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Abstract

Outliers in a dataset are points that statistically deviate from nor-
mal instances and anomalies are points that are abnormal based on
some specific context or criteria. Unsupervised anomaly detection al-
gorithms usually find statistical outliers. But in a realistic scenario,
these outliers are not necessarily interesting or relevant anomalies.
Limited availability of expert feedback is usually quite easy to obtain.
Incorporating such feedback to adjust the detectors can significantly
boost the performance. It discovers anomalies that are contextual-
ized to the expert user’s semantic understanding of the anomalies.
The user then provides feedback on the more contextualized anoma-
lies and the algorithm gives even more contextualized anomalies. This
human-algorithm interaction loop is called Interactive Anomaly De-
tection. In this paper we make the first attempt to define Interactive
Anomaly Detection in an incremental scenario. That is, data comes
in streams and the more recent an anomaly is, the more relevant it
is. We then propose a novel algorithm: the Evolutionary Isolation
Forest. By using evolutionary algorithms to adapt the Isolation For-
est to users’ feedback, it outperforms the state-of-the-art method in
the incremental scenario. We also show the realistic relevance of this
algorithm by applying it to a real-world problem of detecting system
disfunctions at energy infrastructures at the company WithTheGrid.

1 Introduction

The term “anomaly detection” usually refers to unsupervised detectors or
classifiers that detect statistical outliers and predict that they are anomalies.
The term is often used in the context of tabular data. In the context of
streaming data, the problem is slightly different as both the data and the
anomalies to be raised have a time aspect. Whenever new data comes in, the
detector should make a prediction and the sequence (history data) may affect
the prediction. Applications of anomaly detection in streaming data include
electronic transactions, click streams, device monitoring, sales pattern, etc.
However, as traditional anomaly detectors usually find statistical outliers in
the data, they are not necessarily context-related. In real-world scenarios,
we are often more interested in anomalies specified by the application, the
users or the environment. For example, in sensor data, an extreme value
could simply be noise and we are more interested in systematic deviations.
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As such, a traditional method can produce many false alarms and a domain
expert will have to manually pick out the ”true anomalies” from the ”false”
ones. One way to get around this is to incorporate domain knowledge into
the detector. However, besides the fact that the algorithm has been specially
designed for the domain, it also requires knowledge from both data mining
and that specific domain. This is not always feasible.

Fortunately, in a realistic scenario, a domain expert’s knowledge is usually
available to label a small part of the data. This leads to another approach:
Incremental Learning [13, 4, 20]. When new data and labels become grad-
ually available, the model is updated. However, Incremental Learning algo-
rithms learn from new data passively, they do not ask the domain expert to
label data and they do not efficiently use the labels to update the model.
A more interactive and efficient structure is Interactive Anomaly Detection,
which utilizes the feedback from the domain expert to improve the detector.
The typical workflow is: (1) the detector shows i-top anomalies to the ex-
pert (2) the expert labels these anomalies (3) the detector learns from these
anomalies and provides the next set of i-top anomalies to the expert. Such
workflow is believed to significantly improve the detector’s performance with
minimal expert’s effort. Among the state-of-the-art approaches, [7, 23, 15]
all used ensemble detectors and use feedback to adjust the importance of
each ensemble in the detectors. While [9] clustered data points and formed
this as a k-armed bandit problem. However, these methods have three major
drawbacks:

1. They are not suitable for a incremental scenario. Not only they do not
take temporal information into account when dealing with time series data,
but they are also not suitable for a incremental workflow, in which there is no
concept of top-i anomalies. The detector should query the expert for more
recent data. Because the more recent the data is, the more interesting and
relevant it is.

2. If the feedback does not come from a domain expert, but rather comes
from multiple less-professional end-users, they have no means to incorpo-
rate different user’s knowledge and have the detector adjusted to each user’s
preference.

3. The methods to adjust the detectors are relatively simple. If some
information is missed by the detector in the beginning, the learning process
cannot help the detector to retrieve such information.
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As a real-life example, the company WithTheGrid(WTG) provide monitor-
ing service for energy infrastructures with a variety of sensors. The purpose
is to detect anomalies in these infrastructures, such as water pipe leakage,
abnormal temperature and device misplacement. The sensors send data to
the central processor several times a day and the central processor needs to
react in real-time. In such a system, statistical outliers are very likely to be
uninteresting as they can be caused by temporary sensor failures instead of
real disfunction in the infrastructures. Also, the system is designed to face
end-users and they have different preferences and sensitivities on anomalies.
Since it is impossible to manually model each user’s preference, it is crucial
to incorporate user feedbacks automatically into the anomaly detection al-
gorithm. Another difficulty is that there are many sensors of different types
and we cannot assume that data from different sensors follow the same dis-
tribution. Thus, if we design a separate detector for each sensor, there will
simply be too many detectors and the feedbacks will be too sparse for the
algorithm to learn. If we design one detector for all sensors of the same type,
then naturally the detector will be heavily biased as different sensors have a
different distribution of data.

If we use existing methods in active anomaly detection[7, 23, 15] on the
problem at WTG, there will be several problems. First, in streaming data,
there is no concept of ”top-i anomalies”, the algorithm has to react to new
data in real-time. So it is more proper to raise anomalies with a certain
threshold. Second, since there are so many sensors under different users,
previous methods have no means to incorporate feedbacks of different sen-
sors and users.

Inspired by the problem at Withthegrid and noticing the gap in the lit-
erature that no interactive anomaly detectors are designed to work with
streaming data in a more realistic scenario, in this paper, we propose a novel
algorithm: Evolutionary Isolation Forest. Similar to previous methods, we
use an ensemble anomaly detector as the base detector. Specifically, it is
Isolation Forest[16]. The novelty of the proposed method is that we use
evolutionary operators to adapt the structure of each tree in such a forest
to the feedbacks. Our hypothesis is that the use of evolutionary operators
enables the forest to change to more complex structures, thus can handle
more complex optimization problems. Such problems include working with
streaming data and handling more complex user feedbacks. Also, as an evo-
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lutionary algorithm does not require the calculation of the gradient of the
fitness/loss function, more sophisticated fitness functions can be used in a
real-life environment. Additionally, we propose a location-based forest struc-
ture to incorporate feedbacks from different streams, environments and users.

The contribution of this paper is mainly in two aspects: First, it recog-
nizes a gap in the field of anomaly detection, namely, interactive anomaly
detection in streaming data. To the best of our knowledge, no previous lit-
erature has addressed this problem. We believe such a problem commonly
exists in real-life applications, especially in the field of real-time surveillance
systems. We use the problem at WTG as an example.

Second, beyond identifying the problem, we also make an attempt to solve
the problem. To do so we propose an algorithm specifically designed for
the problem: the Evolutionary Isolation Forest (EIF). Compared to previous
approaches, we believe that EIF can adapt to more complex optimization
problems with more complex fitness functions. This means EIF is more
sophisticated in detecting contextualized anomalies. We show that in the
classic top-i scenario, EIF performs at the same level as existing algorithms.
In the incremental scenario, however, EIF out-performs the state-of-art al-
gorithms. Also, as a general anomaly detection method that is not specially
designed for a specific domain, EIF, in theory, can be applied to any domain
of anomaly detection.

The rest of the paper is organized as follows: in Section 2, related works
are reviewed. In Section 3, we formally define the research problem. In Sec-
tion 4, we introduce the EIF algorithm. In Section 5, we run experiments
to compare EIF with other algorithms, as well as showing the implementa-
tion for WTG data. Finally, in Section 6, we conclude the paper with the
contributions and possible future work.

2 Literature Review

Unsupervised anomaly detectors mainly operate by identifying statistical
outliers in the dataset. Since anomalies are usually rare, data for anomaly de-
tection tasks is usually unlabelled. Three main classes for anomaly detection
techniques are classification-based, nearest neighbour based and clustering
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based [5]. Some examples for popular anomaly detection algorithms are:
One Class SVM[22], which is a max-margin approach that separates novel
points from high-density points, Isolation Forest[16], which is used in this
paper and Autoencoder [21, 1], which reduces the dimensionality of the data
so it is easier to find anomalies.

These above-mentioned methods are adapted to tabular data. However, in
anomaly detection, streaming data is more common. That is, new data con-
tinuously comes in. For streaming data, temporal information is sometimes
important, but there are not as many detectors for temporal data. Classic
methods including STL[6], which decompose time series into trend, season-
ality and noise, ARIMA[3], which predict the future based on the past data
using auto regression and moving average, and Exponential Smoothing [10],
which simply predict the future value by the sum of exponentially decreased
weights on past data. These methods are closely related to time series fore-
casting. We refer to [2] for a review of newer and more sophisticated methods
for time series anomaly detection. Classic anomaly detectors like Isolation
Forest can also be used to handle time series if time-related features can be
extracted from the data. However, most of these methods are completely un-
supervised and, in many realistic scenarios, fail to achieve good accuracy [11].

In most anomaly detection applications, it is a realistic assumption that
expert knowledge is available to some extent. As such, Active Learning[11,
17, 18] incorporates supervision into unsupervised methods. In a general
framework, such a method first clusters all data points. Points with the least
confidence, e.g. through Expectation Maximization, are provided to the ex-
pert for labeling. The labels are then used to update the clusters. Finally,
the anomalies are rare clusters or points that are far from cluster centers.
A closely related field is Rare Category Detection [18, 12], which, instead
of identifying anomalies from normal data, identifies multiple categories. It
also puts more cognitive burden on the expert. A limitation of such methods
is that data to be queried is not necessarily the most interesting anomalies.
Also, the goal of these models is to achieve good performance after queries
with test data (while raising queries with train data). However, in many
realistic scenarios, we do not have data and human resources to train the
model before-handed. Rather, we want the model to learn on-the-run and
queries presented to the expert should be the most anomalous points, not
necessarily the most informative points.
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To handle these limitations, the framework Top-1 Feedback is proposed, in
which the expert only checks the most anomalous point at a time. Active
Anomaly Discovery (AAD) algorithm [7] incorporated feedback from the ex-
pert into a LODA detector [19] or into an Isolation Forest (IF) detector [8].
Since both detectors are ensemble algorithms, AAD updates the model by
using feedback to adjust weights attached to each ensemble. Later, Siddiqui
et al. [23] proposed a simpler update rule and Lamba et al. [15] introduced
cognitive burden as a new constraint. They introduced a ”show more like
this” mechanism so that the expert sees similar anomalies successively. Al-
though most of these papers [8, 23, 15] used IF as the anomaly detector, the
Top-1 Feedback framework is theoretically suitable for any ensemble-based
detector. On the application end, Vercruyssen et al. [25] described in detail
how to apply such a method for water analytics, with temporal information
taken into account. Alternatively, Ding et al. [9] formed interactive anomaly
detection as a cluster-based k-armed bandit problem.

To the best of our knowledge, the Top-1 Feedback framework is the state-
of-the-art approach for incorporating expert’s feedback into active anomaly
detectors. However, it has several disadvantages. First, the above-mentioned
methods either cluster data and attach anomaly score / reward to each data
point / cluster [25, 9] or adjust relative importance of detectors in an ensem-
ble [7, 8, 23, 15]. However, if the abnormal points have a complex pattern
so that the initial clusters or ensemble detectors are unable to separate them
from normal points, feedback will not help the improvement. Alternatively,
we proposed to constantly change the structure of the ensemble detectors,
so that the detectors can learn more complex abnormal patterns. Second,
they do not have a workflow that is suitable for streaming data. In the
data stream, since the size of data keeps increasing and the most interesting
anomalies are the most recent anomalies, it is inappropriate to query the top-
1 anomaly in history. Rather the detector should query for incoming data
when it passes a certain threshold, while the objective is still to maximise
the amount of ”interesting” anomalies provided to the human given a certain
budget. Thus, this paper proposes a novel method to update an ensemble
detector, which is designed to fit the incremental workflow.
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3 Problem Definition

In this section, we define the two problems of interests. The first is the
traditional problem to detect anomaly in static data, as in [7, 23, 15]. This
is described in Sub-section 3.1. The second is the novel problem that is to
detect anomaly in streaming data, which, to the best of our knowledge, is not
formally defined in the literature yet. This is described in Sub-section 3.2.
In Sub-section 3.3, the special case of WTG multi-stream data is described.
We believe that this special case can be generalized to many other real-life
applications.

3.1 Static Scenario

In this scenario, there exists a fixed dataset and we want to find anomalous
instances in this dataset as efficient as possible with the help of an expert’s la-
beling. In order to do that, we apply the workflow called interactive anomaly
detection. That is, each time the algorithm queries the expert with potential
anomalies and the expert labels them. The model then learns from these
labels and then queries the expert with more relevant anomalies. The key
problem in this workflow and in this scenario is that how do we update the
algorithm according to the expert’s labels. In this section we do not propose
a solution to this key problem (instead it is provided in Section 4), but give
a background and context of this problem using pseudo-code.

Given a dataset Ds = {X1, ...., Xq} in d dimensions and the evaluation bud-
get of the expert b. At each round t = 1, ..., b, an anomaly detector M
calculates the anomaly scores {s1, ..., sq} and raised the data point with the
highest score as an anomaly to the expert (excluding previous raised ones).
The expert then gives a label lt to update M . The evaluation metric is the
recall when budget b runs out. The scenario is summarized in Algorithm 1.

3.2 Incremental Scenario

In this scenario, the data comes in as a stream and we want to find anomalous
instances in this stream as accurate and as early as possible with the help of
an expert’s labeling. Similar to the static scenario, we apply the interactive
anomaly detection. The major difference in the incremental scenario is that
the more recent an instance is, the more interesting it is. If we simply use
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Algorithm 1 Static scenario

1: for t = 1 : b do
2: {s1, ...sq} = M(Ds)
3: Pick Xk with the highest score (among points that have not been

picked yet)
4: Get label lt of Xk from the expert
5: update M with lt (how M is updated depends on the specific algo-

rithm)

an algorithm to query the most anomalous instance in the history, it could
be too old in the history to be interesting. The key problem in this workflow
is again how to update the model based on expert’s feedback. Notice that
here we use the word Incremental Scenario instead of Streaming Scenario
due to that we focus on the fact that data keeps coming in but less on the
sequence or order (time-relevance) of the data. Next, we give a background
and context of this problem using pseudo-code.

Given a dataset of streaming data D = {X1, ...., Xt, ....} in d dimensions
and with t denoting the current time, an anomaly detector M provides an
anomaly score for each history point {s1, ...., st}. If the rank of st is big-
ger than some threshold ζ, Xt is raised as an anomaly. A domain expert
then looks into Xt and provides a label lt. Furthermore, if Xt is indeed an
anomaly but the model fails to detect it, there is still a possibility p ∈ [0, 1]
that the expert will provide label on this point. This reflects the realistic
event that the algorithm fails to detect an anomaly which leads to profound
consequence and then the expert will label it. For simplicity, we denote the
label attached to each point with {l1, ..., lt} where lt = −1 means the label
is not provided, 0 means it is normal while 1 means it is an anomaly. There
is also the possibility to define importance of each anomaly by assigning a
weight to an anomaly. This feature is not implemented in this paper, but
can be easily incorporated by the fitness function we described in Section 4.5.

In reality, the domain expert could also look into the history data and find
anomalies that are missed by the model. Also, the modal may be asked to
provide new anomalies on history data after later feedbacks. However, typ-
ically the more recent an anomaly, the more relevant it is. For simplicity of
evaluation, we assume that all interactions are with the current data. While
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interaction with history data is similar and could be inferred.

The model M is updated each time a label lt is provided, the evaluation
metrics are the overall precision and recall at some terminal time T . The
scenario is summarized in Algorithm 2.

Algorithm 2 Incremental scenario

1: for t = 1 : T do
2: st = M(Xt), lt = −1
3: if rank of st > ζ then get lt from the expert
4: else
5: if Xt is truly an anomaly then
6: set lt = 1 with probability p

7: update M with lt
=0

3.3 WTG Scenario

In the WTG scenario the dataset consists of n0 time series {X1
1:t, ..., X

n0
1:t}and

we want to raise anomalies from each time series. All of them have the same
dimensionality. Each data stream is assumed to be uncorrelated with one
another. Each data stream can be treated as a case in the incremental
scenario. However, the key problem is that ns is so large and feedbacks
are relatively sparse. This means it would be very inefficient to build a
separate model for each time series. To deal with this, we need to find a
way to interconnect models so that feedbacks are shared among them. This
scenario is summarized in Algorithm 3.

4 Method

As a solution to the problems given in the previous section: how to interac-
tively update an anomaly detector based on expert’s labels, in this section,
we propose the Evolutionary Isolation Forest (EIF). We use Isolation Forest
as the base detector to raise anomalies. Because such a tree-based algorithm
is easy to update and change. When labels are provided, evolutionary oper-
ators update the trees accordingly so that the trees are adapted to provide
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Algorithm 3 WTG scenario

1: for t = 1 : T do
2: for i = 1 : ns do
3: st = Mi(X

i
t), lt = 0

4: if rank of st > ζ then get lt from the expert
5: else
6: if Xt is truly an anomaly then
7: set lt = 1 with probability p

8: update Mi with lt
9: for j = 1 : ns j 6= i do

10: update Mj with lt, based on the similarity between X i
1:t and

Xj
1:t

more relevant anomalies.

In this algorithm, each tree is treated as an individual and various muta-
tion and crossover operators are used on the population. We know from
experiments that in such a way the structure of the trees constantly adapts
to the feedbacks and is optimized to more complex behaviours than chang-
ing weights of algorithm ensembles. The core difference between EIF and
Isolation Forest is that, Isolation Forest works with unlabeled data. How-
ever in our case the number of cases will be growing as well as some labels
of ”true anomalies” will be incrementally added. Consequently, EIF will be
modifying the initial population of random trees in order to maximize the fit-
ness function that measures the similarity between the ”computed anomaly
scores” and ”true labels”.

In the rest of this section, we first give a brief introduction to Isolation Forest
and Evolutionary Algorithm and then describe the model using evolutionary
algorithm terminologies: population initialization, mutation, crossover, selec-
tion and fitness function. Finally, we describe how to adapt this algorithm
to a multi-stream scenario using a location-based structure.

4.1 Background

As the base detector for EIF, Isolation Forest is a tree-based unsupervised al-
gorithm with random splits (branches). The idea is that anomalies are more
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easily separated from other instances. To construct an isolation tree, first a
training dataset {Xi} needs to be sub-sampled from the original dataset as
experiments show that having the full dataset as the training set degrades the
performance. Each tree starts with a root node n0. Next, An attribute (di-
mension) a0 is randomly chosen from the dimensionality of the data {1, ..., d}
and a split value v0 is randomly chosen between the lower and upper bound
of dimension a0. Then, all points {Xi} in the sub-set are fed into n0, if
Xa0
i < v0 , the point is fed into a newly created node n0.left = n1, fed into

n0.right = n2 otherwise. Here Xa0
i denotes the a0th entry of Xi. This is

repeated until the number of data points fed to a node nk is smaller or equal
to one or the path length between nk and n0 reaches a height limit. Suppose
the size of {Xi} is ψ ,this height limit is normally set as log2ψ since we are
not interested in instances that have path lengths higher than average. Such
a node nk is called a terminal node and it has a size βk which is the number
of data points fed to the node. A non-terminal node is called a branch node.
An isolation forest is then an ensemble of isolation trees. For a data instance,
each isolation tree will produce an anomaly score by how deep this instance
terminates in the tree and the size of the terminal node. The final anomaly
score is the mean of scores from all trees. Please refer to the original paper
[16] for more details of this algorithm.

Next, we give a brief introduction to the basic process of an evolutionary
algorithm. Specifically, the evolutionary algorithms used in this paper can
be classified to the sub-category: Genetic Programming as it is less of an
optimization problem but more of a program-update problem. However, we
also use operators that are commonly used in another sub-category, Evolu-
tion Strategy. To avoid complexity and possible confusion, we only refer to
Evolutionary Algorithm throughout the paper.

Evolutionary Algorithm is a population-based algorithm and a population
needs to be initialized. A population consists of one or many individuals.
Each represents a solution to the problem. In our case, each individual is an
Isolation Tree. Each individual also has an mutation rate σ, controls how
rapid an individual changes. At each iteration, offsprings are created through
crossover and mutation. In crossover, two or more individuals are selected
from the population. An offspring is the combination of the parents. In
mutation, the attributes of an individual is randomly changed to create an
offspring. Typically, through crossover and then mutation (sometimes only
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mutation), a number of offsprings is generated. A fitness value needs to be
calculated for all individuals from the old population and the offsprings. This
fitness value represents how good an individual is at solving the given prob-
lem. The new population is generated from a selection of the old population
and the offsprings (sometimes from only the offsprings). Such selection is
based on the fitness value. Typcially, µ is used to represent the size of the
old population and λ is used to represent the size of the offsprings. (µ + λ)
indicates a selection strategy that involves both the old population and the
offsprings. While (µ, λ) indicates a selection strategy that only involves the
offsprings. For those who are interested in more details about Evolutionary
Algorithm, we recommend the book by J.R. Koza [14].

4.2 Population Initialization and Selection Strategy

The initialization of the population is very similar to a standard IF algo-
rithm. We create a forest of m trees: {N1, ....Nm} with the given dataset.
We define a base mutation rate σ and a learning rate γ. Then, a tree Ni

also has an initial mutation rate σi = σ ∗ erand() where rand() is drawn from
N (0, 1).

For selection, we apply the greedy strategy, that is, rank all individuals by
fitness and pick the top m individuals as the next generation.

4.3 Mutation Operators

To mutate a tree Ni to create a new tree N ′i , the mutation operator first
changes the mutation rate: σ′i = σi ∗ eγ∗rand(). Next, for each branch node
nk, its attribute ak changes to a random dimension of the data with proba-
bility σ′i and when this happens, vk is drawn between the lower bound and
the upper bound of the new dimension. If this does not happen, vk changes
according to: v′k = vk+σ′i∗rand()∗(ubak−lbak) where ubak and lbak represent
the upper bound and lower bound of dimension ak respectively.

After the mutation of each branch node, for each terminal node nk, either
(1) the whole tree is re-trained through the standard IF training process and
βk is reassigned or (2) βk is mutated according to β′k = βk +σ′i ∗ rand(). The
mutation operators are summarized in Algorithm 4.
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Algorithm 4 Mutation operators
Input Ni, σi
Output Ni, σ

′
i

1: σ′i = σi ∗ eγ∗rand()
2: for each node nk in Ni do
3: if nk is a branch node then
4: if rand() < σ′i then
5: randomly select ak from 1, ...., d
6: randomly draw vk from (lbak , ubak)
7: else
8: vk = vk + σ′i ∗ rand() ∗ (ubak − lbak)

9: else
10: do one of the two followings:
11: (1) βk = βk + σ′i ∗ rand()

12: (2) Feed a sub-dataset to Ni and obtain βk for all terminal node nk

4.4 Crossover Operator

For crossover, two random parents are selected from the population, one
branch node is randomly selected from each parent and the selected branch
node from the second parent and all following nodes are used to replace the
selected branch node and all following nodes of the first parent to create a
child. An illustration is shown in Figure 1. The possibility is set so that
the crossover point is more likely to be close to the branch node. There is
also a chance that the crossover is not performed. The crossover operator is
explained in detail in Algorithm 5.

4.5 Fitness Function

For the two problems defined in Section 3, we designed two fitness function.
For static data, inspired by [15], we used the cross entropy loss. Each time
when a new feedback lt is received on point Xi with score si, we pair Xi

with a number of points which have scores St = {sk}. Suppose the desired
probability of si > sk is pik, the fitness function is then:

fs =
∑
sk∈St

piklog(p̂ik) + (1− pik)log(1− p̂ik) (1)
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Figure 1: The crossover operator. Each filled circle represents a node and
each triangle represents a tree structure.

where:

p̂ik =
esi−sk

1 + esi−sk

We retrieve St with two methods. The prioritized method is the set of all
history points with an opposite label as lt. If k is retrieved from history,
then pik = 1 if lt = 1, pik = 0 otherwise. At the early stage, when there
are not enough points in the history, k is sampled from the whole dataset
with probability proportional to 1/sk if lt = 1, or with probability propor-
tional to (−0.99 ∗ sk + 1)1/−0.99 if lt = 0. If k is retrieved by sampling, then
pik = p̂ik + 0.1 if lt = 1, pik = p̂ik − 0.1 otherwise.

For streaming data, we use a slightly different approach. In the fitness func-
tion for static data, the detector is encouraged to detect the most anomalous
point that is similar to the last anomaly or opposite to the last nominal. How-
ever, in streaming data, the detector would not know if the next anomaly is
similar to the last anomaly or to other anomalies deep in history. Thus the
fitness function for streaming data should encourage the detector to assign
high scores to all history anomalies. Suppose Sp = {sj} denotes the set of
all anomalies in the history. While Sn = {sk} denotes the set of all nominals
in the history. The fitness function is then”

f =
∑
sj∈Sp

∑
sk∈St

pjklog(p̂jk) + (1− pjk)log(1− p̂jk) (2)
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Algorithm 5 Crossover operator
Input parents Ni, Nj, crossover rate η
Output children No

1: No = Ni

2: n = Nj.n0

3: crossover possibility pc = η
4: crossover point Nj.cp = null
5: while n.left exist & Nj.cp does not exist do
6: if rand() < pc then
7: Nj.cp = n
8: else
9: n = n.left or n.right with equal possibility

10: pc = pc ∗ (1− η)

11: n = No.n0

12: crossover possibility pc = η
13: crossover point No.cp = null
14: while n.left exist No.cp does not exist do
15: if rand() < pc then
16: No.cp = n
17: else
18: n = n.left or n.right with equal possibility
19: pc = pc ∗ (1− η)

20: No.cp = Nj.cp

The value of pjk and how to sample sj, sk when there are not enough points
in history is the same as in the static method.

4.6 Location Based EIF

To deal with the problem mentioned in Section 3.3, that is, there are multi-
ple streams in which anomalies need to be detected independently and the
feedbacks are sparse, we propose the Location-based EIF.

Given the n0 streams in the environment, we put each streams in a feature
space as a point. This space is defined relatively arbitrarily. For example,
we can define a three dimensional space and the location of each stream is
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the mean value, standard deviation and sensor type. However, the distance
between streams should indicate their similarity as much as possible. A dis-
tance matrix D is then calculated that contains distances between all pairs
of streams. The rows and columns of D are both n0. Next, isolation trees are
assigned to each stream. We use a procedure so that similar streams share
more trees together. The initialization algorithm is described in Algorithm
6 and the anomaly detection algorithm is described in Algorithm 7.

Algorithm 6 Location-based Initialization

Input Streams X1, ..., Xn0 , distance threshold ζ, number of trees m
Output Model M and indexing I, tree count c

1: Initialize I as a n0 ∗ 0 matrix (Ii is the i-th row while I:,i is the i-th
column)

2: construct D based on the distance between streams
3: tree count c = 0
4: while sum(Ii) < m ∀i ∈ {1, ..., n0} do
5: for i = 1 : n0 do
6: if sum(Ii) < m then
7: initialize tree Nc with X i

8: add Nc to M
9: initialize zero vector v of length n0

10: for j = 1 : n0 do
11: vj = 1 if Dj,i < ζ

12: add v as a column of I
13: c = c+ 1

Algorithm 7 Location-based Anomaly Detection

Input point in Streams X i
t , model M , indexing I

Output anomaly score s

1: tree indices = Ii
2: s = M(X ı̂t, Ii) where Ii is used to select a sub-group of the ensembled

forest.

Due to this special ensemble structure, the population-based evolutionary
operators mentioned in the preceding sections cannot be directly used. Be-
cause each stream and thus each feedback is attached to a different sub-group
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of the entire population. To handle this, instead of updating the population
globally with a (µ+ λ) selection algorithm, we update each tree locally with
a (1 + λ) algorithm. Suppose Sip denotes all labeled anomalies in the i-th
stream and Sin denotes all labeled nominals in the i-th stream, the evolu-
tionary operators are summarized in Algorithm 8. Additionally, we give a
possibility pr that a random new tree is added into the local population to
avoid staying in local optimization.

Algorithm 8 Location-based Updating

Input model M , indexing I, labels Sp, Sn, tree count c, population λ
Output M

1: for tree Nj in {N1, ..., Nc} do
2: indexing v = I:,j
3: local labels S ′p = {}, S ′n = {}
4: for non zero entry k in v do
5: add Skp toS ′p = {}, add Skn toS ′n = {}
6: local population = {Nj}
7: for count = 1:λ do
8: random selected Nk from global population that has at least one

stream in common with Nj

9: if rand() > pr then
10: N ′ = crossover(Nj, Nk)
11: N ′ = mutate(N ′)
12: else
13: N ′ is random initialized
14: add N ′ to local population

15: calculate fitness of local population with Equation 2 and labels S ′p,
S ′n

16: relpace Nj with the best fitted individual in the local population

5 Experiments

In this section, we first describe some details of experimental setup in Sec-
tion 5.1. We tested our proposed algorithm under two different problems, as
specified in Section 3. In Section 5.2, it is tested with static data. In Section
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5.3, it is tested with streaming data. In both Section 5.2 and 5.3, we use
banchmark datasets from ODDS1 which is commonly used in anomaly detec-
tion researches. Each dataset in ODDS is multi-dimensional point dataset
(in opposite to time-series). More details of the datasets will be given later.
In Section 5.4, we describe the dataset from the company WTG and performs
some preliminary experiments on this dataset.

5.1 Experimental Setup

For each tabular dataset or stream, we use a population of 100 trees and
create 300 offsprings in each iteration. One and only one iteration is per-
formed after each feedback is provided. However, for Location-based EIF,
where trees are evolved locally, 1 offspring is created for each tree in one
iteration and three iterations are performed with one feedback. For the mu-
tation operators, we mutate βk by β′k = βk+σ′i∗rand() in Section 5.2 and 5.3
as it seems to have better performance. In Section 5.3, however, we retrain
each tree after mutation. This is to guarantee that anomaly scores given
by different groups of trees can be compared. The initial mutation rate is
σ = 0.25/

√
m ∗ erand() and the learning rate is γ = 1/

√
m.

The program is implemented in python with common libraries, e.g. numpy.
We provide our code online2 for reproducibility.

5.2 Static Scenario

We use 16 benchmark datasets from ODDS and compare the performance
with AAD[7] and OJRank[15]. A statistic summary of the datasets is listed
in Table 1. On each dataset, we use a budget of 200 and calculate the av-
erage results from 10 runs. We compared the recall over all 200 feedback
rounds and the results are shown in Figure 2. Notice that we omitted the
result of Breastw because the algorithms have almost the same performance.

We can see that EIF performs around the same level as AAD and OJRank.
However, notice that for a few datasets (e.g. Optdigits and Glass), OJRank
clearly outperforms EIF and AAD and we think OJRank is still in general a

1http://odds.cs.stonybrook.edu/
2https://github.com/z841860053/Evolutionary-Isolation-Forest/tree/master
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Figure 2: Results on 15 benchmark datasets. X axis is the feedback round.
Y axis is recall. 19



Name Points Anom. % Name Points Anom. %

Arrhythmia 452 15 Pendigits 6870 2.27
Wine 129 7. Optdigits 5216 37

Satellite 6435 32 Lympho 148 4.1
WBC 278 5.6 Letter 1600 6.25
Vowels 1456 3.4 Breastw 683 35

Vertebral 240 12.5 Ionosphere 351 36
Thyroid 3772 2.5 Glass 214 4.2

Pima 768 35 Cardio 1831 9.6

Table 1: Statistic summary of the ODDS benchmark datasets used for static
data experiments

better choice for problems with static data. The major reason for the slightly
worse behaviour of EIF is, we think, the fact that in the problem of static
data, the algorithm only needs to provide the current most anomalous point.
It would not matter if the history anomalies have low scores. This means
the optimization problem is relatively simple and it is likely that simply
changing the weights of the nodes with gradient descent can already find a
good optimal. At the same time, adding evolutionary operators that change
the structures of the trees might not add extra value to this optimization
problem.

5.3 Incremental Scenario

For the incremental scenario, we use 15 point datasets from ODDS to simu-
late streaming. To do this, a dataset is randomly shuffled and the data points
are fed to the algorithm one by one. These datasets are slightly different than
that in Table 1 and they are listed in Table 2. We compare EIF with OJRank
that uses loss function of Equation 2. Even though the original OJRank does
not support the incremental scenario, changing the original loss function to
Equation2 let it adapt to the incremental scenario. Both algorithms do not
detect anomalies in the first 256 data points and only use them to train the
Isolation Forest. For convenience, we set the detection threshold ζ to the
percentage of anomalies in the dataset, but no bigger than 5% as we have
limited computational power. Also the probability p that the expert looks at
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an undetected anomaly is 0. We run 10 times on each dataset and calculate
the average recall and precision. Furthermore, at the end of each run, the
algorithms calculate scores for all points in the dataset and we count the
percentage of true anomalies in the top n and 2n points, with n being the
total number of anomalies in the dataset. This extra information can help us
understand how well the algorithms can find anomalies in history data and
how well they fit the overall dataset. The results are shown in Table 3.

Name Points Anom. % Name Points Anom. %

Annthyroid 7200 7.42 Arrhythmia 452 15
Cardio 1831 9.6 Ionosphere 351 36
Letter 1600 6.25 mammography 11183 2.32
Mnist 7603 9.2 Musk 3062 3.2

Pendigits 6870 2.27 Pima 768 35
Satellite 6435 32 Satimage-2 5803 1.2
Speech 3686 1.65 Thyroid 3772 2.5
Vowels 1456 3.4

Table 2: Statistic summary of the ODDS benchmark datasets used for
streaming data experiments

We can see that compared to OJRank, EIF generally has superior recall
while having inferior precision. This means that, even though the threshold
ζ is set to be the same, EIF queries more instances than OJRank. This
could simply imply that at each query, the update of EIF changes much tree
structure, resulting in new data points be ranked as top anomalies. For the
percentage of true anomalies in top n and 2n points, EIF performs better
on more datasets. This confirms our hypothesis, that since EIF constantly
changes the structure and values of the trees instead of simply adjusting
weights of each node, it fits better to the terrain of the whole dataset.

Next, we study the effect of the probability p that the expert founds an
undetected anomaly. Our hypothesis is that the higher p is, the better the
model will perform, especially at early runs. To test it, on three datasets
Thyroid, Mammography and Pendigits, we run the algorithm once on each p
value between 0 and 1 with a step of 0.1. Thus 11 runs in total. For each run,
we calculate the recall of the entire run. We then calculate the correlation
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EIF OJRank
Dataset Precision Recall Top n Top 2n Precision Recall Top n Top 2n

Annthyroid 0.72 0.49 0.64 0.73 0.52 0.34 0.38 0.50
Arrhythmia 0.54 0.20 0.40 0.56 0.61 0.10 0.35 0.52

Cardio 0.74 0.39 0.57 0.69 0.81 0.38 0.53 0.61
Ionosphere 1.00 0.13 0.75 0.97 0.92 0.06 0.57 0.90

Letter 0.13 0.11 0.16 0.19 0.10 0.07 0.13 0.18
Mammography 0.45 0.39 0.39 0.42 0.38 0.38 0.39 0.49

Mnist 0.71 0.34 0.51 0.63 0.51 0.27 0.37 0.50
Musk 0.88 0.99 1.00 1.00 0.93 0.92 1.00 1.00

Pendigits 0.67 0.78 0.83 0.86 0.77 0.74 0.81 0.85
Pima 0.67 0.12 0.49 0.73 0.55 0.05 0.47 0.78

Satellite 0.99 0.12 0.53 0.76 1.00 0.16 0.46 0.70
Satimage-2 0.74 0.89 0.88 0.90 0.82 0.84 0.88 0.94

Speech 0.02 0.03 0.04 0.05 0.04 0.04 0.06 0.07
Thyroid 0.72 0.76 0.79 0.88 0.75 0.74 0.73 0.83
Vowels 0.25 0.34 0.38 0.44 0.46 0.41 0.49 0.61

Count. Better 6 12 10 9 9 3 2 5
Count. Dominate 4 2

Table 3: Results of EIF and OJRank on 15 benchmark datasets. Count.
Better is the number of times one algorithm is better in one attribute. Count.
Dominate counts the number of times one algorithm is better than or equal
to another in all attributes

between p and recall using Kendall’s Tau. Finally, we plot the change of the
correlation values over time (percent of data seen). The result is shown in
Figure 3. We can see that the results depend on the datasets. For Pendig-
its, the correlation is relatively high at all times, while for Mammography,
the correlation is relatively low. Even though both Pendigits and Mam-
mography’s correlation reduces slightly with time, only Thyroid’s correlation
drops significantly. However, all three datasets show a dropping trend. This
matches our original hypothesis, that a high p will lead to good performance
in the beginning, but would not matter as much in the long run. However,
notice that due to limitation on computational power, on each p we run only
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Figure 3: Kendall’s Tau value between recall and p over time.

once, this might leads to quite noticeable instability on the results.
Then, we study how the choice of threshold ζ affects the performance.

Only one dataset: Thyroid with an anomaly percentage of 2.5% is used
and 5 different ζ : 0.02, 0.04, 0.06, 0.08, 0.1 are tested. On each ζ we run
5 runs and calculate the average. The recall and precision are shown in
Figure 4. As one would expect, the higher threshold leads to higher recall
and lower precision. However, interestingly, as shown in Table 4, after the
whole dataset is processed, the percentage of top anomalies does not seem to
correlate with the threshold. Even though one would assume that a higher
threshold means more feedback to the algorithm and the algorithm should
be improved better. This, together with our experiments on p, might imply
that after a certain amount of feedbacks are received, extra feedbacks will
have little impact on the further improvement of the algorithm. This means
two things: (1) EIF does not need very dense feedbacks (2) For EIF there is
space for improvement so that it can incorporate more feedbacks.

5.4 WTG Scenario

In this section, we first describe the data and preprocessing steps in Section
5.4.1 and then the implementation and preliminary results in Section 5.4.2.
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Figure 4: Recall and precision of different choices of ζ.

Threshold Top n Top 2n

0.02 0.76 0.88
0.04 0.82 0.96
0.06 0.78 0.92
0.08 0.77 0.98
0.1 0.77 0.95

Table 4: Percentage of true anomalies in top n and 2n (n is the number of
total anomalies in the dataset) after the whole dataset is processed

5.4.1 Data Description and Preprocessing

The data comes from monitoring energy infrastructure assets. New streaming
data coming around every hour. For the purpose of experiments, throughout
this paper, we use data span from 2018-05-31 to 2020-06-25. In the dataset,
there are 1822 measurement groups, which are called ”pins”. Each pin con-
tains one or several sensors that monitoring activities at the same physical
location. There are 4276 sensors measuring 52 different quantities, including
voltage, insulation resistance, loop resistance, device temperature, etc. Suc-
cessive data sent by one sensor is called a signal. Signals in the dataset have
various periods even though the most common period is around 6 hours and
coming after it is 1 hour.
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Figure 5: Distribution of dominant periods over all signals in the dataset.

The period for a signal is also not stable. For example, for all signals with
a 6-hour period, around 78% of all intervals is actually 6 hours. Around 6%
intervals are less than 10 minutes and a few points have negative intervals.
These may be caused by the sensor sending a reading twice. Less than 1%
intervals double the major interval. To handle these, we discard all readings
that have intervals less than 1% of the dominant interval. We do not inter-
polate longer intervals as this will create artificial data. Instead, we take the
time difference into account when calculating features from the time series,
as described later in this section. For each signal, we calculate a dominant
period and we plot the distribution of the dominant periods over all signals
in the dataset in Figure 5. Nearly 40% of signals has a 6-hour period. The
second and third common periods are less than 10 minutes and 12 hours
respectively. 1-hour and 24-hour period is also common in the dataset.

Next, we inspect the patterns of different signals. There are two distinct
patterns. In the first the signal jumps back and forth from two or three values
and is in general more stable, for example, in loop resistance(lusweerstand).
In the second the signal has higher accuracy and is less predictable, for
example, in insulation resistance(isolatieweerstand). In Figure 6, we show
signals from 12 most common quantities in the dataset. one signal is chosen
randomly from each quantity.

One would assume that time series from the same quantity are very likely
to follow the same distribution. However, we find out this is not the case. For
example, for the most common quantity: insulation resistance, there are in
total 897 time series. We run the Kolmogorov–Smirnov test [24] on random
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Figure 6: Example signals of 12 most common quantities. Y-axis is the value
from the sensors. It varies depends on the sensor type.

100 pairs of these time series and the average p-value is only 0.052. This
means for most pairs with p < 0.1 we reject the null hypothesis that the
two data samples come from the same distribution. This means we cannot
simply use one model for each quantity and thus Location-based algorithms
come handy.

To be able to evaluate the algorithm, we run the original Isolation Forest
model on the data and ask an expert to label top anomalies raised by the
original Isolation Forest. We collect 40 labels from the domain expert during
the period 2020-4-16 to 2020-6-26. Among them, 26 are true anomalies. The
label density is 0.303% for this period.
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In the final step of preprocessing, we extract 4 features from each time point
in a stream. These will be the features fed to the EIF model. The features
are: 1. first order deviation: the reading from the current time subtracts the
reading from the previous time point, divided by time difference 2. second
order deviation 3. mean value of the past 5 periods 4. standard deviation of
the past 5 periods.

5.4.2 Results

We compare the proposed algorithm: Location-based EIF to two baselines:
Location-based Isolation Forest (IF) and naive IF (that each stream has a
separate forest). We expect Location-based IF to have similar performance
as naive IF but with a lower computational cost. While the location-based
forest should make it easier for EIF to learn so Location-based EIF should
have better performance than both baselines.

For each above-mentioned algorithm, all data before date 2020-4-16 is fed
as training data for IF. Then, batches of streams are fed to the algorithm on
a daily basis. Then the algorithm ranks each instance in the streams by its
anomaly score. We want labeled anomalies to be ranked as high as possible
while labeled normal instances to be ranked as low as possible. For EIF,
after anomalies are raised each day, feedbacks on the labeled instances are
provided. Notice that this experimental workflow is slightly different than
in a realistic workflow. As in a realistic workflow, feedback is usually only
provided for the top anomalies. While in this experimental workflow, since
we pre-collected the labels, labels can be attached to instances that rank low.
Nevertheless, such an experiment should indicate the performance of EIF.

We run each algorithm for 10 times. The results are shown in Figure 7
and Table 5. From Figure 7, we can see that with naive IF, the distributions
of anomalies and normal instances are hardly separable. With Location-
based IF, the distribution of normal instances moves slightly backward. With
Location-based EIF, anomalies form a peak at rank 0-5 while normal in-
stances form a peak around rank 30. Additionally, after all labels are pro-
vided to Location-based EIF, it is asked to re-rank all anomalies in history.
This indicates the performance of the model when encountering similar in-
stances in the future. The results show that Location-based EIF adapts
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pretty well to the labels. Figure 7 shows the distribution over all ranks.
However, in a realistic scenario, we are usually more interested in top ranks.
Table 5 shows the false alarm rates for top 1, top 5 and top 20 instances over 3
different algorithms. Location-based EIF is clearly superior to the baselines,
with one exception: higher top 1 FAR compare to naive IF. This is very likely
due to the fact that the Location-based structure mixed trees for different
streams that shouldn’t be mixed. For example, two streams that have similar
instance distributions but anomalies expected from them are quite different.
However, for lower computational cost and more efficient updates, such a
trade-off has to be made. For this particular dataset, anomaly detection for
a day’s data costs roughly a matter of seconds and a complete update of all
trees costs a matter of minutes on one core of a standard personal computer.

Algorithm Top 1 FAR Top 5 FAR Top 20 FAR

Naive IF 0.00 0.21 0.29
Location-based IF 0.17 0.18 0.23

Location-based EIF 0.08 0.17 0.15
Location-based EIF re-rank 0.00 0.00 0.03

Table 5: False alarm rate (FAR) of different algorithms on different ranks.

This experimental evaluation of WTG scenario is constrained by many
factors and cannot fully reflect the realistic scenario. For example, compare
to the amount of data in the streams, the labels are extremely sparse and
might not be a very accurate indicator of the false alarm rate. Also, the
labels should not be pre-collected, but collected on the run. Nevertheless, we
believe this evaluation reflects the realistic performance to some extent. At
the finishing time of this paper, the proposed Location-based EIF is being
implemented in the environment of the company WTG and being used and
evaluated.

6 Conclusion

Motivated by the problem at WTG, in this paper, we formally recognise the
problem: interactive anomaly detection in streaming data. We then propose
a novel algorithm: Evolutionary Isolation Forest to solve this problem. EIF
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Figure 7: Density histogram of ranks of labeled instances. Top row: two
baseline algorithms. Bottom left: Location-based EIF. Bottom right: Re-
rank all instances after EIF received all labels.

uses evolutionary operators to adapt trees in an Isolation Forest ensemble
detector to expert feedbacks. For a tree, the operators change the attribute
and value at each node as well as replace branches with branches from other
trees. By doing so the detector constantly evolves to provide more accurate,
contextualised anomalies based on feedbacks.

Using fitness functions similar to OJRank [15], on the classic interactive
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anomaly detection problem, we show that EIF performs on the same level as
AAD [7] and OJRank. On the interactive anomaly detection problem with
streaming data, we show that EIF out-performs OJRank. Additionally, by
applying EIF to a real-world problem: monitoring energy infrastructures at
the company WTG, we show the performance of EIF at application and its
realistic relevance. The advantages and disadvantages EIF has over previous
methods are summarized as follow:

(1) EIF directly manipulates the base anomaly detector, while previous
methods add another layer to adjust above the base detector and leave the
base detector untouched. This brings one limitation, EIF cannot be applied
directly to other ensemble anomaly detection algorithms than tree-based de-
tectors. However, this also means EIF is not limited by the initial base
detector. It can be adapted to a more complex context with more com-
plex feedbacks. This is particularly important in streaming data anomaly
detection.

(2) EIF offers much freedom in the designing of the algorithm. For exam-
ple, covariate shift, which is very common in streaming data, can be handled
by randomly adding new trees trained on new data at each evolutionary step.
As another example, the problem of sparse feedbacks and various types of
time series at WTG can be solved by location-based forests.

(3) EIF is simple to implement. It can be used with any fitness function
with no requirement to calculate the gradient.

(4) EIF requires more computational power while updating the detector
compare to previous methods. However, in realistic scenarios, this is part
of a human-computer interaction loop and the speed of this loop is mostly
dependant on the human’s speed of data processing. A slightly slower al-
gorithm will not affect the efficiency of this loop. While processing data to
raise anomalies, EIF is as fast as other tree-based anomaly detectors.

The research field of interactive anomaly detection has received increasing
attention in the recent years. As a realistic assumption, the presence of on-
line expert feedback can greatly boost the accuracy of anomaly detectors. In
this paper we make the first attempt to pin down the problem of interactive
anomaly detection in a incremental scenario. We also propose a novel algo-
rithm that adds to the variety of interactive anomaly detectors. We believe
our work contributes to the research field by recognising the new direction
and providing more (and in some cases better) varieties of algorithms.
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Future works are suggested in two directions. First, we defined the incre-
mental scenario fairly simple. Although such simplification does not affect
the methodology and evaluation of our algorithm, a more carefully defined
scenario may be needed for a more dedicated algorithm. Second, as our ex-
periments show, feedbacks provided to EIF can easily saturate. A very likely
reason is that we use the most common evolution strategy operators. These
operators are not specially designed for tree-based classifiers. For example,
having a crossover operator that can increase the depth of the tree when
needed may provide more adaptability to feedbacks.
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