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Abstract

When people are facing problems, they first search in their memories and try to find out
useful information, or sometimes they ask help from others who might know the solutions.
Here, people are using the knowledge they or others have learned before for solving problems.
This historical knowledge could largely accelerate people’s solving process and enhance their
performance when they are in any task. In this project, we are inspired by this idea and
examined two different historical information under reinforcement learning(RL) settings and
more precisely in maze navigation tasks using two RL methods Q-learning and its variant Deep
Q-learning. The goal of the task is to control the agent in the maze to learn to find the optimal
path from the start to the target. We believe historical information could also have positive
impacts in our context as it does in real life. Historical information I is the record of visited
cells, when we have this record, whenever the agent reaches cells which are in the record, a
penalty will be assigned to the agent. Historical information II is the guide from the expert, the
expert here knows the optimal path from the start to the target. These two different types of
historical information are added to games and we experimentally proved that they help enhance
these two RL methods to some extent and further make the agent reach the target way faster
and stronger than the agent in normal games. Besides, in using historical information I, we
studied how to set the optimal penalty which could make the agent the best performance. We
trained a classifier that could predict the optimal penalty for unseen mazes and the accuracy
could be up to 80%. Also, everything we developed is open-sourced for further study.
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1 Introduction

Reinforcement learning (RL) has been successfully applied to different fields such as board
games [1], video games [2], robotics [3], recommendation systems [4], and logistic planning[5].
Different from supervised learning and unsupervised learning, training RL methods does not
need off-the-shelf data but collecting data on the fly from the environment. More accurately,
RL methods learn how to behave by interactions with the world, which is similar to the way
a baby learns to walk. He falls then knows that falling will hurt, and he will try to adjust the
walking style to avoid falling again. He keeps falling while keeps adjusting until he could walk
steadily.

After AlphaGo [1] shocked people from all the fields. Recently, DeepMind1 proposed AlphaS-
tar [6] and Agent57 [7] destroyed human-beings’ performance in the real-time strategy game
StarCraft2 and the retro 90’s video games platform Atari 26003 respectively. StarCraft is even
a complex game for human-beings and professional players could perform 200-300 actions per
minute, more than 100 units could be controlled for various tasks. The great complexity indi-
cates the action space and the state space are huge, and games not only require short-term fast
reactions but also long-term planning which all cause difficulties. And Atari 2600 has been used
as the benchmark for artificial intelligence(AI) methods since several years ago, it contains a lot
of simple well-known games like Breakout, Pac-man, and Pong, also some games like Pitfall or
Montezumas Revenge are quite challenging and make previous AI methods keep failing. How-
ever, the aforementioned works from DeepMind show how powerful and how strong that AI
could be. The core idea of these amazing techniques is reinforcement learning. Although there
is no need to feed data to RL methods, they need millions of interactions with the environment
which is ridiculously expensive and sometimes even impossible. Some researchers estimate it
costs around $35 million4 in computing power to reproduce the experiments reported in the
AlphaGo Zero [8] paper and even a simple parking task needs to be trained more than 300k
attempts5. Thus, researchers sometimes utilize historical information such as the knowledge
learned from previous tasks or other related tasks in the current reinforcement learning problem
to achieve acceleration and generalization, this technique is also called transfer learning. Here,
historical information could be previous related experiences, helpful hints or external guides, etc.

Maze navigation tasks are entry-level tasks for AI algorithms. It is simple enough for begin-
ners but also could be added complexities and difficulties by modifying the environment or
redesigning rules. The basic goal of maze navigation is to control an agent to walk from the
start point to the target point under some restrictions like the number of steps the agent could
be taken or a given time limit.

In this project, we use mazes navigation tasks as the demonstration to show the achievement
of acceleration and enhancement for Q-learning including both original Q-learning and Deep
Q-learning by utilizing different historical information. Q-learning is one of the most popular
and straightforward reinforcement learning methods. It aims for learning an optimal policy that

1https://deepmind.com/
2https://en.wikipedia.org/wiki/StarCraft
3https://en.wikipedia.org/wiki/Atari
4https://www.yuzeh.com/data/agz-cost.html
5https://www.youtube.com/watch?v=VMp6pq6_QjI
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could guide the agent’s behavior under certain situations.

1.1 Motivation

Imagine we, as real people are in a maze now, we will start exploring again and again until
find the target. Meanwhile, since revisiting visited paths is a waste of time and energy, we
will also try to remember paths we passed by for avoiding to revisit them. Of course, the
optimal strategy for reaching the target is every time we are exploring, the path we walk along
is an entirely new path, which means we make the best use of the exploration. Sometimes,
it is even possible that we ask for help from people who might know the path towards the
target. And finally, we will reach the target faster compared with just exploring unreasonably.
From the examples above, we could know that humans can utilize historical information like
the memory of visited paths or guides from others for better performance. We believe such
historical information will be helpful for navigation or planning. Thus, we want to add such
historical information to the agent in maze navigation tasks and to see if they work or not.

1.2 Research Questions

In this project, we will introduce different historical information in mazes navigation tasks by
the use of Q-learning and try to answer the research questions below:

• If we record visited paths of the agent and give penalties to the agent when it
tries to reach such paths again, will the agent learn to avoid visited paths and
then find the target faster? If yes, how can we set optimal visited penalties
that could optimize the performance of the agent in unseen mazes?

• If we use an expert to guide the agent, will the agent perform better?

So here, we say the record of the visited paths of the agent is historical information I and guides
from the expert are historical information II. Questions above might seem easy to answer for
humans, but for a machine or a specific algorithm could be hard. The key point is that we
have to utilize historical information in the fashion that could be understood and learned by
the agent itself, instead of thinking it from an entirely human’s perspective or intuition.

1.3 Contributions

We list our contributions in this project below:

• Implemented the maze environment and the maze generator which could both be used
for further study;

• Proved giving penalties to the agent when it reaches cells which are in the record(historical
information I) is helpful in our context experimentally and further trained a classifier for
predicting the optimal penalty for unseen naive mazes;

• Proved guides from the expert(historical information II) are helpful for the agent’s per-
formance experimentally and showed that giving a different amount of guides to the
agent will cause different results;
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• Did some trails and results are not what we expected, then we realized it is important
to design experiments in a fashion that could be understood by the algorithm we are
using;

• Gave intuitive understandings and interpretations of experimental results and pointed
out potential future working directions;

• Guaranteed that all the experiments we did are repeatable and all the codes we wrote
are open-sourced.

1.4 Structure of the Paper

In Section 2, we will introduce some preliminary knowledge about reinforcement learning and
mazes, also some state-of-the-art works have already done in the related direction that we are
interested in; details of the ideas we come up with and methods we are using will be explained
explicitly in Section 3; the design of experiments and experimental results will be given with
interpretations in Section 4; we will conclude our project and discuss drawbacks and future
works in the last section. More experimental details of results are listed in Appendices.

2 Background

Reinforcement learning problems can be formed into MDP expressions, and the way to solve
MDP problems is to maximize the accumulated rewards. Q-learning is one of the popular RL
methods, it is implemented by a look-up table called Q-table and recursively updates policy
towards optimal. When the state space is large, maintaining the Q-table will be expensive
then a deep neural network is used instead as a Q-value approximator which could deal with
huge state space and be able to generalize to more tasks. In this section, we will give brief
introductions and explanations of basic reinforcement learning conceptions such as MDP,
Q-learning, Deep Q-learning. Then we will describe the mazes we used in our project and
following with some state-of-the-art works have already done in navigation tasks or maze-like
games under RL settings.

2.1 Elements in RL Settings

In RL settings, we train an agent to learn a policy to act via interactions with the environment.
Each step the agent takes is an action, and each interaction contains feedback the environment
gives to the agent for this certain action. We will introduce the needed terms below.

Agent The Agent is the decision-maker or the main actor in games or tasks. It is the object
who takes action and gets rewards. It could be the character or the player in games or the
machine in industrial tasks such as a robotic arm or a vehicle.

Environment The Environment is the place or space where the agent could interact with
and live in. It provides the rules of interactions and feedback to the agent. It might be a game
simulator or the area where the task performs.
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State The state, denoted as s, is a specific condition of the environment after the agent
takes a certain action, it is determined by the previous state and the action the agent takes and
contains information about what is going on with the environment and the agent currently. It
could be the state of the game simulator at a specific moment.

Action The action, denoted as a, is the step or behavior the agent takes every time. It
could be going up in a navigation task or turning the arm 10 degrees to the right in a robotic
arm task, etc.

Reward The reward is the value the agent will get from the environment after taking
a certain action. It could be both positive or negative, which refers to reward and penalty
respectively. It could act as the pain when you fall and the candy when you walk steadily. In
RL settings, the agent aims to maximize the overall reward during the task.

Policy The policy, denoted as π(a|s). It maps states s to actions a, for the agent in a
certain state, the policy can tell the agent how to behave actions. Furthermore, the optimal
policy will tell the agent optimal actions which could lead the agent to reach the target faster
or to have the largest accumulated reward. It could be strategies or guides in games.

State Transition Probability The state transition probability is the mathematical rep-
resentation of the transition between different states. It tells the probability of the transiting
from a current state to another successor state after performing a certain action. It is usually
represented by a matrix, pnm refers to the probability of the transiting from state n to another
state m. 

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44


Exploration and Exploitation For RL methods, we don’t have off-the-shelf data for
training but collecting information on the fly. The agent has to explore the environment to
collect more data, but if it explores too much and never exploits the knowledge that has already
been learned, the performance will not be improved. So the agent should do both explorations
and exploitation and the key point is when to do what. The trade-off between explorations
and exploitation will further affect the training process and the agent’s performance. It is still
an open question in research fields. ε-greedy, Upper Confidence Bound [9] and Thompson
Sampling [10] are mostly used strategies for dealing with explorations and exploitation trade-
off.

2.2 Markov Decision Process

Markov Decision Process is short for MDP, it can formally represent reinforcement learning
problems and could be used as a framework to describe the process that the agent learns how
to act to reach the final goal via interacting with the environment. Our goal is to maximize
accumulated rewards or reach the final state. As the Fig. 1 shows, the whole procedure starts
from the action(At) that the agent performs in the environment based on the current state(St),
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and then the environment will output the new state(St+1) and give the reward(Rt+1) to the
agent for the certain action it takes, now the agent observes the new state(St+1) and could
take next action based on the new state. Then the environment will output the next new state
based on the action the agent just takes, and the procedure goes back to the beginning. So
the agent will repeat this procedure until the final state is reached or the restriction is met.

Markov decision process is the extension of Markov process/Markov chain, and they both
satisfy Markov property. Bellman equation could be used to solve MDPs problems. We will
start from Markov property, then explain Markov process and Bellman equation, and the way
we form our problem into MDP expressions will be given in the end.

Figure 1: The agent-environment interaction in a Markov decision process.[11]

Markov Property A process has the Markov property if future states in the process only
depend on the current state instead of historical states. The example is shown in Fig. 2, if the
weather tomorrow only be decided by today’s weather regardless of the weather of the day
before yesterday, then we could say this weather report has Markov property.

Figure 2: An example of Markov property, the weather of the next day only depends on
the weather of the day before.

Markov Process Markov process is a sequence of states which all have Markov properties.
It is also known as the Markov chain. The weather report in Fig. 2 could be treated as a Markov
process. The weather of the day only determined by the day before and this property suits every
day. In reinforcement learning settings, a Markov process can be written as a 2-tuple, < S,P >.
S is a sequence of states (s1, s2, ..., sn) and P is the transition probabilities (p11, p12, ..., pnm)

9



which indicates the probability of transiting from one state to another state. The dynamic
transition is shown as follows:

pn,n+1 = Pr(Sn+1 = sn+1|Sn = sn)

.

Bellman Equation Bellman equation is a method for optimization problems and is widely
used in reinforcement learning, economics, and control theories, it breaks a whole optimization
problem into several simpler sub-problems recursively. For example, in MDPs, value function
V (s) indicates how good the agent to be in a certain state, which is the expected overall
future reward. It could be formalized as:

V (s) = E[γ0rt+1 + γ1rt+2 + γ2rt+3 + ...|St = s] = E[
∞∑
k=0

γkrt+k+1|St = s]

Now we use Bellman equation to rewrite the value function:

V (s) = E[rt+1 + λV (St+1|St = s)]

r is the reward that the agent gets when the agent move from one state to another state; γ
is the discount factor, the smaller γ will emphasize closer rewards and larger γ will take more
further rewards into account. The Bellman equation breaks the original value function into a
function that is expressed by the value function of the next state and the reward. Recursively,
the value function could always be expressed by the next state, thus each state perfectly
satisfies the Markov property. Bellman equation simplifies the whole problem and still keeps
the problem satisfying the Markov property.

MDP Markov decision process(MDP) is represented as a 5-tuple, < S,A, P,R, γ >. S is
a sequence of states; A is a set of actions; P is transition probabilities; R is a sequence of
corresponding rewards and λ is the discount factor. In our project, the agent is the player that
tries to start from the entry and navigate to the target in the maze. S is the maze with the
agent located at different positions; A represents actions that could be taken in the maze,
they are going up, going down, going left and going right; P is the probability of the state
transition after the agent act, in our project, it’s always 1 because after the agent takes an
action it will always go to another certain state; R are rewards we set, they could be negative
penalties or positive final rewards; λ we are using is 0.1 which is the most commonly used
value.

2.3 Q-learning

Q-learning is a reinforcement learning algorithm that can be used to find out the optimal
action under a certain state or namely the optimal policy. Q refers to ’quality’ and generally,
this algorithm is implemented through a look-up table termed Q-table. The rows of the table
are ’states’ while the columns are ’actions’. Each element of the Q-table is a Q-value, it
indicates the reliability of taking a specific action under the specific state, the higher value the
more convinced this action is and mathematically represented as:

Q(s, a) = E[
∞∑
k=0

γkrt+k+1|St = s, At = a]
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, which is also called state-action value. It measures the expectation of overall future rewards
from the current state to the terminal state. The update rule for Q-values in the table is:

Q′(s, a) = Q(s, a) + α[R(s, a) + γmaxQ′(s′, a′)−Q(s, a)] (1)

α is the learning rate, and Q′ and Q are Q-values of next state and current state respectively.
Q-table looks like Fig. 3. The pseudo code of Q-learning is shown in Alg. 1.

Figure 3: How the Q-table looks like, rows are states while columns are possible actions,
and every entry is the Q-value for each action under the certain state.

Algorithm 1: Q-Learning

Result: Output convinced actions
Initialize Q-table arbitrarily;
for each training episode do

state s= starting point;
while game is not over do

choose an action a under ε-greedy policy;
take the action a and observe reward r and next state s′ ;
update Q-table: Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)];
s = s′;

end

end
look up the Q-table and get the optimal action;

After the Q-table finishes updating, we can utilize the information in the table. Whenever the
agent takes action, the Q-table will be looked up and the action which has the maximal Q
value will be taken.

ε-greedy policy It is a method to trade-off between explorations and exploitation for the
agent. By tuning ε ranged from 0 to 1, the agent will either choose the optimal action according
to the Q-table with a probability 1-ε or choose a random action with a probability ε. It works
like Fig. 4. First, we generate a random number r ranged from 0 to 1, and compare r with ε
we set, if r is larger than ε, we choose the optimal action for the agent according to the latest
Q-table; while r is smaller than ε, a random action will be taken by the agent.

11



Figure 4: ε-greedy policy in choosing actions, if the random number is larger than ε
the optimal action will be chosen, and if it’s smaller than ε the random action will be
performed.

2.4 Deep Q-Learning

If we use Q-learning described above, when the state space is large, the Q-table may not
be compatible. The size of the table will be out of memory soon, in order to overcome this
problem, DeepMind6 proposed a new paradigm combined with a deep neural network called
Deep Q-learning [12] which are much powerful and much easier to be generalized. There is
no table for Deep Q-learning, neural networks are used instead as a Q-value approximator
to produce Q-value for each state. The difference between Q-learning and Deep Q-learning
is shown in Fig. 5. It could be simply seen as that a neural network is used to replace the
Q-table to output the optimal action. Deep Q-learning uses images as input, adjacent frames
will be highly correlated, which will cause instability during the training. Experience replay
technique [13] is introduced to guarantee that data for training is independent and identically
distributed and it also could improve the sample efficiency. Hundreds of older transitions are
put into a buffer and a mini-batch will be sampled every time randomly for further training.
See details of Deep Q-learning in Alg. 2.

First, the weights of the Q-network will be initialized arbitrarily. For each training episode, the
game simulation is performed. During the simulation, the agent acts under ε-greedy policy
based on the current state. After every action, the environment will produce the reward and
the next state. Then the current state, the action the agent takes, the reward the agent gets,
and the next state will be packed together to an item and be stored into the experience replay
buffer. Then a mini-batch of items will be sampled from the replay buffer to train the neural
network. Weights of the neural network are optimized by minimizing the loss between two
Q-values which are both produced by the Q-network, but one is calculated using the current
states from the mini-batch as the input and another one is calculated using next states from
the mini-bath as the input and then plus rewards that the agent will get from this transition.
Weights will converge after several iterations. After finishing updating, the Q-network will be
utilized for producing Q-values of actions by using different states as the input, and the action

6See more on https://deepmind.com/about
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which has the maximal Q-value will be taken by the agent.

When it comes to neural networks, they generally consist of several different components, such
as layers, activation functions, loss functions, optimization methods, etc. For each component,
there are a lot of choices shown in Tab. 1. Layers are most important components of a neural
network, it functions as feature extractor, features can be used for further classifying or other
artificial intelligence tasks; activation functions aim to introduce some non-linear factors to
the network to be able to express more complex relations between inputs and outputs; loss
functions are measurements of how close the network’s performance compared to the ideal
performance is; optimization methods are used for updating neural network weights towards
optimal and aim for minimizing the loss which is produced by the loss function. Different
combinations over the aforementioned components might suit for different tasks and situations.
Convolutional layers could capture visual features, and it suits for images or other visual tasks
like subjects recognition; the linear layer is also called a fully connected layer, it mostly be
used for regression tasks, also could be used for simple classification tasks, or embedded on
the top of a neural network for classifying; recurrent layers use historical information to catch
relationships between different sequences, it’s good at processing context-sensitive text data.

Layers activation functions loss functions optimization methods
Convolution ReLU MSE Adam

Linear sigmoid cross-entropy SGD
Recurrent softmax L1 Momentum

... ... ... ...

Table 1: Choices of different neural networks components, there are layers, activation
functions, loss functions and optimization methods.

Figure 5: Q-learning and Deep Q-learning, Q-learning uses a Q-table for storing informa-
tion and producing optimal actions while Deep Q-learning uses a neural network for catch
information and producing optimal actions.
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Algorithm 2: Deep Q learning with Experience Replay

Result: Output the optimal action
Initialize neural networks weights arbitrarily;
for each training episode do

Start simulating one game;
for each step in the simulation process do

play the game under ε-policy for one step;
item = [current state, action, reward, next state];
replay buffer.insert(item);
data = get mini-batch(replay buffer);
Q target = DQN(current states in data);
Q next = DQN(next states in data);
if the game is not terminated then

Q = reward + γ∗ max(Q next);
else

Q = reward;
end
loss = loss(Q, Q target);
Minimize loss and update weights of DQN ;

end

end
Plug the state into the neural network to get the optimal action;

2.5 Mazes

A good maze doesn’t contain loops and has as many dead-ends as possible, which means all
the areas within the maze have been used effectively. Mazes we generated in this project look
like Fig. 6. Black cells are blocked cells that are not supposed to be visited by the agent, and
white cells are free cells that represent paths. In our case, the most top-left cell of the maze
always be set as the start point and the most bottom-right cell is set as the target. Each time
the agent can only take one action which is one of the actions in the action space(going up,
going down, going right, going left), and the win only is counted when the agent finds the
pathway from the start to the target in the end.

Size of mazes, number of dead-ends, length of the shortest path, and distribution of valency(the
number of ways in and out of a cell) are commonly used to measure the complexity and difficulty
of a maze. In practice, it will depend on situations we are facing.

2.6 State-of-the-art Techniques

Mazes can be easily solved by classic algorithms such as well-known depth-first and width-first
search algorithms, Pledge algorithm, and so on. By comparison, finding the solution using
machine learning algorithms is more time-consuming and computation-consuming. However,
researchers enjoy exploring more intelligent ways in the machine learning field for solving nav-
igation tasks such as mazes, etc. Not only because it can be applied into several fields such
as robotics and unmanned systems, but also helps human to better understand machines and
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Figure 6: Different sizes of mazes we are using, they all are generated by our maze gener-
ator.

the way that machines work. Next, we will mention some state-of-the-art techniques which
have been proposed in the gird-world navigation research field which looks simple but fairly
complex in practice.

Value iteration network(VIN) [14] embedded a ’planning module’ within a neural network,
it could perform long-term planning in navigation tasks and also generalizes better to new
navigation tasks; a successor-feature-based deep reinforcement learning algorithm [15] can
learn from previous mastered navigation tasks and be adapted to new tasks quickly, it also
substantially decreases training time after the training on the first task; Go-Explore [16] could
tackle sparse reward in the navigation task, also during the exploration part it will first explore
more convincing areas, which improves efficiency of exploring; curiosity is used to augment the
normal rewards for training deep reinforcement learning methods [17] to improve performance
in navigation tasks, it also has better generalization capabilities; based on the experience replay,
interactive replay [18] is built by a single traversal of the environment which could be used for
generating larger number of diverse trajectories for the training and get better performance.
These techniques are improving the performance of the agent in maze-like navigation tasks
from a different perspective, our ideas are from an entirely different side but have a similar
positive impact on the performance.

3 Methods

In this section, we will dive into all the methods we used practically including how we generate
our mazes, how we implement the experimental environment and algorithms we are using, etc.
Since we have two research questions corresponding to two different historical information, we
will use original table-based Q-learning to examine historical information I and answer the first
research question, and use Deep Q-learning to examine historical information II and answer
the second research question.
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3.1 Mazes Generating

A lot of algorithms are using to generate mazes such as Aldous-Broder Algorithm [19] which
uses random walks until all vertices are visited; Prim’s Algorithm [20] which is a kind of
breath-first search algorithm; Kruskals Algorithm [21] is the most complex one for implement-
ing among algorithms we mentioned above, etc. The depth-first search also called Recursive
Backtracking Algorithm [22] is used in our case. It is much understandable and the most
common-used one also could generate mazes really fast [23]. It starts from a random cell of
the grid where each cell has walls around and takes an action to a random direction which has
not been visited before then it is in a new cell now, the next step is removing the wall between
the current cell and the previous cell. Repeating this process until reaching a cell where all the
directions have already been visited, then falls back to the predecessor cell and chooses another
random action continuously. The maze will be finished when there is no predecessor cell can
be fell back to. The pseudo-code is described in Alg. 3. A simple example is given in Fig 3.1.
We start from 1, there are two possible actions could be chosen, and we select right randomly.
Now we move right to 2, then remove the wall between 1 and 2. Three possible directions
could be taken now, they are 3,6,1 respectively, but 1 has already been visited before, then
we chose from 3 and 6 randomly. Repeating this process until we are in 5 now, there is no
unvisited direction that could be taken, so we return to the predecessor cell which is 9, and
we keep repeating and the maze will be finished when there is no cell could be returned to.

Figure 7: An example of recursive backtracking. Starts from left to right, top to bottom.
Black cells are unvisited and white cells are visited, the red cell in the list is the indicator
of the current cell in the maze.
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Algorithm 3: Recursive backtracking algorithms

Result: Output the maze
current cell = choose a random cell and add it to the stack;
while stack is not empty do

valid direction = choose an unvisited direction randomly based on the current cell;
if valid directions is none then

current cell = stack.pop;
else

next cell = take the valid direction;
break the wall between current cell and next cell;
current cell = next cell;

end

end

Maze Complexity To predict the optimal penalty for unseen mazes, we need to somehow
build up the relation between different optimal penalties and different mazes. Thus, we need
to measure the maze’s complexity or difficulty properly. It depends on the way we solve it.
If we solve it by eye looking, then parallel lines will make the maze more tricky; if we are
using a pen, we will probably be trapped by intersections, etc. There are some common
metrics for measuring the maze’s complexity. The combination of the number of dead-ends
and the number of intersections are used to measure complexities of mazes[24]; the length
of the solution path, the number, and length of the branches and ’twistiness’ of passages all
could be used as measurements for the complexity [25]. Although there are plenty of ways
to define the complexity of mazes, most of them are more designed from a human being’s
perspective and may not work for machines or algorithms. Namely, if a maze is difficult for
humans, it’s not always difficult for a certain algorithm. We need to think about it in an
algorithm-specific fashion to decide measurements of complexities. The Q-learning will be
using in our experiments, and the time complexity of Q-learning is O(|S|2|A|) [26], where
|S| is the number of states while |A| is the number of actions. As such, when other contexts
are fixed, the larger state space and larger action space will make the Q-learning ’feel’ more
difficult. Since our action space is fixed which is always four, the size of the state space will
be the main determinant for the complexity of the maze. When it comes to the state space,
it has a high correlation with the size of the maze which means a larger maze will have larger
state space as well as longer shortest path, also the number of intersections will be larger. But
they don’t have perfect linear relationships since we generate mazes randomly, we will use all
of these four metrics as measurements for the complexity of mazes.

3.2 Environment Implementation

The maze environment we are using here is implemented based on the work that Samy Zafrany
did before7 and we make several adjustments and modifications. Mazes are square, there is
only one agent in the game. Game rules and other detailed information are listed below:

• Each maze contains 3 different types of cells, free cells, a target cell and blocked cells;

• 4 actions in the action space, going up, going down, going left, going right, respectively;

7https://samyzaf.com/ML/rl/qmaze.html
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• Every time the agent starts from the most top-left cell and the target is always the most
bottom-right cell;

• 4 different types of penalties which the agent could get:

– Step Penalty: The agent will get a step penalty for each step it takes for pushing
itself towards to the target;

– Invalid Penalty: When the agent is trying to reach invalid cells like blocked cells,
it will get a strict invalid penalty for preventing itself from intentions of reaching
such cells;

– Target Reward: The positive reward will be given to the agent only when the agent
reaches the target cell which is always the bottom-right cell in our case;

– Visited Penalty(when historical information added): If the agent reaches cells which
have already been visited before, it will get visited penalties, the value depends on
which values we intend to examine.

• A training episode will be counted from the start of one game to the game is terminated.
There are two possibilities that game is terminated:

– The total reward of the agent gets reaches the minimum threshold we set, this can
efficiently prevent the agent from falling into infinite hovering.

– The agent finds the route to the target.

The details of the parameters of the environment shown in Tab. 2. The reason we set invalid
penalties much larger than the step penalty is that invalid cells should be avoided strictly. The
Reward could be any other positive value which only needs to be distinguishable with penalty
values. For the threshold of the total reward, the value we set is -0.5*maze.size. For example,
if the maze we are using is 10x10, so the threshold will be -50, which allows the agent to take
50/0.04 = 1250 steps when the step penalty is -0.04. Meanwhile, the length of the shortest
paths from the start to the target of mazes with the size of 10 we generated is around 25, and
compare to 1250, the agent will have plenty of opportunities to find the right path.

Parameters Values
step penalty -0.04

invalid penalty -0.75
target reward 1.0

reward threshold -0.5 * maze.size

Table 2: Parameter settings for the environment.

In practice, a maze is represented as a array, where different digits represent different types of
cells. The ’real’ maze and the visualized maze shown in Fig. 8. The color map and corresponding
representations shown in Fig. 9.

3.3 Q-Learning

As we mentioned before, we need to maintain a look-up table for storing Q-values and up-
dating the Q-learning method. In the Q-table, possible actions the agent could take which are
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Figure 8: ’Real’ maze and its visualization, ’real’ maze is represented by an array.

columns of the Q-table are encoded into 4 integers, they are 0 to 3 respectively, and states
will be hashed using hash function into a bunch of digits which will be rows of the Q-table.
An example of hashing state into digits is given in Fig. 10, thus, in the Q-table, the states are
represented by digits instead of ’real’ mazes.

The parameters setting shown in Tab. 3. ε−greedy policy is used to select actions during our
training process, we set ε to 0.1 which is the most commonly used value. It means during
the training process, there is 90% of probability for the agent to choose the optimal action
according to Q-values from the Q-table and 10% of probability to choose a random action.
The learning rate α will be set to 0,01. Evaluation of the algorithm will be performed after
every 10 training episodes, and in test games, actions are chosen to follow the current optimal
policy instead of ε-greedy policy. The number of training episodes depends on the size of the
maze, and larger mazes will be trained more times than smaller ones.

Parameters Values
epsilon 0.1

discount factor 0.95
learning rate 0.001

training episodes 1000

Table 3: Parameters setting for the Q-learning.

3.4 Deep Q-Learning

The main reason we turn to use deep Q-learning is that it is more powerful and it has the
capability of generalization. Since our tasks are relatively simple, the architecture of our neural

Figure 9: Color map and corresponding representations.
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Figure 10: Example of hashing a state, a huge array becomes a bunch of numbers.

network is quite straightforward and shown in Fig. 11. The input of the neural network is the
maze itself which is an array and the output is the Q-values of four different actions. Three
fully connected layers are used, and a parametric rectified linear unit(PReLU) is used as the
activation function. The loss function we are using is mean squared error and Adam optimizer
is applied. The details of the parameters we are using shown in Tab. 4.

Parameters values
learning rate 0.001

discount factor 0.95
initial weights RandomNormal(mean=0, stddev=0.01)

initial biases 0
input size maze.size

neurons of hidden layers 2 * maze.size
size of the replay buffer 1000

size of data get from replay buffer 50
batch size 16

epochs 8

Table 4: Parameter settings for the Deep Q-learning.

Since the sizes of our inputs to the neural network are quite small, we won’t need to reduce
the spatial size of the representation, thus any pooling layers and dropout won’t be used. As
we know, the design of neural network architecture is tricky and demanding and many new
architectures are proposed in top conferences in the machine learning field every year. The
architecture of our model is not well-designed and quite straightforward, we just use it for the
demonstration. We believe a well-designed neural network will perform better.

3.5 Historical Information Implementation

The goal of this project is to use historical information to accelerate and improve Q-learning
performance in maze navigation tasks. Historical information we will use correspond with the
record of historical visited cells and guides from the expert which is a pre-trained model trained
on the same task. Games with these two different types of historical information added will
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Figure 11: The architecture of our using neural network, there are three fully connected
layers in total.

be examined, and normal games with nothing added will be set as the control group to see if
historical information is helpful or not.

Control Group The control group is normal games, there is no historical information
added, the agent will get three different rewards which are step penalty, invalid penalty, and
target reward while there is no expert used.

Historical Information I The record of visited cells, we use extra memory to store corre-
sponding coordinates of cells that have already been visited by the agent in each episode, then
every time the agent reaches a successor cell after taking a certain action, the successor cell
will be checked if it is already in the historical visited record and then we decide which type
of penalties should be assigned to the agent. If the cell has already been visited before, the
visited penalty will be given to the agent, the step penalty will be given if not. Different visited
penalties also affect the performance a lot, so we will examine several visited penalty values to
find the optimal one. Then according to the relation between mazes and their optimal visited
penalties, we could predict the optimal visited values for unseen mazes, which could make this
historical information more powerful.

Historical Information II The guide from the expert, the expert is a pre-trained model
that is trained in the same maze and could solve the maze perfectly. During the training, the
expert will produce Q-values for the agent every n steps in the first m training episodes. Then
the agent uses Q-values produced by the expert as the target Q-values to update its model.
n and m could be tuned for controlling the total amount of guides that will be given to the
agent. The larger n and m means the more guides the expert offers to the agent. When the
n is equal to 1, it means that the agent is entirely copying the ability of the expert.

4 Experiments

In this section, we will elaborate on experimental details. First, the tools and machines we
used for implementing and running our experiments will be described. Then we will explain
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why and how we design our experiments and metrics we proposed for measuring our experi-
mental performance. In the end, experimental results will be given with intuitive interpretations.

The whole experiment can be mainly divided into two different parts, one is aimed at answering
the first research question, and games with historical information I added will be performed,
while another part is trying to answer the second research question so games with historical
information II added will be mainly examined. The rough workflow of our experiments shown
in Fig 12. We can see there is a Trail and Error part, some experiments we tried but did not
work as we expected will be described.

In the first part, the original table-based Q-learning is used. We performed games with four
different historical information I added on 20 different mazes and compared with the control
group. Based on the metrics we proposed for measuring performance, we got the optimal
penalty value for historical information I in each maze. In the end, we trained a classifier based
on data we collected from experiments, and it could be used for predicting the optimal penalty
for unseen naive mazes.

In the second part, Deep Q-learning is applied. Comparisons between games with historical
information II added and the control group will be performed. We also further tuned key pa-
rameters of historical information II to control the number of guides the agent could get in total.

Figure 12: Experimental workflows, there are two main parts, in each part we will try to
answer one research question.
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4.1 Experimental Settings

We use Python3.7 to implement the whole project, and Keras framework(Tensorflow is

used as the backend) is mainly used to build our neural networks, pandas and numpy are
used as supplementary computation libraries. Tensorboard, Visdom and matplotlib are
applied for monitoring our training process and visualization. For running Q-learning experi-
ments part, we use only one-core CPU on mithril which is specialized in CPU computations in
DS Lab. Also, we use Nvidia Tesla K80 GPU to accelerate our Deep Q-learning codes, codes
are run on tritanium in DS Lab.

4.2 Experimental Design

Based on the research questions we proposed in the beginning, we come up with several ex-
periments to verify our ideas and prove our guesses. We first design experiments aimed for
answering the first question Do penalties help or not, if yes, how do we set optimal
visited penalties for unseen mazes? The question contains two parts, one is Do penalties
help? and another is If they help, how do we set optimal visited penalties for unseen
mazes? We will first compare the performance of normal games and games with historical
information I added, then compare the performance within games with different values of
historical information I added to see which one could make the agent have the optimal perfor-
mance. The historical information I refers the record of visited paths, and different historical
information I means different values of visited penalties which will be given to the agent when
the agent reaches cells in the record. The key point of these experiments is the setting of dif-
ferent visited penalties. Since the step penalty has already been set, to make visited penalties
comparable quantitatively with the step penalty and get measured easily, visited penalties will
be set as multiples of the step penalty. More precisely, four different visited penalties which
are 5 times(-0.2), 10 times(-0.4), 50 times(-2.0) and 250 times(-10.0) as much as the step
penalty will be examined respectively. We define the ’optimal’ visited penalty as: if the game
with a certain visited penalty added outperforms the normal game and games with any other
visited penalties added on most of the metrics we come up with, then we say this certain
visited penalty is the optimal visited penalty. The metrics we used to evaluate performances
are shown below.

Win rate During the training period, we run an evaluation after every 10 training episodes,
if the agent reaches the target in the evaluation game the ’win’ will be counted. The win rate
is over the last 100 evaluation games. This is the intuitive measurement of the performances.
It can be calculated as:

win rate =

{
the number of win in last n evaluation games

100
if n < 100

the number of win in last 100 evaluation games
100

if n > 100

, where n is the number of total evaluation games. The higher win rate refers the better
performance and it is based on episode-wise however the running time of each episode might
be different.

Running time Apart from the win rate, we also take the running time into account. Since
we run experiments on the same machine which means the capacity of the machine is the
same, the running time could tell us which methods or which games are more expensive. We
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measure the running time of a specific number of training episodes. Less training time refers
to the faster training process and better performance.

Steps The number of steps the agent takes will indicate how the agent behaves within the
game. Does it wander a lot or it is decisive? Does it find the optimal solution in the end or it
wanders for a while then reach the target? Such questions could be answered by the number of
steps it takes. It is defined as: the number of total steps the agent takes until a game episode
is terminated.

Rewards What if agents are not able to find the way to the target, are they bad or there
are still some good ones among them. According to rewards the agent holds when the episode
is terminated, we can still make a distinction between performances of agents who lost games.
For example, let’s assume both two agents did not reach the target in the end and in the game
with historical information I added, the total reward of the agent who almost does not explore
new cells but revisited the same cell again and again will be much lower than the total reward
of the agent who explores a lot but still wanders sometimes. The higher rewards the agent
holds, the better performance it has.

After we answer the first research question using the aforementioned metrics, we turn to the
second one, Are guides from the expert helpful for improving the performance and
accelerating the training process? Deep Q-learning will be used instead to answer this
question. In this part, games with both historical information I and II added will be performed,
and normal games will be used as the baseline. For historical information I, only -0.25 will be
examined as the visited penalty. For historical information II, the agent will get guides from
the expert every n steps in the first m training episodes. After m training episodes, the agent
will use the network which is trained in the m training episodes to perform the rest of the
episodes. In our experiments, we train the network 500 episodes in total and we set m to 300,
while we will examine different n, n = 10, 40, 50, 100, 200. Only the win rate will be used for
measuring performances in comparisons we mentioned above.

4.3 Experimental Results

4.3.1 Results on Historical Information I

To answer the first research question, we generated 20 mazes in total using our maze genera-
tor. We will illustrate an example and remaining detailed results will be given in Appendices.
Maze No.4 is shown in Fig. 13. The state space of maze No.4 is 49 which is also the number
of all free cells in the maze, and the size is 10 by 10, the number of intersections is 3 and the
length of the shortest path is 28.

In Fig. 4.3.1, it shows the win rate of normal games and games with different historical infor-
mation I added and combined with training time(seconds). The x-axis is the number of training
episodes, each episode is counted only when the game is terminated. The upper part of the
y-axis is the win rate and the lower part is the training time. And in the legend, the number
behind ’Historical Information I’ is the value of the visited penalty. Historical Information I:
-0.4 performs the best according to the win rate in episode-wise, its win rate first reaches 1
and keeps unchanged. To better analyze the speed and the performance, we use the control
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varieties method and fix the number of training episodes to 5k in this case. Therefore, the
steps and rewards are calculated based on 5k training episodes. Under this context, win rates
are the same and all converge to 1 in the end. Historical Information I: -2.0 is the fastest
one, it’s one more time faster than Historical Information I: -.2 in fishing 5k episodes and
two more times faster than normal games. Furthermore, the slope of each training time line
looks dynamics in the beginning and converge to the constant after a while. That’s because
first the agent is trying to find the solution and when it starts wining the costed time of each
episode will be almost the same so the slope is being stable and unchanged. In Fig. 4.3.1,
the highest average reward is produced by Historical Information I: -0.4 within 5k training
episodes, and followed by Historical Information I: -2.0, which means the average performance
of Historical Information I: -0.4 is the best under 5k training episodes regardless of win or lose.
Next, we evaluate the average number of steps the agent takes within 5k training episodes
shown in Fig. 17. They all find out the optimal path in which 28 steps need to be taken. The
steps number of Historical Information I: -10.0 distribute the most dispersively and followed
by Historical Information I: -2.0 and Historical Information I: -0.4. It seems like that the larger
the visited penalty the more dispersively the steps distribute. Historical Information I :-2.0
gives us the least average steps, and it indicates the episode is terminated using the least
steps under this setting. In conclusion, for maze No.4, games with Historical Information I
added outperforms normal games. Furthermore, Historical Information I: -2.0 outperforms
under 2 out of 4 evaluation metrics and ties for the first place with other settings, it also gives
the second-best in Rewards while Historical Information I: -.4 only outperforms in 1 out of 4
metrics. Thus, we could say, in the environment and algorithm we are using, also keeping other
settings fixed, Historical Information I: -2.0 is the optimal visited penalty setting for maze
No.4. Using the same judgment idea, we picked optimal penalties for the other 19 mazes.
Results are shown in Tab. 5 and we plot the optimal penalties for different mazes and mazes’
properties in Fig. 14. Detailed results of other experiments will be given in Appendices.

Figure 13: How Maze No.4 looks like, the size is 10, the state space is 49, the length of
the shortest path is 28 and the number of intersections is 3.

It is quite explicit that the optimal visited penalty is different from the complexity of the maze
changes. Metrics we proposed for measuring complexities are highly correlated, the size of
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the maze is the main determinant and it further decides the size of the state space and the
shortest path. Since the maze is generated randomly, there is some randomness which makes
metrics are not perfectly positive linear correlated. According to Fig. 14, we group the mazes
by their optimal visited penalties, and within the group, we continue to sort the mazes by their
properties. It does show optimal penalties are getting smaller with four properties of the maze
increase. The values of visited penalties we set are quite coarse, and we didn’t set any other
values for testing between -2.0 and -.4. So if the precise optimal visited penalty of a maze is in
this range, it will be rounded to either -2.0 if the real optimal value is closer to -2.0 and vice
versa. However, the explicit boundary or perfect linear relationship could not be found within
a limited number of experiments.

To give the optimal penalty setting for unseen mazes, we then trained a classifier to predict
the optimal penalty for unseen mazes based on their properties. K-Nearest Neighbors(KNN)
algorithm [27] is used in our case, while logistic regression or other classification methods also
could be used here. Since we have already had results on 20 mazes, a leave-one-out cross-
validation is performed then. Every time we train a KNN classifier on 19 mazes and then
we use the trained classifier to predict the optimal penalty for the last unseen maze. We use
4-dimensional inputs contain the shortest path, the size, the state space, and the number of
intersections and the output is the optimal penalty among the four penalties we examined
which are -0.2, -0.4, -2.0, and -10.0 respectively. This process will be repeated 20 times then
we calculate the accuracy. We set k to 5, and the accuracy of the KNN classifier is 80%. It is
a pretty good classifier, at least in our context.

Figure 14: Properties of mazes and their optimal penalty settings.

4.3.2 Results on Historical Information II

Now let’s have a look at the results we got for answering the second research question. There
are two main hyper-parameters that could be tuned, which are n and m. Guides will be of-
fered by the expert every n steps in the first m training episodes, after m training episodes
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Figure 15: Win rate and training time of ex-
periments on Maze No.4.

Figure 16: Average rewards of experiments
on Maze No.4.

Figure 17: The distribution of steps and the average step.

we will stop training and use the neural network which is trained within this m episodes to
produce actions. We fix m to 300 and try several different n on three different mazes, but
we only plot results of three different n which could give us explicit different performances for
each maze. The properties of these three different mazes shown in Tab. 6. Results shown in
Fig. 18, Fig. 19, Fig. 20. The grey areas are 90% exploitation and 10% exploration without
any further training. And in the legend, the number behind ’Historical Information II’ is the
value of n. In these three results, we can easily see that normal games perform the worst while
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mazes size state space shortest path intersections optimal penalty
maze 1 4 7 5 0 -10.0
maze 2 6 17 13 1 -2.0
maze 3 8 31 12 2 -2.0
maze 4 10 49 28 3 -2.0
maze 5 12 71 44 3 -2.0
maze 6 12 71 33 3 -2.0
maze 7 10 49 19 3 -2.0/-0.4
maze 8 10 49 19 3 -2.0/-0.4
maze 9 14 97 45 5 -0.4
maze 10 16 127 56 5 -0.4
maze 11 18 161 72 9 -0.4
maze 12 20 199 104 7 -0.4
maze 13 20 199 61 12 -0.4
maze 14 22 241 97 14 -0.4
maze 15 26 337 132 15 -0.4
maze 16 30 305 92 19 -0.4
maze 17 24 287 77 14 -0.2
maze 18 34 577 117 33 -0.2
maze 19 36 647 184 35 -0.2
maze 20 40 799 124 32 -0.2

Table 5: Summary results of mazes’ properties and optimal penalty could be set.

games with historical information added are much better based on the episode-wise win rate.
Meanwhile, the smaller n we set the better performance the agent will have, which makes a
lot of sense. The smaller the n is, the more frequent and more information the agent will get
from the expert. Let’s first look at Fig. 18 which is the result based on Maze No.21, both the
normal game and the game n = 100 not be able to reach a decent win rate with 300 episodes
training; while the game with n = 40 is slightly slower than the game with n = 10 whose win
rate rushes to 1 directly in 100 training episodes; the game with historical information I added
also performs pretty good. In Fig. 19 which is the result of Maze No.22, there are clear twists
after 300 training episodes in games with n = 50 and n = 100, that’s because the agent does
not learn how to reach the target successfully in 300 training episodes, getting guides from
the expert helps the agent solve the maze in the beginning but they do not learn themselves,
this is why the agent keeps failing when it is asked to use its network to solve the maze after
300 training episodes; the game with n = 10 reaches the 1 very fast; the game with historical
information I added also outperforms most of the games. In Fig. 20 which is the result on the
Maze No.23, every game reaches a decent win rate in the end; the performance of the normal
game increases steadily; it is interesting that the blue line soars up to 1 and then decreases
to around 0.8, that is because the network learned to deal with most of the situations and
there are only a few situations where the network could make mistakes, but remember we still
have 10% of exploration which helps the agent keep around 80% win rate; the win rate of the
normal game even reaches 90% win rate in the end.
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Mazes Size Shortest Path Intersections State Space
No.21 10 24 1 51
No.22 10 24 1 51
No.23 10 21 2 51

Table 6: The properties of Mazes we are using for examining historical information II.

Figure 18: Win rate on Maze No.21, the agent gets guides from the expert in the first 300
episodes.

4.3.3 Trail and Error

As we know, people like using marks as reminders, they make marks on books, on roads,
even on historical scenic spots. They want to use these marks to remind themselves or re-
mind others. Here, marks are also historical information that people make before, and we are
inspired by this idea and use marks as historical information III. The main idea is that: we
put marks on the path which has already been visited by the agent, and theoretically, in the
shortest path towards the target, visited cells are always further to the target compared with
unvisited cells, also unvisited cells have information that has not been discovered yet by the
agent, so the agent should avoid revisiting visited cells and visit more new cells. Thus, we put
marks on visited cells, and hopefully, the agent could learn the relationship between the target
and paths with marks. Since mazes that we are using are arrays, so marks we will put are
different values in the array and could be interpreted as different colors of cells in the maze.
The difference between mazes with marks added and no marks added shown in Fig. 22, the
agent(dark grey) is in the center of the maze, and the right maze is with marks(grey) added
while there is no mark on the left one. So marks are different colors we give to cells on the maze.
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Figure 19: Win rate on Maze No.22, the agent gets guides from the expert in the first 300
episodes.

We tried 4 different strategies to put marks, shown below:

• Put marks on the fly: we put marks on visited cells during each training episode. That
is: every time when the agent visits a cell, the value of this cell in the maze array will
be changed into another value which indicates the mark;

• Pre-mark the right path: before the game starts, we pre-mark the shortest path to the
target. That is: before the game starts, we set different values of cells in the maze array
which are on the shortest path to the target;

• Pre-mark the wrong path: before the game starts, we pre-mark the non-shortest path.
That is: before the game starts, we set different values of cells in the maze array which
are NOT on the shortest path to the target;

• Use one more array: this is similar with the first strategy, we put marks on another empty
array instead of putting them on the original maze directly, and then append it to end
of the original maze.

These all different marked mazes will be used as the input of the neural network, and the same
update rules will be followed. Hopefully, the network could combine marks with the target and
learn the relationship between them. However, experimental results showed that the network
actually did not learn anything from marks which is not what we expected, and we further
roughly analyzed the reason that marks do not work. The results shown in Fig. 21. We can
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Figure 20: Win rate on Maze No.23, the agent gets guides from the expert in the first 300
episodes.

see that all strategies work similarly to the normal game, which means none of them works.
Win rates might fluctuate a lot because of randomness. And compared with the game with
historical information I added, they are way worse. Marks we put on the maze are just different
values in the maze array which further cause differences in the input, they do affect the forward
and backpropagation process during the training, but the effect is only on the surface level.
Let’s simplify the problem and use only one digit to represent the maze, also one weight for the
neural network. The difference between marks added input and no marks added input is similar
to: 5 ∗ k and 3 ∗ k, here 5 and 3 are different values(different inputs) where one represents
marks and another one indicates normal cells, k is the weight of the neural network. So the
output of the neural network will be 5k and 3k, and they have different gradients which further
cause different updates for the weights of the network, but the difference is caused by different
input values instead of the knowledge that the network learned. The way we put marks could
not be understood by the machine and the algorithm we are using, then marks could not be
further utilized. It also points out a potential future work, to find a way to put marks which
could be understood by the machine and the algorithm.

5 Conclusion and Discussion

5.1 Conclusions

In this project, we proved that two types of historical information we came up with in maze
navigation tasks are helpful for enhancing the algorithm itself and useful for helping the agent
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Figure 21: Performance of four different marking strategies on Maze No.4, also with the
performance of the normal game and the game with historical information I added.

Figure 22: The difference between mazes with marks added and no marks added, the grey
colored path behind the agent(the dark grey cell) is the marked path.

reach the target faster. In Q-learning context, historical information I(giving penalties when the
agent reaches visited paths) is definitely helpful for accelerating and improving the algorithm.
And different penalty values will cause different performances. Roughly speaking, the optimal
penalty decreases with the complexity of the maze increases. Meanwhile, the classifier we
trained can be used to predict the optimal penalty value for unseen mazes, the accuracy could
be up to 80%. In Deep Q-learning context, both historical information I and II(the guides
from the expert) are helpful, they could help the algorithm solve the problem way faster in
episode-wise. We can further tune m and n for games with historical information II added to
control the number of guides that the agent could get. The more guides the agent gets, the
better performance it will have. Furthermore, we found that after guiding periods, sometimes
the agent’s performance has an obvious twist but in the end, it will converge at some point.
With guides offered, the agent performs better and when guides stop, the agent needs to
perform itself and the performance will change to its own ability. Thus, the ’real’ ability the
agent learned is actually the performance it has in the end, at least after the guiding period.
These findings tell us that if historical information are used properly, they could be helpful for
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enhancing performances of algorithms, and we believe not only in maze navigation tasks and
not only using Q-learning, but for any other tasks and any other algorithms. The key point
is that historical information have to be added in the way which could be interpreted by the
algorithm.

5.2 Limitations and Future Works

First of all, we only examined four different values of historical information I and of course
the classifier we trained could only produce the optimal penalty value within these four values
for unseen mazes, which is pretty limited. And the environment and the task are quite simple,
the findings might only make sense in our context and could not be used for other different
tasks directly. Meanwhile, as we know, neural networks are kind of black-box tools and pretty
sensitive to hyper-parameters, architecture as well as machines they are running on. So the
results we got are not robust enough, they might not be exactly the same every round.

There are many future potential interesting works to do based on our findings. For the historical
information I, the optimal penalty value for mazes could be more precise instead of just
picking from four values, also more data could make the classifier more robust and accurate.
In historical information II, the expert is trained in the same task, it would be interesting to
see the expert trained on similar tasks to give guides to the agent. Furthermore, historical
information III(marks) which is unsuccessful in our case, but we do think it could be somehow
useful and it is just because the way we use it is not proper. It is worthwhile to study how
marks could be made beneficially for the task and the algorithm. Also, making these historical
information ideas more generalized is an interesting direction, either from algorithms-wise or
tasks-wise.
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Appendices

A Used Mazes

Figure 23: Maze No.1 and Maze No.2.

Figure 24: Maze No.3 and Maze No.4.

Figure 25: Maze No.5 and Maze No.6.
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Figure 26: Maze No.7 and Maze No.8.

Figure 27: Maze No.9 and Maze No.10.

Figure 28: Maze No.11 and Maze No.12.

Figure 29: Maze No.13 and Maze No.14.

37



Figure 30: Maze No.15 and Maze No.16.

Figure 31: Maze No.17 and Maze No.18.

Figure 32: Maze No.19 and Maze No.20.

Figure 33: Maze No.21 and Maze No.22.
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Figure 34: Maze No.23.
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B All Experimental Results for Historical Informa-

tion I

Figure 35: Win rate and training time of ex-
periments on Maze No.1.

Figure 36: Average rewards of experiments
on Maze No.1.

Figure 37: The distribution of steps and the average step.
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Figure 38: Win rate and training time of ex-
periments on Maze No.2.

Figure 39: Average rewards of experiments
on Maze No.2.

Figure 40: The distribution of steps and the average step.
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Figure 41: Win rate and training time of ex-
periments on Maze No.3.

Figure 42: Average rewards of experiments
on Maze No.3.

Figure 43: The distribution of steps and the average step.
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Figure 44: Win rate and training time of ex-
periments on Maze No.5.

Figure 45: Average rewards of experiments
on Maze No.5.

Figure 46: The distribution of steps and the average step.
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Figure 47: Win rate and training time of ex-
periments on Maze No.6.

Figure 48: Average rewards of experiments
on Maze No.6.

Figure 49: The distribution of steps and the average step.
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Figure 50: Win rate and training time of ex-
periments on Maze No.7.

Figure 51: Average rewards of experiments
on Maze No.7.

Figure 52: The distribution of steps and the average step.
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Figure 53: Win rate and training time of ex-
periments on Maze No.8.

Figure 54: Average rewards of experiments
on Maze No.8.

Figure 55: The distribution of steps and the average step.
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Figure 56: Win rate and training time of ex-
periments on Maze No.9.

Figure 57: Average rewards of experiments
on Maze No.9.

Figure 58: The distribution of steps and the average step.
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Figure 59: Win rate and training time of ex-
periments on Maze No.10.

Figure 60: Average rewards of experiments
on Maze No.10.

Figure 61: The distribution of steps and the average step.
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Figure 62: Win rate and training time of ex-
periments on Maze No.11.

Figure 63: Average rewards of experiments
on Maze No.11.

Figure 64: The distribution of steps and the average step.
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Figure 65: Win rate and training time of ex-
periments on Maze No.12.

Figure 66: Average rewards of experiments
on Maze No.12.

Figure 67: The distribution of steps and the average step.
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Figure 68: Win rate and training time of ex-
periments on Maze No.13.

Figure 69: Average rewards of experiments
on Maze No.13.

Figure 70: The distribution of steps and the average step.
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Figure 71: Win rate and training time of ex-
periments on Maze No.14.

Figure 72: Average rewards of experiments
on Maze No.14.

Figure 73: The distribution of steps and the average step.
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Figure 74: Win rate and training time of ex-
periments on Maze No.15.

Figure 75: Average rewards of experiments
on Maze No.15.

Figure 76: The distribution of steps and the average step.
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Figure 77: Win rate and training time of ex-
periments on Maze No.16.

Figure 78: Average rewards of experiments
on Maze No.16.

Figure 79: The distribution of steps and the average step.
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Figure 80: Win rate and training time of ex-
periments on Maze No.17.

Figure 81: Average rewards of experiments
on Maze No.17.

Figure 82: The distribution of steps and the average step.
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Figure 83: Win rate and training time of ex-
periments on Maze No.18.

Figure 84: Average rewards of experiments
on Maze No.18.

Figure 85: The distribution of steps and the average step.
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Figure 86: Win rate and training time of ex-
periments on Maze No.19.

Figure 87: Average rewards of experiments
on Maze No.19.

Figure 88: The distribution of steps and the average step.

57



Figure 89: Win rate and training time of ex-
periments on Maze No.20.

Figure 90: Average rewards of experiments
on Maze No.20.

Figure 91: The distribution of steps and the average step.
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