
Master Computer Science

Integrating Algorithm Selection and Configuration:

A Proof of Concept for the Modular CMA-ES

Name: Diederick Vermetten

Student ID: 1603094

Date: 16/10/2019

Specialisation: Computer Science and
Advanced Data Analytics

1st supervisor: Thomas Bäck

2nd supervisor: Hao Wang

External Carola Doerr
Supervisor: (Sorbonne Université, France)

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 4

2 Related Work 5
2.1 The Modular CMA-ES . 5
2.2 Test-bed: the COCO framework . 6
2.3 Performance Measures . 6
2.4 Overview of terminology . 8
2.5 Hyperparameter Tuning . 8

2.5.1 Hyperparameters . 8
2.5.2 Tuning methods . 9
2.5.3 MIP-EGO . 9
2.5.4 Irace . 10
2.5.5 Summary . 11

3 Experimental setup 12
3.1 Research questions . 12
3.2 Data repository . 12

4 Sequential approaches 13
4.1 Algorithm Selection . 13
4.2 The curse of high variance . 14
4.3 Impact of hyperparameter tuning on configuration ranking 20
4.4 Distribution of parameter values . 21
4.5 ERT-prediction using random forests . 22
4.6 MIP-EGO vs irace . 25
4.7 Impact of hyperparameter tuning per function 27
4.8 Summary . 30

5 Integrated approaches 31
5.1 Exploration of procedures . 31
5.2 Methods . 32
5.3 Baseline . 33
5.4 Comparison between MIP-EGO and irace . 34
5.5 Variance of results . 37
5.6 Summary . 39

6 Conclusions 42

7 Future Work 43

A Impact of instance variation 47

B Configuration Switching 49

C Impact of budget on performance of irace 50

D Parsing Configuration IDs 51

2

Abstract

When faced with a specific (class of) optimization problem, choosing which algo-
rithm to use is always a tough choice. Not only is there a vast variety of algorithms
to select from, but these algorithms often contain many hyperparameters, which need
to be tuned in order to achieve the best performance possible. Usually, this problem is
separated into two parts: algorithm selection and algorithm configuration. In this thesis,
we aim to combine this into a single approach for choosing (and tuning) the best out of
the 4,608 variants of the Covariance Matrix Adaptation Evolution Strategies (CMA-ES)
provided by the modEA framework [vRWvLB16].

Building upon the promising results presented in [VvRBD19], we first explore the
effect of hyperparameter tuning on the performance of the CMA-ES variants. To this
end, study how different hyperparameter tuning methods, MIP-EGO and irace, compare
on the algorithm configuration problem. Based on these results, we find that a simple
sequential execution of algorithm selection and hyperparameter tuning will not always
result in finding the best performance, and doing so requires an exponentially increasing
amount of data as the algorithm space grows.

We also consider an alternative approach, which integrates algorithm selection and
configuration into a single problem. We use irace and MIP-EGO, to optimize both
the hyperparameters and the algorithm variant at the same time. Following [Bel17], the
tuning of three chosen hyperparameters which are present in all CMA-ES variants within
the modEA framework. We find that this integrated approach is promising, achieving
better performance than the sequential approach, while requiring significantly fewer
function evaluations.

3

1 Introduction

Optimization is an important sub-domain of both Mathematics and Computer Science. Over
the years it has seen an increasing amount of interest from many researchers. This caused an
enormous increase in the amount of optimization algorithms which are available to solve any
kind of problem. These algorithms keep being developed further, leading to an incredible variety
of slight variations, each of which with its own benefits and detriments on specific classes of
problems. However, it has long been known that no single algorithm can outperform all others
on all functions, an observation commonly referred to as the no-free-lunch theorem [WM97].
This fact leads to a new challenge for researchers and practitioners alike: How to choose which
algorithm to use for which problem? Even when limiting ourselves to just a single class of
algorithm, the number of variants can be daunting, leading practitioners to resort to a few
standard versions, which might not be well suited to their problems.

In this work, we study a class of Covariance Matrix Adaptation Evolution Strategies (CMA-ES).
Even tough it is a variant on the general Evolution Strategy in itself, many different variations
on CMA-ES have been created. Through experimentation, it has been shown that no single
variant outperforms all others [Han09, BFK13]. This gives rise to even more practical consider-
ations: which algorithm, and which variant of that algorithm, is best suited to a particular class
of problems? This problem is called the algorithm selection problem, and has been studied in
many different fields. However, the variant of CMA-ES does not completely define how well
it performs on different kinds of functions. The hyperparameters of the algorithm also play a
large role in its performance [Bel17]. The selection of which hyperparameter settings to use
for an algorithm on a certain kind of function is called the algorithm configuration problem,
which we also study in detail.

In this work, we use the modular CMA-ES framework, modEA, as introduced in [vR18], to
create variations of the CMA-ES. This framework implements a standard CMA-ES skeleton,
with the option to enable or disable many modules, each of which implements some modi-
fications to the standard CMA-ES. This framework is used to create the CMA-ES variants
discussed in this work. We extend previous work done in [VvRBD19] by looking at hyperpa-
rameter optimization of the modular CMA-ES. To combine algorithm selection with algorithm
configuration, we use a one-search-space approach, which optimizes algorithm variant and
corresponding hyperparameters at the same time.

The remainder of this thesis is structured as follows: Section 2 introduces the previous work
which relates to our topic: the modEA framework, our test-bed and the used performance
methods. This section also introduces hyperparameter tuning and explains the methods used
in the experiments, for which experimental setup is introduced in Section 3. The results are
split into two parts: Section 4 describes the experiments which focus on hyperparameter tuning,
while Section 5 covers the integration of algorithm selection and configuration into a single
approach. This work is concluded in Section 6 and future work is discussed in Section 7.

4

2 Related Work

2.1 The Modular CMA-ES

We build our work upon the modular CMA-ES framework (modEA), which was first introduced
in [vRWvLB16]. The modEA package, implemented in python, is freely available at [vR18].
This framework implements a general structure for CMA-ES, with the option to customize
the algorithm by selecting modules to turn on or off. These modules represent previously
introduced variations on the default CMA-ES, such as elitism, active update, etc. In total,
11 modules have been implemented, as shown in Table 1. Of these modules, 9 are binary
and 2 are ternary, allowing for a total of 4,608 different possible CMA-ES variants, which we
will from now on refer to as configurations. In this thesis, the configurations will often be
referred to by their ID instead of their vector of module activations. These representations can
be translated using the formula in Appendix D.

The modules available in modEA can be combined to create many popular variants of CMA-
ES, such as the set of commonly used configurations are shown in Table 2. However, since they
can be activated in any combination, many new CMA-ES configurations can be created, which
have the potential to improve significantly over the common CMA-ES variants [vRWvSB17].
Next to these modules, the modEA framework also allows the option to change many different
hyperparameters, such as population size, learning rates etc. These can also have a big impact
on the performance of the algorithm, and are discussed in more detail in Section 2.5

Module name 0 1 2

1 Active Update [JA06] off on -

2 Elitism (µ, λ) (µ+λ) -

3 Mirrored Sampling [BAH+10] off on -

4 Orthogonal Sampling [WEB14] off on -

5 Sequential Selection [BAH+10] off on -

6 Threshold Convergence [PMEVBR+15] off on -

7 TPA [Han08] off on -

8 Pairwise Selection [ABH11] off on -

9 Recombination Weights [AJT05] log(µ+1
2
)− log(i)∑

j wj

1
µ

-

10 Quasi-Gaussian Sampling off Sobol Halton

11 Increasing Population [AH05, Han09] off IPOP BIPOP

Table 1: Overview of the CMA-ES modules available in the used framework. The entries
in row 9 specify the formula for calculating each weight wi.

5

Variant Representation

CMA-ES 00000000000
Active CMA-ES 10000000000
Elitist CMA-ES 01000000000
Mirrored-pairwise CMA-ES 00100001000
IPOP-CMA-ES 00000000001
Active IPOP-CMA-ES 10000000001
Elitist Active IPOP-CMA-ES 11000000001
BIPOP-CMA-ES 00000000002
Active BIPOP-CMA-ES 10000000002
Elitist Active BIPOP-CMA-ES 11000000002

Table 2: Common CMA-ES Variants. A selection of ten common CMA-ES variants is
listed here, taken from [vRWvLB16].

2.2 Test-bed: the COCO framework

For the benchmarking of the algorithm configurations produced by modEA, we previously used
the COCO/BBOB suite of noiseless benchmarking functions [HAB+16]. This suite contains 24
functions, defined in a continuous search space (f : Rd → R), of which we use the 5D versions.
An overview of some global properties of these functions is shown in Table 3. Each function
can be transformed in both objective and variable space, resulting in separate instances with
similar fitness landscapes. A large part of our analysis is built on data from [VvRBD19], which
uses the first 5 instances of all functions, for which 5 independent runs were performed on
each instance, for each configuration and each function. This data is available at [VvRBD].

2.3 Performance Measures

Since we are interested in the performance of the CMA-ES configurations, we need to define
exactly which performance measures we are interested in. To be consistent with previous work,
such as [VvRBD19], we decide to focus hitting times, particularly AHT and ERT, which we
defined in this section.

In general, there are two distinct approaches which can be taken to analyze the performance
of an optimization algorithm. The first is the fixed-budget approach, which looks at the best
f(x) value found after a certain budget B has been used. The second approach is fixed-target,
which focuses on how many function evaluations are needed by an algorithm to reach a certain
target function value φ for the first time. In this work, we use the fixed-target approach to
analyze and compare the configurations created by modEA.

For the fixed-target analysis, a clear way to define targets across all used benchmark functions
needs to be defined. The targets are set as precisions to the optimal values. We use the
precision to the optimal value as a shorthand, so φ = 10−8 is hit when |fopt − fbest-so-far| ≤ φ.
When we use this shorthand, the hitting time of target φ is the first function evaluation for
which this target is hit. We can write this as ti(c, f, φ) to signify the hitting time of target φ
of run i of configuration c on function f . If target φ is not hit, we define ti(c, f, φ) =∞.

In essence, the hitting time is an integer-valued random variable, which we denote as T (c, f, φ).
The observed hitting times ti(c, f, φ) are then sampled from this distribution. To determine

6

Function multim. gl.-struc. separ. scaling homog. basins gl.-loc.
1 Sphere none none high none high none none
2 Ellipsoidal separable none none high high high none none
3 Rastrigin separable high strong none low high low low
4 Bueche-Rastrigin high strong high low high med. low
5 Linear Slope none none high none high none none
6 Attractive Sector none none high low med. none none
7 Step Ellipsoidal none none high low high none none
8 Rosenbrock low none none none med. low low
9 Rosenbrock rotated low none none none med. low low
10 Ellipsoidal high-cond. none none none high high none none
11 Discus none none none high high none none
12 Bent Cigar none none none high high none none
13 Sharp Ridge none none none low med. none none
14 Different Powers none none none low med. none none
15 Rastrigin multi-modal high strong none low high low low
16 Weierstrass high med. none med. high med. low
17 Schaffer F7 high med. none low med. med. high
18 Schaffer F7 mod. ill-cond. high med. none high med. med. high
19 Griewank-Rosenbrock high strong none none high low low
20 Schwefel med. deceptive none none high low low
21 Gallagher 101 Peaks med. none none med. high med. low
22 Gallagher 21 Peaks low none none med. high med. med.
23 Katsuura high none none none high low low
24 Lunacek bi-Rastrigin high weak none low high low low

Table 3: Classification of the noiseless BBOB functions based on their properties (multi-
modality, global structure, separability, variable scaling, homogeneity, basin-sizes, global
to local contrast). Predefined groups are separated by horizontal lines. Table taken from
to [MBT+11].

the mean of T , the most straightforward method is to use the sample mean, also referred to
as the Average Hitting Time (AHT), which is defined as follows:

Definition 2.1 ((Penalized) Average Hitting Time).

T̃ (c, f, φ) =
1

n

n∑
i=1

min{ti(c, f, φ), P}

When a run does not succeed in hitting target φ, we have ti(c, f, φ) =∞. In this case, a
penalty P ≥ B is applied. Usually, this penalty is set to ∞, in which case this value is
the called the AHT. Otherwise, it is commonly referred to as penalized AHT.

The AHT is a very simple estimator for the mean of the hitting time T , but it is not a consistent
unbiased estimator. For a consistent, unbiased estimator of the mean of the hitting time T ,
the so-called Expected Running Time (ERT) is used. This is defined as follows:

Definition 2.2 (Expected Running Time).

ERT(c, f, φ) =

∑n
i=1 min{ti(c, f, φ), B}∑n
i=1 1{ti(c, f, φ), <∞}

Previous work [AH05] has shown ERT to be a consistent, unbiased estimator of the mean of
the distribution hitting times T . It is also good to note that ERT and AHT are equivalent in
the case where the configuration c manages to hit target φ in all runs.

7

2.4 Overview of terminology

To remain consistent with previous work, we use the following terminology:

• Module: A single option within a configurable algorithm. For example: elitism in modEA.

• Configuration: An instantiation of a configurable algorithm according to a complete
set of module settings. For example: the common configurations in Table 2.

• Target: A predefined value indicating a precision to the optimal value, which can be
reached during an optimization run. A target is hit when |fopt− fbest-so-far| ≤ τ . We use
targets between 102 and 10−8.

• Instance: A specific instantiation of a function. For example: instance 1 of BBOB-
function 21.

• Run: A single execution of a configuration on a single instance of a function.

2.5 Hyperparameter Tuning

Almost every possible algorithm contains at least some amount of free choice from the user
in term of parameter settings. However, these parameters can often be hidden to the user and
set to a predetermined value. Often times, these default values are not the best ones for the
users given problem, and their optimal setting depends on the scenario in which the algorithm
will be applied. If some internal parameters are not controlled by the algorithm itself, and they
have to be set from an external source, and they have an impact on the adaptation of other
parameter values, these are typically called hyperparameters. To get the best performance
out of any given algorithm, the value of these hyperparameters is crucial. Because of this,
hyperparameter tuning has long been an important aspect of algorithm design. The simplest
form of hyperparameter tuning is done by having a human expert try some different values for
the available hyperparameters and choosing those best suited to their problem. However, as the
amount of available computational resources is ever increasing, algorithms for hyperparameter
tuning have become more and more popular as time went on.

Hyperparameter tuning can in itself be seen as an optimization problem, and thus many
different techniques for automatic hyperparameter tuning have been proposed over the years.
For a hyperparameter setting to be evaluated, the entire underlying algorithm needs to be
evaluated. Hence, hyperparameter tuning can be viewed as an expensive evaluation function,
i.e. a function for which we have a very limited budget of evaluations. Because of this, efficient
global optimization techniques, such as Bayesian optimization, are popular in this domain.

2.5.1 Hyperparameters

Before deciding on which hyperparameter tuning approach to take, we first need to define which
parameters we want to include in our optimization. Previous work on hyperparameter tuning
in CMA-ES [Bel17] has considered the parameters c1, cc and cµ to be the most interesting
to study. We will follow this suggestion, and focus on these three parameters in particular. In
this work, we only set the hyperparameters once, so we are performing offline hyperparameter
tuning.

8

Initial
Design of
experiments

Train
Meta-
Model

Propose New
Candidate
Solution x*

Evaluate
y*=f(x*)

Terminate?
No

Figure 1: Basic Flowchart for EGO

Since the modular CMA-ES is considered here, we have many additional parameters to be
tuned when certain modules are enabled or disabled. We can even view the selection of a
configuration as a hyperparameter tuning problem, and optimize both the configuration and
its corresponding parameters at once. We will refer to this as the one-search-space approach,
and investigate it in detail in Section 5.2. This approach requires the hyperparameter tuning
method to be able to use discrete variables in the tuning.

2.5.2 Tuning methods

In this work, we consider two methods for hyperparameter optimization. Since we deal with
both continuous and discrete parameters, we need an algorithm which can deal with mixed-
integer input. We decided on using two different tools. The first method is Mixed Integer
Parallel Efficient Global Optimization (MIP-EGO), which was presented in [WEB18] to test
cooling strategies for moment-generating functions. We compare this to irace [LIDLC+16], a
state-of-the-art tuning method. These techniques will be described in detail in Sections 2.5.3
and 2.5.4 respectively.

2.5.3 MIP-EGO

MIP-EGO [WEB18, WvSEB17] builds upon EGO, and can deal with mixed-integer search-
spaces. Because EGO is designed to deal with expensive function evaluations, and this variant
has the ability to deal with continuous, discrete and categorical parameters, it is also well
suited to the hyperparameter tuning task.

The general working principle of Efficient Global Optimization (EGO) algorithms is shown in
Figure 1. EGO starts by sampling an initial set of solution candidates from some user-specified
distribution, e.g. random or so-called quasi-random distributions (such as Latin hypercube
sampling). When domain or problem specific knowledge is available, more complex distributions
can be used. This process is usually referred to as the design of experiment. Based on the
evaluation of these initial points, a meta-model is constructed. This is usually done by Gaussian
process regression, but random forests are also often used, especially when the search space
contains a mixture of real, ordinal and nominal variables. Based on this model, a new point (or
set of points) is proposed according to some metric, called the acquisition function. This can be
as simple as selecting the point with the largest probability of improvement (PI) or the largest

9

Figure 2: Illustration of basic iterated racing.

expected improvement (EI). More recently, acquisition functions based on moment-generating
function of the improvement have also been introduced [WvSEB17]. After selecting the point
(or points) to evaluate, the meta-model is updated according to their quality. The process is
repeated until a termination criterion is met.

MIP-EGO works by first sampling an initial set of candidate points using Latin hypercube
sampling, evaluating them and then building a surrogate model using Random Forests. We
use the expected improvement (EI) as the acquisition function, and maximize this using a
mixed-integer evolution strategy.

2.5.4 Irace

Irace is an algorithm designed for hyperparameter optimization, which is implemented in R
(available at [LIPC]), and implements an iterated racing procedure [LIDLC+16, LIDLSB11].
The main principle of iterated racing is shown in Figure 2. It starts by randomly sampling
an initial population, and then iteratively running them on single instances. The distributions
of hitting times are then compared using statistical tests, e.g. a two-sample T-test, and the
candidates which are significantly worse (in the statistical sense) are eliminated. After a set
number of iterations or if only a set number of candidates remain, new candidates are generated
according to some sampling model and a new race is started.

For our experiments, we use the elitist version of irace with adaptive capping. This works by
first sampling a set of candidate parameter settings, which can be any combination of discrete,
continuous, categorical or ordinal variables. Then these parameters are used to run on some
problem instances, after which a statistical test (in this thesis we use the standard t-test, but
this can be improved upon in further research) is run to determine which parameter settings
to discard. The remaining parameter settings are then run on more instances and continuously
tested every l iterations until either only a minimal number of remaining settings or the budget
of the current iteration is exhausted. The surviving candidates with the best rank, as sorted
by their averaged hitting times, are selected as the elites.

10

Figure 3: Illustration of elitist iterated racing as implemented in the irace-package. Figure
taken from [CLIHS17].

After the racing procedure, new candidate parameter settings are generated by selecting a
parent from the set of elites and mutating them. The mutation procedure re-samples all
continuous parameter values from a distribution with mean at the value in the parent and
set variance which decreases after each race to promote exploitation, as described in detail
in [LIDLC+16]. Similar mutation procedures are used for the other parameter types. After
generating the new set of candidates, a new race is started with these new solutions, combined
with the ones that survive from the previous race. Since we use an elitist version of irace,
the elites are not discarded until the competing candidates have been evaluated on the same
instances which the elites have already seen. This is done to prevent the discarding of candidates
which perform well on the previous race based on only a few instances in the current race. A
visual representation of the working mechanism of irace is shown in Figure 3.

Apart from using elitism and statistical tests to determine when to discard candidate so-
lutions, we also use another recently developed extension of irace, the so called adaptive
capping [CLIHS17] procedure. Adaptive capping helps to reduce the number of evaluations
spent on candidates which will not manage to beat the current best. Adaptive capping enables
irace to stop evaluating a candidate once it reaches a mean value which is worse than the
median of the elites, indicating that this candidate is unlikely to be better than the current
best parameter settings.

2.5.5 Summary

We note that we decided on using MIP-EGO and irace because they approach the problem
in fundamentally different ways. MIP-EGO is designed to be efficient at balancing exploration
and exploitation in low-budget scenarios, but it is not explicitly built to deal with stochastic
problems. In contrast, irace is built specifically with the algorithm configuration problem in
mind, so it can deal with stochasticity efficiently, but its candidate generation might be less
efficient than the procedures used in EGO. These two methods both have their distinct prop-
erties, so comparing and contrasting them might give us some interesting insights into the
nature of our configuration and hyperparameter space. Other commonly used hyperparameter
tuning methods, such as hyperband [LJD+16] and SMAC [HHLB11], were not used in this
work.

11

3 Experimental setup

To run our experiments, the COCO BBOB [HAB+16] framework is used. This is a well-
established collection of benchmark problems for black-box optimization, as described in more
detail in Section 2.2. More specifically, the benchmark we use is the set of 24 noiseless,
5-dimensional functions as shown in Table 3. These are the same functions as were used
in [VvRBD19], for which a large amount of data is available. This data is used as the basis for
the algorithm selection in Section 4.

3.1 Research questions

In these experiments, we aim to answer a few key research questions to lead us to a better
understanding of the impact of hyperparameter tuning in the many-algorithm context created
by modEA, as well as some insight into the properties of the hyperparameter tuning methods
mentioned in Section 2.5. Specifically, we aim to answer the following questions:

• What is the general impact of hyperparameter tuning on the performance of CMA-ES
configurations created by modEA? How stable is this performance?

• Is the naive approach, i.e. sequential execution of algorithm selection followed by hyper-
parameter tuning, effective at finding the best (configuration, hyperparameters)-pair?
Are there configurations which perform poorly with default hyperparameters which can
improve to the point where they beat the best static configurations after hyperparameter
tuning?

• Are the expected values given by the hyperparameter tuning run reliable? Is the sample
size large enough to get an accurate estimate of ERT?

• How well do the default hyperparameter settings perform? Are there significant differ-
ences to the optimized hyperparameter settings?

• Is there a significant difference in performance between MIP-EGO and irace when using
them for hyperparameter tuning?

• Can we predict the ERT of a configuration using some basic models?

• Can we use the hyperparameter tuning methods to optimize both the configuration and
the hyperparameter settings at the same time? How do MIP-EGO and irace differ on
this task?

• What are the main differentiating factors between MIP-EGO and irace?

3.2 Data repository

All data produced during the experiments described in the next sections, as well as the code
used to run the experiments themselves, will be made available on Github at [VWBD]. Data
used from [VvRBD19], including the ERTs from 5 × 5 runs on all BBOB-functions, is also
available on Github, at [VvRBD].

12

4 Sequential approaches

In this section, the algorithm selection problem and hyperparameter tuning are considered to
be two completely separate problems. We will use the available 5× 5 hitting time data for the
algorithm selection, and focus on the hyperparameter tuning part, using both MIP-EGO and
irace as hyperparameter tuning methods.

The first experiments aim to identify the potential performance gains (in terms of ERT) which
can be achieved by hyperparameter tuning. To achieve this, MIP-EGO is used to optimize
the hyperparameters of a large set of configurations. As mentioned in Section 2.5.1, three
hyperparameters have been selected to be tuned: c1, cc and cµ. MIP-EGO is given a budget
of 200 evaluations, each consisting of 5× 5 runs, split into an initial random sampling size of
19 + 1 and a further set of 180 iterations. The goal for the optimization is to minimize ERT
over 5 runs on 5 instances of the selected function. To ensure MIP-EGO can find a ‘reasonable’
parameter setting, the default values of the hyperparameters are always included in the initial
population. This removes the possibility for negative improvements, given we ignore the effects
of variance.

To explore the effect of hyperparameter tuning on the performance of the CMA-ES configu-
rations, we select two functions to investigate in more detail. These are F12 and F21. These
functions were selected because previous research [VvRBD19] showed that they are quite dis-
tinct. Where F12 is relatively easy to solve for a CMA-ES, F21 is much more challenging,
leading to an inability to reach target 10−8 consistently. Because of this, the target to reach is
set to match the one used in [VvRBD19], shown here in Table 5. For both of these functions,
we select a set of interesting configurations on which to perform the hyperparameter tuning.

4.1 Algorithm Selection

To select the sets of configurations on which to perform the hyperparameter tuning, the
ERTs based on 25 avaialbe runs can be used. For F21, we select the 50 best modular CMA-ES
configurations, add a set of 6 common configurations (from Table 2) to it. This leads to a set of
56 distinct configurations, on which MIP-EGO is run. We then select the best hyperparameter
setting evaluated by MIP-EGO and denote this as the tuned hyperparameter setting. The
resulting ERT from this hyperparameter tuning will be shown in Figure 4a, which shows
promising results. However, these ERTs might not be reliable, since previous work [VvRBD19]
found that ERTs based on 25 runs are not always reliable. Because of this, these results are
investigated in detail in Section 4.2.

Similarly, for F12, a set of configurations on which we perform hyperparameter tuning is
selected. These configurations can be split into three distinct groups:

• Group 1: Those selected using the process of the two-stage approach as described
in [VvRBD19]. This approach selects the 50 best static configurations and combines
this with the configurations which are used in the 50 best switching configurations.

• Group 2: The static configurations ranked 200-256 (ranked on ERT at target 10−8, of
the set of configurations with the (B)IPOP module disabled).

13

• Group 3: A set of random configurations, with the restriction that the (B)IPOP module
is not active.

Note that this set only contains configurations without the (B)IPOP module to allow the
re-using of data gathered in [VvRBD19]. For each of these configurations, MIP-EGO is run
with a budget of 200 evaluations to tune the hyperparameters (c1, cc, cµ).

4.2 The curse of high variance

The previous section explained the algorithm selection procedure. On the selected configura-
tions, MIP-EGO is run to find the best hyperparameter settings. However, MIP-EGO tries to
optimize ERT based on 25 runs, which has been shown to be unreliable at times [VvRBD19].
Because of this, the configurations are always verified on 250 runs (50 runs on 5 instances
each), both with their default hyperparameters and the tuned hyperparameters as found by
MIP-EGO.
The results from the hyperparameter on F21 are shown in Figure 4. From Figure 4a, it can
be see that optimizing hyperparameters initially seems to have a large impact on the found
ERT. Among these configurations, the average improvement found is around 45%, which is
very significant. These results can then be compared to their more robust counterpart, shown
in Figure 4b. From this figure, we can see that the improvements which we initially saw in
Figure 4a have almost completely disappeared, from an average of around 45% to only 5%.
This seems to indicate that the large improvement which were initially shown, might have
been caused largely by the high variance present in the hitting times on this function.

The same procedure is performed on F12, first running MIP-EGO on all selected configurations
and then rerunning the configurations 250 times to verify the resulting ERTs. The results from
this are shown in Figure 5. In Figure 5a, we show the ERT with default hyperparameters vs the
best ERT found in the MIP-EGO run. We see distinct differences between the groups, with
the largest improvements visible for group 3, which indicates that configurations which initially
perform poorly can become much better with optimized hyperparameters, while configurations
which already perform quite well tend to see less benefit. If we take a look at the relative
improvement obtained (from 25 runs), which is shown in Figure 6, we see this pattern even
more clearly. While improvements of over 40% are rare occurrences for groups 1 and 2, they
are the norm for group 3. This is caused by the fact that most configurations in group 3
have difficulty reaching the set target, thus getting large penalties to their ERT. If a better
hyperparameter setting manages to reach the target value slightly more often, even if caused
solely by the inherent stochasticity of the algorithm, the improvement in ERT is very large.

From Figure 5b, it can be seen that, when rerunning the tuned hyperparameter settings, the
improvement over the default hyperparameters has become a smaller than those seen in Fig-
ure 5a, and more erratic. Figure 6 shows the difference in relative ERT improvement based on
25 runs against 250 runs. This figure visualizes the reduction in relative improvement achieved
by the 250-run verification. From this figure, we also see that, for some configurations, there
is a negative improvement from the optimized hyperparameters compared to the default ones.
To get a more robust idea of this difference, the hitting time distributions are shown as a split
violin plot in Figure 7. From this figure, we can see that for the first three configurations, a
negative improvement in ERT is present, but the distributions are almost exactly the same. A

14

0 10 20 30 40 50
Configuration nr (sorted by ERT)

5000

7500

10000

12500

15000

17500
20000
22500
25000
27500

ER
T

Default
Optimized

(a) ERTs based on 5 runs of 5 instances. Errorbars are shown only for the optimized hyper-
parameter values and indicate the 95% confidence interval of the mean. The configurations are
sorted according to the optimized ERT after hyperparameter tuning.

0 10 20 30 40 50
Configuration nr (sorted by ERT)

5000

7500

10000

12500

15000

17500
20000
22500
25000
27500

ER
T

Default
Optimized

(b) Rerun for 50 runs on 5 instances, both for the default hyperparameter settings as well as the
tuned ones. The configurations are sorted according to the ERT with tuned hyperparameters.

Figure 4: ERT of default hyperparameter settings vs. those found by MIP-EGO, for 56
different configurations on benchmark problem F21.

15

0 20 40 60 80 100 120 140 160
Configuration nr (sorted by ERT per group)

2500

5000

7500

10000

12500
15000

ER
T

Group 1
Group 2
Group 3

(a) F12: ERT of default hyperparameter settings (lighter colour) vs. those found by MIP-EGO
(darker colour). Configurations sorted according to optimized ERT within their group. All data
comes from 5 runs of 5 instances.

0 20 40 60 80 100 120 140 160
Configuration nr (sorted by ERT per group)

2500

5000

7500

10000

12500
15000

ER
T

Group 1
Group 2
Group 3

(b) Rerun of configurations and hyperparameters from Figure 5a, for 50 runs on 5 instances.

Figure 5: ERT of default hyperparameter settings vs. those found by MIP-EGO, for 174
different configurations on benchmark problem F12.

16

1 2 3
Group Number

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Im
pr

ov
em

en
t

Version
25
250

Figure 6: Distribution of relative improvements in ERT between default and tuned hyper-
parameters for 174 different configurations, split in 3 groups as described in the previous
section. On benchmark function F12.

Mann-Whitney U test confirms that, with the exception of configuration 1,341 there are no
statistically significant differences between the two distributions for the configurations with see
negative improvement (α = 0.01). However, even for the configuration for which the distribu-
tions are different, the probability that a random sample of 5 × 5 runs from the distribution
with the optimized hyperparameters has a lower ERT than another random sample from the
distribution with default hyperparameters, is around 26.6%.

Another detail to notice in Figure 5b is that, while for most configurations, the large im-
provements in ERT become much smaller, there are several configurations for which the large
improvements remain. This indicates that these configurations have much more to gain from
hyperparameter tuning. Some investigation of the module activations in these configurations
shows that they all have the active update module turned on. When this module is active,
it changes the value of the cc parameter to 2

(D+
√
2)2

= 0.0486, which seems to be too low

for this function, thus there can be a large improvement when changing the value of this
hyperparameter.

For most configurations on which hyperparameter tuning was performed, the improvement
shown in Figures 5a and 4a is not stable over 250 runs. To get a better understanding of how
this could happen, a small experiment was performed to simulate how a simplified hyperparam-
eter optimization might work. For this experiment, we assume that for a given configuration
around 10% of tested hyperparameter values have the same hitting time distribution as the
optimal hyperparameter value found by MIP-EGO. If we then sample k runs on each instance
from the set of 50 runs whose hitting times we have gathered, we end up with 20 sets of 5 · k
hitting times, from which we then take the one with the best ERT. We can then compare its

17

1341 1740 1197 1587 615 1332 903 867 930 2622 3342 2514
Configuration ID

103

104

Hi
tti

ng
 T

im
e

Optimized
Default

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

ER
T

Im
pr

ov
em

en
t

Figure 7: Distribution of hitting times (left y-axis) from 250 runs for 12 different configu-
rations on F12, comparing the runs with optimized hyperparameter settings to those with
default hyperparameters. The red line (right y-axis) indicates the amount of improvement
in ERT observed for the configuration.

ERT to that of the original sample to see how much improvement we can find. The results
from this sampling experiment are shown in Figure 8, as well as the actual improvement on
F21 between the ERT found from the 25 runs observed during the running of MIP-EGO and
the 250 verification runs performed afterwards.

From Figure 8, it can be see that the observed worsening of the ERTs of the configurations
with tuned hyperparameters on F21 can be explained by this sampling. In other words, during
the running of MIP-EGO, we might sample from many similar distributions, and because only
only the best candidate is selected at the end, there is a large possibility of over-fitting on the
used seeds. This indicates that care needs to be taken in interpreting the raw ERT results. This
demonstrates the need to always repeat experiments on unseen seeds to verify generalizability
of the selected hyperparameters. For F12, the difference between ERT from 25 runs during
MIP-EGO and achieved ERT on 250 runs can be explained the same way. When assuming only
5% of tested hyperparameters have the same distribution of hitting times, an improvement of
around 16% can be expected, which matches the observed 15.3%.

For a final measure of the impact of variance on performance, the differences in ERT-based
ranking of the configurations is studied in more detail. For F21, the changes from the ranking
based on the 25-run ERT and the ranking based on the ERT from the 250 verification runs
is shown in Figure 9. In this figure, it can be seen that the changes in rankings are quite
significant, which magnifies the importance of the robust verification procedure. To more
precisely state the correlation between the two rankings, we can calculate the Kendall rank
correlation coefficient (which we will refer to as the Kendall coefficient), which is defined as
follows:

18

0 10 20 30 40 50
Number of runs per instance

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Im
pr

ov
em

en
t o

ve
r a

ct
ua

l E
RT

Experimental improvement
Achieved improvement

Figure 8: Average improvement of ERT obtained from 250 runs vs the value obtained
after running MIP-EGO (25 runs) in orange, vs experimental improvement. Experimental
improvement obtained over 100 repetitions of selecting k samples per instance for each
configuration and calculating their respective ERT.

Definition 4.1. Kendall rank correlation coefficient The Kendall rank correlation coeffi-
cient between two ranks of data-points X is defined as follows:

K(r1, r2) =
2 ·
∑

x,y∈X sign(r1(x)− r1(y)) · sign(r2(x)− r2(y))

|X| · (|X| − 1)

Where we set sign(0) = 0 to deal with ties.

For the rankings in Figure 9, the Kendall coefficient is 0.40, which is quite low, indicating
the the correlation is indeed not very strong. This leads to the finding that the algorithm
selection itself might not be very robust. To make sure this effect is not solely based on the
used function or the configurations, the same analysis is performed on benchmark function
F12, with a larger set of configurations. This is done in Section 4.3.

In this section, the impact of variance on the hyperparameter tuning has been investigated. It
has been shown that variance plays a big role in the hyperparameter tuning process, and thus
care needs to be taken when selecting which configurations and which hyperparameters to use.
Another important finding from this section is the fact that the configuration which performs
the best with default hyperparameters does not necessarily correspond to the configuration
which performs the best after hyperparameter tuning. The next section will take a closer look
at the differences in ranking between ERTs of default and tuned hyperparameter values.

19

1 11 21 31 41 51
Rank

Default (250)

Default (25)

Figure 9: Evolution of ERT-based ranking (lower rank is better) of 56 configurations on
F21. Default refers to the realized ERT of the default hyperparameters during the run
of MIP-EGO (default hyperparameters are always included in the initial sampling of the
search space). Optimized is the best ERT found by MIP-EGO. Darker lines correspond
to larger changes in ranking.

4.3 Impact of hyperparameter tuning on configuration ranking

The previous section explored the effects of variance on the relative ERT improvements for
either a single configurations or a set of configurations. If this effect would be constant, one
might simply ignore it and use the 25 run data and apply the correction at the end. However, the
impact of variance changes per configuration. Thus, when ranking the configurations by ERT,
this ranking might differ depending on whether 25 or 250 runs were used. Visualizations of the
changes in ERT-based ranking for F21 and F12 are shown in Figures 9 and 10 respectively.

As discussed previously, the changes in ranking seen in Figure 9 are quite large. This indicates
that algorithm selection will not be very robust, so care should be taken when determining
which configurations to perform hyperparameter tuning on. However, it should also be noted
that the hyperparameter tuning itself might have an impact on the ranking of the configura-
tions, This is shown in Figure 10, where several large differences in ranking between default
and tuned hyperparameter settings are noticeable. These correspond to the previously men-
tioned configurations with active update, which improved significantly with hyperparameter
tuning. Overall, the other configurations seem relatively stable. The Kendall coefficient for
the rankings from Figure 10 is 0.70. This signifies a positive correlation, although it is not
as high as initially expected (for comparison, the correlation between the ERT rankings with
default hyperparameters for 25 and 250 runs is 0.89). This indicates that just selecting the
top x configurations and tuning their hyperparameters might not be enough to find the best
possible ERT.

In this section, the effects of hyperparameter tuning on the ERT-based ranking of configura-
tions has been studied. This gives rise to the question of whether the default hyperparameter
values are close to, or far from, optimal, and for which configurations this is the case. To get
an idea of how different the tuned hyperparameters are from the default ones, the next section
investigates the distribution of the hyperparameter values

20

1 21 41 61 81 101 121 141 161
Rank

Default (25)

Default (250)

Optimized (250)

Optimized (25)

Figure 10: Evolution of ERT-based ranking (lower rank is better) of 174 configurations
on F12. Default refers to the ERT using the default hyperparameters while optimized is
the best ERT using the tuned hyperparameters as found by MIP-EGO. Color-scheme as
in Figure 5a. Darker lines correspond to larger changes in ranking.

4.4 Distribution of parameter values

Next, we will take a more in-depth look at the actual values of the tuned hyperparameters. Since
we only optimize three hyperparameters, the entire hyperparameter space can be visualized
in a 3D-plot. First, we show the distribution of the ERT for all hyperparameter settings
tested during the MIP-EGO run (200 points), for two separate configurations. This is done in
Figure 11. From this figure, we notice that, while the differences between the two configurations
are quite large, they do have an area in common where the ERTs are quite close to the optimal
one found by MIP-EGO. We also notice that the default hyperparameter configuration does
not necessarily lie in this area.

To get a clearer picture of this common region of interest, we perform the following procedure
to create the visualization shown in Figure 12:

• Create a grid of points evenly split among the parameter space

• For each point and each configuration, add the mean value of its 3 nearest-neighbor
points which were evaluated

• Divide by the number of configurations considered to get an average nearest-neighbor
value among all configurations

This gives us a visual representation of the common region of interest where the ERT is lowest
among all configurations. To prevent a large influence of poorly-performing configurations, we
only take into account the top 50 configurations (ranked based on the best ERT achieved
during the MIP-EGO run).

From Figure 12, we can see that even thought the optimal hyperparameter values are quite
spread out, there still is a clear area of common good performance. It is important to note
that most default hyperparameter settings do in fact lie within this common area, indicating
that they are quite well chosen already. However, this also stresses the importance of per-
configuration hyperparameter tuning, since the optimal ERT might be achieved with a very
different hyperparameter setting.

21

c10.00
0.05

0.10
0.15

0.20
0.25

0.30

cc
0.0

0.2
0.4

0.6
0.8

1.0

c

0.00
0.05
0.10

0.15

0.20

0.25

104

3 × 103
4 × 103

6 × 103

2 × 104

ER
T

(a) Configuration nr. 4,374

c10.00
0.05

0.10
0.15

0.20
0.25

0.30

cc
0.0

0.2
0.4

0.6
0.8

1.0

c

0.00
0.05
0.10

0.15

0.20

0.25

104

3 × 103
4 × 103

6 × 103

2 × 104

ER
T

(b) Configuration nr. 918

Figure 11: Distribution of ERT-values for the hyperparameter settings evaluated during
the MIP-EGO runs of two configurations. Darker colors correspond to lower ERT. The
default hyperparameter setting is marked in red.

This experiment showed that the optimal hyperparameter setting can vary largely between
different configurations. For some configurations, the default hyperparameter settings might
be close to optimal, leading to a small potential gain in ERT from hyperparameter tuning.
However, some other configurations have poorly performing default hyperparameter settings,
and can see relatively large performance improvements. This gives rise to a natural question:
can the performance of a configuration after hyperparameter tuning be predicted based solely
on the configuration itself?

4.5 ERT-prediction using random forests

For the previous experiments, we focused on the hyperparameter tuning and its results on the
performance of individual configurations. However, this was done using a brute-force approach,
where we gathered 5× 5 run data. In total, the sequential approach using MIP-EGO requires
25 ·4,608+200 ·25 = 120,200 total function evaluations. And, as we saw in Figures 10 and 9,
simply choosing the top x configurations based on ERT with default hyperparameters might
not always suffice to find the configuration with the best ERT after hyperparameter tuning.
So even tough a huge number of function evaluations have been used, there is no guarantee
that the best (configuration, hyperparameters)-pair will be found.

In this section, we explore a way to predict the ERT, both with default and optimized hyper-
parameters, without having to run MIP-EGO on each configuration. This should allow for a
limited number of MIP-EGO runs to gather data, after which we have a single configuration for
which the hyperparameters can be tuned. This can be achieved by training a Random Forest
(RF) model on the 250-run data for a subset of configurations, and using this to predict the
ERTs for the unseen ones.

To determine the viability of this method, we first try to predict the ERT of some configurations
on F12 for which we have already gathered the necessary data to verify the predictions. We use

22

c1

0.000
0.025

0.050
0.075

0.100
0.125

0.150
0.175

cc
0.0

0.2
0.4

0.6
0.8

1.0

c

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

3.3 × 103 3.4 × 103 3.5 × 103 3.6 × 103 3.7 × 103 3.8 × 103 3.9 × 103

ERT

Figure 12: Aggregated ERT among 50 best configurations: averaged nearest-neighbor ERT
value among top 50 configurations, gathered by splitting the search-space into a grid and
for each grid point averaging among all configurations the average ERT of the grid points
3 nearest neighbors evaluated during the MIP-EGO run. Red points indicate locations of
default hyperparameters, while black ’+’-sings indicate locations of optimized hyperpa-
rameters found during MIP-EGO runs. Only points with averaged nearest-neighbor ERT
of less than 4000 are shown.

23

0 10 20 30 40 50 60 70
Configuration nr (sorted by achieved ERT)

2000

5000

10000

25000

50000

ER
T

Achieved
Predicted

Figure 13: ERT predicted by random forest model vs achieved ERT (250 runs), for a
testset of 74 different configurations.

the configurations mentioned in the beginning of this section, and split them up in a training-
set of size 100 and a test-set with the remaining configurations, with the goal of predicting the
ERT with default hyperparameters. In Figure 13, we show the differences between predicted
and achieved ERT, which can be shown in terms of prediction error, which is defined as follows:

Definition 4.2 (Prediction error).

PredictionError(X) = 1− min(Xpred, Xreal)

max(Xpred, Xreal)

From Figure 13, we see that the fit between predicted and achieved is quite good, with an
average error of close to 10%. We can also look at which configurations the model predict
to perform well, and run these to verify the results. We take the 11 configurations which the
model predicted to perform well, and show the results of running them in Figure 14. From
this, we see that there are a few outliers present for which the model is completely wrong, but
for all other configurations the prediction is as accurate if not more so than the ERT predicted
by looking at the 25-run data.

Since this is only one realization of the model, it might not be representative of the actual
predictive power. To get some more robust results, we need to repeat these experiments. We
are also interested in knowing how many samples are needed to train the model well, so we
perform a test with varying training-set size. We compare the prediction of the ERT with
default hyperparameters to the ERT with optimized hyperparameters, as well as a baseline of
random normally distributed values with the same mean an variance as the ERTs with default
hyperparameters. The results of this experiment are shown in Figure 15. From this, we see

24

435 582 588 720 726 732 876 1020 1023 1311 1596
Configuration ID (sorted by Achieved ERT)

2000

5000

10000

25000

50000

100000

ER
T

25-run prediction
Achieved
RF prediction

Figure 14: ERT predicted by random forest model vs achieved ERT (250 runs), for the
set of the 11 best predicted configurations.

that predicting the ERTs of the default hyperparameter values is slightly easier than predicting
the ERT after hyperparameter optimization. However, both predictions are substantially better
than random, indicating that the model is at least learning something about the configurations.

Even tough this approach seems promising, we have to keep in mind that the configurations
we use to train and test on are not chosen randomly. This bias in the available configurations
might be a large factor in explaining the predictive strength of our model. To verify this,
we perform a similar experiment on F6 by gathering ERT data (default hyperparameters) for
112 random configurations1. We split this in a testset of size 90, and test on the remaining
configurations. When repeated 1,000 times, we get an average difference between predicted
and actual ERT of 61.2%, indicating that way we choose the configurations is indeed the
major reason why we saw good predictions for F12.

4.6 MIP-EGO vs irace

For all of our previous experiments, we used MIP-EGO for the hyperparameter tuning. While
this method is very well suited to expensive optimization and by extension hyperparameter
tuning, it is not adapted to deal with noisy problems. For this reason, we compare it to irace,
which as described in Section 2.5.4, should be able to handle noisy data more effectively. Since
we ran MIP-EGO for 200 evaluations, which consist of 25 runs each, we give irace a total
evaluation budget of 5,000 to split among its evaluations, and task it with minimizing the
penalized averaged hitting time, with a penalty for unfinished runs of 4 · B = 100,000. We
then run irace on 5 different configurations. We used the configurations with rank 0, 1, 2,

1Chosen as a multiple of 14 since 14 nodes were available to run this experiment

25

20 40 60 80 100 120 140 160
Nr of training samples

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ed

ice
tio

n
er

ro
r

Default ERT
Optimized ERT
Random ERT

Figure 15: Absolute relative difference between predicted and actual ERT of Random
Forest model trained on different training sizes (out of a set of 174 samples). Results
are shown for benchmark function 12 for predicting ERT values (based on 250 runs) of
default and tuned configurations. Random ERT refers to random samples from a normal
distribution with the same mean and variance as the Default ERT samples.

25 and 50 based on ERT of 250 runs with MIP-EGO optimized hyperparameters. The results
from running irace on these configurations is shown in Figure 16.

From Figure 16, we can see that the difference between the two methods seems negligible.
If we keep in mind the biased way we used to select which configurations to use, we can say
that irace performs just as well as MIP-EGO on these configurations for this function. An
interesting point to note is the fact that the underestimation of ERT during the optimization
also happens in irace, although slightly less than MIP-EGO. This effect would likely become
smaller the more budget irace is given, since it would allocate more runs to the best hyperpa-
rameter settings to get a more robust ERT. When using MIP-EGO, the only way to achieve a
better prediction would be to allocate more runs per iteration, which would mean that poorly
performing hyperparameter settings will also take up a lot more evaluations.

26

867 870 864 2172 744
Configuration

0

1000

2000

3000

4000
ER

T

Default
MIP-EGO (250)
MIP-EGO (pred)
irace (250)
irace (pred)

Figure 16: Comparison of irace and MIP-EGO on hyperparameter optimization of 5 con-
figurations on F12. In the legend, ‘pred’ refers to the ERT found during the optimization
run, while all other ERTs are based on 250 runs.

4.7 Impact of hyperparameter tuning per function

To get some more insight into the differences between the available functions, a smaller
version of the experiment described in Section 4 is performed for all functions. A set of 30
configurations is selected for each function. These configurations can be split into three distinct
groups:

• Group 1: The 10 configurations with the best ERT on the 25-run data

• Group 2: The configurations ranked 200-210 based on the 25-run ERT

• Group 3: The 10 commonly used configurations as seen in Table 2.

Note that groups 1 and 2 are distinct for each function, as opposed to group 3 which is static.
For each of these configurations, we run MIP-EGO to optimize (c1, cc, cµ) using a budget of
200 evaluations of 25 runs each. The resulting (configuration, hyperparameters)-pairs are then
run it 50 times on 5 instances. This is done both with default and tuned hyperparameters.
From this, the average gain from hyperparameter tuning can be calculated. This is shown in
Figure 17.

In Figure 17, the differences between functions are clearly visible. For some of the easier
functions, the relative improvements are all close together, indicating that the tuning of hy-
perparameters has a similar effect on most configurations. However, for most of the functions,
this is not the case, as the differences in relative improvement span a much wider range. This
is consistent with our previous finding on F12, where we saw that for some configurations,

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

Im
pr

ov
em

en
t

Figure 17: Distribution of relative improvement in ERT between the default and tuned
hyperparameters. For each function, 30 configurations (as described in the first para-
graph of Section 4.7) are tuned with MIP-EGO, and the resulting (configuration,
hyperparameters)-pairs are rerun 250 times to validate the results. The same is done
for the default hyperparameters, and then the relative improvement in ERT is calculated.

there was a large improvement possible over the default hyperparameters, while for others
the default hyperparameters are close to optimal. There are also some negative improvements
shown, which might be caused by a large prediction error.

Using the data gathered in this experiment, the prediction error for MIP-EGO can be studied
in more detail. For each function, 30 configurations are available on which MIP-EGO was run.
This gives us 30 prediction errors per function. Based on the experiments in Section 4.2, it can
be assumed that larger variance will lead to larger prediction errors. Figure 18 shows both the
distribution of prediction errors as well as the average standard deviation of hitting times over
all 30 configurations. In this figure, the relation between the prediction error and the variance
is clearly visible.

From this experiment, we can also extract the overall amount of improvement gained per func-
tion, in terms of the best tuned configuration relative to the best configuration with default
hyperparameters. This can also be compared to the results of the ‘näıve’ approach of sequential
algorithm selection and configuration, i.e. tuning the hyperparameters of the best configura-
tion. These comparisons are shown in Figure 19. From this, we see that, while the default
hyperparameter tuning manages to find some improvement over the default hyperparameter
settings, the best (configuration, hyperparameters)-pair manages to find a significantly larger
improvement.

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ed
ict

io
n

Er
ro

r

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

va
ria

nc
e

Figure 18: Comparison of the distribution of prediction errors (between the ERT found
during the MIP-EGO run and the ERT found during the 250 validation runs) and the
relative variance, i.e. the average standard deviation divided by the average AHT among
the 30 configurations used (as described in the first paragraph of Section 4.7).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
la

tiv
e

Im
pr

ov
em

en
t

Best (configuration, hyperparameters)-pair
Tuned Version

Figure 19: Relative improvement in ERT over the best configuration with default hyper-
parameters, both for the best (configuration, hyperparameters)-pair found (denoted by
’Best Pair’) as for the tuned version of the selected configuration (denoted by ‘Tuned ver-
sion’). All ERTs are from 250 runs. Negative improvement are possible, since the tuned
hyperparameters settings for each configuration are chosen based on 25 runs and could
be biased, as described in Section 4.2.

29

1 2 5 10 2 5 100 2 5 1E+3 2 5 1E+4 2

0

0.2

0.4

0.6

0.8

1 Sequential

Default

Function evaluations

P
ro

po
rt

io
n

of
(r

un
,t

ar
ge

t,
...

)
pa

ir
s

Figure 20: Empirical Cumulative Distribution Function (ECDF) of the default CMA-ES
and the sequential approach as described in Section 4.7. Results are based on 250 runs.
This visualization was generated by the IOHprofiler [DWY+18]. The ECDF shows the
average fraction of (run, target)-pairs which were reached within x function evaluations
by the respective algorithms.

4.8 Summary

In this chapter, the focus has been on the effects of hyperparameter tuning on the performance
of different configurations. The need for hyperparameter tuning per configuration has been
shown in Section 4.4. This emphasizes the need for a good algorithm selection technique, since
Section 4.2 proved that the impact of variance is a large factor in the effectiveness of hyperpa-
rameter tuning. This causes configurations which perform well with default parameters to not
necessarily correspond to the configurations which will perform well after the hyperparameter
tuning.

Because of these differences in ranking, a model for ERT-prediction of a configuration was
proposed. This RF model is trained to predict the ERT of a configuration with either default or
tuned hyperparameters, after which the configuration with the best predicted ERT is selected
to be run. We found this approach to be unreliable when using a limited number of training
samples, and did not pursue this angle further. Instead, the focus was shifted towards a different
method of algorithm selection. We selected 3 groups of configurations for each function, an
ran hyperparameter tuning using MIP-EGO on all of them. The results from this approach,
which are again visualized in Figure 20, are much more promising than only selecting the best
configuration, but require many more function evaluations. Because of this, the next chapter
discusses methods to integrate algorithm selection and configuration into a single approach,
removing the reliance on available hitting time data.

30

0 10 20 30 40 50
Configuration nr (sorted by optimized ERT)

2000

2500

3000

3500

4000

4500

5000

ER
T

Integrated irace runs
MIP-EGO optimized
Default hyperparams

Figure 21: ERT (250 runs) of configurations with default and optimized hyperparameters,
compared to the ERT of the (configuration,hyperparameters)-pairs found by irace, on
instance 1 of F12.

5 Integrated approaches

In Section 4, the focus has been on optimizing hyperparameters and choosing configurations for
which to optimize them, but we have kept a clear separation between the two parts. However,
if we view the configuration itself as a hyperparameter, we can optimize it at the same time as.
We call this the one-search-space approach. Since both MIP-EGO and irace support discrete
or nominal parameters, we will compare these methods to each other and to the previous
approach of splitting the configurations selection and hyperparameter optimization into two
steps.

5.1 Exploration of procedures

To start with, we run irace on just a single instance of F12 and compare it to the results
we got from MIP-EGO in Section 4.2. We give irace a budget of 25,000 total runs. We
repeat this experiment four times, and show the results in Figure 21. From this figure, we see
that the results look promising. While two runs performed slightly worse than some of the
configurations even with default hyperparameters, the other two runs achieve an ERT similar
to that of the best one found using MIP-EGO on each configuration. The fact that we get
different configurations (with IDs 867, 2,191, 869 and 1,155) for each of these runs might
indicate that irace converges to a single configuration quite quickly, while it could still benefit
from some more exploration.

31

activ
e

elitis
t

mirro
red

orthogonal

sequential

threshold tpa
selectio

n
weights

sampler
ipop

Off

On

Off

1

2

Figure 22: Combined module activation plot for F12 instance 1, with the configurations
found by one-search-space irace overlaid in black.

If we take a closer look at which configurations were found by irace, we can compare these
to the configurations which perform well with static hyperparameters. To visualize this com-
parison, we use the combined module activation plots. This plot represents each configuration
as a single line, connecting the status of their modules. The best configuration is plotted
at the bottom, with further configurations added on top until we have the set of 50 best
performing ones. In Figure 22, we then overlay the configurations found by irace in black.
We see that the found configurations seem to correspond to the overall structure of the best
configurations, with TPA, active update and threshold always being off, which seems to be
an important factor in the performance on F12, as 49 out of the best 50 configurations with
default hyperparameters have these same module settings.

While Figure 21 only used a single instance, this is not a requirement of irace. We can repeat
this experiment for all 5 instances. This is shown in Figure 23, where we have 2 runs of irace
on 5 instance of F12, with a budget of 25,000 runs each. We notice a similar pattern as in
Figure 21, in that we get one run which is competitive with the best MIP-EGO result and one
which still manages to outperform most configurations with default hyperparameter values.

5.2 Methods

In this section, we compare four different methods for the integrated algorithm selection and
configuration approach:

• Näıve Sequential approach: We first select which configuration to use based on the
available 25-run data for all static configurations, and then run MIP-EGO to optimize
the hyperparameters of this configuration.

32

0 10 20 30 40 50
Configuration nr (sorted by optimized ERT)

2000

2500

3000

3500

4000

4500

5000

ER
T

Integrated irace runs
MIP-EGO optimized
Default hyperparams

Figure 23: ERT (250 runs) of configurations with default and optimized hyperparameters,
compared to the ERT of the (configuration, hyperparameters)-pairs found by irace, on 5
instances of F12.

• Sequential approach: As described in Section 4.7, a set of configurations is tuned
using MIP-EGO, and the best resulting (configuration, hyperparameters)-pair is chosen
for each function.

• MIP-EGO: We run MIP-EGO on the mixed-integer search-space to select the best
(configuration, hyperparameters)-pair.

• Irace: As per the previous section, we use irace to find the best (configuration, hyper-
parameters)-pair.

5.3 Baseline

Before running the methods for integrated algorithm selection and configuration on all func-
tions (using MIP-EGO and irace), a baseline for the performance of the sequential approaches
needs to be established. This is done using two slightly different methods, both based on com-
plete enumeration for the algorithm selection and MIP-EGO for the hyperparameter tuning.
This is done by selecting the best static configuration based on the available 25-run data, and
running MIP-EGO on these configurations. Either the best of these configurations, or a set of
them (as in Section 4.7) is considered. Previously, the ERTs from these configurations with
tuned hyperparameters were compared to the ERTs of the best configuration without hyper-
parameter tuning. This was shown in Figure 19. From this figure, it can be see that for most
functions, the achieved improvement is relatively small, especially for the approach which only
tunes hyperparameters for one configuration per function. As we discussed in Section 4.2, this
is likely caused by the low amount of samples on which the hyperparameter-tuning is based.

33

We investigate this in more detail in Section 5.4. The total amount of runs used by these
approach is 4,608 · 25 + 200 · 25 = 120,200 for the variant which tunes hyperparameters only
for the best configuration, and 4,608 · 25 + 200 · 25 · 30 = 150,000 for the other variant.

5.4 Comparison between MIP-EGO and irace

We now run MIP-EGO to perform the integrated optimization on all functions. We use a
budget of 25,000 total runs, equating to 1,000 evaluations of (5 × 5) runs each, almost a
factor of 5 lower than the näıve sequential approach. We then compare the resulting ERTs (on
250 runs) found during the optimization runs to the baseline set by the sequential approaches.
The results from this comparison are visualized in Figure 24. From this, we can see that, for 17
out of 24 functions, the ERTs achieved by MIP-EGO are better than those of the best static
configuration with tuned hyperparameters. On average, the amount of improvement is 15%
over all functions. When compared to the more robust baseline, the improvement is present
on only 10 functions.

The same experiment is performed using irace to see which method would be most suitable
to the selection of (configuration, hyperparameters)-pairs. We use a budget of 25,000 runs,
to allow for a fair comparison to MIP-EGO. Since irace allocates these runs dynamically, we
would expect the predictions of ERT to be more accurate than MIP-EGO. However, since irace
uses the penalized average hitting time, the results for some more difficult functions might be
skewed when comparing to ERT, since AHT is not a consistent estimator for the mean of the
true hitting times when some runs do not manage to reach the specified target. As before,
to be able to fairly compare to the other methods, we rerun the final selected configuration
for 250 runs. The comparison to the baseline set by the näıve sequential method is shown in
Figure 24. For irace, we see improvement over the baseline on 20 out of 24 functions, with
the amount of improvement averaging to 14% over all functions. When compared to the more
robust baseline, the improvement is present on only 12 functions.
As mentioned before, the comparison of ERTs from MIP-EGO, irace and the sequential meth-
ods is visualized in Figure 24. This figure shows that, in general, the ERT achieved by irace
and MIP-EGO is comparable. Irace has a slight advantage, beating MIP-EGO on 14 out of 24
functions. However, both methods still manage to outperform the näıve sequential approach
while using significantly fewer runs, and are only slightly worse than the more robust version
of the sequential approach.

From Figure 24, we also notice that the prediction error for irace seems to be much lower
than that of MIP-EGO or the sequential selection. We compare the prediction error, as defined
in Definition 4.2, between the three methods we used, as well as the prediction error when
only selecting the static configuration without hyperparameter tuning, in Figure 25. This
figure makes the differences we noted previously much more clear. It shows that irace, even
tough it uses penalized AHT instead of ERT, gives much more robust results than the other
methods. The cases where the irace error is largest correspond to the functions where fewer
runs managed to reach the specified target, indicating that it might be made more accurate
if we modify the penalty used in irace to be consistent with ERT. Figure 25 also highlights
the extremely large prediction error when just selecting the best static configuration from the
complete enumeration, which was to be expected, as we use only 25 runs to select the best
configuration out of a set of size 4,608. This emphasizes the importance of the larger sample-
sizes used in the verification, and the need for a reliable way to select the best configuration.

34

F
igu

re
24:

R
esu

ltin
g

E
R

T
(targets

ch
osen

as
in

[V
v
R

B
D

19]
an

d
sh

ow
n

in
T

ab
le

5)
from

ru
n
n
in

g
M

IP
-E

G
O

an
d

irace
on

th
e

on
e-search

-
sp

ace,
as

w
ell

as
th

e
tw

o
seq

u
en

tial
ap

p
roach

es
d
escrib

ed
in

S
ection

5.2.
C

on
fi
gu

ration
s

are
selected

b
ased

on
25

ru
n
s

for
M

IP
-E

G
O

(b
oth

th
e

seq
u
en

tial
an

d
in

tegrated
varian

ts),
or

a
variab

le
n
u
m

b
er

of
ru

n
s

for
irace.

T
h
e

‘p
red

icted
’
E

R
T

b
ased

on
th

ese
ru

n
s

is
sh

ow
n

as
a

sm
all

b
lack

b
ar,

w
h
ereas

all
oth

er
sh

ow
n

E
R

T
s

are
b
ased

on
250

verifi
cation

ru
n
s.

T
h
e

d
otted

lin
e

rep
resen

ts
th

e
E

R
T

of
th

e
b

est
con

fi
gu

ration
w

ith
d
efau

lt
h
y
p

erp
aram

eters.
P

recise
E

R
T

-valu
es

are
sh

ow
n

in
th

e
A

p
p

en
d
ix

,
T

ab
le

5.

35

0 5 10 15 20
Index (sorted on prediction error)

0.0

0.2

0.4

0.6

0.8
Pr

ed
ict

io
n

er
ro

r

Irace
MIP-EGO
Sequential
Complete Enumeration (no tuning)

Figure 25: Prediction errors (see Definition 4.2) between ERT found during the run (pe-
nalized AHT in case of irace) and the ERT of 250 runs for MIP-EGO, irace and sequential
one-search-space methods, as well as the prediction error when selecting the best config-
uration using complete enumeration (and not running hyperparameter tuning).

Overall, both irace and MIP-EGO give quite promising results. Both are able to find (configu-
ration, hyperparameters)-pairs which outperform the static configuration found using sequen-
tial with tuned hyperparameters for most functions. This indicates that the one-search-space
approach could be a useful technique for combining algorithm selection and algorithm config-
uration in the same procedure. Since both MIP-EGO and irace are very different techniques, it
might make sense to combine the best parts from both of them into a procedure more suited
to deal with the stochastic, non-normally distributed nature of the problem.

Since the initial experiments on F12 showed that running irace resulted in 4 different config-
uration when run 4 times, we want to investigate whether irace manages to maintain enough
population diversity, or if it spends the majority of its budget of exploitation of a single or very
few configurations. Ideally, if the population diversity gets too low, a restart would be used to
remedy this. However, irace only restarts if the distance between the candidates is 0, i.e. they
are exactly the same. With three continuous variables, this is unlikely to happen, as irace will
spend more time evaluating the tiny changes in these parameter values.

To verify this assumption, we record how many different configurations are explored after the
initial race, and compare this to the amount of different configurations explored by MIP-EGO.
In Figure 26, it is shown that irace evaluates significantly fewer distinct configurations than
MIP-EGO. When comparing this to the total amount of (configuration, hyperparameters)-
pairs that were evaluated by irace, we see that, on average, only 2.6% of these pairs contain
distinct configurations. All others are solely different based on the hyperparameters, with
on average 78.6% of these pairs containing the same configuration. This indicates that the

36

0 5 10 15 20
Function ID

100

200

300

400

500

600
Nu

m
be

r u
ni

qu
e

co
nf

ig
ur

at
io

ns

MIP-EGO
Irace

Figure 26: Number of distinct configurations explored after the initial sampling by both
irace and MIP-EGO. MIP-EGO starts with a sample of 250 points, while irace starts with
333 candidates in the first race.

balance between exploration and exploitation is heavily favored towards exploitation of a single
configuration, which explains why different runs of irace can produce widely different results,
as shown in the initial experiment on F12.

5.5 Variance of results

In the previous section, we showed that irace is much less exploratory than MIP-EGO. One
of the results from this focus on exploitation might be a large variance in performance of
the found (configuration, hyperparameters)-pairs, relative to those found by MIP-EGO. To
test this hypothesis, two functions, F1 and F20, were selected, on which 15 runs of irace and
MIP-EGO are performed. Both methods get a budget of 25,000 total runs, and the resulting
(configuration, hyperparameters)-pairs are rerun 250 times.

From this experiment, the differences in terms of hitting time distributions between MIP-EGO
and irace on F1 and F20 can be visualized. This is done in Figures 27 and 28. These figures show
that irace significantly outperforms MIP-EGO on F1, while the differences in performance in
F20 are much smaller. However, even for F20, these differences are still statistically significant
(2-sample KS test, α = 0.01). This indicates that the exploration done by MIP-EGO might
not be as beneficial as predicted. Even tough irace considers significantly fewer configurations,
it manages to outperform MIP-EGO by finding much more stable hyperparameters.

While the differences in distributions of hitting times might be explained by the balance between
exploration and exploitation, that is not the only factor impacting the performance. As noted

37

MIP-EGO irace
Method

300

400

500

600

700
Hi

tti
ng

 T
im

e

Figure 27: Distributions of hitting times of 15 (configuration, hyperparameters)-pairs
(resulting from 15 independent runs of the integrated approaches), each of which run 250
times on benchmark function F1.

MIP-EGO irace
Method

0

5000

10000

15000

20000

25000

Hi
tti

ng
 T

im
e

Figure 28: Distributions of hitting times of 15 (configuration, hyperparameters)-pairs
(resulting from 15 independent runs of the integrated approaches), each of which run 250
times on benchmark function F20.

38

0 1 2 3 4
Instance ID

0

5000

10000

15000

20000

25000
Hi

tti
ng

 T
im

e
25 runs
250 runs

Figure 29: Distribution times of 15 different (configuration, hyperparameters)-pairs found
in 15 independent runs of MIP-EGO on benchmark function F20. Split into two parts: 25
runs, which were evaluated during the MIP-EGO run and used to select the (configuration,
hyperparameters)-pair, and 250 runs which were run afterwards to verify the results.

before, MIP-EGO bases its selection on only 5×5 runs, thus variance can have a huge impact on
which configuration and hyperparameter setting is selected. This is confirmed when inspecting
the ERTs MIP-EGO found from these 25 runs. For F20, it achieves an average ERT of 6,220
during the run. However, when validating this (configuration, hyperparameters)-pair on 250
runs, the average ERT becomes 9,058. This difference can also be visualized, as is done in
Figure 29. When comparing the hitting time distributions of the runs which were done during
MIP-EGO, the large differences towards the actual distributions are made visible. The most
noticeable differences are the absence of hitting times of 25,000, which is expected, since these
hitting times indicate that the target was not hit, which has a large impact on the ERT.

5.6 Summary

From these experiments, it has been made clear that integrating algorithm selection and
algorithm configuration into a single approach is very beneficial, leading to a much more
efficient and effective approach to find good (configuration, hyperparameters)-pairs. There
are some fundamental differences between the two approaches, MIP-EGO and irace, which
were used in this work. However, both manage to achieve similar rates of improvement over
sequential execution of algorithm selection and configuration. The full comparison between all
methods discussed in this thesis is shown in the Appendix, in Table 5.

The relative gain of the Virtual Best Solver (VBS), which is the method which for each function
selects the best integrated method, relative to several baseline ERTs (of configurations with

39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Im
pr

ov
em

en
t

Default CMA-ES
Stable Best Static
Best Static
Best Common

Figure 30: Relative improvement of the virtual best solver (best of MIP-EGO and Irace)
against the best common configuration, the best static configuration (best on 25 runs),
the stable best static configuration (best on 250 runs) and the default CMA-ES. All ERTs
are gathered from 250 runs, with default hyperparameter values.

default hyperparameters) is shown in Figure 30. This indicates that the improvements possible
by using the integrated methods described in this section can be as high as 50% when compared
to the best configurations with default hyperparameters.

A summary of the main differences between the four main methods described in this thesis
can be seen in Table 4. From this, we can see that the differences in terms of performance
between the integrated and sequential methods is minimal, while they require a significantly
lower budget. This budget value is in no way optimized, so an even lower budget than the one
we used might achieve similar results. This might especially be true for irace, since we saw in
Section 5.4 that it uses most of its budget to evaluate very small changes in hyperparameter
values. An initial investigation into the effect of budget on the performance of irace is available
in Appendix C. A final comparison between the sequential and integrated approaches is shown
in Figure 31, which shows the ECDF-curves for both methods, as well as for the default
CMA-ES. From this figure, it confirmed that the performance of the integrated and sequential
methods is extremely similar, with both approaches significantly outperforming the default
CMA-ES variant.

40

Method Näıve
Sequential

Sequential MIP-EGO Irace

Best on # of functions 0 9 9 6

Average Improvement over
best modular CMA-ES

6.3% 24.7% 20.2% 20.7%

Average Improvement over
default CMA-ES

67.4% 73.0% 72.9% 72.5%

Average Prediction Error 23.2% 18.8% 17.4% 10.6%

Budget (# function evalu-
ations)

120,200 150,000 25,000 25,000

Percentage of unique con-
figurations

95.8% 76.8% 77.8% 9.7%

Table 4: Comparison of the four methods for determining (configuration,
hyperparameters)-pairs used in this thesis. Improvement over best modular CMA-
ES refers to the relative improvement in ERT over the single best configuration with
default hyperparameters. Percentage of unique configurations refers to how many of the
evaluated candidates during the search contained unique configurations.

1 2 5 10 2 5 100 2 5 1E+3 2 5 1E+4 2

0

0.2

0.4

0.6

0.8

1 Integrated

Sequential

Default

Function evaluations

P
ro

po
rt

io
n

of
(r

un
,t

ar
ge

t,
...

)
pa

ir
s

Figure 31: Empirical Cumulative Distribution Function (ECDF) of the default CMA-
ES, the sequential approach as described in Section 4.7, and the virtual best integrated
solver (best of irace and MIP-EGO). Results are based on 250 runs. This visualization
was generated by the IOHprofiler [DWY+18]. The ECDF shows the average fraction of
(run, target)-pairs which were reached within x function evaluations by the respective
algorithms.

41

6 Conclusions

This thesis focused on the influence of hyperparameter tuning on the performance of CMA-ES,
and aimed to investigate a way to integrate algorithm configuration and algorithm selection
into a single approach. The many-algorithm context of modEA, which allows for the generation
of 4,608 different CMA-ES variants, proved to be a useful resource to perform experiments
on both algorithm selection and algorithm configuration.

We have shown that hyperparameter tuning can have a large impact on the performance
of different CMA-ES configurations. However, this gain in performance is not consistent,
since some configuration benefit a lot more from having tuned hyperparameters than others.
When comparing the ranking of configurations on ERT with their default hyperparameters
to their ranking with tuned hyperparameters, we showed that large difference in ranking are
possible. This shows the importance of hyperparameter tuning, as well as the fact that a
simple sequential execution of algorithm selection and hyperparameter tuning might not result
in finding the best (configuration, hyperparameters)-pair.

The main contribution of this thesis is the study of integrated approaches for algorithm se-
lection and hyperparameter tuning. We used two hyperparameter tuning tools, MIP-EGO
and irace, to optimize both the configuration and its hyperparameters at the same time. We
showed that both methods manage to find (configuration, hyperparameters)-pairs which per-
form better than those found by the näıve sequential approach, while requiring significantly
fewer function evaluations. Even when compared to a more robust sequential approach, the
integrated methods manage to achieve similar performances, with a factor 6 fewer function
evaluations needed.

When comparing MIP-EGO and irace, we notice that the differences in terms of performance
are minimal. This holds both when just considering hyperparameters tuning as well as the
integrated algorithm selection and configuration approach. However, the fundamental differ-
ences in the working mechanisms between these methods are significant. While MIP-EGO is
designed to maintain a balance between exploration and exploitation, irace has a heavy focus
on exploitation of a small set of configurations. The other main difference between the two
methods is that MIP-EGO aims to minimize ERT over a set number of runs per instance,
while irace allocates runs to instances dynamically, but minimizes penalized AHT. Even tough
we identified these large differences in the working mechanisms of MIP-EGO and irace, the
differences in terms of achieved ERT is minimal. This indicates that there is still room for
improvement by combining the best parts from both methods.

42

7 Future Work

This work has used two hyperparameter tuning methods, MIP-EGO and irace, to create an inte-
grated approach for algorithms selection and configurations. We have show that both methods
manage to outperform the naive sequential approach, both in terms of final performance as
in terms of function evaluations needed. However, the differences between these two methods
are significant. This leads to the question of combining the best parts from both methods into
a single approach. This could take advantage of the dynamic allocation of runs to instances
and adaptive capping which irace uses, as well as the efficient generation of new candidate
solutions using the working principles of efficient global optimization, as done in MIP-EGO.

Another extension to this work is the adaptation of the proposed approaches to the configura-
tion switching context. Configurations switching, as introduced in [vRDB18], has been shown
to give promising results in [VvRBD19]. A brief summary of the configuration switching is in-
cluded in Appendix B. To introduce hyperparameter tuning into the switching approach would
mean to create a quintuple (C1, P1, σ, C2, P2), where (C1, P1) is the initial (configuration,
hyperparameters)-pair, which switches to (C2, P2) after target σ (the splitpoint) is reached.
To determine such a quintuple using the approach as described in [VvRBD19] would be un-
feasible, as the size of the search space grows too large to allow for complete enumeration.
However, the selection of (C1, P1) can be achieved using the integrated algorithm selection and
configuration approaches described in this thesis. The main challenge for future work would
then become the selection of the splitpoint and (C2, P2).

As a final, long term extension, we propose to investigate the possibility to create an algorithm
which can adapt its configuration and hyperparameters online. This is might be achieved by
using local landscape features or the internal state of the CMA-ES-parameters to determine
when a switch would be beneficial. Some initial work in determining how landscape features
change based on the current point in the search has been done in [JD19], and exploration of
which features are stable has been done in [RDDD19]. Combining these works might eventually
be able to lead to the creation of an adaptive, landscape-aware CMA-ES.

43

References

[ABH11] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. Mirrored Sampling in
Evolution Strategies with Weighted Recombination. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, pages
861–868. ACM, 2011.

[AH05] A. Auger and N. Hansen. A restart CMA evolution strategy with increas-
ing population size. In 2005 IEEE Congress on Evolutionary Computation,
volume 2, pages 1769–1776 Vol. 2, September 2005.

[AJT05] Anne Auger, Mohamed Jebalia, and Olivier Teytaud. Algorithms (x, sigma,
eta): Quasi-random mutations for evolution strategies. In El-Ghazali Talbi,
Pierre Liardet, Pierre Collet, Evelyne Lutton, and Marc Schoenauer, editors,
Artificial Evolution, 7th International Conference, Evolution Artificielle, EA
2005, Revised Selected Papers, volume 3871 of Lecture Notes in Computer
Science, pages 296–307. Springer, 2005.

[BAH+10] Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V. Arnold, and Tim
Hohm. Mirrored Sampling and Sequential Selection for Evolution Strategies.
In Parallel Problem Solving from Nature, PPSN XI, pages 11–21. Springer,
September 2010.

[BDSS17] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. Per
instance algorithm configuration of CMA-ES with limited budget. In Proc.
of Genetic and Evolutionary Computation Conference, pages 681–688. ACM,
2017.

[Bel17] Nacim Belkhir. Per Instance Algorithm Configuration for Continuous Black
Box Optimization. Thesis, Université Paris-Saclay, November 2017.

[BFK13] Thomas Bäck, Christophe Foussette, and Peter Krause. Contemporary Evo-
lution Strategies. Natural Computing Series. Springer, 2013.

[CLIHS17] Leslie Pérez Cáceres, Manuel López-Ibáñez, Holger Hoos, and Thomas Stützle.
An experimental study of adaptive capping in irace. In Roberto Battiti,
Dmitri E. Kvasov, and Yaroslav D. Sergeyev, editors, Learning and Intelligent
Optimization, pages 235–250, 2017.

[DWY+18] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck.
IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization
Heuristics. arXiv e-prints:1810.05281, October 2018.

[HAB+16] Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan Tušar, and Tea Tušar.
COCO: Performance Assessment. arXiv:1605.03560 [cs], May 2016. arXiv:
1605.03560.

[Han08] Nikolaus Hansen. CMA-ES with Two-Point Step-Size Adaptation.
arXiv:0805.0231 [cs], May 2008. arXiv: 0805.0231.

44

[Han09] Nikolaus Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009
Function Testbed. In Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers,
GECCO ’09, pages 2389–2396. ACM, 2009.

[HHLB11] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-
based optimization for general algorithm configuration. In International confer-
ence on learning and intelligent optimization, pages 507–523. Springer, 2011.

[JA06] G. A. Jastrebski and D. V. Arnold. Improving Evolution Strategies through
Active Covariance Matrix Adaptation. In 2006 IEEE International Conference
on Evolutionary Computation, pages 2814–2821, 2006.

[JD19] Anja Janković and Carola Doerr. Adaptive landscape analysis. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion, pages
2032–2035. ACM, 2019.

[LIDLC+16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro
Birattari, and Thomas Stützle. The irace package: Iterated racing for auto-
matic algorithm configuration. Operations Research Perspectives, 3:43 – 58,
2016.

[LIDLSB11] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro
Birattari. The irace package, iterated race for automatic algorithm configu-
ration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium, 2011.

[LIPC] Manuel López-Ibáñez and Leslie Pérez Cáceres. The irace package: Iterated
race for automatic algorithm configuration. http://iridia.ulb.ac.be/

irace/.

[LJD+16] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560, 2016.

[MBT+11] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs,
and Günter Rudolph. Exploratory landscape analysis. In Proceedings of the
13th annual conference on Genetic and evolutionary computation, pages 829–
836. ACM, 2011.

[PMEVBR+15] A. Piad-Morffis, S. Estévez-Velarde, A. Bolufé-Röhler, J. Montgomery, and
S. Chen. Evolution strategies with thresheld convergence. In 2015 IEEE
Congress on Evolutionary Computation (CEC), pages 2097–2104, May 2015.

[RDDD19] Quentin Renau, Johann Dreo, Carola Doerr, and Benjamin Doerr. Expressive-
ness and robustness of landscape features. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pages 2048–2051. ACM,
2019.

[vR18] Sander van Rijn. Modular cma-es framework from [vRWvLB16], v0.3.0.
https://github.com/sjvrijn/ModEA. Available also as pypi package at
https://pypi.org/project/ModEA/0.3.0/, 2018.

45

http://iridia.ulb.ac.be/irace/
http://iridia.ulb.ac.be/irace/
https://github.com/sjvrijn/ModEA
https://pypi.org/project/ModEA/0.3.0/

[vRDB18] Sander van Rijn, Carola Doerr, and Thomas Bäck. Towards an adaptive cma-
es configurator. In Proc. of 15th International Conference on Parallel Problem
Solving from Nature (PPSN’18), volume 11101 of Lecture Notes in Computer
Science, pages 54–65. Springer, 2018.

[vRWvLB16] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. Evolv-
ing the structure of Evolution Strategies. In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pages 1–8, December 2016.

[vRWvSB17] Sander van Rijn, Hao Wang, Bas van Stein, and Thomas Bäck. Algorithm
Configuration Data Mining for CMA Evolution Strategies. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 737–744. ACM,
2017.

[VvRBD] Diederick Vermetten, Sander van Rijn, Thomas Bäck, and Carola Doerr.
Github repository for online selection of CMA-ES variants. GitHub repository
containing data is available at https://github.com/Dvermetten/Online_
CMA-ES_Selection.

[VvRBD19] Diederick Vermetten, Sander van Rijn, Thomas Bäck, and Carola Doerr. On-
line selection of CMA-ES variants. In Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, pages 951–959. ACM, 2019.
Full report avaialbe at arXiv:1904.07801.

[VWBD] Diederick Vermetten, Hao Wang, Thomas Bäck, and Carola Doerr. Github
repository containing the data from this thesis. https://github.com/

Dvermetten/CMA_ES_hyperparam.

[WEB14] Hao Wang, Michael Emmerich, and Thomas Bäck. Mirrored Orthogonal Sam-
pling with Pairwise Selection in Evolution Strategies. In Proceedings of the
29th Annual ACM Symposium on Applied Computing, SAC ’14, pages 154–
156. ACM, 2014.

[WEB18] H. Wang, M. Emmerich, and T. Bäck. Cooling strategies for the moment-
generating function in bayesian global optimization. In 2018 IEEE Congress
on Evolutionary Computation (CEC), pages 1–8, July 2018.

[WM97] David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE Trans. Evolutionary Computation, 1(1):67–82, 1997.

[WvSEB17] Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Back. A new ac-
quisition function for bayesian optimization based on the moment-generating
function. In 2017 IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 507–512. IEEE, 2017.

46

https://github.com/Dvermetten/Online_CMA-ES_Selection
https://github.com/Dvermetten/Online_CMA-ES_Selection
arXiv:1904.07801
https://github.com/Dvermetten/CMA_ES_hyperparam
https://github.com/Dvermetten/CMA_ES_hyperparam

1 3 5 7 9 11 13 15 17 19 21 23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0.0

0.2

0.4

0.6

0.8

1.0

Figure 32: Kendall correlation of rankings of all configuration between instances of all
benchmark functions. Rankings based on ERT from 5 runs per instance.

A Impact of instance variation

All experiments performed in this thesis have been aggregated over 5 instances of the selected
benchmark function. However, it has previously been shown [BDSS17] that the optimal hy-
perparameter values might differ per instance. In this section, the data generated during the
experiment described in Section 4.7 is analyzed to get an insight into the differences between
the instances of the bbob-functions used. Figure 33 shows the distributions of hitting times for
each instance of each function. This shows us that some functions have very significant dif-
ferences between their instances. The most obvious example is F12, for which the differences
in hitting times are very significant. This matches previous observations from Section 4.2,
specifically Figure 7, in which we observed the clear multi-modality of the hitting times.

Another way to look at the differences between instances is to use the 5×5 hitting time data,
which is available for all configurations. Figure 32 shows the Kendall correlations between these
rankings across 5 instances of all benchmark function. This seems to confirm the findings from
Figure 33, in that for most functions the differences between their instances is quite small.
For F12, there is also a clear distinction between some of the instances, which matches our
previous observations.

47

103

104
Hi

tti
ng

 T
im

e

F1 F2 F3

103

104

Hi
tti

ng
 T

im
e

F4 F5 F6

103

104

Hi
tti

ng
 T

im
e

F7 F8 F9

103

104

Hi
tti

ng
 T

im
e

F10 F11 F12

103

104

Hi
tti

ng
 T

im
e

F13 F14 F15

103

104

Hi
tti

ng
 T

im
e

F16 F17 F18

103

104

Hi
tti

ng
 T

im
e

F19 F20 F21

0 1 2 3 4
Instance ID

103

104

Hi
tti

ng
 T

im
e

F22

0 1 2 3 4
Instance ID

F23

0 1 2 3 4
Instance ID

F24

Figure 33: Distributions of hitting times per instance for all benchmark functions. All
distributions are from 30 configurations (as described in Section 4.7), each with tuned
hyperparameters (using MIP-EGO) and run 50 times on each instance.

48

B Configuration Switching

Previous work on modEA has introduced the concept of configuration switching [vRDB18].
This is motivated by the fact that different configuration have different convergence behaviour.
These differences might be exploited by starting with a configuration c1 which reaches a certain
target σ with the fewest number of functions evaluations. We refer to this target σ as the
splitpoint, as once this target is hit, a switch is made to a different configuration C2. This
principle is visualized in Figure 34.

In [VvRBD19], this configuration switching was implemented. Based on the results from this
paper, we noticed that variance plays a big role in the performance of switching configurations.
To mitigate this, a two-stage approach was developed to determine which switching configu-
rations to run. This approach first gathers a collection of ‘interesting’ configurations: the top
50 best static ones and the configurations used in the top 50 theoretically best switching ones
(determined by complete enumeration). Then these configurations were run 250 times to get
some more robust data on which to base the final selection of switching configurations.

100.0 10.0 1.0 0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08
Target

500

1000

1500

2000

E
R

T

Best Static
Configuration C1

Configuration C2

Configuration Switching

Figure 34: Example of how a configuration switch could theoretically outperform the best
static configuration. It follows the convergence path of C1 until the splitpoint σ, after
which it follows the exact convergence behaviour of C2, thus reaching the final target
with less evaluations than the best static configuration.

49

C Impact of budget on performance of irace

In this thesis, the execution of the integrated algorithm selection and configuration has been
performed with a fixed budget, namely 25,000 evaluations. However, this is a rather arbitrary
limit, and similar results might be achieved with a much lower budget. To test this hypothesis,
another experiment was performed: For several different budget values, 3 runs of irace were
performed on F12. As always, the resulting (configuration, hyperparameters)-pairs from this
experiment are then run 250 times to allow for a fair comparison. The hitting time distributions
resulting from these runs are visualized in Figure 35.

1500 3000 5000 10000 15000 20000 25000
Budget

2000

4000

6000

8000

10000

12000

14000

Hi
tti

ng
 T

im
e

Figure 35: Hitting time distributions from (configuration, hyperparameters)-pairs as de-
termined by irace using different budgets. Hitting times are from 3 runs of irace, for 250
runs each, for a total of 750 runs per budget-value.

From Figure 35, it can be seen that the differences in performance between different budget
values are present, but not very large. For the lower budget values, the hitting times have a
much higher variance, which might point to a larger prediction error, since a distribution with
high variance might get picked over a better one with low variance when very few samples
are selected. To verify this, we calculated the average prediction error for each budget value.
These are visualized in Figure 36. While this shows clearly that 3 samples is too little to make
any definitive statements, it seems like the prediction error is only slightly worse for the lowest
budget values compared to the highest.

While the scope of this experiment is too small to draw any real conclusions, it seems to
indicate that a smaller budget might work similarly well to the 25,000 which was used in this
thesis. A more robust search into the optimal budget value might be done in future work, but
is outside of the scope of this project, as this only aims to prove the viability of the integrated
algorithm selection and configuration method, which is still shown with a budget of 25,000.

50

1500 3000 5000 10000 15000 20000 25000
Budget

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12
Pr

ed
ict

io
n

Er
ro

r

Figure 36: Distributions of prediction errors from (configuration, hyperparameters)-pairs
as determined by irace using different budgets. Each is based on 3 runs of irace, comparing
the ERT for 250 runs to the predicted ERT.

D Parsing Configuration IDs

Throughout this thesis, we refer to configurations within the modEA framework by their
configuration ID. This number uniquely represents the configuration in terms of its module
configuration. To convert the module activations vector into their configuration ID, we can
use the following algorithm:

ConfID(~m) =
[
2304 1152 576 288 144 72 36 18 9 3 1

]
·

m1
...

m11


Where mx indicates the value of module number x, as in Table 1. To convert from configuration
ID to module activations, the inverse function is used.

51

F
ID

T
a
rg

et
C

o
m

m
on

C
on

f
C

om
m

o
n

E
R

T
S

tatic
C

o
n

f
(2

5)

S
tatic
E

R
T

(25)

S
tatic

T
u

n
ed

E
R

T

S
tatic

C
on

f
(250)

S
tatic
E

R
T

(250)

S
eq

.
C

on
f

S
eq

.
E

R
T

M
IP

-
E

G
O

C
on

f

M
IP

-
E

G
O

E
R

T

Irace
C

on
f

Irace
E

R
T

1
10e-8

.0
1
1
52

521
92

1
447

456
3227

445
3229

3
9
2

903
487

4598
436

2
1
0e-8.0

0
1
,7

8
1

371
4

2,042
1,921

1281
1,711

4585
1,573

1264
1
,4
3
8

867
1,501

3
10e0

.4
2

16
,6

5
5

8
69

12,828
12,604

872
11,896

149
1
1
,6
8
8

617
19,158

3173
12,221

4
10

e0.8
2
306

12
,8

6
9

8
84

11,933
12,896

599
11,866

896
12,747

1028
14,043

884
1
1
,7
6
7

5
1
0
e-8.0

594
1,254

1
3
11

1,607
1,540

1010
1,539

3190
1
,1
1
5

1034
1,148

1029
1,128

6
10

e-8
.0

3
457

1
,3

63
21

6
6

1,354
1,120

2039
1,271

2165
1
,1
0
2

2176
1,224

1902
1,156

7
10

e-8
.0

2
3,936

3
2
08

4,439
3,525

1436
3,468

40
3,071

1570
3,577

1274
2
,5
2
7

8
1
0
e-8.0

345
8

2,710
1
0
16

1,985
1,884

866
1,891

864
1,872

869
1
,7
7
4

3176
1,790

9
10e-8

.0
2
3
06

2
,7

0
4

101
5

2,045
2,068

870
1,931

869
1
,6
9
5

869
1,983

3176
1,742

10
10e-8

.0
0

1
,8

98
35

7
2

2,161
2,043

1309
1,882

1008
1,615

867
1
,4
6
5

885
1,493

1
1

1
0e-8.0

1
1
,8

2
2

270
6

1,872
1,872

3281
1,467

3281
1,472

3281
1,522

3208
1
,4
4
3

1
2

1
0e-8.0

59
4

3,9
3
0

2
019

3,568
3,422

864
3,096

864
2,825

3172
2
,6
5
5

1030
3,037

1
3

1
0e-8.0

0
2
,8

47
116

6
3,241

3,100
1166

3,350
3188

2,740
2596

2
,5
1
7

2308
2,544

1
4

1
0e-8.0

0
1
,7

14
126

7
1,912

1,873
1418

1,625
1418

1,538
3317

1,432
3

1
,3
7
2

1
5

1
0e0

.4
2

13,97
5

8
6
5

15,351
15,043

872
8,145

1013
8,629

3317
9,515

1013
7
,8
5
4

1
6

1
0e-2.0

2
9
,7

84
318

7
12,035

10,614
890

5,437
887

5
,2
4
5

896
5,864

890
5,579

17
10e-4

.4
2
3
05

7
,2

57
869

2,889
2,859

872
2,658

869
2,859

869
3,418

866
2
,8
4
0

18
10

e-4
.0

1
1
6
,234

86
5

18,383
19,915

1664
15,968

1664
11,149

4118
5
,3
1
2

2099
5,740

1
9

1
0e-0.6

2
11,2

6
1

5
86

17,810
10,295

590
11,886

590
7
,7
1
8

3173
8,113

3181
11,357

20
10e0

.2
2

9
,7

23
437

9
11,439

11,174
1988

9,313
1988

8
,5
0
5

440
10,307

3860
9,671

21
10e-0

.6
3
4
58

8
,4

89
434

3
11,149

9,713
1283

8,406
2900

2,939
2614

2
,8
3
1

2470
2,931

2
2

1
0e0

.0
34

5
8

4,47
3

1
5
92

4,767
5,097

2039
4,957

3458
4,564

2610
3
,5
8
2

1337
6,699

2
3

1
0e-0.8

59
4

15,4
7
2

8
72

17,549
13,916

866
16,566

866
13,912

869
1
2
,9
3
8

4145
25,812

24
10

e1.0
2

1
2
,4

75
288

2
8,272

7,071
881

6,117
3029

5
,8
9
3

1016
7,950

878
6,653

T
ab

le
5:

C
om

p
arison

of
all

m
eth

o
d
s

d
iscu

ssed
in

th
is

th
esis.

F
or

each
fu

n
ction

,
th

e
u
sed

target
valu

e
is

selected
in

accord
an

ce
w

ith
T

ab
le

3
from

[V
v
R

B
D

19].
A

ll
colu

m
n
s

w
ith

‘con
f’

rep
resen

t
con

fi
gu

ration
n
u
m

b
ers.

T
h
e

com
m

on
con

fi
gu

ration
s

are
taken

from
T

ab
le

2.
S
tatic

(25)
refers

to
th

e
b

est
con

fi
gu

ration
b
ased

on
th

e
25

h
ittin

g
tim

es
availab

le
for

all
con

fi
gu

ration
s,

w
h
ile

S
tatic

(250)
refers

to
th

e
b

est
con

fi
gu

ration
after

reru
n
n
in

g
th

e
set

of
con

fi
gu

ration
s

from
S
ection

4.7
an

d
selectin

g
th

e
on

e
w

ith
th

e
b

est
E

R
T

on
250

ru
n
s.

S
tatic

tu
n
ed

E
R

T
is

th
e

sam
e

as
th

e
n
aive

seq
u
en

tial
ap

p
roach

,
w

h
ile

S
eq

.
refers

to
th

e
seq

u
en

tial
ap

p
roach

as
d
escrib

ed
in

S
ection

4.7.
A

ll
E

R
T

d
ata

is
b
ased

on
h
ittin

g
tim

es
for

50
ru

n
s

on
5

in
stan

ces.
T

h
e

low
est

E
R

T
s

p
er

fu
n
ction

are
b

old
ed

.

52

	Introduction
	Related Work
	The Modular CMA-ES
	Test-bed: the COCO framework
	Performance Measures
	Overview of terminology
	Hyperparameter Tuning
	Hyperparameters
	Tuning methods
	MIP-EGO
	Irace
	Summary

	Experimental setup
	Research questions
	Data repository

	Sequential approaches
	Algorithm Selection
	The curse of high variance
	Impact of hyperparameter tuning on configuration ranking
	Distribution of parameter values
	ERT-prediction using random forests
	MIP-EGO vs irace
	Impact of hyperparameter tuning per function
	Summary

	Integrated approaches
	Exploration of procedures
	Methods
	Baseline
	Comparison between MIP-EGO and irace
	Variance of results
	Summary

	Conclusions
	Future Work
	Impact of instance variation
	Configuration Switching
	Impact of budget on performance of irace
	Parsing Configuration IDs

