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Abstract. Network complexity measures aim to quantify to what ex-
tent a real-world system has a nontrivial structure. This allows for a
direct comparison of different types of networks, as well as the discovery
of universal network properties. However, various network complexity
measures have been proposed in the literature. Moreover, it remains de-
batable to what extent the overall complexity of any network can be
captured using one measure. In this thesis we will implement, test and
systematically evaluate seven network complexity measures and corre-
sponding algorithms. The evaluation was done theoretically using eight
axioms and empirically using four evaluation criteria. Both artificially
generated as well as real-world networks, including a business network of
the Netherlands, were used. It was found that two measures, namely arc
symmetry and entropy, best satisfied the evaluation criteria, especially
when used together with two other more basic measures. The remaining
measures proved to be less useful in practice, not meeting the criteria of
for example scalability and generalizability. From our analysis we con-
clude that using one measure is insufficient; to truly capture network
complexity, depending on the network’s topological properties, multiple
measures need to be considered.
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1 Introduction

Network complexity measures aim to quantify to what extent a real-world
system has a nontrivial structure. In this thesis we will, attempt to conceptualize
the most inherent properties of a network and evaluate the development of new
network complexity measures that try to capture those properties. Note that
this thesis focuses on the complex intrinsic qualities of a network’s topology, not
on computational complexity as used in some fields to characterize algorithms.

A network is a representation of interactions between elements. For instance,
a network can model the relationships within a group of students, a university
course, or even in social media. Monetary flow between banks, brain cell activity
and protein interactions are examples of (non-social) processes that can also be
represented by networks. The field of network science concerns itself with the
network representations of diverse types of phenomena and the subsequent anal-
ysis of these networks. Since networks come in all shapes and sizes, it can be
difficult to understand the differences between different networks. Additionally,
the larger the network becomes the harder it becomes to visualize such a network
and extract useful information. This motivates the usage of network complexity
measures, capable of quantifying a network with the goal of understanding the
underlying network properties. With the use of network complexity measures
it becomes possible to directly compare networks, and find universal network
properties. A network measure with a large value could, for example, indicate
that network A is more complex than network B with a smaller value. It re-
mains debatable, however, whether the comparison of a single measure between
networks is capable of drawing such a conclusion, regarding network complexity.
Even though network A is seemingly more complex according to the measure,
it may very well be less complex with respect to other properties. It is therefore
important to distinguish complexity measures according to the properties that
they theoretically capture. All in all, simplifying a network’s complexity into one
or more quantities introduces a discussion surrounding the effectiveness and use
of complexity measures.

The defining problem when it comes to quantifying network properties is
choosing which measure(s) to use. Even though research has shown that ma-
jor similarities do exist between large-scale networks, regardless of the type of
network, there is no consensus of when to use which measure. Numerous mea-
sures for network complexity already exist, each measure attempts to capture
the defining aspect of the network in a slightly different manner. For instance,
the average degree measure, as described in Section 4, gives a description of a
network based on the properties of a network’s nodes. Such a measure is capable
of providing a single value describing the network, yet the information given is
substantially different than a measure that focuses on a network’s edges.

The issue of choosing when to use which measure can be exacerbated due
to requirements and implementations of complexity measures. Not all measures
allow every type of network to be used as input; in other cases it is possible but
the information given by the measure would then be of little use. For example,
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measures that require a network to be connected without the existence of isolated
nodes may not function when a disconnected network is given. Moreover, the
size of the network can be problematic: depending on the implementation of a
complexity measure, it may not be possible to calculate the measure within a
reasonable amount of time. Even hardware issues can be a reason why certain
(more favorable) measures are chosen over lesser quality measures. Take the
entirety of the Facebook network as an example, with 2.5 billion active users [11]
the network is immense. Some computationally expensive measures are not ideal
to use, yet the expensive measure can be used effortlessly for a small high school
network.

The goal of this thesis is therefore not to compare the plethora of existing
complexity measures but to test and evaluate a handful of new complexity mea-
sures, where each measure attempts to determine a different aspect of a network.
Willenborg [39] attempted to create multiple measures of complexity, where each
measure captured separate aspects of a network’s complexity. In Section 4 these
measures of complexity are briefly discussed and explained. The focal point of
this thesis is thus the implementation of the methods proposed by Willenborg
and attempting to empirically evaluate these measures through experimental
findings.

Empirically evaluating novel measures gives insight into their practical uses,
as the measures could be limited by practical factors. Making use of random net-
work models allows for extensive testing since the parameters and usage of these
models have been researched extensively, such as the Barabási-Albert model [13].
The effects of slowly changing one or more simple parameters of these models
are thus theorized and proven. Using these random network models allows for
a better understanding of how a novel complexity measure behaves when the
network properties change. However, generated networks often are not a good
representations of real-world networks, only capturing one or more characteris-
tics of a real-world network. Additional testing on real-world network data is
therefore crucial, as to gain an understanding of how well a measure works, with
respect to what it is supposed to measure.

So far a handful of aspects have been mentioned that each affect the perfor-
mance of a measure. Whether a proposed measure is sufficient for the measuring
of a network’s complexity, will depend on the following criteria: scalability, ex-
plainability, generalizability and uniqueness. Each criterion plays an important
role in determining the need to use a complexity measure. The scalability of
a measure was already briefly mentioned, it concerns itself with how well the
computation of a measure changes when the size of the problem/network is
increased. How much practical information can be extracted is evaluated by
the explainability criterion: what exactly does the numerical value given by the
complexity measure tell about the network and how useful is it? Additionally, is
there a significant difference between the practical results of a measure and the
theoretical results? Generalizability ties in with the requirements of a measure,
some may only be useful in small networks, real-world networks, or any other
specific type of network. It could also be that a measure was specifically made



6 S. van Wageningen

for one particular type of network, as will be seen in Section 4. Lastly, a measure
may not be as unique as thought or even simply be a slightly tweaked existing
measure. On top of these discussable criteria, a check-list in the form of stated
axioms will be used, these axioms are given in Section 5.

In summary, the thesis at hand will attempt to answer the following question:
How can we empirically evaluate different measures of complexity, in
terms of accuracy, scalability, explainability, uniqueness and general-
izability, with the goal of capturing the most inherent properties of a
network?

The structure of the thesis is as follows: Section 2 will introduce some of the
preliminary terms and concepts that allow the reader to better understand the
content. Section 3 focuses on related work regarding inherent network similarities
and how network complexity can arise from simplicity. Section 4 introduces a few
familiar and novel complexity measures. These measures are classified, explained
and defined with the use of equations and examples. Section 5 dives into the
evaluation criteria, simulated and real-world network data, the alterations to
the measures, and the expected runtime performance of said measures. The
experimental setup with regards to the parameter settings, their expectations,
and the hardware and software are explained in Section 6. Section 7 presents
the results of the multitude of experiments performed. Section 8 dives deeper
into the results by aggregating the different experimental results and discussing
their practical implications and limitations, according to the evaluation criteria.
Lastly, Section 9 gives final remarks as well as possible future research.

2 Preliminaries

This section will cover basic definitions related to networks, centrality mea-
sures and matrix notation, as well as some basic real-world network properties.

2.1 Definitions and terminology

In this thesis, the terms network and graph are used interchangeably. Both
unweighted undirected graphs and unweighted directed graphs are used, hence-
forth referred to as graphs and digraphs respectively. Graphs are portrayed as G
= (V,E), whereas digraphs are portrayed as Gdi = (V,E). Set V indicates the
nodes/vertices V = {1, 2, ..., n} and E the set of edges in graphs or the set of
arcs in digraphs. Throughout the thesis n is used to denote the number of nodes
and m the number of edges.

It is common practice to use the terminology ’edge’ for both graph types,
yet in this thesis they are referred to as edges and arcs for graphs and digraphs,
respectively. Consider two nodes v and w, an edge is defined as {v, w} containing
both an arc (v, w) and a counter-arc (w, v). Digraphs differ from graphs in that
they can possibly have an arc between nodes without having a counter-arc, thus
not necessarily having edges. A digraph with a counter-arc for every arc is the
same as a graph with edges. The number of arcs/edges connected to a node is
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called the degree, whereas the indegree and outdegree refer to the number of
arcs pointing toward or from a node, respectively.

Connected graphs are graphs where every node can be reached from every
other node by traversing edges. Digraphs are considered weakly connected when
they can be transformed into a connected graph by converting arcs to edges.
In (weakly) connected (di)graphs, there is only a single component. This thesis
mainly uses the terms reachability and connectedness when referring to the state
of a graph’s connections. A connected graph is, by definition, fully reachable. A
strongly connected digraph is considered to have full reachability, as every node
can be reached from every other node.

Complexity measures are denoted by Cx with the subscript x indicating the
specific measure. Each measure is a function of the graph G or digraph Gdi, as
such: Cmeasure(G).

Table 1: Adjacency matrix of
graph in Figure 1

node 0 1 2 3 4 5 6

0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0
2 1 0 0 0 1 1 0
3 1 0 0 0 1 0 0
4 0 0 1 1 0 0 0
5 0 0 1 0 0 0 1
6 0 0 0 0 0 1 0

Table 2: Adjacency matrix of
digraph in Figure 2

node 0 1 2 3 4 5 6

0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 1 0
3 1 0 0 0 1 0 0
4 0 0 1 0 0 0 0
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0

Fig. 1: Example of a graph
with edges

Fig. 2: Example of a digraph
with arcs
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Some complexity measures are more easily defined using the adjacency ma-
trix representation of the input (di)graph. The adjacency matrix A is an n× n
matrix where row indices are the source and column indices are the target. An
element with a value of 1 indicates that there is an arc which points outward
from a node (source) towards another node (target). The style of row and col-
umn indices being sources and targets respectively is explicitly stated, as the
reverse interpretation can lead to the reverse digraph of the intended digraph.
In graphs this distinction is not important due to the natural symmetry of a
graph’s adjacency matrix. Furthermore, ιn refers to a column vector of all ones
of size n. I is the identity matrix of size n× n with all zeros, except for the di-
agonal which contains all ones. The inverse and transpose of a matrix or vector
M are portrayed by M−1 and M ′ respectively.

Lastly, the sentence ’if and only if’ is condensed to a single term ’iff’. Most of
the terms and explanations given in this section are reiterated in other sections
for reading clarity.

2.2 Real-world network properties

Real-world (social) networks often share the same characteristics [27]: they
are often relatively sparse meaning that the actual number of edges/arcs in a
given network is much smaller than the maximum number of edges/arcs pos-
sible. Furthermore, most real-world networks have a giant component which is
the largest subset of nodes of the network. When it comes to the distribution of
node degrees, typical real networks tend to have the same type of degree distri-
bution. The frequencies of degree values usually form a power law distribution
with a fat tail, or a lognormal distribution. The small world phenomenon refers
to the hypothesis that most, if not all, humans tend to be linked by mutual
acquaintances. This phenomenon is reflected in most real-world networks where
the average distance in the network is equal to six. Lastly, the number of trian-
gles (where a subset of 3 nodes are all connected to each other) is substantially
larger in real-world networks than the triangle counts in artificial networks. Most
complexity measures deal with these properties in one way or another, including
the measures discussed in this thesis.

Real-world networks may have multiple edges/arcs between the same nodes,
metadata of nodes and edges/arcs can contain weights and timestamps. These
types of additional network data can have an effect on the complexity of the
network. In this thesis, however, these characteristics are not included.

3 Related Work

This section focuses on network similarities, complex graph generation rules
and network complexity classification, three topics related to this thesis.
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3.1 Network Similarities

One of the problems of capturing network complexity is that there is no uni-
versal framework agreed upon within the network science community, according
to Butts [16]. Different formulations and definitions of network complexity are
given depending on the field of interest; software, physics, biological/organic,
social and finance networks are all examples of networks that can have different
characteristics yet they mostly inherit similar properties.

The characteristics of social networks, for example, tend to have similar prop-
erties regardless of the type of social network. Ugander et al. [36] analyzed a large
part of the Facebook network, one of the largest social networks ever analyzed,
and found that even such a network has an inherent basic anatomy. Facebook
has most if not all characteristics of real-world social networks, as described in
the previous section. A large component of 99% exists along with a large clus-
tering of triangles as well as the popular six degrees of separation phenomenon
which has been shown in other research [31].

In the case of biological networks, Stephan et al. found that even primate
cerebral cortex network structures adhere to small-world network architecture.
Barabási et al. [14] took it one step further and showed that regardless of the
type of biological network, large-scale biological networks mostly have universal
network topology characteristics. All in all, it has become apparent that on a
large scale, networks share a handful of intrinsic properties which can serve as a
guide to the quantification of network complexity.

3.2 Complexity from simplicity

Even though systems and networks may appear to be incredibly complex,
they are often defined by simple rules. For example, a flock of birds is visually
intriguing and appears as a complex system, yet the model for creating such flight
patterns is based on three simple rules that each individual bird is hardwired
to follow [20]. Similarly, when it comes to the generation of complex graphs, a
single simple rule can be enough to generate a complex topology. Wolfram [40]
links simple models, from which complex behavior can arise, with the possibility
of discovering a new fundamental theory of physics.

The following rule has the ability to create complex digraphs even after only
a handful of iterations:

{(v, w), (v, x)} → {(v, w), (v, y), (w, y), (x, y)}

The above rule states that any three nodes v, w, x with the following type
set of arcs (v, w), (v, x) is transformed into four nodes v, w, x, y with four arcs
(v, w), (v, y), (w, y), (x, y). The first transformation (iteration) of this rule is vi-
sualized in Figures 3 and 4. Figure 5 and 6 depict digraphs resulting from 2 and
15 iterations, respectively. After a handful of iterations (15) it becomes abun-
dantly clear that even such a simple transformation rule has the ability to create
a visually complex digraph.
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Fig. 3: Result of 0 iter-
ations

Fig. 4: Result of 1 iter-
ation

Fig. 5: Result of 2 iter-
ations

Fig. 6: Result of 15 iterations (figure from [40])

Though it is not seemingly possible to reverse engineer such a rule from a
given real-world network, the idea of complexity being the result of a simplistic
rule remains interesting. The question is then whether such a rule can be mini-
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mized by a single measure, or rather whether the subsequent network topology
resulting from the rule can be quantified.

3.3 Quantifying Complexity

The similarities of real-world networks and the complex patterns resulting
from simple rules have been discussed. The focus now lies on quantifying a
network’s complexity and evaluating the strength of this quantification. Dehmer
and Pickl [17] reviewed the uncertainty of when to use which complexity measure.
They stressed the importance of a measure having unique values for each unique
(di)graph: a complexity measure of a graph, that focuses on the topology of
the network, should not have the same value for a non-isomorphic graph Gi.
Figures 7 – 9 depict two isomorphic graphs and a non-isomorphic graph.

Fig. 7: Graph with 5
nodes and 4 edges

Fig. 8: Graph with 5
nodes and 4 edges

Fig. 9: Graph
with 5 nodes
and 4 edges
(non-isomorphic)

Even though the labels or orientation of the nodes may be different in Fig-
ures 7 and 8, the topology remains the same. The same cannot be said for
the graph in Figure 9. Intuitively, it then makes sense that a complexity mea-
sure attempting to quantify the structure of the graph should have the same
values when comparing a graph with its isomorphic brother. Additionally, the
non-isomorphic counter-part of a graph is expected not to have the exact same
complexity measure value as the graph. Dehmer and Pickl did find that the most
popular complexity measures used at that time were not immune to having simi-
lar values in non-isomorphic graphs. It does not necessarily mean that a measure
that does not defy the non-isomorphic dissimilarity is objectively bad. A catego-
rization of complexity measure classes is simply needed and more importantly a
good set of criteria for the evaluation of measures. The two classes of complexity
measures used in this thesis are connectedness and distance, which are touched
upon in Section 4.
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4 Complexity Measures

The network complexity measures, as proposed by Willenborg [39], could
potentially be used to characterize (di)graphs based on their topology and other
inherent properties. The following sections focus on measures for unweighted
(di)graphs. Section 4.1 focuses on measures based on subgraph identification
and analysis, whereas Section 4.2 describes measures that are interested in the
connection between nodes in terms of distance .

4.1 Connectedness

The first class is based on the concept of graph connectedness [24], the identi-
fication and analysis of subgraphs within a network. This concept can be applied
to both undirected and directed graphs.

4.1.1 Average Degree The most basic graph complexity measure is the
average degree measure.

Undirected graphs The degree of a random node v in a graph is equal to the
number of edges connected to node v. The average degree of graph G can be
calculated by using the following formula:

Cdeg(G) =
2m

n
(1)

As mentioned in Section 2, m and n represent the number of edges and nodes,
respectively.

Directed graphs Equation (1) holds for digraphs.

4.1.2 Routing complexity The routing complexity is a measure specifically
tailored for routing digraphs [38]. Routing digraphs are acyclic digraphs with a
single source node and a single sink node, these can also be referred to as starting
and ending nodes. The topology of routing digraphs can for example be found in
questionnaires where there is a predefined order of questions, in Figure 10 such
a digraph is shown.
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Fig. 10: Example of a routing digraph

Though this complexity measure deals with paths it does not bother with
path lengths but solely focuses on the number of paths. The intuition behind the
measure is that a routing digraph is, arguably, more complex the more paths it
has from source to sink.

Undirected graphs Many algorithms and complexity measures exist that find
the total number of paths between two nodes in graphs, yet for the proposed
complexity measure these are not worth exploring in detail as the focus of the
measure is purely on routing digraphs.

Directed graphs Routing digraphs from questionnaire have the interesting prop-
erty that the sink can be reached from any node in Gdi. Additionally, the inverse
digraph G←di of Gdi exists if the arcs are reversed and the source and sink are
swapped.

Even in small routing digraphs the number of paths from the source to the
sink can become quite large due to all possible combinations. Arguably, a routing
digraph with more possible ways of reaching the sink is more complex. The
complexity measure Crou(Gdi) deals with the number of paths from the source
to the sink and is defined as:

Crou(Gdi) = ln(π(Gdi)) = ln((In −A)−1)1,n (2)

Here, π represents the total number of unique paths from source to sink in
Gdi. Using the adjacency matrix A and the identity matrix I it is possible to
calculate this measure algebraically.

4.1.3 Arc symmetry Arc symmetry or asymmetry is a problem unique to
digraphs, since by definition an undirected graph has a counter-arc (w, v) for
every arc (v, w).
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Directed graphs Of a digraph Gdi the level of arc asymmetry can be used as
a measure for complexity. The more arc asymmetry present in a digraph the
more complex it will be, arguably. The arc symmetry can be quantified in the
following manner:

Θ(A,A′) = max{A,A′} −min{A,A′}

Here,Θ(A,A′) is an n×nmatrix where each entry(i, j) is equal to max{ai,j , aj,i}
- min{ai,j , aj,i}. Iff the matrix Θ(A,A′) is equal to 0 then perfect arc symmetry
exists in the digraph and it can therefore be treated as an undirected graph.
With Θ the complexity measure Csym can be defined:

Csym(Gdi) =
ι′nΘ(A,A′)ιn
n(n− 1)

(3)

Here, ιn represents a column vector of all ones of length n. Since the property
ι′nΘ(A,A′)ιn ≤ n(n− 1) holds true, the following also holds true 0 ≤ Csym ≤ 1.
A value of 1 indicates the digraph has no saturated arcs whereas a value of 0
indicates that the digraph is fully symmetric.

However, the arc symmetry complexity is quite plain, it disregards all infor-
mation of the digraph except for the arc symmetry. Two separate digraphs will
have the same Csym iff they have the same number of nodes and same number of
arcs without counter-arcs, yet their topologies and reachability, for example as
measured using the measures in Section 4.1.4, may vary enormously. Two simple
examples of such an occurrence are depicted in Figure 11 and 12.

Fig. 11: Csym = 0.27 Fig. 12: Csym = 0.27

The digraph in Figure 11 is not fully reachable and has a Csym value of
0.27. Similarly, the digraph in Figure 12 also has a Csym value of 0.27, it is,
however, fully reachable and has a topology which is structurally different from
the digraph portrayed in Figure 11.
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4.1.4 Reachability When dealing with undirected graphs, the terms con-
nectedness and reachability are interchangeable. However, in digraphs the term
reachability is solely used due to the presence of arc asymmetry. In digraphs an
arc from node v to node w may or may not have a counter-arc from w to v. Ad-
ditionally, the existence of a path between two nodes (v, w) does not guarantee
the existence of a path (w, v). A digraph is called a fully reachable digraph when
there is a path which connects nodes v and w, for each existing pair of nodes
v and w. Determining how far removed a digraph is from its fully reachable
counterpart is worth exploring as a measure of complexity.

Directed graphs Three procedures of determining the complexity of a digraph
in terms of reachability are considered, namely a probabilistic approach Cpro

and two deterministic approaches, Cdet and Cent. The probabilistic approach
Cpro directly augments the digraph by adding counter-arcs and the deterministic
approaches compute how far removed from reachability the digraph is. Pairs of
nodes v, w that have an edge {v, w} (and thus an arc and a counter-arc) will
be referred to as saturated pairs; whereas pairs of nodes that only have a single
arc (v, w) or (w, v) will be named unsaturated pairs. If a given digraph Gdi has
u unsaturated pairs of nodes, the number of possible different augmentations is
equal to 2u − 1.

The proposed complexity measures use full reachability as a criterion. There-
fore it is necessary to be able to verify whether a digraph is fully reachable or
not. Warshall’s algorithm [21] can be used to calculate the transitive closure
matrix A∗ of the adjacency matrix A. The criterion of full reachability can then
be tested by checking if A∗ = J .

First, the deterministic approach is considered. The required minimum num-
ber of arcs needed to make a given digraph Gdi fully reachable is used, the
deterministic digraph complexity Cdet is then easily defined but challenging to
compute.

Cdet(Gdi) =
v(Gdi)

m
(4)

Here, v(Gdi) in (4) is the minimum number of arcs added to Gdi. Determining
v(Gdi) is the challenging part, the largest possible number of arcs added, the
upper bound, would be equal to adding counter-arcs in the digraph wherever
possible, which at most would be m but could potentially be smaller based on
the topology of the digraph.

Second, arcs can be actively added to a digraph in a probabilistic manner.
The idea is to repeatedly generate augmented digraphs with a varying proba-
bility parameter p, where p is the probability of adding a counter-arc to the
digraph. In random generated graph generation algorithms, where p would be
the probability of adding an arc between two nodes, there exists a probability p
for which the generated graph is connected with probability 1. The same con-
cept can be applied to define a probabilistic reachability complexity measure
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Cpro where pc is the minimum probability for which every augmented digraph
of a digraph Gdi becomes fully reachable.

Cpro(Gdi) = pc (5)

Estimating pc can be done with the use of experiments: for a specific proba-
bility p repeatedly draw samples and denote the fraction of samples that attain
full reachability. Starting from 0, pc can be slowly increased up until the afore-
mentioned fraction becomes 1 or very close to 1. This probabilistic approach is
computationally very intensive, however.

The third, and less computationally expensive, measure is the proposed en-
tropy complexity. Using the transitive closure matrix A∗, the distributions of
how often a node appears in a reachability set of another node (for all nodes)
can be calculated as such:

∆ =
ι′A∗

ι′A∗ι

Here, ∆ can be used to find the proposed complexity measure entropy Cent

Cent(∆) = −
∑
v∈V

∆(v)ln∆(v) (6)

The more reachable a digraph Gdi is, the smaller the value of entropy will
be.

4.2 Distance

The second class concerns the connection between two nodes in a (di)graph,
also called a path. A path can be represented by a list of all the nodes starting
from node v and ending in node w, the length of the path is then equal to the
length of this list minus 1. A path from node v to node w can have a length in
the interval [1,∞] where a length of ∞ indicates that there is no path between
the two nodes (or that the length is equal to∞ which occurs in infinite graphs).

4.2.1 Average Distance The average distance complexity measure is rela-
tively straightforward, it deals with finding the distance matrix

D = (dvw)

of a connected (di)graph, where dvw is the minimum length of the path in
G connecting nodes v and w. This measure is known as one of the most robust
techniques used to quantify a network’s topology [18]. For example, the distance
matrix D of the example graph depicted in Figure 1 can be seen in Table 3.
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Table 3: Distance Matrix D, Cdis = 1.81
node 0 1 2 3 4 5 6

0 0 1 1 1 2 2 3
1 1 0 2 2 3 3 4
2 1 2 0 2 1 1 2
3 1 2 2 0 1 3 4
4 2 3 1 1 0 2 3
5 2 3 1 3 2 0 1
6 3 4 2 4 3 1 0

Undirected graphs The average distance over all different pairs of nodes in a
graph G is defined as Cdis:

Cdis(G) =
1

n(n− 1)

∑
v,w∈V

d(v, w) (7)

Directed graphs The complexity measures as described above can also be applied
to digraphs:

Cdis(Gdi) =
1

n(n− 1)

∑
v,w∈V

∑
w,v∈V

d(v, w) (8)

In this case, however, both paths of the node pairs (v,w) and (w,v) are of
interest. Due to arc asymmetry these paths may not be the same length.

4.2.2 Route search The route search problem, which is related to the Chi-
nese postman problem, deals with the issue of finding the most efficient path in
a connected graph. The goal is to find the shortest closest path or circuit that
visits every edge in the graph. The unit of interest is the length of the resulting
path. For connected graphs, an adaptation of the Chinese postman problem is
used.

Undirected graphs The following constraints must hold true for the computation
of the route search complexity Csea:

1. The search is continuous.
2. The search covers all edges of the graph
3. The path associated with the search should be of minimal length.

The route search complexity is defined as:

Csea(G) =
λG
τG

(9)

λG refers to the search of the graph with the constraints as described above,
in this case the starting node does not have to be the ending node, although that



18 S. van Wageningen

may occur in some graphs. τG considers a tour of the graph. τG has the same
constraints as above but with an additional rule that the starting node should
always be equal to the ending node. Additionally, the edges may be visited more
than once.

These variables are closely related to Eulerian paths and Eulerian tours/cycles.
A Eulerian path visits every edge in a graph exactly once whereas the Eulerian
tour/cycle (if it exists) visits every edge exactly once while starting and ending in
the same node. Iff the existence of an Eulerian cycle in the graph can be proven,
Csea is equal to 1, as both terms are equal to each other. Euler’s Formula [12]
states the following: a connected graph has an Eulerian cycle iff every node has
an even degree whereas a connected graph has an Eulerian path iff every node
has an even degree or every node has an even degree except for two nodes with an
odd degree. These types of graphs are called Eulerian and semi-Eulerian graphs,
respectively. Figures 13 and 14 depict a Eulerian and semi-Eulerian graph. The
solution to finding the Eulerian graph from the semi-Eulerian graph is to add a
single parallel edge at the optimal spot, thereby effectively retracing/revisiting
that edge.

Fig. 13: Eulerian graph λG =
τG = 12, Csea = 1

Fig. 14: Semi-Eulerian graph example, λG =
9, τG = 10, Csea = 0.9

τG can be calculated by finding the length of the Eulerian cycle whereas λG
is equal to the length of the Eulerian path. In Figure 14 λG is equal to 9 as
the most optimal search starts in node 3 and ends in node 4 per the following
sequence of edges: ({3, 2}, {2, 1}, {1, 0}, {0, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7,
4}). τG in Figure 14 is then equal to 10, it has the same sequence of edges plus
the addition of {4, 3}. Theoretically, the difference between these two variables,
τG and λG, becomes smaller and smaller as the graph increases in size, since it
is only a single path that makes the difference.

Directed Graphs The route search complexity can also be used in digraphs
though different approaches will have to be explored. Similarly, if the digraph
is Eulerian and thus contains a Euler cycle then Csea(Gdi) = 1. However, for
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digraphs finding a solution to this problem becomes much more difficult than
for graphs as digraphs are required to be strongly connected to find a solution.

5 Methods

The methods section is divided into four subsections: the criteria for com-
plexity measures, the simulated network data, the real-world network data, and
the computation of measures, each with their own subsections.

The criteria for complexity measures subsection goes over the axioms and
criteria used to evaluate the complexity measures. The simulated and real-world
network data subsections discuss the artificial networks and real-world networks
used, respectively. Lastly, the computation of measures subsection describes the
measures that are to be evaluated, as well as their adaptations, algorithms and
time complexity.

5.1 Criteria for Complexity Measures

Two methods of evaluating the network complexity measures are presented.
A theoretical evaluation in the form of eight axioms, as presented in Section 5.1.1.
In Section 5.1.2 four empirical evaluation criteria are given.

5.1.1 Axioms A method of evaluating complexity measures was developed
by Butts [16] in the form of eight axioms. When a complexity measure satisfies
the most important axioms, then it can be said that the measure is able to
provide some useful information regarding the network. The relaxation and/or
violation of one ore more axioms is what distinguishes measures from one another
and allows for a check-box-like manner of evaluation and comparison. The eight
axioms are as follows:

1. The given complexity measure should return a cardinal real number.
2. Random variables should not be part of the measure.
3. Given any finite (di)graph, it is expected that the (di)graph measure C is

able to supply some value.
4. A complexity measure’s result should not be unbounded.
5. A complexity measure’s value can never be smaller than the complexity of

a complete (di)graph of size 1.
6. The labeling of nodes should not have an effect on the complexity of the

(di)graph.
7. A (di)graph’s components should not be more complex than the (di)graph

itself.
8. Changing the representation of a (di)graph should not have an effect on the

complexity measure.

The first four Axioms 1 – 4 are related to basic yet non-trivial statements
which should hold mostly true for (almost) all complexity measures. Axioms 5 – 8
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are considered to be more reasonable to violations; the measure may, for example,
specifically relax an axiom to differ itself from other measures.

All of the axioms described above can and will be used as a check-list for new
measures. Yet for the creation of new measures some other criteria, as mentioned
in the introduction, have to be introduced and discussed rather than following
a simple check-list.

5.1.2 Criteria The purpose of the developed complexity measures is to char-
acterize separate aspects of networks. To evaluate the usefulness of each measure
four criteria are considered. Each criterion focuses on an important quality of
the measure.

1. Explainability, to what extent does the measure’s value explain the network’s
complexity? Is there a disparity between what each measure theoretically
should capture, versus what its practical results show? As each measure has
its own characteristics, the explainability of a measure concerns itself with
the practical information that can be extracted from a measure’s results.

2. Generalizability of a measure is an important consideration, whether the
usage of the measure is applicable and/or useful in every type of graph.

3. Scalability refers to how much more difficult the computation of measure
becomes as the (di)graph grows. Thus, the scalability of a measure goes
hand-in-hand with the algorithm to compute the measure. If a measure has
been proven to be incredibly useful with regards to other criteria, possible
developments and improvements can be made to how well the measure scales.
Section 5.4.5 touches upon this criterion through expectations.

4. Uniqueness, how unique is complexity measure? The research behind com-
plexity measures in the field of computation network science is extensive;
certain (similar) measures may be created independently from each other.
Moreover, some measures may have been inspired by others or developed
with minor improvements to the original.

5.2 Simulated network data

In order to evaluate each measure based on the aforementioned criteria, they
will be tested on various generated (di)graphs before real-world networks are
tested. Generated networks are not good indicators of real-world networks but
are useful in that the parameters can be tweaked and the effects of those param-
eter settings can be explored. For instance, the number of edges can be varied
with a fixed number of nodes thus allowing for testing on graphs with different
levels of density.

Five different random graph models are considered: Complete, Barabási-
Albert, Scale-Free, Erdős-Rényi (di)graphs and routing digraphs, each with its
own unique characteristics and parameters, thereby creating new testing envi-
ronments for every measure.
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5.2.1 Complete (di)graphs The interesting property of a complete (di)graph
is that every node is directly connected to every other node. Hence, there is only
a single parameter, the number of nodes n. With n nodes in a graph every node

has n− 1 edges and therefore the total number of edges m is equal to n∗(n−1)
2 .

The resulting (di)graph is incredibly dense and can be considered the worst case
scenario for the computation time of numerous complexity measures (though
not necessarily every measure). The information regarding computation time is
incredibly insightful when it comes to complete (di)graphs whereas the values of
the proposed measures should remain relatively constant with respect to their
boundaries and may not be that interesting. The time results of experiments per-
formed on complete (di)graphs are therefore incredibly helpful for the scalability
criterion.

5.2.2 Barabási-Albert graphs Barabási-Albert graphs are randomly gener-
ated graphs with two simple parameters, the number of nodes n and the number
of edges each added node forms mb. Each graph starts with mb number of nodes;
nodes are then added continuously and connected to existing nodes by mb num-
ber of edges where new nodes prefer connecting to nodes with a high degree. As
a result, the number of edges in the graph will always be equal to mb ∗n− (m2

b).
Since newer nodes prefer connecting to nodes with a high degree, the degree
distribution will be scale free.

5.2.3 Scale-Free digraphs The Barabási-Albert model does not exist for
directed graphs and therefore a suitable replacement had to be found. Since the
degree distribution of the Barabási-Albert model is scale-free, the best alter-
native was the scale-free digraph from Bollobás et al. [15]. This new model is
similar to the Barabási-Albert model in that the probability of connecting a new
node to an existing node is proportional to the degree of the existing node; in
this digraph case it is proportional to the in and out-degree. The model has five
parameters: a probability β of adding an arc between existing nodes, a probability
α of adding a new node connected to an existing node based on the in-degree
distribution, a probability γ of adding a new node connected to an existing node
based on the out-degree distribution, a bias for choosing the nodes from the
in-degree distribution, and finally the number of nodes n.

5.2.4 Erdős-Rényi (di)graphs Erdős-Rényi (di)graphs are similar to Barabási-
Albert graphs in that they both allow for the manipulation of the number of
edges created in the network and the number of nodes n. However, the parameter
of the Barabási-Albert model fixes the number of edges whereas the parameter
of the Erdős-Rényi model sets a probability p of connecting each and every node
to each other. Thus, as n goes to∞ the expected number of edges will get closer
to
(
n
2

)
p.
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5.2.5 Routing digraphs As explained in Section 4.1.2, routing digraphs are
a special type of acyclic digraphs. A routing digraph does not contain any cycles
and is therefore not fully reachable/strongly connected. It is, however, always
weakly connected with a path from every node to the sink node, and a path from
the source node to every other node. Algorithms for the random generation of
routing digraphs, specifically, do not exist. Luckily, it is not difficult to create an
algorithm for creating acyclic digraphs. With a few adjustments the constraints
of a single source and sink node can be added. Algorithm 1 in Appendix A
shows how a routing digraph can be generated, the newly created algorithm is
similar to the Erdős-Rényi model in that it has two parameters: a probability p
of connecting nodes to each other independent of other nodes’ distributions, and
the number of nodes n.

5.3 Real-world network data

It is important to see how informative the complexity measures are when it
comes to real-world networks. Therefore, open-source (di)graphs were extracted
and tested upon. Additionally, Statistics Netherlands provided a large real-world
network for testing purposes.

5.3.1 Open-source (di)graphs Six real-world graphs were reused from pre-
vious work, their sources are depicted in Table 19. These specific graphs were
chosen since they had no multiple edges between the same nodes nor did they
allow for self-loops. Some graphs had weighted edges but weights were ignored in
the computation of the measures. Most importantly, for each graph the largest
connected component was taken and the operations were subsequently performed
on these largest connected components. Graph density was not a criterion for
the graph selection process. Similarly, seven open-source digraphs, as portrayed
in Table 20, were used that were also unweighted and contained no self-loops.
The largest weakly connected component from each digraph was taken and used.

5.3.2 Statistics Netherlands (di)graphs One network was provided by
Statistics Netherlands, a network depicting the business relations between com-
panies and buyers in the Netherlands. The arcs in the business network indi-
cated a relationship between a provider and a buyer. The original network was
far too large (∼200,000,000 arcs) to analyze. Therefore, samples were repeatedly
taken using a simple edge sampling technique where a sample with m arcs was
taken with probability

msample

mtot
. It is debatable whether the simple edge sampling

technique can create representative samples; Hu and Lau [25] found that edge
sampling reduces the average degree and also does not sample existing network
neighborhoods well. Additionally, Leskovec and Faloutsos [30] concluded that
the Random Walk and Forest Fire sampling algorithms perform best when a
sample of 25% was taken; however, they also mentioned that a 15% sample is
usually large enough to match the properties of the real graph. Multiple samples
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in the range of 0.1% and 0.3% were taken from the business network; for these
small samples all seven measures, as seen in Section 5.4, could be calculated.
The difference in sampling techniques would thus have been minimal with such
small samples.

5.4 Computation of measures

5.4.1 Original Measures Even though numerous measures are proposed in
Section 4, not every measure is fit to be tested on every type of graph. The mea-
sures that were chosen to be tested on both graphs and digraphs: the average
degree Cdeg (1) and the average distance Cdis (7). The search complexity Csea

(9) is only tested on graphs, whereas the following measures are tested on di-
graphs and routing digraphs: the routing complexity Crou (2), the arc symmetry
Csym (3), entropy Cent (6) and the probabilistic reachability Cpro (5).

5.4.2 Measures Adaptations Three measures, Csym, Cent and Cpro, were
slightly changed with respect to their definitions. Additionally, new algorithms
had to be developed for Cpro and Csea as their definitions did not indicate how
to calculate their elements.

Intermediate experiments for Csym showed that even with a low number of
saturated arcs, Csym would still be incredibly close to 0, and thus indicating
a large amount of arc symmetry, due to the n(n − 1) term. Therefore (3) was
changed to the following, where s indicates the number of saturated arcs:

Csym(Gdi) = 1− s

m
(10)

Furthermore, the calculation of Cent, as shown in (6), was changed into (11)
so that the resulting values would always be between 0 and 1 as such 0 ≤ Cent ≤
1.

Cent(∆) = 1 +

∑
v∈V ∆(v)ln∆(v)

ln(n)
(11)

A Cent value of 0 would indicate that the digraph is fully reachable whereas
a value of 1 would mean that the topology of the digraph is incredibly far away
from being fully reachable.

Additionally, the probabilistic reachability complexity Cpro was altered. The
original calculation would calculate the minimum probability in which every
augmented digraph would become fully reachable, after adding counter-arcs. The
problem with this method is that nodes with an outdegree of 0 or an indegree of
0 set the theoretical minimum probability. Figure 15 shows a very simple digraph
where this is the case.
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Fig. 15: Example graph of problematic nodes for the original Cpro

Node 8 only has a single arc pointing towards it and thus must always acquire
a counter-arc in order to achieve full reachability in the digraph. Augmenting
the digraph (by adding a counter-arc with probability p) MC times, will lead
to a p ∗MC fully reachable digraphs due to the presence of node 8. Removing
nodes such as node 8 is possible but the problem still occurs for nodes 2 and 7.
Therefore, a different approach to tackle this problem was created. The definition
of Cpro only changes in notation:

Cpro(Gdi) = pchange(p,MC, δ, ε) (12)

In (5) the minimum probability pc, for which each augmented digraph will be-
come fully reachable with probability p, was calculated. Now pchange(p,MC, δ, ε)
is calculated, the probability for which a δ change in the probability p does not
lead to an increase of the size of the largest strongly connected component by
at least ε.

5.4.3 Measures Algorithms An algorithm to calculate Cpro was created
and is displayed in Algorithm 2 in Appendix A. The algorithm terminates when
increasing the probability does not lead to a substantial increase in the size of
the largest strongly connected component.

Additionally, Section 4.2.2 described how Csea is defined in (9). The two
components, λG and τG, both find a continuous search of minimal length of all
edges in the graph, though τG specifies that the search has to start and end in
the same node. The solution to this problem is to convert the graph into semi-
Eulerian and Eulerian graphs to calculate λG and τG, respectively. The algorithm
that implements said solution can be seen in Algorithm 3 in Appendix A.

5.4.4 Measures Overview A quick overview of the measures to be used and
their possible ranges of values can be seen in Table 4
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Table 4: Complexity Measured to be used in experiments, their value ranges and
time complexities

Overview Measures

Name Graph Measure Notation Range Time Complexity

Average Degree Cdeg (0, n− 1] O(1)
Average Distance Cdis (0,m] O(n(m+ nlog2(n))

Search Complexity Csea (0, 1] O(n(m+ nlog2(n)) + n2log(n))

Name DiGraph Measure Notation Range Time Complexity

Average Degree Cdeg (0, n− 1] O(1)
Average Distance Cdis (0,m] O(n(m+ nlog2(n))

Symmetry Complexity Csym [0, 1] O(m)
Entropy Cent [0, 1) O((n+m))

Probabilistic Reachability Cpro [0, 1] O(imax ∗m)

Routing complexity Crou (0, ln(2(n−2))] O(n2m)

5.4.5 Time complexity When discussing the performance of some algo-
rithm, with respect to the execution time, the term time complexity or big-O
notation is used. For the measures, as described above, the theoretical worst case
time complexities are displayed in Table 4.

The average case time complexities of Csea and Crou will most likely be
much better than their worst case time complexities. The calculation of Csea

will take the longest when all nodes in the graph have an odd degree which is a
highly unlikely real-world scenario. Additionally, both Cdis and Csea make use
of Dijkstra’s algorithm [18] which has O(n(m + nlog2(n))) but can perform at
Θ(n(m + log2(n))). Moreover, the costly part of computing Crou is taking the
inverse of a matrix, which can have a cubic time complexity ofO(n3) if the matrix
only has non-zero elements. Since the matrix used in the calculation of Crou will
only have m elements the big O will at most be O(n2m). The experiments will
shed light on the Θ of the other measures.

6 Experimental Setup

6.1 Experimental settings

Two types of experiments were used in combination with differing random
(di)graph models. First, the number of nodes varied (from 50, 100, 200, 400, 800,
1000, 1500, 2000, 2500 to 3000 nodes) and the parameter(s) of the models were
fixed. Secondly, the number of nodes was fixed (1000 nodes) and the parameter(s)
of the models varied for 50 (di)graphs.

6.1.1 Complete (di)graphs Complete (di)graphs only have a single param-
eter, the number of nodes. Therefore only the first experimental setup could be
used with the aforementioned varying numbers of nodes.
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6.1.2 Barabási-Albert graphs The number of nodes and the number of
edges each node acquires mb are the two parameters in Barabási-Albert graphs.
The first setup kept mb fixed at 2 and the second setup kept n fixed at 1000
with mb ranging from [1, 50] with steps of 1.

6.1.3 Scale-Free digraphs The default parameters were used to create the
scale-free digraphs in the first experimental setup: A 0.54 probability β, a 0.41
probability α, a 0.05 probability γ, a bias of 0.20 and the similar number of
nodes parameter settings as Barabási-Albert graphs. The second experimental
setup had the same bias and γ but kept n fixed at 1000. Moreover, β started at
0.20 and increased by 0.01 whereas α started at 0.75 and decreased by 0.01. The
ranges for β and α are thus as follows: [0.20, 0.69] and [0.75, 0.26], respectively.

6.1.4 Erdős-Rényi (di)graphs Erdős-Rényi (di)graphs, with a certain min-
imum probability, will almost always be (weakly) connected. Most of the exper-

iments played with this threshold of connectedness which lies around ln(n)
n [19].

In all cases, the largest connected component was taken and analyzed if by any
chance the probability failed to create a single (weakly) connected component.
In the first setup, the probability p was kept constant relative to the number

of nodes i.e. 2 ln(n)
n with only the number of nodes as the changing parameter.

In the second setup, the number of nodes was fixed at 1000 but the probability

varied; the maximum probability was set to 2 ln(n)
n 10 where the minimum prob-

ability and step size were both equal to
2

ln(n)
n 10

50 . Thus the probabilities ranged
from [0.0028, 0.1399] with steps of 0.0028.

6.1.5 Routing digraphs Since the algorithm for the generation of routing
digraphs was inspired by the Erdős-Rényi model, the minimum probability of

weakly connectedness of ln(n)
n was reused. The parameter values used in the

routing digraph experiments were thus kept exactly similar to the ones of the
Erdős-Rényi (di)graphs experiments.

6.2 Measure expectations

Up until this point in Section 5, the measures have been summarized, the
models used to generate the random (di)graphs have been explained and the
two experimental settings have been discussed. The final step is to write down
the expectations of how a measure value will change when the parameter(s) of
a model increase(s) or decrease(s). Table 5 depicts these expectations.
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Table 5: Models measure expectations

Model n m mb p ααα βββ Cdeg Cdis Csea Csym Cent Cpro Crou

Barabási-Albert Setting1 ⇑ ⇑ ⇔ ⇔ ⇑ ⇑
Setting2 ⇔ ⇑ ⇑ ⇑ ⇓ ⇑

Scale-Free model Setting1 ⇑ ⇑ ⇔ ⇔ ⇔ ⇔ ⇔ ⇓ ⇓
Setting2 ⇔ ⇑ ⇓ ⇑ ⇑ ⇑ ⇓ ⇓ ⇓

Erdős-Rényi Setting1 ⇑ ⇑ ⇔ ⇑ ⇔ ⇑ ⇔ ⇓ ⇓
Setting2 ⇔ ⇑ ⇑ ⇑ ⇓ ⇑ ⇓ ⇓ ⇓

Routing model Setting1 ⇑ ⇑ ⇔ ⇑ ⇔ ⇔ ⇓ ⇓ ⇑
Setting2 ⇔ ⇑ ⇑ ⇑ ⇓ ⇔ ⇓ ⇓ ⇑

The rows in these tables denote the experimental setting. The bolded column
header stresses that the changes in that column’s parameter cause the changes
in the measure values. The left to right arrow ⇔ shows that the parameter
value remains the same. The Erdős-Rényi model had a constant p relative to
the number of nodes, therefore in Setting1 in these models, the p is depicted as
unchanging even though the actual values do change.

6.3 Hardware and Software

The proposed complexity measures and node ranking measures were imple-
mented in Python 3.7.1 64-bit using the Spyder 3.3.2 IDE. The Python pro-
gramming language was chosen due to the wide variety of public tools (pack-
ages) available that immensely aid in visualizing networks and allowing easy
computations. The ’networkx’ package [23] was a huge asset to the production
of these new measures. The package removed the necessity of the usage of adja-
cency matrices and matrix calculations in most cases. Additionally, it allowed for
easy acquisitions with respect to basic network information, such as the number
of nodes, as well as network alterations. Moreover, the networkx package has
built-in complexity measures and random graph generators which were used in
the experiments of this thesis. Appendix C contains the packages used in these
experiments as well as their (advised) versions.

The experiments performed on generated (di)graphs and open-source (di)graphs
were executed on a Windows 10 64-bit machine with 8 GB of RAM and an
i5-5200 CPU processor with 2.20 GHz. Due to the sensitivity of the data pro-
vided by Statistics Netherlands, the experiments performed on their data were
executed on their own machines, via a virtual machine connection, with the fol-
lowing specifications: Windows 10 Enterprise 64-bit, 8 GB RAM and an Intel
Xeon Gold 6146 CPU with 3.20GHz.
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7 Results

The results section will contain the measure outcomes as well as the execu-
tion times of the experiments performed on generated (di)graphs, open-source
(di)graphs and large digraphs provided by Statistics Netherlands.

7.1 Generated (di)graphs

7.1.1 Complete graphs Even though the properties of complete graphs and
digraphs are well known, experiments are incredibly helpful as to determine how
well any given measure scales.

Table 12 depicts the results of the experiments performed on complete graphs.
The three complexity measures Cdeg, Cdis and Csea were computed, their com-
putation times are portrayed in each measure’s column to the right with the
header ’t (sec)’ which indicates the execution time taken in seconds.

As previously mentioned, the resulting measure values are not that interest-
ing due to the nature of complete graphs. What is, however, interesting to note
is that the complexity measure Csea approaches the maximum value of 1. A Csea

value of 1 can be attained when there already is an Eulerian cycle in the graph
or due to rounding as it approaches 1. Each node’s degree is uneven thus there is
no Eulerian cycle present. The experiments in the other sections will shed light
on the behavior of Csea.

The time complexity of Cdeg is simply a constant and is therefore Θ(1),
since this holds true for all other experiments this will not be reiterated. The
measure Cdis has been tried and tested many times over and has a worst case
time complexity of O(n(m + nlog2(n)), the results from Table 12 indicate that
the measure performs better than expected and adheres to Θ(n(m+ log2(n))).

The measure Csea was not computed for complete graphs with 800 nodes and
more, due to the drastic increase in computation time. It is therefore difficult
to estimate the time complexity of this measure. Theoretically, the worst case
time complexity of Csea is equal to O(n2(m+nlog2(n))+n2log(n))), this occurs
in the event that each and every node has an odd degree on top of the worst
case time complexity of Dijkstra’s Algorithm. Since the implementation of Csea

makes use of Cdis, a performance of O(n2(m + log2(n)) + n2log(n))) can be
expected. The results indicate that the algorithm performs much better than
O(n2(m+ log2(n))+n2log(n))) though there is not enough data to fully support
that argument.

7.1.2 Complete digraphs In Table 13 the results of the experiments per-
formed on complete digraphs are portrayed. Five complexity measures were eval-
uated, namely: Cdeg, Cdis, Csym, Cent and Cpro.

Similarly to complete graphs, Cdis is 1. The arc symmetry complexity Csym is
equal to 0 when there is perfect arc symmetry which only occurs when a graph is
treated as a digraph or in the case of complete digraphs, as shown by the match-
ing results of Table 13. Since complete digraphs are fully reachable/strongly
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connected the entropy values should, and are, equal to 0. Additionally, the algo-
rithm for Cpro starts with a default probability of 0.3 which leads to each result
having a value of 0.3.

The algorithm for Cdis follows Θ(nm) almost perfectly. The algorithm for
the Csym measure only makes use of a single pass over the edge list resulting
in a theoretical time complexity of O(m), the data support the theory as the
algorithm for Csym performs slightly better than Θ(m). The measure Cent has
a worst case time complexity of O((n + m)). The findings in Table 13 indicate
that the computation of Cent performs slightly better than its expected big O
of O(n + m). The number of iterations for Cpro stay fixed, since there are no
unsaturated arcs, therefore O(imax∗m) is equal to Θ(m). All data points, except
the graph with 3000 nodes, support this claim.

7.1.3 Barabási-Albert graphs Two experimental setups were used. Firstly,
the results of the first setup are given. The average degree Cdeg approaches 2m
as n goes to∞. The average distance Cdis increases as the number of nodes and
edges increase, in fact this trend follows the following equation Cdis ∼ ln(n) for

small n but for large n this becomes Cdis ∼ ln(n)
lnln(n) according to the inventor

of the Barabási-Albert model[13]. Similarly to the complete graph results, Csea

approaches 1 as the size of the graph increases. These findings match what was
theorized in Section 4.2.2.

In the second setup, the average degree goes up as the number of edges
increases with a fixed n; in fact the number of edges m follows the following rule
m = n ∗mb −m2

b . Cdis goes down as the number of edges increases, which is as
expected. Once more, the trend of Csea approaching 1 is visible. The difference
between the expected changes and the actual changes are given in Table 6.

Table 6: Barabási-Albert model measure expectations comparison

n m mb Cdeg Cdis Csea

Setting1expected ⇑ ⇑ ⇔ ⇔ ⇑ ⇑
Setting1actual ⇑ ⇑ ⇔ ⇑⇑ ⇑ ⇑

Setting2expected ⇔ ⇑ ⇑ ⇑ ⇓ ⇑
Setting2actual ⇔ ⇑ ⇑ ⇑ ⇓ ⇑

The time complexity Cdis appears to follow the pattern of Θ(nm). The big
O of Csea O(n2(m + nlog2(n)) + n2log(n))) was not attained. Csea appears to
perform better than Θ(nm+ n ∗ log(n)).

7.1.4 Scale-Free digraphs The results in Table 15 indicate that the average
degree Cdeg slowly increases as the number of nodes increase. Though, theoreti-
cally, Cdeg should remain the same irregardless of the number of nodes due to the
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same probabilities being used. The average distance Cdis results are deceiving,
a Cdis value should give the average path length between all nodes; a value of
0.2392 says that, on average, any node can reach another node in 0.2932 steps
which is not possible. The density is the culprit for the deception: if the digraph
is not fully reachable then some nodes cannot reach other nodes, the distance
between those nodes is then measured as 0. This is a limitation of the imple-
mentation of the average distance measure and may skew results. Interestingly,
Csym increases as the network grows in size which is unexpected as the density
of the digraphs increases slightly. The Cent show a small decreasing trend. It was
expected that the networks with low Cpro values, such as the networks with 50,
200 and 400 nodes, would have the lowest Entropy values, but this appears not
to be the case. The Cpro results show that most of the scale-free digraphs are
incredibly far removed from being fully reachable.

In the second experimental setting, the probability of adding an arc between
a new node and an existing node based on the in-degree distribution (α) started
out high and ended low. The probability of adding an arc between existing nodes
(β) started out low but ended high. As mentioned in the measure expectations
section, these changes would lead to more interconnectivity in the digraph and
thus higher values of Cdeg and Cdis and lower values of Csym, Cent and Cpro.
These expectations are mirrored in the experiments’ findings with the exception
of the results of the probabilistic reachability complexity Cpro. Table 7 portrays
these found differences.

Table 7: Scale-Free model measure expectations comparison

n m ααα βββ Cdeg Cdis Csym Cent Cpro

Setting1expected ⇑ ⇑ ⇔ ⇔ ⇔ ⇔ ⇔ ⇓ ⇓
Setting1actual ⇑ ⇑ ⇔ ⇔ ⇑⇑ ⇔ ⇑⇑ ⇓ ⇔⇔

Setting2expected ⇔ ⇑ ⇓ ⇑ ⇑ ⇑ ⇓ ⇓ ⇓
Setting2actual ⇔ ⇑ ⇓ ⇑ ⇑ ⇑ ⇓ ⇓ ⇔⇔

The time complexities of Cdis and Csym cannot be estimated with the find-
ings in Table 15 since the computation times are incredibly low making it too
inconsistent. The same holds true for the time complexity of Cent. The Cpro

results indicate that the algorithm performs much better than Θ(imax ∗m).

7.1.5 Erdős-Rényi graphs The results of both experimental settings, as de-
picted in Table 16 show an increasing trend in Cdeg as expected. As the number
of nodes increases and the probability remains constant with respect to the num-
ber of nodes, Cdis increases. The findings are rather interesting due to the fact
that the average distance increases rather than remaining constant or decreas-
ing. In the case with fixed n the number of edges constantly increase due to the
increase in probability, hence Cdis goes down while the average degree goes up
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simultaneously. As seen in the other results tables, Csea gets closer and closer
to 1 as the number of nodes and edges increases. Table 8 visually shows the
difference between the expected and actual value changes.

Table 8: Erdős-Rényi model measure expectations

n m p Cdeg Cdis Csea

Setting1expected ⇑ ⇑ ⇔ ⇑ ⇔ ⇑
Setting1actual ⇑ ⇑ ⇔ ⇑ ⇑⇑ ⇑

Setting2expected ⇔ ⇑ ⇑ ⇑ ⇓ ⇑
Setting2actual ⇔ ⇑ ⇑ ⇑ ⇓ ⇑

The time complexity of both experimental settings follow Θ(nm) for Cdis.
The average time complexity for Csea performs much better than Θ(nm + n ∗
log(n))

7.1.6 Erdős-Rényi digraphs Table 17 depicts the experimental results of
Erdős-Rényi digraphs. Likewise to their graph counterparts, Cdeg increases as
n increases and the probability is fixed relative to n, yet Cdis increases in this
setting. The arc symmetry measure Csym appears to be increasing in the fixed
probability setting as n and m increase. The digraphs get closer and closer to
becoming fully reachable, according to the Cent results. The Cpro results are
mirrored by the entropy findings, as the number of iterations needed becomes
smaller and smaller. With a fixed probability p and larger number of nodes, the
number of unsaturated arcs, relative to the number of nodes, decreases leading to
higher values of Csym. Even though there are hardly any arcs with counter-arcs
present, the digraphs still become (almost) fully reachable.

In the experimental setting where n is fixed and the probability increases,
the trends for Cdeg, Cent and Cpro remain similar to the previous setting. Sim-
ilarly to Erdős-Rényi graphs, the average distance Cdis decreases with higher
probabilities. The relationship between Csym and the probability p is an inverse
linear relationship, which is only logical; as the probability of 2 nodes being con-
nected increases, the number of edges/arcs with symmetry increases and thus
Csym decreases. In fact, if n were to go to ∞ the following rule would hold true:
p = 1− Csym.

Table 9 summarizes the difference between the expected value changes of the
digraph measures versus the actual value changes.
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Table 9: Erdős-Rényi model measure expectations

n m p Cdeg Cdis Csym Cent Cpro

Setting1expected ⇑ ⇑ ⇔ ⇑ ⇔ ⇔ ⇓ ⇓
Setting1actual ⇑ ⇑ ⇔ ⇑ ⇑⇑ ⇑⇑ ⇓ ⇓

Setting2expected ⇔ ⇑ ⇑ ⇑ ⇓ ⇓ ⇓ ⇓
Setting2actual ⇔ ⇑ ⇑ ⇑ ⇓ ⇓ ⇓ ⇓

As for time complexities, Cdis performs slightly better than Θ(nm). The time
complexity of Csym remains Θ(m). The worst case time complexity of O(n+m)
for the Cent measure is not attained with the experimental results from the first
setting, as these results indicate that it performs better than expected. In the
second experimental setting the number of nodes is a non-factor and Θ(n+m)
holds true for Cent. The probabilistic reachability Cpro results show that the
algorithm performs slightly better than Θ(im).

7.1.7 Routing digraphs Since the generation of routing digraphs is similar
to the Erdős-Rényi model, the results are expected to be somewhat similar.
Due to the nature of routing digraphs, the arc symmetry complexity Csym was
not calculated as its value would always be equal to 1.0 as a result of perfect
asymmetry. Table 18 depicts these results. In the first experimental setting, with
a fixed probability p relative to n, the average degree goes up as well as Cdis. The
average distance Cdis remains under 1 since, by definition, the digraph cannot be
fully reachable; meaning that there are plenty of nodes that cannot reach other
nodes leading to a Cdis below 1. As expected, Csym is equal to 1 due to no arc
symmetry being present in routing digraphs. The values of Cent slightly decrease
as the number of nodes increases, the digraph thus becomes closer to becoming
fully reachable: in theory, less arcs need to be added in the reversed direction in
order to make the digraph fully reachable. The trend spotted in Cpro supports
the same argument. The newest measure, Crou, is an indicator of how complex
a routing digraph is when it comes to the number of paths from source to sink.
As n increases Crou also increases.

The results from the second setup show that Cdeg increases and Cd decreases,
similarly to the Erdős-Rényi digraph results. Once more, the digraphs become
closer to being fully reachable, though it can never acquire full reachability, as
shown in the Cent and Cpro results. As p increases, and subsequently m, so does
the measure Crou. Once more, a table is provided that summarizes the expected
versus actual differences, as depicted in Table 10.
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Table 10: Routing model measure expectations

n m p Cdeg Cdis Cent Cpro Crou

Setting1expected ⇑ ⇑ ⇔ ⇑ ⇔ ⇓ ⇓ ⇑
Setting1actual ⇑ ⇑ ⇔ ⇑ ⇑⇑ ⇓ ⇓ ⇑

Setting2expected ⇔ ⇑ ⇑ ⇑ ⇓ ⇓ ⇓ ⇑
Setting2actual ⇔ ⇑ ⇑ ⇑ ⇓ ⇓ ⇓ ⇑

The average time complexities of Cdis, Cent and Cpro remain the same as the
Erdős-Rényi results, namely: Θ(nm), Θ(n + m) and Θ(im) respectively. Crou

was expected to have a worst case time complexity of O(n2m). The time results
of Crou in Table 18 support a slightly faster Θ, though the execution times are
too small to credibly support that notion.

7.2 Real-world networks

7.2.1 Open source graphs Table 19 shows that the jazz and the astroph
graphs are incredibly dense compared to the four other real-world graphs. Inter-
estingly, the values for the measure Cdis are not necessarily the largest for the
four sparse graphs. The caida and pgp graphs are relatively sparse compared to
the jazz and astroph graphs but their Cdis does not reflect their sparsities. Sim-
ilarly to the generated network findings, on average Csea gets closer and closer
to 1 though the density of the network has a tiny effect on small-scale graphs.

The average time complexity of Cdis is slightly worse than the previously
found Θ(nm) yet better than O(n(m + nlog2(n)). It becomes clear that the
computation of Csea is incredibly expensive as the execution time of Csea for the
powergrid network took more than 40 hours. Hence why the search measure was
not computed for the other larger graphs. The Erdős-Rényi experiment results
suggested that the time complexity of Csea lies below Θ(nm+ n ∗ log(n)). The
results in Table 19 indicate that the actual Θ lies between Θ(nm + n ∗ log(n))
and O(n(m + nlog2(n)) + n2log(n))), though there are too few data points to
fully support that argument. What can be seen, however, is that the execution
time of Csea is a realistic barrier and hazard for this complexity measure.

7.2.2 Open source digraphs Table 20 contains the results and specifications
of seven real-world open-source digraphs. The google-plus network as well as both
the small and large versions of the p2p networks are quite sparse compared to
the first four smaller graphs. This is reflected in their Cdeg values. Similar to the
graph results, the average distance Cdis of each graph is not directly correlated
to the density of each graph. The Csym results for the p2p networks indicate that
there is barely any arc symmetry present. Interestingly, the googleplus network
has a decent amount of arc symmetry, yet the average distance Cdis is incredibly
small. Due to long computation times, Cent was only calculated for the first three
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dense graphs. Their entropy values do indicate that they are very close to being
strongly connected matching the Cpro results where the number of iterations
needed were less than the maximum number of iterations.

The Cdis algorithm performs better than Θ(nm) in most cases, most likely
due to the density of the larger graphs, though the googleplus network seems
to be a heavy outlier. The arc symmetry measure Csym still performs at the
previously proven time complexity of Θ(m), whereas Cent performs at its worst
O(n+m). For most results, the Cpro algorithm performs with a time complexity
of Θ(im).

7.2.3 Statistics Netherlands (di)graphs The entire business network con-
tained 199,193,030 arcs and therefore samples had to be drawn with a certain
edge sampling probability

msample

mtot
. The column msample in Table 21 portrays

how large each sample was intended to be, with respect to the number of edges.
The actual size of the sample graph can then depend on the size of the largest
weakly connected component. Table 21 shows the samples and the complexity
measures results.

From the difference between the number of arcs m in the largest weakly con-
nected component, and the number of arcs desired in the sample msample, it is
clear that the edge sampling technique works better when a large enough sample
is taken which starts around 150,000 arcs. This means that the smaller graphs
may not be as representative as expected and therefore the interpretations of
these results are heavily biased. Additionally, not all measures could be calcu-
lated either due to long execution times (Cdis and Cpro) or memory restrictions
Cent.

As expected, the larger the sample the larger the values of Cdeg and Cdis.
Since these samples are incredibly small relative to the entire network they are
expected to be very sparse and highly asymmetric when it comes to the arcs. This
is also reflected in the Csym results; only for the largest samples with 20,000,000
and 25,000,000 arcs does Csym become slightly smaller than 1. In conjunction
with the large average degree results, in these large samples, it can be said that
the business network has a decent amount of one-to-many relationships between
providers and customers with only a few customers being providers themselves.
The results of Cent indicate that even though these samples are incredibly sparse,
they are still relatively close to being fully reachable. The Cpro values do not
necessarily agree with the Cent results which is quite an interesting behavior.

The average distance Cdis algorithm performs almost at its worst, and thus
the big O of O(n(m + nlog2(n)). The measure Csym still performs at Θ(m).
Additionally, the time results of Cent and Cpro perform slightly better than
Θ((n+m)) and Θ(i ∗m) respectively.

8 Discussion

Through the use of experiments a lot of information has been gathered re-
garding the novel complexity measures (Csea, Csym, Cent, Cpro & Crou). Two



Quantifying Network Complexity 35

separate experimental settings were capable of giving good indications of how
each measure behaved, as the change in parameters lead to (di)graph topology
changes. The extensive testing performed on various generated (di)graphs has
led to a better understanding of how these measures react to structural changes.
Additionally, the real-world (di)graphs indicate the usefulness of the measures
and what their combined values can tell about the given network. The enormous
amount of data need to be summarized and evaluated. This is done with the use
of the given axioms as well as the four created criteria.

8.1 Axiom Evaluation

Firstly, the violation of or adherence to the axioms are presented. Table 11
shows whether an axiom was adhered, with the letter T , or whether it was
violated, with the letter F .

Table 11: Eight Axioms 1 - 8 to be used to judge new measures
Overview Axioms

Axiom Cdeg Cdis Csea Csym Cent Cpro Crou

Axiom 1 T T T T T T T
Axiom 2 T T T T T F T
Axiom 3 T T F T T/F F F
Axiom 4 T T T T T T T
Axiom 5 T T T T T T T
Axiom 6 T T T T T T T
Axiom 7 F F F F F F T
Axiom 8 T T T T F T F

All measures did not violate Axiom 1, meaning that each measure only ever
outputs a real single number.

Based on the implementation and the theoretical foundations of the Prob-
abilistic Reachability measure, it is no surprise that this measure was the only
one that violated the Axiom 2. All six other measures contain no probabilistic
aspect.

Axiom 3 states that the measure should always be able to supply the user
with a value given any finite (di)graph. Even though all testing was done on
connected graphs and weakly connected digraphs, some measures such as the
average degree Cdeg, the average distance Cdis and the symmetry complexity
Csym do not require the graph inputs to be in a specific form. The Entropy
measure Cent is capable of calculating values when given non-weakly connected
digraphs, though it is generally more useful to use Entropy for purely weakly
connected digraphs. The same cannot be said for the probabilistic reachability
Cpro and routing complexity Crou measures: both measures require the given
network input to be either a digraph or routing digraph, respectively.
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All measures have a theoretical upper bound, therefore Axiom 4 concerning
the finiteness of measures is not violated. Moreover, the floor values of applying
the measures to a complete (di)graph of size 1, will always be the smallest
value attainable for all measures, thereby each measure adheres to Axiom 5.
Additionally, labelling the nodes and will not have an effect on the resulting
complexity values and thus all measures do not violate Axiom 6.

Axiom 7 was already quite controversial, it stated that any (di)graph com-
ponent’s complexity should not be larger than the entire (di)graph’s complexity.
The only measure that is capable of following that statement is the routing
complexity Crou. For all the other measures, from average degree Cdeg to the
probabilistic reachability Cpro measure, components of the given network are
capable of having a higher complexity. Such violations do not indicate that all
of the aforementioned measures are subpar, even the author of the axioms [16]
proposed a relaxation of this assumption.

The concept of complementarity is mentioned in Axiom 8. If the representa-
tion of the adjacency matrix would change, for example, then the measures that
explicitly make use of adjacency matrix computations would cease to provide the
exact same values. In this case, the entropy Cent and routing complexity Crou

measures both make use of adjacency matrices and are not immune to changes
in these matrices. It is worthwhile to note, however, that all Pythonic imple-
mentations of the measures initially make use of adjacency matrices to represent
the input network. Yet only Cent and Crou truly rely on matrix computations,
whereas the other measures are implemented in a way that does not require such
computations.

The instability of the measures can be told by the violations of these axioms.
If any measure were to violate all given axioms, then clearly it is not a useful
measure to begin with. If, on the other hand, all axioms were not violated then
the measure becomes less informative [16] and tends to be the same as others.
The existing methods such as the average degree Cdeg and the average distance
Cdis tend to be relatively correlated, they also only ever violate Axiom 7. That
does not mean, however, that two measures quantify the same thing if their
axiom violation is the same. From Table 11 it is visible that more violations
lead to less stable measures so to say. For instance, the probabilistic reachability
measure Cpro has some specific requirements and may not yield the same results.

8.2 Criteria Evaluation

The four evaluation criteria are as follows: Explainability, generalizability,
scalability and uniqueness. Each (novel) measure is discussed.

8.2.1 Search Complexity

Explainability The search complexity was theorized to make valid comparisons
between the topology of different graphs. Through the use of of search-like graph
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traversal style, where the visit of every edge was of importance, distinctions be-
tween graph structures could be made. In Section 4.2.2, it was already mentioned
that, in theory, as the graphs become bigger then the value of Csea would au-
tomatically get closer and closer to 0, regardless of heavy changes to the graph
topology. The results agreed with the theorized increments, as the graphs be-
came larger and larger, Csea approached its maximum value of 1, even if the
topology of the network remained relatively similar (as no other parameters of
the graph were changed). When Csea was calculated for the open-source graphs,
tiny differences could be found with a magnitude of 0.01, which was attributed
to the difference in density. However, such a density difference was already easily
recognized through the use of the average degree Cdeg. The practical information
that the measure value gives is therefore extremely limited.

Generalizability There are a few requirements for the graph input of the search
complexity. The network has to be a graph that is connected. Disconnected
graphs or digraphs are not usable as input in this measure. Moreover, the pre-
vious paragraph touched upon the measure value’s convergence to 1, as the size
of the graph increases: by increasing the number of nodes and edges or just the
number of edges, Csea approaches 1. Therefore, the search complexity may only
be useful for extremely small graphs (n < 100).

Scalability With an incredibly large potential big O of O(n(m + nlog2(n)) +
n2log(n)), it was expected that the computation of Csea would be incredibly
taxing. The experiments performed on generated graphs indicated that the com-
putation was lengthy and in some cases problematic, while the algorithm tended
to perform slightly better than its big O. The results from the real-world open-
source graphs, however, showed that even small sparse graphs with less than
5000 nodes were subject to the high computation costs, with one particular
graph requiring over 40 hours of computation. Scalability is, by default, related
to the implementation and its quality, which might give this criterion slightly
less weight. Though in the case of this measure’s implementation, the techniques
used to calculate the measure’s value is thought to be the current best solution
(Euclidean graph techniques).

Uniqueness The search complexity is the brother of the travelling-salesman prob-
lem, where the most efficient route of visiting every node is computed. While
the components of Csea may not be as unique, as they are both related to the
Chinese-postman problem, the idea of combining the components as a method
of measuring graph complexity is new. Thus, even though the measure may have
been inspired by existing solutions to other problems, it remains relatively novel.

8.2.2 Arc Symmetry

Explainability The arc symmetry complexity measure captures a very simple
and specific aspect of a given digraph. It simply measures the ratio between
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arcs that have a counter-arc and total arcs. Therefore topological properties are
not captured, as the measure is only capable of providing information about
how many direct back and forth relations there are between nodes. Due to its
simplicity, the experiments do show that this measure captures exactly what it
intends to measure. On its own, the measure values are not particularly useful
as it only tells how many counter-arcs are present. However, when it is used
alongside other measures such as the average degree Cdeg or the entropy measure
Cent, more characteristics of the given digraph can be uncovered. For example,
a high value of Csym = 0.9 combined with a high value of Cdeg = 30 would
indicate that on average a node A connects with 30 other nodes but a very small
number of those 30 other nodes directly connect back to node A.

Generalizability The only restriction of the arc symmetry measure is that the
given networks have to be directed graphs. Disconnected, weakly and strongly
connected digraphs could all be used for the calculation of Csym. The measure
can be used for routing digraphs, but is not useful as by definition routing
digraphs do not have any counter-arcs. Though routing digraphs themselves are
a specific type of digraph that are not often used, therefore the arc symmetry
measure can be used in almost all digraph cases.

Scalability The implementation was incredibly simple and the worst possible
scaling factor of O(m) is small relative to the other seen measures. The ex-
perimental results also showed that the algorithm of Csym performed slightly
better than its big O. Moreover, the computation times were incredibly low in
general. The business network, from which samples of 25 million edges were
drawn, showed that even incredibly large digraphs could be used as input for
this measure without acquiring unrealistically long execution times.

Uniqueness Since the measure is very basic, it is expected that it may already
exist in one form, though it may not be as popular or widely known. It could,
therefore, be possible that such a measure may have been overlooked or dismissed
by others, due to its simplicity.

8.2.3 Entropy and Probabilistic Reachability These two measures were
grouped together as they serve similar purposes.

Explainability Both entropy Cent and the probabilistic reachability Cpro attempt
to calculate how far a given digraph is from becoming fully reachable. The for-
mer does this through the use of reachability sets, whereas the latter attempts
to find a roof probability where further increments to the probability do not
aid in increasing the digraph reachability. Each measure has their own strengths
and weaknesses. The experimental results have shown that the entropy measure
is far easier to interpret than the probabilistic reachability measure. It is clear
that lower entropy values correlate with more digraph reachability, as the exper-
iments of generated digraphs have indicated. The interpretation of Cpro is more
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difficult however. The difference between a Cpro value of 0.5 and 0.6 is much
more vague. More importantly, the usage of the probabilistic reachability mea-
sure is heavily subjected to the algorithm’s parameters. Much more information
could be acquired just to determine how useful Cpro can be, by experimenting
with its parameters. In this case, it appears that the entropy measure Cent is
more interpretive and gives a clear indication of far any given digraph is from
becoming fully reachable.

Generalizability Weakly connected digraphs are recommended to be used as
input for both measures. The entropy measure does give information when used
on disconnected digraphs yet the interpretation of the value becomes less valid,
since it could be skewed due to some components. Cpro will always give the
maximum probability value of 1 when any disconnected digraph is given and is
therefore a useless measure in that situation. Both measures should thus only be
used whenever weakly connected digraphs are considered. However, since Cpro

has tweakable parameters it may be more difficult to generalize the results of
such a measure.

Scalability Even though the difference between worst-case time complexities is
rather large, O(m + n) and O(imax ∗ m) for Cent and Cpro, respectively, the
density of the network did have a major effect on the performance of both
measures. In most experimental results, the entropy implementation performed
better than its big O, with the digraph’s density having a visible effect on the
computation time, most visible in the differences in the open-source digraphs and
companies network results. Non-sparse digraphs tend to be more reachable by
default which leads to the Cpro algorithm to require less iterations to complete,
and thus scaling better compared to the entropy algorithm, with respect to their
computation times. However, in other cases the Cpro did require the maximum
number of iterations which could lead to incredibly large computation times. Due
to the usage of matrix computations it is, however, important to note that the
entropy measure could and did run into hardware memory issues, thus making
it less ideal for large digraphs (n > 200, 000).

Uniqueness Even though the entropy name has been introduced in other re-
search, most notably in the field of information theory, the method of calculating
Cent and the manner of capturing the reachability aspect has not been seen in
other work, as far as the author of the thesis is aware. The same can be said for
the probabilistic reachability measure Cpro.

8.2.4 Routing Complexity

Explainability The characteristic encapsulated by the routing complexity Crou

is very straightforward. It captures how complex a routing digraph is through
the calculation of the number of paths from the source to the sink. For instance,
when comparing two questionnaires, each represented as a routing digraph with
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the same number of nodes, the amount of individual ways of getting to the last
question directly compares how complex each questionnaire is. The routing di-
graphs’ results have shown that Crou is a good indicator of how complex any
given routing digraph is, when it comes to the aspect of total paths. Though
both experimental setups played with the density of the routing digraph, ad-
ditional experiments that would tweak the internal structure while keeping n
and m constant, would show that the routing complexity is a good indicator
when directly used to compare routing digraphs of similar size. The measure is,
however, less useful when it comes to comparing networks with different sizes,
as the value of Crou would increase as n increases, regardless of the number of
paths from source to sink. Since the theoretical upper limit of Crou is known for
each routing digraph ((0, ln(2(n−2))]), the measure could be improved by using
the upper limit in its implementation.

Generalizability The generalizability criterion is the weakest point of the routing
complexity. The network has to be a routing digraph, no other types of digraphs
are allowed.

Scalability Since the routing complexity was specifically designed for the analysis
of routing digraphs, the scalability is not much of an issue, as routing digraphs
tend to be small in practice. Nonetheless, if more experiments were performed on
larger networks the worst case scaling factor of O(n2m) could become a potential
problem.

Uniqueness Finding the number of paths from one node to another node is
a classical network science problem. In that regard, the measure at hand is
not unique. What does differentiate the routing complexity measure is that is
specifically used as a measure to quantify the complexity of routing digraphs. In
that aspect, the measure is relatively unique.

9 Conclusion

Five novel measures were implemented to try and find the most important
properties of a network. These complexity measures were theorized to capturing
the complexity of a network, and through the combined use of them accurately
quantify a network’s complexity. Through the use of systematic empirical eval-
uation, in the form of four criteria and eight axioms, the performance of the
proposed measures was evaluated. Generated (di)graphs and various real-world
networks allowed for intimate testing and experimenting. It was found that some
measures performed better than others.

The search complexity should have been able to quantify certain topological
differences, but in practice it was not able to. When comparing graphs with the
search complexity, the characteristics of a graph’s topology were not reflected
in the difference of the measure’s values. Additionally, the measure scaled dras-
tically. Other and more simple methods of quantifying a network have proven
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to be more useful, the search complexity only appears to have a distinctive role
when used for small graphs.

Though the arc symmetry measure has a simplistic design, it was proven
to be quite useful. It was capable of dealing with any type of digraph, scaled
incredibly well, was uncomplicated in its interpretation, and allowed the user
to make a lot of inferences about the network when put next to the average
degree. The business network provided by Statistics Netherlands, for example,
had an enormous size. Yet, it was impossible to calculate some measures in
a given time-span. The simple average degree and arc symmetry complexity
measures were capable of providing information about the network where other
more sophisticated measures could not.

The usefulness of the entropy and probabilistic reachability measures remains
disputable. The measures may not be as interpretative and straightforward as
others. Moreover, the probabilistic reachability is heavily dependent on the pa-
rameters used. Even though both measures have some drawbacks, including their
not so optimal scaling, they do provide the user some information that could not
be attained with other measures. While established methods of quantifying the
connectedness of a digraph were capable of locating the weakly connected com-
ponents and the strongly connected/fully reachable components, the manner
of how far removed these individual components were from each other is new.
Improvements could therefore be made to the computations and implementa-
tions of these methods, as the idea behind capturing this specific network aspect
has shown to be relatively new and useful. For example, as described in Sec-
tion 5.4.2, a new measure could focus on problematic nodes that must always
acquire a counter-arc.

As expected, no single measure is capable of capturing all inherent properties
of a network. However, through the use of two measures coming from different
classes one is capable of telling a lot more of what the network looks like. Taking
a measure’s result from the connectedness class alongside a measure’s result from
the distance class makes it possible to infer a (di)graph’s topology. For instance,
having a low average distance in a digraph with a large amount of arc symmetry
infers that there are a lot of cycles present in the digraph. Even when measures
from the same class are used, conclusions about the given network can still be
made: a large average degree with a low probabilistic reachability or low entropy
would mean that the given digraph is well-connected and would consequently
have a low average distance, as most other nodes can be reached quite quickly.

In this thesis we have shown that it remains, and most likely will remain, im-
probable to quantify the essence of a network with a single complexity measure.
Even though complex networks are capable of being created by simple graph
generation rules, finding a measure or a group of measures that attempts to
reverse engineer such a rule remains tough. The results do indicate, however,
that the combination of measures from different classes allow us to infer the
properties of the network, similar to findings of other research. Additionally, we
have improved the existing measure evaluation techniques with the extension of
four evaluation criteria. With these techniques we have shown that the novel arc
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symmetry, the entropy, the probabilistic reachability and the routing complexity
measures are capable of capturing inherent network properties in a reasonable
manner.

Future research could look into the optimization and improvements of some
of the measures implemented for this paper. The development, classification and
evaluation of novel network complexity measures should be encouraged and more
universal, so that perhaps one day a network’s complex characteristics could be
described by a single unifying measure. Moreover, the reduction of networks and
the subsequent behavior of various network complexity measures could also be
explored using the evaluated measures.
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A Appendix - Algorithms

Algorithm 1 Routing Digraph Generation
See Section 5.2.5

1: Input:
2: number of nodes n
3: Probability of connecting p
4: Output: Routing Digraph G
5: A = (0...n-1)(0...n-1) . Empty Adjacency Matrix
6: A[0][1] = 1 . Set the source node
7: for i in 0:(n-1) do
8: for j in (i+1):n do
9: if p > Uniform(0, 1) then

10: A[i][j] = 1
11: end if
12: end for
13: end for
14: G = DiGraph(A)
15: for k in 0:(n-2) do
16: if G.path exists(0, (k)) == False then . (0 ) is source node
17: G.add edge(0, (k))
18: end if
19: if G.path exists((n - k - 1), (n-1)) == False then . (n-1) is sink node
20: G.add edge((n - k - 1), (n-1))
21: end if
22: end for
23: return G
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Algorithm 2 Probabilistic Reachability Cpro

See Section 5.4.3

1: Input:
2: Weakly Connected Directed graph G with E as set of arcs and n total nodes
3: Starting probability p
4: Step Size δ
5: Precision ε
6: Maximum number of iterations max
7: Number of Monte Carlo Simulations MC
8: Output: Probability pchange

9: U← {}
10: for e in E do . Find unsaturated pairs
11: r = ReverseDirection(e)
12: if r not in G then
13: U.append(r)
14: end if
15: end for
16: Prop = SLSCC(G)/n . SLSCC finds the size of the largest strongly connected

component
17: I = 0
18: while I < max do
19: RProp← {}
20: for i in 0:MC do
21: Gaug = G.copy()
22: for r in U do
23: if p > Uniform(0, 1) then
24: Gaug.add arc(r)
25: end if
26: end for
27: RProp.append(SLSCC(Gaug)/n)
28: end for
29: CProp = mean(RProp)
30: step = abs(CProp− Prop)
31: if step < ε then . If change in proportion is < ε break while loop
32: BREAK
33: else
34: Prop = CProp
35: p + = δ
36: I + = 1
37: end if
38: end while
39: pchange = p
40: return pchange
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Algorithm 3 Search Complexity Csea

See Section 5.4.3

1: Input: Connected graph G with E as set of edges and m total edges
2: Output: Search Complexity value Csea

3: OD = G.get odd degree() . Only select nodes with odd degree
4: P = OD.get all pairs() . Acquire ALL possible pairs
5: Pl ← {}
6: Gtemp ← {}
7: for p in P do
8: l = Dijkstra(p) . Dijkstra [18] shortest path
9: Pl.append(l)

10: Gtemp.add edge(p, weight = 1/l)
11: end for
12: BE = Gtemp.max weight matching() . Find best edges from all pairs [22]
13: BEr = ReverseSort(BE) . Put best edges up front
14: τG = m
15: λG = m
16: cnt = 0
17: for i in BEr do
18: CPl = Pl.get(i) . Get path length of edge i
19: if cnt < (|BEr| − 1) then
20: λG + = CPl

21: end if
22: τG + = CPl

23: cnt + = 1
24: end for
25: Csea = λG/τG
26: return Csea
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B Appendix - Tables

B.1 Generated (di)graphs results

Table 12: Values and computation times of complexity measures performed on
Complete Graphs

Complete Graphs

n m Cdeg t (sec) Cdis t (sec) Csea t (sec)

50 1225 49 0.0000 1.0000 0.0469 0.9992 1.4530
100 4950 99 0.0000 1.0000 0.2982 0.9998 21.9415
200 19900 199 0.0000 1.0000 2.6092 1.0000 348.9377
400 79800 399 0.0000 1.0000 22.2541 1.0000 5197.2807
800 319600 799 0.0000 1.0000 384.7493 NaN NaN
1000 499500 999 0.0000 1.0000 350.3124 NaN NaN
1500 1124250 1499 0.0000 1.0000 1075.2023 NaN NaN
2000 1999000 1999 0.0000 1.0000 2759.4075 NaN NaN
2500 3123750 2499 0.0000 1.0000 5336.4636 NaN NaN
3000 4498500 2999 0.0000 1.0000 8835.7128 NaN NaN

Table 13: Values and computation times of complexity measures performed on
Complete DiGraphs

Complete DiGraphs

n m Cdeg t (sec) Cdis t (sec) Csym t (sec) Cent t (sec) Cpro t (sec)

50 2450 98 0.0 1.0 0.0781 0.0 0.0000 0.0 0.4218 0.3 0.5937
100 9900 198 0.0 1.0 0.3750 0.0 0.0156 0.0 11.2614 0.3 4.2029
200 39800 398 0.0 1.0 2.4998 0.0 0.0312 0.0 65.5550 0.3 11.0396
400 159600 798 0.0 1.0 18.8617 0.0 0.1719 0.0 378.8512 0.3 43.3929
800 639200 1598 0.0 1.0 151.4199 0.0 0.6719 0.0 2469.2863 0.3 157.4676

1000 999000 1998 0.0 1.0 287.9932 0.0 0.9843 0.0 4679.9970 0.3 248.8862
1500 2248500 2998 0.0 1.0 958.3062 0.0 2.4256 NaN NaN 0.3 587.5515
2000 3998000 3998 0.0 1.0 2264.4300 0.0 4.5622 NaN NaN 0.3 1053.0050
2500 6247500 4998 0.0 1.0 4413.5200 0.0 8.1869 NaN NaN 0.3 1825.6667
3000 8997000 5998 0.0 1.0 7600.5040 0.0 11.4130 NaN NaN 0.3 3571.8504
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Table 14: Values and computation times of complexity measures performed on
Barabási-Albert Graphs

Barabási-Albert Graphs

n m mb Cdeg t (sec) Cdis t (sec) Csea t (sec)

50 96 2 3.8400 0.0000 2.6922 0.0156 0.9808 0.0156
100 196 2 3.9200 0.0000 2.9305 0.0312 0.9860 0.0937
200 396 2 3.9600 0.0000 3.3251 0.1406 0.9955 1.0468
400 796 2 3.9800 0.0000 3.6138 0.6093 0.9977 10.0644
800 1596 2 3.9900 0.0000 3.9490 2.4373 0.9989 63.4909

1000 1996 2 3.9920 0.0000 4.0969 3.9216 0.9982 137.6870
1500 2996 2 3.9947 0.0000 4.3075 9.0981 0.9988 463.5864
2000 3996 2 3.9960 0.0000 4.3681 16.5134 0.9989 1206.9140
2500 4996 2 3.9968 0.0000 4.4871 27.5150 0.9993 2332.8538
3000 5996 2 3.9973 0.0000 4.6129 38.7881 0.9992 3782.9594

1000 999 1 1.998 0.0000 7.2684 5.5947 0.9910 2381.4023
1000 1996 2 3.992 0.0000 4.0927 4.0779 0.9986 129.2407
1000 2991 3 5.982 0.0000 3.4582 4.5466 0.9991 821.5797
1000 3984 4 7.968 0.0000 3.1794 5.1868 0.9995 364.4400
1000 4975 5 9.950 0.0000 2.9423 5.6746 0.9996 971.3843
1000 5964 6 11.928 0.0000 2.8532 6.2834 0.9998 540.3077
1000 6951 7 13.902 0.0000 2.7070 6.7362 0.9997 1150.9461
1000 7936 8 15.872 0.0000 2.6637 7.4852 0.9999 682.6565
1000 8919 9 17.838 0.0000 2.6054 8.0317 0.9999 1343.1095
1000 9900 10 19.800 0.0000 2.5511 8.5784 0.9998 928.9402
1000 10879 11 21.758 0.0000 2.5027 9.2520 0.9999 1558.2670
1000 11856 12 23.712 0.0000 2.4600 10.0801 0.9999 1280.3858
1000 12831 13 25.662 0.0000 2.4068 10.3922 0.9999 1874.8925
1000 13804 14 27.608 0.0000 2.3633 11.1572 0.9999 1486.5687
1000 14775 15 29.550 0.0000 2.3314 11.4863 0.9999 1856.7379
1000 15744 16 31.488 0.0000 2.2893 12.4682 0.9999 1770.8343
1000 16711 17 33.422 0.0000 2.2585 13.0810 0.9999 2106.6168
1000 17676 18 35.352 0.0000 2.2224 13.9854 0.9999 1497.8181
1000 18639 19 37.278 0.0000 2.1932 14.4389 0.9999 2341.5603
1000 19600 20 39.200 0.0000 2.1642 15.0471 0.9999 1982.5939
1000 20559 21 41.118 0.0000 2.1407 15.5614 1.0000 2780.5087
1000 21516 22 43.032 0.0000 2.1262 16.2043 1.0000 2344.0458
1000 22471 23 44.942 0.0000 2.1001 16.8781 1.0000 2858.2788
1000 23424 24 46.848 0.0000 2.0795 17.4877 1.0000 2315.7737
1000 24375 25 48.750 0.0000 2.0598 18.1108 1.0000 2917.5491
1000 25324 26 50.648 0.0000 2.0460 18.6744 1.0000 3113.0626
1000 26271 27 52.542 0.0000 2.0339 19.0358 1.0000 3197.0886
1000 27216 28 54.432 0.0000 2.0220 20.0544 1.0000 2606.3860
1000 28159 29 56.318 0.0000 2.0087 20.4628 1.0000 3691.8199
1000 29100 30 58.200 0.0000 1.9978 21.7478 1.0000 3282.7960
1000 30039 31 60.078 0.0000 1.9883 22.5516 1.0000 3812.2071
1000 30976 32 61.952 0.0000 1.9801 22.8676 1.0000 3135.9840
1000 31911 33 63.822 0.0000 1.9719 23.4778 1.0000 3687.3431
1000 32844 34 65.688 0.0000 1.9672 24.6931 1.0000 3515.9538
1000 33775 35 67.550 0.0000 1.9599 24.2828 1.0000 3790.1972
1000 34704 36 69.408 0.0000 1.9541 25.1761 1.0000 3498.4871
1000 35631 37 71.262 0.0000 1.9484 25.3168 1.0000 4787.4515
1000 36556 38 73.112 0.0000 1.9435 26.4093 1.0000 3746.6489
1000 37479 39 74.958 0.0000 1.9386 27.6590 1.0000 4413.5404
1000 38400 40 76.800 0.0000 1.9364 27.6762 1.0000 4572.6367
1000 39319 41 78.638 0.0000 1.9314 28.1603 1.0000 4065.3385
1000 40236 42 80.472 0.0000 1.9282 28.6304 1.0000 4472.1091
1000 41151 43 82.302 0.0000 1.9248 29.7221 1.0000 4904.8862
1000 42064 44 84.128 0.0156 1.9218 29.9106 1.0000 4823.2017
1000 42975 45 85.950 0.0000 1.9190 31.2854 1.0000 5115.8566
1000 43884 46 87.768 0.0000 1.9165 31.8191 1.0000 4706.7512
1000 44791 47 89.582 0.0000 1.9139 31.6903 1.0000 5553.7049
1000 45696 48 91.392 0.0000 1.9117 33.0856 1.0000 5021.6125
1000 46599 49 93.198 0.0000 1.9096 33.5684 1.0000 5310.1188
1000 47500 50 95.000 0.0000 1.9069 34.8487 1.0000 5521.5978
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Table 15: Values and computation times of complexity measures performed on
Scale-Free DiGraphs

Scale-Free DiGraphs

n m ααα βββ Cdeg t (sec) Cdis t (sec) Csym t (sec) Cent t (sec) Cpro t (sec)

50 73 0.41 0.54 2.9200 0.000 0.2392 0.0000 0.8312 0.0000 0.5131 0.0156 0.55 2.2186
100 144 0.41 0.54 2.8800 0.000 0.3762 0.0156 0.9427 0.0000 0.3901 0.0156 1.00 12.8780
200 329 0.41 0.54 3.2900 0.000 0.1931 0.0000 0.9599 0.0000 0.3814 0.0625 0.52 8.4714
400 666 0.41 0.54 3.3300 0.000 0.0318 0.0156 0.9577 0.0000 0.5250 0.0469 0.65 29.3346
800 1336 0.41 0.54 3.3400 0.000 0.2362 0.1719 0.9697 0.0000 0.3331 0.9531 1.00 137.0022

1000 1861 0.41 0.54 3.7220 0.000 0.1293 0.1406 0.9812 0.0000 0.3603 0.6719 1.00 182.5142
1500 2572 0.41 0.54 3.4293 0.000 0.0554 0.1562 0.9760 0.0000 0.4688 0.7812 1.00 292.4130
2000 3381 0.41 0.54 3.3810 0.000 0.2319 0.8593 0.9761 0.0000 0.3273 4.4384 1.00 412.7940
2500 4383 0.41 0.54 3.5064 0.000 0.2521 1.6249 0.9906 0.0000 0.3063 8.4712 1.00 513.2149
3000 5100 0.41 0.54 3.4000 0.000 0.2750 2.2512 0.9923 0.0156 0.2884 11.7046 1.00 655.3780

1000 1254 0.75 0.20 2.5080 0.0000 0.3290 0.2188 0.9968 0.0156 0.3794 0.9699 1.00 150.0330
1000 1248 0.74 0.21 2.4960 0.0000 0.2434 0.1406 0.9920 0.0000 0.3591 0.6542 1.00 144.7362
1000 1244 0.73 0.22 2.4880 0.0000 0.1826 0.1250 0.9928 0.0000 0.4230 0.6094 1.00 141.2465
1000 1332 0.72 0.23 2.6640 0.0000 0.2723 0.1875 0.9887 0.0000 0.3704 0.9687 1.00 143.3398
1000 1308 0.71 0.24 2.6160 0.0000 0.4118 0.2500 0.9855 0.0000 0.3179 1.2499 1.00 140.3167
1000 1332 0.70 0.25 2.6640 0.0000 0.4650 0.2656 0.9872 0.0000 0.3398 1.2499 1.00 142.6505
1000 1338 0.69 0.26 2.6760 0.0000 0.2828 0.1719 0.9925 0.0000 0.3602 0.7845 1.00 140.1544
1000 1353 0.68 0.27 2.7060 0.0000 0.3281 0.2031 0.9904 0.0000 0.3545 1.0624 1.00 144.8253
1000 1389 0.67 0.28 2.7780 0.0000 0.6420 0.3437 0.9942 0.0000 0.2894 1.6561 1.00 142.9744
1000 1390 0.66 0.29 2.7800 0.0000 0.6773 0.2955 0.9950 0.0156 0.3093 1.4036 1.00 147.4111
1000 1397 0.65 0.30 2.7940 0.0000 0.3385 0.2344 0.9928 0.0000 0.3300 1.1562 1.00 144.0601
1000 1386 0.64 0.31 2.7720 0.0000 0.1176 0.0937 0.9928 0.0000 0.4367 0.5937 1.00 146.3909
1000 1444 0.63 0.32 2.8880 0.0000 0.7093 0.3437 0.9938 0.0000 0.2941 1.6874 1.00 147.7752
1000 1445 0.62 0.33 2.8900 0.0000 0.4786 0.3281 0.9882 0.0000 0.3062 1.5624 1.00 147.8863
1000 1447 0.61 0.34 2.8940 0.0000 0.7070 0.3437 0.9938 0.0000 0.2894 1.7030 1.00 151.6839
1000 1510 0.60 0.35 3.0200 0.0000 0.4869 0.2669 0.9934 0.0156 0.3194 1.3562 1.00 151.0195
1000 1532 0.59 0.36 3.0640 0.0000 0.7531 0.4843 0.9798 0.0000 0.2527 2.5936 1.00 153.6451
1000 1552 0.58 0.37 3.1040 0.0000 0.5568 0.4531 0.9839 0.0000 0.2986 2.2811 1.00 153.8100
1000 1592 0.57 0.38 3.1840 0.0000 0.8432 0.4687 0.9899 0.0000 0.2457 2.4530 1.00 155.9653
1000 1604 0.56 0.39 3.2080 0.0000 0.5186 0.3906 0.9763 0.0000 0.2745 1.9530 1.00 156.8909
1000 1654 0.55 0.40 3.3080 0.0000 0.7346 0.5000 0.9794 0.0000 0.2440 2.5623 1.00 162.8647
1000 1615 0.54 0.41 3.2300 0.0000 0.6992 0.4844 0.9839 0.0000 0.2373 2.6561 1.00 158.9794
1000 1665 0.53 0.42 3.3300 0.0000 0.6538 0.4687 0.9868 0.0000 0.2462 2.4690 1.00 158.0678
1000 1670 0.52 0.43 3.3400 0.0000 0.8244 0.5000 0.9934 0.0000 0.2250 2.6261 1.00 162.7665
1000 1649 0.51 0.44 3.2980 0.0000 0.7134 0.4375 0.9927 0.0000 0.2633 2.1730 1.00 162.3578
1000 1735 0.50 0.45 3.4700 0.0000 1.0215 0.6250 0.9890 0.0000 0.2237 3.3604 1.00 200.9182
1000 1779 0.49 0.46 3.5580 0.0000 0.9118 0.6093 0.9843 0.0000 0.2194 3.3219 1.00 168.8769
1000 1755 0.48 0.47 3.5100 0.0000 0.5855 0.4531 0.9795 0.0000 0.2488 2.5453 1.00 166.5654
1000 1820 0.47 0.48 3.6400 0.0000 0.8404 0.6718 0.9764 0.0000 0.2121 3.6091 1.00 170.6782
1000 1821 0.46 0.49 3.6420 0.0000 0.9219 0.6562 0.9769 0.0000 0.1987 3.6404 1.00 169.1197
1000 1875 0.45 0.50 3.7500 0.0000 0.7820 0.6406 0.9675 0.0000 0.1961 3.4060 1.00 176.1851
1000 1841 0.44 0.51 3.6820 0.0000 0.7113 0.6093 0.9707 0.0000 0.2071 3.3904 1.00 171.9177
1000 1866 0.43 0.52 3.7320 0.0000 0.8745 0.7043 0.9737 0.0000 0.1907 3.7497 1.00 174.1362
1000 1989 0.42 0.53 3.9780 0.0000 0.9453 0.7812 0.9708 0.0000 0.1807 4.2184 1.00 177.9378
1000 1889 0.41 0.54 3.7780 0.0000 0.6440 0.6094 0.9576 0.0000 0.2136 3.4207 1.00 175.4218
1000 2001 0.40 0.55 4.0020 0.0000 1.0772 0.8606 0.9755 0.0000 0.1636 4.6403 1.00 181.1657
1000 2093 0.39 0.56 4.1860 0.0000 1.0812 0.9231 0.9780 0.0000 0.1795 5.0153 1.00 184.7020
1000 2064 0.38 0.57 4.1280 0.0000 0.9527 0.8593 0.9671 0.0000 0.1774 4.6665 1.00 186.0080
1000 2152 0.37 0.58 4.3040 0.0000 0.8880 0.7656 0.9670 0.0000 0.1814 4.2979 1.00 188.7221
1000 2097 0.36 0.59 4.1940 0.0000 0.8299 0.7812 0.9390 0.0000 0.1767 4.4841 1.00 183.7324
1000 2174 0.35 0.60 4.3480 0.0000 0.9384 0.9062 0.9512 0.0000 0.1677 5.1416 1.00 190.2234
1000 2250 0.34 0.61 4.5000 0.0000 0.9037 0.8437 0.9573 0.0000 0.1688 5.0019 1.00 190.7252
1000 2101 0.33 0.62 4.2020 0.0000 0.8615 0.9062 0.9343 0.0156 0.1583 5.3314 1.00 185.9894
1000 2263 0.32 0.63 4.5260 0.0000 0.8274 0.8593 0.9456 0.0000 0.1672 5.0488 1.00 193.2310
1000 2345 0.31 0.64 4.6900 0.0156 0.9138 0.9687 0.9407 0.0000 0.1582 5.5321 1.00 199.0206
1000 2334 0.30 0.65 4.6680 0.0000 1.0354 0.9531 0.9610 0.0000 0.1529 5.4684 1.00 199.7444
1000 2383 0.29 0.66 4.7660 0.0000 0.9507 1.0468 0.9291 0.0000 0.1537 6.5321 1.00 200.2672
1000 2371 0.28 0.67 4.7420 0.0000 0.9406 0.9687 0.9393 0.0000 0.1442 6.0707 1.00 196.8793
1000 2478 0.27 0.68 4.9560 0.0000 1.1455 1.2187 0.9431 0.0000 0.1337 7.3299 1.00 207.3351
1000 2509 0.26 0.69 5.0180 0.0000 0.8701 0.9687 0.9418 0.0000 0.1476 5.9371 1.00 204.1463
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Table 16: Values and computation times of complexity measures performed on
Erdős-Rényi Graphs

Erdős-Rényi Graphs

n m p Cdeg t (sec) Cdis t (sec) Csea t (sec)

50 184 0.1565 7.3600 0.0000 2.1012 0.0156 0.9900 0.0469
100 449 0.0921 8.9800 0.0000 2.3396 0.0625 0.9979 0.5937
200 974 0.0530 9.7400 0.0000 2.4652 0.2812 0.9991 4.8248
400 2465 0.0300 12.3250 0.0000 2.6783 1.3437 0.9996 39.6729
800 5261 0.0167 13.1525 0.0000 2.8410 6.5791 0.9998 365.8848

1000 6862 0.0138 13.7240 0.0000 2.8849 7.3758 0.9997 732.6500
1500 11062 0.0098 14.7493 0.0000 2.9654 17.8477 0.9999 2864.6365
2000 15059 0.0076 15.0590 0.0000 3.0596 33.1422 0.9999 6630.0010
2500 19690 0.0063 15.7520 0.0000 3.1261 57.1702 0.9999 13640.9391
3000 24213 0.0053 16.1420 0.0000 3.1637 81.0407 0.9999 24368.2329

1000 1321 0.0028 2.6420 0.0156 6.5429 10.4680 0.9939 779.2049
1000 2689 0.0055 5.3780 0.0156 4.2103 17.1310 0.9987 1489.2746
1000 4253 0.0083 8.5060 0.0000 3.5408 22.4086 0.9991 1880.8010
1000 5435 0.0111 10.8700 0.0156 3.1104 29.3119 0.9995 2275.3437
1000 6983 0.0139 13.9660 0.0156 2.9053 33.4250 0.9999 2471.6413
1000 8399 0.0167 16.7980 0.0156 2.7546 40.0663 NaN NaN
1000 9810 0.0195 19.6200 0.0312 2.6556 46.7547 NaN NaN
1000 11159 0.0223 22.3180 0.0312 2.5601 52.3645 NaN NaN
1000 12690 0.0251 25.3800 0.0156 2.4993 56.2922 NaN NaN
1000 14028 0.0279 28.0560 0.0312 2.4111 63.0969 NaN NaN
1000 15299 0.0307 30.5980 0.0312 2.3422 68.6731 NaN NaN
1000 16866 0.0335 33.7320 0.0312 2.2886 76.2593 NaN NaN
1000 17974 0.0363 35.9480 0.0312 2.2217 79.8788 NaN NaN
1000 19385 0.0391 38.7700 0.0313 2.1691 86.1126 NaN NaN
1000 20794 0.0419 41.5880 0.0313 2.1269 91.5605 NaN NaN
1000 22390 0.0447 44.7800 0.0469 2.0868 99.6640 NaN NaN
1000 23523 0.0475 47.0460 0.0313 2.0512 103.2895 NaN NaN
1000 25065 0.0503 50.1300 0.0468 2.0256 110.1101 NaN NaN
1000 26602 0.0531 53.2040 0.0625 2.0056 118.0778 NaN NaN
1000 28278 0.0559 56.5560 0.0469 1.9838 124.1404 NaN NaN
1000 29340 0.0587 58.6800 0.0469 1.9691 129.5378 NaN NaN
1000 30635 0.0615 61.2700 0.0625 1.9624 132.0498 NaN NaN
1000 32227 0.0643 64.4540 0.0469 1.9513 139.2867 NaN NaN
1000 33797 0.0671 67.5940 0.0625 1.9427 144.4329 NaN NaN
1000 35199 0.0699 70.3980 0.0625 1.9359 150.1942 NaN NaN
1000 36405 0.0727 72.8100 0.0625 1.9330 153.8217 NaN NaN
1000 37388 0.0755 74.7760 0.0781 1.9275 161.8510 NaN NaN
1000 39125 0.0783 78.2500 0.0781 1.9241 164.7483 NaN NaN
1000 40076 0.0811 80.1520 0.0781 1.9207 171.4660 NaN NaN
1000 41729 0.0839 83.4580 0.0781 1.9170 178.9258 NaN NaN
1000 43378 0.0867 86.7560 0.0781 1.9138 183.8620 NaN NaN
1000 44807 0.0895 89.6140 0.0781 1.9101 191.3422 NaN NaN
1000 46195 0.0923 92.3900 0.0781 1.9078 198.1982 NaN NaN
1000 47428 0.0951 94.8560 0.0781 1.9053 203.8149 NaN NaN
1000 49062 0.0979 98.1240 0.0937 1.9014 208.9661 NaN NaN
1000 50249 0.1007 100.4980 0.0781 1.8992 214.7062 NaN NaN
1000 51098 0.1035 102.1960 0.0781 1.8973 217.7236 NaN NaN
1000 53273 0.1063 106.5460 0.1094 1.8938 224.4809 NaN NaN
1000 54846 0.1091 109.6920 0.1094 1.8911 227.3912 NaN NaN
1000 56000 0.1119 112.0000 0.1094 1.8888 235.5589 NaN NaN
1000 57609 0.1147 115.2180 0.1250 1.8854 241.6562 NaN NaN
1000 58705 0.1175 117.4100 0.0938 1.8818 246.8472 NaN NaN
1000 60151 0.1203 120.3020 0.1094 1.8794 251.9692 NaN NaN
1000 61545 0.1231 123.0900 0.0938 1.8764 258.3795 NaN NaN
1000 63201 0.1259 126.4020 0.1094 1.8746 262.8071 NaN NaN
1000 64403 0.1287 128.8060 0.1250 1.8714 269.7343 NaN NaN
1000 66051 0.1315 132.1020 0.0937 1.8683 275.1362 NaN NaN
1000 67373 0.1343 134.7460 0.1094 1.8657 280.5666 NaN NaN
1000 68601 0.1371 137.2020 0.1250 1.8628 287.3298 NaN NaN
1000 70004 0.1399 140.0080 0.1093 1.8609 291.2518 NaN NaN
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Table 17: Values and computation times of complexity measures performed on
Erdős-Rényi DiGraphs

Erdős-Rényi DiGraphs
n m p Cdeg t (sec) Cdis t (sec) Csym t (sec) Cent t (sec) Cpro t (sec)

50 371 0.1565 14.8400 0.0000 2.9335 0.0156 0.9087 0.0000 0.0052 0.0781 0.40 1.6874
100 949 0.0921 18.9800 0.0156 3.1723 0.0313 0.9356 0.0000 0.0044 0.3906 0.39 3.5636
200 2107 0.0530 21.0700 0.0000 3.2208 0.1719 0.9661 0.0000 0.0029 1.6249 0.32 2.6873
400 4805 0.0300 24.0250 0.0000 3.5057 0.9398 0.9884 0.0000 0.0004 8.6950 0.33 7.8292
800 10641 0.0167 26.6025 0.0000 3.7252 4.5622 0.9907 0.0156 0.0000 47.0400 0.31 8.3142

1000 13924 0.0138 27.8480 0.0000 3.7702 5.3683 0.9940 0.0000 0.0001 80.5648 0.31 10.9381
1500 21983 0.0098 29.3107 0.0000 3.8999 12.0491 0.9947 0.0156 0.0000 235.4659 0.31 17.2854
2000 30241 0.0076 30.2410 0.0000 3.9771 22.1135 0.9967 0.0156 0.0001 480.9503 0.31 23.7038
2500 39403 0.0063 31.5224 0.0000 4.0318 36.0554 0.9969 0.0156 0.0001 827.5908 0.31 37.8228
3000 48146 0.0053 32.0973 0.0000 4.0543 69.3322 0.9975 0.0312 0.0000 1572.5826 0.31 39.3146

1000 2798 0.0028 5.5960 0.0000 5.6762 12.3001 0.9957 0.0309 0.0096 46.1950 0.64 152.3140
1000 5394 0.0055 10.7880 0.0000 4.2043 18.5483 0.9963 0.0468 0.0007 80.0133 0.32 19.2527
1000 8402 0.0083 16.8040 0.0156 3.5009 24.4601 0.9892 0.0469 0.0001 111.2263 0.31 17.7072
1000 11052 0.0111 22.1040 0.0156 3.1085 30.8953 0.9897 0.0781 0.0000 133.8620 0.30 11.0176
1000 13955 0.0139 27.9100 0.0156 2.8918 36.8835 0.9840 0.1094 0.0000 154.9203 0.30 13.3479
1000 16726 0.0167 33.4520 0.0156 2.7534 42.6350 0.9844 0.1093 0.0000 186.1621 0.30 15.8307
1000 19606 0.0195 39.2120 0.0156 2.6591 48.6334 0.9816 0.1250 0.0000 205.5570 0.30 17.8845
1000 22140 0.0223 44.2800 0.0312 2.5706 54.7290 0.9796 0.1719 0.0000 231.8333 0.30 20.3472
1000 25099 0.0251 50.1980 0.0313 2.4940 62.5929 0.9737 0.1718 0.0000 253.4466 0.30 23.7690
1000 28026 0.0279 56.0520 0.0156 2.4125 67.1567 0.9707 0.2031 0.0000 281.8988 0.30 25.0606
1000 30750 0.0307 61.5000 0.0312 2.3451 72.1847 0.9688 0.2188 0.0000 307.9022 0.30 27.0960
1000 33501 0.0335 67.0020 0.0312 2.2834 78.6151 0.9653 0.2656 0.0000 331.2841 0.30 29.1313
1000 36358 0.0363 72.7160 0.0312 2.2194 86.6107 0.9634 0.2500 0.0000 355.4264 0.30 31.6092
1000 38817 0.0391 77.6340 0.0469 2.1712 90.7571 0.9601 0.2812 0.0000 380.3953 0.30 33.6719
1000 42019 0.0419 84.0380 0.0312 2.1234 96.5035 0.9561 0.2812 0.0000 404.1020 0.30 36.0541
1000 44781 0.0447 89.5620 0.0312 2.0839 103.7393 0.9560 0.2969 0.0000 428.3961 0.30 37.6522
1000 47376 0.0475 94.7520 0.0468 2.0521 108.5122 0.9510 0.3437 0.0000 456.1846 0.30 40.6181
1000 50566 0.0503 101.1320 0.0469 2.0243 114.6351 0.9498 0.3750 0.0000 483.0516 0.30 44.1690
1000 53296 0.0531 106.5920 0.0469 2.0018 122.1398 0.9454 0.4062 0.0000 496.8530 0.30 44.3016
1000 56162 0.0559 112.3240 0.0469 1.9856 126.2011 0.9451 0.3906 0.0000 524.8561 0.30 46.4771
1000 58960 0.0587 117.9200 0.0469 1.9705 131.5938 0.9426 0.3749 0.0000 553.8024 0.30 48.9500
1000 61946 0.0615 123.8920 0.0468 1.9583 141.3847 0.9420 0.5468 0.0000 577.2576 0.30 50.6478
1000 64059 0.0643 128.1180 0.0469 1.9495 144.6296 0.9353 0.5156 0.0000 596.3216 0.30 53.0886
1000 66986 0.0671 133.9720 0.0625 1.9429 151.7814 0.9319 0.4687 0.0000 624.1873 0.30 56.6828
1000 69941 0.0699 139.8820 0.0781 1.9369 156.0782 0.9303 0.4844 0.0000 643.4944 0.30 56.4554
1000 72597 0.0727 145.1940 0.0625 1.9318 163.7047 0.9268 0.6889 0.0000 669.9760 0.30 58.5589
1000 75702 0.0755 151.4040 0.0781 1.9271 170.5891 0.9224 0.7812 0.0000 692.3521 0.30 60.3873
1000 78160 0.0783 156.3200 0.0625 1.9240 173.6046 0.9231 0.5630 0.0000 713.0085 0.30 61.8815
1000 80779 0.0811 161.5580 0.0625 1.9201 182.8216 0.9179 0.5468 0.0000 750.5691 0.30 66.4640
1000 84131 0.0839 168.2620 0.0625 1.9169 186.3268 0.9142 0.7031 0.0000 758.5826 0.30 67.0267
1000 86590 0.0867 173.1800 0.0781 1.9141 194.6446 0.9149 0.6718 0.0000 790.5235 0.30 68.7337
1000 89497 0.0895 178.9940 0.0781 1.9108 202.0619 0.9108 0.6093 0.0000 814.0444 0.30 70.5760
1000 92016 0.0923 184.0320 0.0625 1.9077 205.8473 0.9052 0.7636 0.0000 830.1134 0.30 72.3901
1000 94673 0.0951 189.3460 0.0937 1.9053 213.3686 0.9035 0.7343 0.0000 851.0961 0.30 75.6881
1000 98403 0.0979 196.8060 0.0938 1.9021 218.8441 0.9017 0.7499 0.0000 874.8928 0.30 76.2983
1000 101326 0.1007 202.6520 0.0781 1.8991 224.4748 0.8987 0.7031 0.0000 894.5061 0.30 78.2482
1000 103608 0.1035 207.2160 0.0781 1.8963 232.3633 0.8979 0.7187 0.0000 928.4583 0.30 79.4368
1000 106374 0.1063 212.7480 0.0781 1.8932 238.6161 0.8961 0.7343 0.0000 957.7443 0.30 83.9687
1000 108940 0.1091 217.8800 0.0938 1.8908 244.5538 0.8913 0.8124 0.0000 974.5113 0.30 83.9559
1000 112013 0.1119 224.0260 0.0938 1.8880 249.0088 0.8846 0.7968 0.0000 1000.5811 0.30 85.7534
1000 115159 0.1147 230.3180 0.0937 1.8855 252.6703 0.8854 0.9135 0.0000 1011.8938 0.30 91.2679
1000 117774 0.1175 235.5480 0.1094 1.8827 259.0367 0.8823 0.8906 0.0000 1044.7777 0.30 90.0000
1000 120689 0.1203 241.3780 0.0937 1.8795 265.7714 0.8815 0.9062 0.0000 1059.3067 0.30 91.6030
1000 123655 0.1231 247.3100 0.0937 1.8765 273.8081 0.8754 0.8749 0.0000 1083.2222 0.30 94.1719
1000 125631 0.1259 251.2620 0.1094 1.8739 280.1252 0.8737 1.0168 0.0000 1109.6884 0.30 97.4387
1000 128914 0.1287 257.8280 0.0938 1.8712 283.9339 0.8711 0.9062 0.0000 1133.0100 0.30 97.6459
1000 131086 0.1315 262.1720 0.1094 1.8684 289.9489 0.8710 0.9999 0.0000 1143.4898 0.30 99.8460
1000 134071 0.1343 268.1420 0.1094 1.8658 296.3890 0.8675 0.9218 0.0000 1184.6930 0.30 103.2430
1000 136831 0.1371 273.6620 0.1094 1.8628 302.6849 0.8644 1.0012 0.0000 1196.1281 0.30 102.6690
1000 140127 0.1399 280.2540 0.1406 1.8599 310.3431 0.8617 0.9531 0.0000 1211.6052 0.30 105.7742
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Table 18: Values and computation times of complexity measures performed on
routing DiGraphs

Routing DiGraphs
n m p Cdeg t (sec) Cdis t (sec) Cent t (sec) Cpro t (sec) Crou t (sec)

50 194 0.1565 7.7600 0.0000 0.7082 0.0000 0.0953 0.0312 0.66 7.2977 8.20 0.0000
100 430 0.0921 8.6000 0.0000 0.7078 0.0156 0.1039 0.0625 0.44 6.3433 7.26 0.0000
200 1119 0.0530 11.1900 0.0000 0.8210 0.0469 0.0834 0.2812 0.46 18.0613 12.02 0.0156
400 2343 0.0300 11.7150 0.0000 0.6853 0.1406 0.0845 0.8906 0.35 13.2359 10.04 0.0312
800 5369 0.0167 13.4225 0.0000 0.8273 0.6718 0.0708 3.9685 0.40 56.2255 13.64 0.1094

1000 6968 0.0138 13.9360 0.0000 0.8045 0.9687 0.0789 5.7198 0.32 21.4758 13.09 0.2031
1500 11397 0.0098 15.1960 0.0156 0.8861 2.3918 0.0761 15.4094 0.32 31.7436 15.70 0.3750
2000 15410 0.0076 15.4100 0.0000 0.8675 3.9997 0.0722 25.4603 0.33 56.9937 14.07 0.7500
2500 19433 0.0063 15.5464 0.0000 0.8741 6.1584 0.0737 39.2947 0.33 72.4774 15.16 1.2523
3000 24479 0.0053 16.3193 0.0000 0.9189 9.3757 0.0677 63.6250 0.33 89.9202 16.71 2.0468

1000 6960 0.0138 13.9200 0.0000 0.8250 1.0155 0.0753 5.8101 0.31 12.8116 13.83 0.1406
1000 8266 0.0163 16.5320 0.0000 0.9096 1.2812 0.0667 8.0945 0.31 14.7561 15.95 0.1562
1000 9320 0.0188 18.6400 0.0000 1.0167 1.5481 0.0613 10.3616 0.31 16.2382 18.51 0.1562
1000 10511 0.0213 21.0220 0.0000 1.0037 1.6405 0.0580 11.5474 0.31 17.7793 18.89 0.1562
1000 12099 0.0238 24.1980 0.0000 1.0365 1.9426 0.0536 14.6092 0.31 20.3290 21.73 0.1562
1000 13235 0.0262 26.4700 0.0000 1.0779 2.1874 0.0497 18.8291 0.31 22.1951 25.73 0.1719
1000 14362 0.0287 28.7240 0.0000 1.0913 2.3123 0.0466 19.2005 0.31 23.3918 30.06 0.2187
1000 15679 0.0312 31.3580 0.0000 1.0874 2.5623 0.0446 21.2844 0.31 25.4094 30.94 0.2031
1000 16767 0.0337 33.5340 0.0000 1.0896 2.6883 0.0429 23.5173 0.31 26.7842 33.49 0.2344
1000 18178 0.0362 36.3560 0.0000 1.0734 2.9998 0.0423 25.2859 0.31 29.0301 34.57 0.1875
1000 19281 0.0387 38.5620 0.0000 1.0778 3.0154 0.0423 26.7495 0.31 30.4219 35.80 0.2031
1000 20220 0.0412 40.4400 0.0000 1.0755 3.0936 0.0409 28.2790 0.31 33.2393 38.31 0.2031
1000 21932 0.0437 43.8640 0.0000 1.0779 3.4841 0.0395 32.1378 0.31 34.3944 42.71 0.2344
1000 22926 0.0461 45.8520 0.0000 1.0495 3.5154 0.0394 32.8967 0.31 35.6686 44.37 0.2031
1000 24442 0.0486 48.8840 0.0000 1.0425 3.6749 0.0392 35.5516 0.31 37.6363 44.67 0.2343
1000 25770 0.0511 51.5400 0.0000 1.0521 3.9241 0.0374 38.4890 0.31 42.2202 49.71 0.2500
1000 26721 0.0536 53.4420 0.0000 1.0538 3.9381 0.0366 40.0998 0.31 41.1432 52.96 0.2187
1000 28184 0.0561 56.3680 0.0000 1.0437 4.1912 0.0359 42.1152 0.31 43.0062 54.32 0.2500
1000 29124 0.0586 58.2480 0.0000 1.0296 4.3591 0.0362 45.9602 0.31 44.4431 55.16 0.2344
1000 30635 0.0611 61.2700 0.0000 1.0239 4.5480 0.0352 47.9212 0.31 46.6148 57.50 0.2343
1000 31958 0.0636 63.9160 0.0000 1.0194 4.8447 0.0350 48.7855 0.31 48.4759 58.06 0.2500
1000 33039 0.0660 66.0780 0.0000 1.0128 4.8278 0.0344 51.8778 0.31 50.3260 62.19 0.2656
1000 34153 0.0685 68.3060 0.0000 1.0109 5.0357 0.0353 52.7725 0.31 51.7958 66.95 0.2656
1000 35487 0.0710 70.9740 0.0000 1.0004 5.1247 0.0343 54.2800 0.31 53.2105 64.05 0.2500
1000 36823 0.0735 73.6460 0.0000 0.9960 5.2832 0.0342 56.5714 0.31 56.8581 66.54 0.2656
1000 38148 0.0760 76.2960 0.0000 0.9912 5.4894 0.0335 59.7882 0.31 57.5163 70.91 0.2500
1000 39284 0.0785 78.5680 0.0000 0.9891 5.6036 0.0331 63.0853 0.31 58.9005 72.58 0.2656
1000 40149 0.0810 80.2980 0.0000 0.9887 5.7340 0.0323 62.8253 0.31 60.3376 76.67 0.2812
1000 42128 0.0834 84.2560 0.0000 0.9748 6.0322 0.0329 65.7725 0.31 62.9272 76.64 0.2826
1000 43150 0.0859 86.3000 0.0000 0.9690 6.2352 0.0328 67.6640 0.31 65.9251 78.54 0.2812
1000 44155 0.0884 88.3100 0.0156 0.9779 6.1691 0.0325 71.2186 0.31 65.9506 83.10 0.3437
1000 45331 0.0909 90.6620 0.0156 0.9703 6.3590 0.0323 71.2624 0.31 70.3192 86.25 0.2812
1000 47035 0.0934 94.0700 0.0000 0.9720 6.6558 0.0323 75.1978 0.31 70.4701 90.02 0.2969
1000 48066 0.0959 96.1320 0.0000 0.9637 6.7339 0.0323 75.8914 0.31 72.9875 88.38 0.2969
1000 48998 0.0984 97.9960 0.0000 0.9620 6.8121 0.0318 77.1207 0.31 72.9139 94.89 0.2982
1000 50750 0.1009 101.5000 0.0000 0.9577 7.0933 0.0317 80.8509 0.31 76.7141 93.52 0.3281
1000 51523 0.1033 103.0460 0.0000 0.9606 7.2363 0.0314 85.4124 0.31 76.3831 101.03 0.3281
1000 52906 0.1058 105.8120 0.0000 0.9539 7.3459 0.0313 85.3046 0.31 77.9159 101.46 0.3125
1000 54302 0.1083 108.6040 0.0000 0.9504 7.3745 0.0314 87.6339 0.31 80.0538 96.82 0.3437
1000 55247 0.1108 110.4940 0.0000 0.9500 7.5464 0.0315 87.8853 0.31 81.6733 103.39 0.3442
1000 56431 0.1133 112.8620 0.0000 0.9468 7.9057 0.0308 90.9838 0.31 86.1031 103.83 0.3281
1000 57611 0.1158 115.2220 0.0000 0.9440 8.0009 0.0313 92.4521 0.31 85.3300 103.54 0.4375
1000 58817 0.1183 117.6340 0.0000 0.9426 8.0022 0.0310 94.6731 0.31 87.0751 107.13 0.3437
1000 60110 0.1207 120.2200 0.0000 0.9404 8.2338 0.0309 99.1379 0.31 90.3286 112.37 0.3593
1000 61663 0.1232 123.3260 0.0000 0.9361 8.2206 0.0307 99.4845 0.31 91.0006 111.02 0.3593
1000 62864 0.1257 125.7280 0.0000 0.9359 8.2831 0.0309 99.5018 0.31 94.1533 117.37 0.4218
1000 64129 0.1282 128.2580 0.0000 0.9343 8.6424 0.0308 105.1412 0.31 94.5517 118.55 0.4375
1000 65122 0.1307 130.2440 0.0000 0.9336 8.6836 0.0305 107.6357 0.31 95.2904 120.18 0.4218
1000 66527 0.1332 133.0540 0.0000 0.9330 8.8612 0.0304 107.6874 0.31 97.8937 121.34 0.4009
1000 67900 0.1357 135.8000 0.0000 0.9251 9.0165 0.0304 109.3971 0.31 101.6253 118.43 0.3796



Quantifying Network Complexity 55

B.2 Open-source (di)graphs

Table 19: Values and computation times of complexity measures performed on
Open-Source Graphs

Open-Source Graphs

network n m Cdeg t (sec) Cdis t (sec) Csea t (sec)

jazz[4] 198 2742 27.6970 0.0156 2.2350 5.5616 0.9989 58.6558
euroroad[3] 1039 1305 2.5120 0.0313 18.3951 28.2511 0.9863 487.9313

powergrid[6] 4941 6594 2.6691 0.1094 18.9892 467.2417 0.9979 145400.7716
pgp[5] 10680 24316 4.5536 0.2812 7.4855 1893.3436 NaN NaN

astroph[1] 17903 196972 22.0044 1.1718 4.1940 17948.8601 NaN NaN
caida[2] 26475 53381 4.0326 0.6802 3.8756 10554.6425 NaN NaN

Table 20: Values and computation times of complexity measures performed on
Open-Source DiGraphs

Open-Source DiGraphs
network n m Cdeg t (sec) Cdis t (sec) Csym t (sec) Cent t (sec) Cpro t (sec)

moreno[9] 217 2672 24.6267 0.0000 2.7269 1.4062 0.3765 0.0312 0.0017 4.4997 0.31 3.8591
usairport[10] 1572 28235 35.9224 0.0312 2.8669 97.2368 0.2193 0.2656 0.0065 454.5889 0.67 685.2410
openflights[8] 2905 30442 20.9583 0.0312 4.0924 237.3847 0.0279 0.3150 0.0008 2006.0641 0.34 105.7157

bitcoin[29][28] 5875 35587 12.1147 0.0625 2.9834 562.5677 0.2077 0.3102 NaN NaN 1.00 2441.6999
p2p[32][35] 10876 39994 7.3545 0.0781 2.6936 699.6089 1.0000 0.4375 NaN NaN 1.00 4216.4074

googleplus[7] 23613 39230 3.3227 0.1562 0.0078 11.5652 0.9976 0.5625 NaN NaN 1.00 8975.7015
p2p[32][35] 36646 88303 4.8192 0.2969 1.8797 3825.4008 1.0000 1.0937 NaN NaN 1.00 11599.7948
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B.3 Statistics Netherlands (di)graphs

Table 21: Values and computation times of complexity measures performed on
a large company digraph provided by Statistics Netherlands

Companies Network
n m msample Cdeg t (sec) Cdis t (sec) Csym t (sec) Cent t (sec) Cpro t (sec)

32 31 10000 1.9375 0.0000 0.0312 0.0030 1.0000 0.0000 0.0092 0.0120 0.48 0.6930
70 69 20000 1.9714 0.0000 0.0151 0.0030 1.0000 0.0030 0.0260 0.0120 1.00 7.1401

109 108 30000 1.9817 0.0000 0.0125 0.0030 1.0000 0.0000 0.0499 0.0120 0.75 6.3633
322 321 40000 1.9938 0.0000 0.0066 0.0030 1.0000 0.0000 0.0769 0.0150 0.77 21.4771

5154 5157 50000 2.0012 0.0000 0.0005 0.0690 1.0000 0.0090 0.0582 0.3210 0.49 250.5047
15399 15531 60000 2.0171 0.0030 0.0002 0.2310 0.9999 0.0360 0.0556 0.7860 0.37 314.4845
22710 23155 70000 2.0392 0.0061 0.0001 0.4036 0.9998 0.0530 0.0569 1.3136 0.31 109.8377
30078 31078 80000 2.0665 0.0086 0.0001 0.5232 0.9999 0.1087 0.0591 2.2110 1.00 5798.1626
37728 39536 90000 2.0958 0.0119 0.0001 0.8130 0.9998 0.1499 0.0607 3.0990 1.00 7940.2146
45408 48178 100000 2.1220 0.0150 0.0001 0.8010 0.9999 0.1230 0.0627 2.7240 1.00 8288.3652
82309 93202 150000 2.2647 0.0240 0.0001 1.7880 0.9998 0.2490 0.0763 6.4950 NaN NaN

117828 141158 200000 2.3960 0.0300 0.0002 3.7410 0.9998 0.3750 0.0964 13.4010 NaN NaN
151485 190474 250000 2.5148 0.0420 0.0008 10.1490 0.9997 0.4560 0.1396 37.5452 NaN NaN
183474 240929 300000 2.6263 0.0630 0.0078 67.6110 0.9997 0.8160 0.1670 336.7430 NaN NaN
213571 292113 350000 2.7355 0.0604 0.0530 460.9782 0.9996 0.7459 NaN NaN NaN NaN
241599 343677 400000 2.8450 0.0758 0.2595 2833.1184 0.9996 0.9460 NaN NaN NaN NaN
268026 395247 450000 2.9493 0.1255 0.5230 6808.8575 0.9996 1.5252 NaN NaN NaN NaN
293039 446950 500000 3.0504 0.0749 0.8376 13423.6949 0.9996 1.0212 NaN NaN NaN NaN
478974 965380 1000000 4.0310 0.1165 NaN NaN 0.9995 2.0254 NaN NaN NaN NaN
707310 2487708 2500000 7.0343 0.3339 NaN NaN 0.9992 6.9335 NaN NaN NaN NaN
858488 9998657 10000000 23.2936 0.3540 NaN NaN 0.9979 24.7680 NaN NaN NaN NaN
872281 20000302 20000000 45.8575 0.3500 NaN NaN 0.9963 85.2316 NaN NaN NaN NaN
873667 24997546 25000000 57.2244 0.4912 NaN NaN 0.9955 115.9346 NaN NaN NaN NaN
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C Appendix - Packages

C.1 Packages Versions

In order to make use of the implemented techniques the version of Python
has to be 3.7.1 or higher. Setups with Python versions below 3.7.1 were not
tested.

The following Python libraries were used with their recommended versions:

1. Networkx 2.3 [23]
2. Numpy 1.17.2 [34]
3. Scipy 1.3.1 [37]

Though not necessary for making use of the complexity measures, the fol-
lowing libraries are useful for plotting and creating tables:

1. Pandas 0.25.1 [33]
2. Matplotlib 3.1.1 [26]

C.2 Implementations availability

The Python implementations of the complexity measures and additional (un-
used) functions are made available and can be found here: https://github.com/
simonvw95/NetworkX-Complexity-Measures-Additions/tree/master/SVW CBS
pkg

Instructions on how to install the Python package as well as a documentation
of all the available functions are included.

https://github.com/simonvw95/NetworkX-Complexity-Measures-Additions/tree/master/SVW_CBS_pkg
https://github.com/simonvw95/NetworkX-Complexity-Measures-Additions/tree/master/SVW_CBS_pkg
https://github.com/simonvw95/NetworkX-Complexity-Measures-Additions/tree/master/SVW_CBS_pkg

