trace to wonA and it ends: Minigame is in-
deed winnable for the first player.
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Chapter 4

Related Work

The algorithm in this thesis is based on IC3, an algorithm developed by Aaron
Bradley [12]. Bradley has authored multiple papers which describe IC3 in detail
[12, 13]. An alternative description of IC3 and related algorithms, written in a
non-deterministic fashion, is given by Gurfinkel [15].

An earlier approach to solving games with IC3, though in a different context, is
that of Morgenstern, Gesell, and Schneider [16]. In this paper, a modified form of
IC3 is applied to the field of “controller synthesis”: rather than weakly solving a
two-player game, the goal is to automatically synthesize a system that conforms
to a specification.

A limited form of synthesis is explored: namely: given a partial system, deter-
mine whether there exists a controller that can complete the system according to
the specification. The synthesis process is modeled as a two-player game: one
player is the controller, and the opponent is the partial system. Together, the
two players decide on each transition. The controller “loses” if the specification
is violated.

Rather than maintaining a single set of frames, Morgenstern et al. separate the
frames (which they call rank traces) by “player” (since they can assume that
the turn always changes after each move), as well as keeping an explicit set of
winning states.
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Chapter 5

Experiments

This section describes experiments done in order to evaluate the working and
performance of the new algorithm. Implementations of IC3 and the new IC3
for games algorithm as described in this thesis were written in Python. This
implementation makes use of the SAT solver MiniSat 2.2 [6] (available in the
package pysat [7]). The input format used for models is the AIGER format [17],
a format that describes model checking problems in the form of “and-inverter
graphs”.

Several models were written in the SMV modeling language. They were con-
verted into AIGER format using the smvtoaig utility, which is part of the stan-
dard AIGER utility distribution [17]. The models developed for this thesis are:
“minigame”, the small model shown in Figure 3.1; Notakto, described in Sec-
tion 2.2.2, as well as cut-down variants of Notakto played on smaller boards;
and finally, regular tic-tac-toe, also including smaller board variants.

The generalization step in Algorithm 4 (line 12) proved to be difficult to imple-
ment. In the current implementation, the predecessors are found by enumerat-
ing all satisfying assignments to T ∧ t ′ and removing them from C individually
(by adding the negated form to C); there seems to be no simple way to remove
the entire set from C directly: a naı̈ve attempt to substitute t ′ in the transition
function would interfere with the SAT call in line 8.
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For all Notakto variants, the first to three-in-a-row loses; for all tic-tac-toe vari-
ants except 2 × 2, the first to three-in-a-row wins. The 2 × 2 tic-tac-toe variant
has two-in-a-row as its win condition, which makes it trivial to see that the first
player can always win.

To analyze the performance of the algorithm, the run time of the execution of
the new algorithm on these models was measured. Furthermore, to validate the
correct working of the algorithm, the final result (whether the game in question
is winnable for the first player or not) was compared to the (known) result for
each game; the result given by the algorithm was correct on all models.

Table 5.1 summarizes the performance of the algorithm on these models. The
column “|V |” gives the size of the (syntactic) state space for that model; note
that the amount of reachable states is often smaller. The column “obligations”
gives the total amount of obligations handled, and the column “SATs” gives the
total amount of calls to the SAT solver.

Run times are given in seconds. These times were measured with Python’s
time.process_time(), which gives the sum of CPU time in both kernel and
user space. The run time measured is the difference of these times sampled
before and after the execution of the main loop. In order to only measure the
behavior of the algorithm itself, the initialization and loading of the model is
not included in the run time.

To gauge the impact of generalization (described in Section 2.4.3), statistics are
given for each model with and without generalization. As mentioned in Sec-
tion 3.1, generalization can currently only be applied to exists-states. The rows
where generalization was enabled are marked with ?. As can be seen, general-
ization causes an increase in the amount of SAT calls and run time for models
up to a certain size. It appears that for small models, the overhead of general-
ization is greater than the performance gain it gives.

The standard Python profiler cProfile was used to analyze the run time be-
havior of the program. This indicated that a large amount of time was being
spent in the forall-part of the new hasCTI function: for the 3×3 Notakto model
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with generalization enabled, a little over 78% of the run time is spent searching
for forall-predecessors.

The reason for can be attributed to the algorithm’s lack of a generalization func-
tion for the forall-states. Since each state is now removed individually, each
frame contains more constraints, and as a result each SAT call takes more time.

model |V | obligations SATs run time winnable?

minigame
16

9 80 0.036 s
yes

? 9 157 0.056 s

notakto (2× 3)
128

103 4902 8.124 s
no

? 102 7288 21.840 s
(2× 3,�AA)

64
68 2172 2.327 s

yes
? 52 2945 3.518 s

(3× 3)
1024

279 65512 879.098 s
yes

? 207 23620 231.895 s

tic-tac-toe (2× 2)
162

33 422 0.325 s
yes

? 33 609 0.407 s
(2× 3)

1458
458 110187 6042.698 s

no
? 225 48190 1269.657 s

(3× 3)
39366

— — —.000 s
no

? — — —.000 s

Table 5.1: Results of experiments.

The Notakto variant marked as “2 × 3,�AA” is the same as the 2 × 3 variant,
except that the initial state has the first square �AA already occupied with a
cross. This, in effect, reverses the roles of the two players, turning Alice into
the “second” player. As seen in the table, the first player can not force a win in
a 2 × 3 game. Because Notakto can not end in a tie, this means that the �AA
variant can be forced.
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Chapter 6

Conclusion

In this thesis the algorithm IC3 was adapted to weakly solve two-player com-
binatorial games. The new algorithm was applied to a number of games that
were already weakly solved, in order to verify that the correct result is returned
and to measure the performance of the algorithm.

The experiments show the adapted algorithm gives the correct result for all
games tried. However, as the size of the model (measured in the amount of
states) increases, the run time soon becomes too large. While generalization can
improve this, the largest model (tic-tac-toe) proved still too large to be solved.

As mentioned in Chapter 5 and Section 3.1, the generalization method used in
the current implementation is deficient: it is only able to perform generalization
on CTIs from the exists-predecessor, and not those of the forall-predecessor.

Given the large importance of generalization for the performance of regular
IC3, it seems likely that the ability to generalize the forall-states could yield a
significant performance gain by keeping frames small and SAT calls fast. De-
velopment of a generalization method for forall-states remains future work.
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