
Opleiding Informatica

Assessing the fitness of web-applications within the context of mobile

phones, on performing spatially distributed, co-located, collaborative,

audio-related activities.

Jeroen van Tubergen

Supervisors:
Edwin van der Heide & Prof.dr.ir. Fons J. Verbeek

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 26/08/2020

www.liacs.leidenuniv.nl

Abstract

Mobile devices have advanced capabilities for audio-related activities, such as to record and
to play music. Many software applications successfully integrate audio into their software, and
a multitude of applications exist in which audio plays a central role, for example
audio-creation or audio-listening software.

However, these applications focus on individual audio performance, while when considering
music, one of the most prevalent uses would be listening and playing music together.

Even though each one of us carries along their mobile phone around, and is using it for
listening, there isn’t a scalable solution available for any such audio activities to be done
together. In other words, there are no audio applications available to successfully draw either
beginners or professionals into the digital landscape of interactive, co-located audio-related
activities with the aid of their mobile phone.

In this thesis we research whether a typical modern mobile phone could perform
sufficiently enough, to allow it’s user to participate in a collaborative audio activity, in
real-time.

We research available technological solutions, their use-cases, and afterwards seek how
they could or cannot be applied in the context of a web-application.

We target a web-application, since this we think would provide the most available software
solution. We reason about the inherent latencies that could influence an audio-application in
it’s performance, and we develop a solution with the aid of a signal detection approach, which
consists of cross-correlating recorded audio material against target audio signals, to
afterwards resolve with these measure results relevant, device-related latencies.

We test our approach in a proof of concept and show that a web-application is able to
successfully calibrate. However, it fails to meet accuracy requirements to achieve acceptable
synchronized audio performance, due to the inherently available inaccurate of web-application
audio scheduling.

We define a benchmarking approach to assess an audio activity for it’s fitness for
implementation within a web-application.

We conclude that mobile devices are capable to participate in audio activities in real time.
Web-applications however, could offer a more complete solution: Both on improving the
development platform to simplify and improve the development process, as well as the
performing qualities.

Contents

1 Introduction 1
1.1 Overview . 2

2 Background 4
2.1 Sound reinforcement systems . 4

2.1.1 Wired audio systems . 4
2.1.2 Audio network systems . 4
2.1.3 Consumer-oriented audio reinforcement operating systems 7
2.1.4 Mobile phone audio reinforcement applications 9

2.1.5 Recapping sound reinforcement systems . 9
2.2 Platform functionality and performance . 10

2.2.1 Output latency . 10
2.2.2 The audio path . 11
2.2.3 Output latency information feedback . 12

3 Calibration 15
3.1 Signal detection . 15

3.1.1 The Larsen test . 15
3.1.2 Cross-correlation . 15
3.1.3 Testing effectivity and deriving a test validation technique 17
3.1.4 Virtual signal detection test case . 17
3.1.5 Signal detection result validation . 19
3.1.6 Signal detection speed . 20
3.1.7 Real signal detection test case . 21
3.1.8 Error sources . 26

3.2 Calibration performance model . 27
3.2.1 Model variables . 28
3.2.2 Model measurement tests . 28
3.2.3 Decomposing test results into model variables 29
3.2.4 Deducing the distance between two devices 30
3.2.5 Deducing the calibration performance . 30
3.2.6 Optimizing the calibration performance . 32
3.2.7 Bonus: No alternative approach with given measures 33

3.3 Calibration topology . 34
3.3.1 Neglecting distance latency . 35
3.3.2 Considering distance latency . 37

3.4 Location estimation . 38
3.4.1 Location estimation specifications . 38
3.4.2 Solution directions . 39
3.4.3 Multi-node TDoA . 40

4 Proof of concept 41
4.1 Time . 41
4.2 Recording . 41

4.2.1 User media stream . 41
4.2.2 Audio context . 42
4.2.3 Audio node . 42
4.2.4 Processing node . 42

4.3 Playing . 44
4.4 Calibrating . 45

4.4.1 Server time offset . 45
4.4.2 Target signal . 45
4.4.3 Deducing latency . 46
4.4.4 Additional implementation details . 47

3

4.5 Experiments . 47
4.6 Results . 48
4.7 Comparing synchronization performance of calibrated- against uncalibrated audio

scheduling . 49
4.8 Variance in click offset differences . 49
4.9 Audio context time drift . 50
4.10 Neglecting context drift . 52

5 Provisioning audio-related activities 53
5.1 Performance requirements for activities . 53

5.1.1 Time-criticality . 53
5.1.2 Scalability . 54
5.1.3 Resource intensity . 55
5.1.4 Influence of the the properties . 55

5.2 Categorizing audio activities . 56
5.3 Benchmarking audio activities for fitness based on it’s performance requirements . . 56
5.4 The fundamental qualities of microphone and speaker usage in audio-related activities 57

6 Discussion 58
6.1 Background . 58
6.2 Calibration . 58
6.3 Proof of concept . 59
6.4 Activities . 60

7 Future research 60
7.1 Providing a solution under the current web-browser landscape 60

7.1.1 Fixing the proof of concept . 60
7.1.2 Improving stability of the proof of concept 61
7.1.3 Providing modular integration to other software 61

7.2 Considering web-browser technology . 61

8 Conclusion 62

References 65

List of Tables

1 OSI network abstraction layers . 5
2 Correlation peak versus average correlation strength ratio 21

List of Figures

1 Android Bluetooth latency test . 10
2 Cross-correlation accuracy . 18

3 Cross-correlation peak strengths related to correlation accuracy 20
4 Cross-correlation computation speed . 20
5 Cross-correlation target signal . 22
6 Cross-correlation source signal . 22
7 Cross-correlation results of a target signal and source signal 22
8 Frequency spectrum of a target signal . 23
9 Frequency spectrum of source background noise . 24
10 Frequency spectrum of a source signal . 24
11 Slice of raw target signal sample data . 25
12 Slice of raw source signal sample data . 25
13 Device latency variables . 28
15 Audio scheduling latency variable to optimize the calibration performance 32
16 Trivial distance-neglecting spatial scenario for network calibration 35
17 Non-trivial distance-neglecting spatial scenario for network calibration 36
18 Clusters in a distance-neglecting spatial scenario for network calibration 37
19 Flame chart of audioWorkletNode port handling with high latency 44
20 Flame chart of audioWorkletNode port handling with normal latency 44
21 Uncalibrated audio playback without Bluetooth-speakers 48
22 Calibrated audio playback without Bluetooth-speakers 48
23 Uncalibrated audio playback with Bluetooth-speakers 49
24 Calibrated audio playback with Bluetooth-speakers 49
25 Comparing drift result of the audio-context time when using internal speaker output

versus Bluetooth-speaker output . 51
26 Zoomed in drift result of the audio-context time when using internal speaker output 51
27 Drift of the audio-context time under usage of Bluetooth-speaker output versus

internal speaker output . 52

5

1 Introduction

Mobile devices are everywhere, and so is music. Yet, it is hard to do a jam session together by just
using a mobile phone. Whether this is due technological barriers, considering such a thing to be
redundant, or just never the thought of using a phone in such a way, there seems to be a focus on
individuality in the current state of audio applications. Which seems to be out of line with what
we see in the gaming industry. Even though audio applications could and should highly interactive
and collaborative interactive aspects, as with gaming, the gaming industry made real-time
collaborative interaction an integrative part to it’s application for many years already. I wonder if
there is a way to somehow create the magical and unexpected experiences audio and social
interaction could create, in either every day life, or on specific occasions, with a mobile phone.
Therefore we will consider in this thesis audio-related activities where musical interaction and
playing together plays a central role.

A common and straightforward audio-related activity, is playing the exact same music by different
participating musicians, in this case the musicians are mobile phones. Even though the activity
itself is simple, achieving proper synchronized behavior requires a lot of collaboration to play on
time all together. Testing how well a mobile web-application could provision this activity would
therefore seem to be a proper test to assess how fit mobile web-applications are to perform
spatially distributed, co-located, collaborative, audio-related activities.

Therefore, the research question of this thesis is ”Can we achieve automatically,
synchronized audio performance in a web-application, focused on the context of
mobile phones?”. With synchronized we mean song playback differences no larger than 10
milliseconds, with automatic we mean that there isn’t user interaction required to synchronize, and
with a web-application we aim at up-to-date web-browsers (interpreting JavaScript, HTML and
CSS).

After considering related technology to achieve this, we will explore the seemingly most viable
approach by synchronizing based on signal detection with the aid of microphones and speakers,
optionally with the integrated speaker and microphone of the mobile phone itself. The challenge is
to tackle the inconsistent and highly variable audio output latencies different mobile phones in
combination with their audio output target can have, however there isn’t a software approach to
obtain knowledge on this latency without physically measuring it. In addition to synchronizing, it
allows for devices to recognize where other devices are located in space.

As we elaborate on how performance requirements are crucial to determine how well a
web-application would be able to provision an collaborative audio-related activity, we can directly
state that using the microphone and speaker in the frequency domain we can hear, carries along
certain fundamental qualities that the alternatives Bluetooth and WiFi aren’t able to offer. These
quality can basically be derived from the given that both microphones, and our ears, are able to
sense the exact same signal frequency range. And besides perceiving, both speakers and our
vocal/instrumental tools are able to produce these signals. This allows for a dialogue between
devices and humans in the domain of audio.

1

Far more audio-related activities may exist besides this specific activity we choose for a fitness
assessment. In particular we are interested in what audio-related activities could be performed
with mobile web-applications. Besides assessing the performance capabilities of the current
technological stack of a web-application running on a mobile phone, we research the different types
and classes of spatial and collaborative activities. However, as we consider different types of
classifications for activities, we note how we aren’t able to relate a certain classification of
audio-related activity to certain performance requirements, and the most suitable approach would
be to inventorize the performance requirements per give activity to conduct whether an mobile
web-application could provision it’s usage.

1.1 Overview

In the first section 2, we explore existing technological solutions that attempt to tackle the
challenge of synchronized audio playback, which focuses particularly on sound reinforcement
systems. We focus on technology for audio sound-reinforcement, since playing the same piece of
music synchronously is a straightforward action related to audio, yet still requires adequate
performance and coordination to be performed well. Both on large, specialized, commercial scale,
with a study of the proprietary solution Q-LAN 2.1.2.1, as well as consumer-oriented non-live
playback systems, with a study on Volumio, build on Shairport Sync 2.1.3. As last we consider
software for Android and iOS in 2.1.4, for which the available mobile apps for both platforms don’t
offer a performant solution. Next up, we research how it can be that there isn’t a performant
solution on the market yet for mobile phones, by considering the mobile platform on it’s
audio-related functionality in 2.2. In this subsection, we first consider the audio latency path in
Android and the latency of Bluetooth data communication latency, and afterwards we consider
how in theory precise audio output latency feedback could be provided in 2.2.3.

With this background information, and in particular the knowledge obtained about the audio path
latency in Android phones, we reason about how to build software to synchronize mobile devices
for audio playback in section 3. First, we come up with a procedure on how devices could recognize
themselves and others with the aid of signal detection 3.1. Secondly, we build a model on how
audio latency could be derived with these measure results; in other words how to deduce the
calibration performance 3.2. And finally, we describe a topological model to calculate the
calibration performance once the system has incomplete information due restrictive detection
capabilities in 3.3.

With the theory ready about how to synchronize two or more mobile devices, we develop a proof of
concept in section 4, in which two devices first calibrate with each other and afterwards attempt to
play back audio synchronously together. Here we in addition do experiments with the proof of
concept in 4.5 and elaborate on it’s results in 4.6.

We do an inventorization on relevant performance metrics to benchmark audio-activities, and
consider the variety of categories of spatially, co-located, audio-related activities in 5. Additionally,
we attempt to relate performance metrics to categories, with an aim to conclude what type of
audio-related activities the current state of web-applications could support.

In 6 we discuss our findings and choices per section. In 7, we describe future research for both

2

further development in the technique in a front-end manner, in a more underlying manner of
research to web-browsers and low-level implementations, and in consideration of audio activities.
In 8 we conclude, in particular about the audio latency path, the bottlenecks in web development
and the overall web-application performance.

This bachelor thesis is written at the LIACS under supervision of E. v.d. Heide, to who I am
thankful for the patience and collaboration in the development process and the writing of this
thesis.

3

2 Background

We explore the overall technology available to achieve an audio reinforcement system, and provide
some products within certain technology categories with certain interesting functionality/features.
Afterwards, we explore Android, Firefox, and Bluetooth in the context of audio, and focus on how
each component of the technology stack can introduce latency to the audio output latency of our
web-application.

2.1 Sound reinforcement systems

First we mention the default wiring of speakers to an audio system. Afterwards we look at audio
networks to improve on scalability, and last we look at software to convert computer and mobile
phones, respectively, into an audio node of a sound-reinforcement system.

2.1.1 Wired audio systems

The classic approach to achieve an audio system is wiring multiple speakers to a single audio
station. Audio data is streamed from the audio station to each speaker separately as an analogue
signal (with a phone connector), or as a digital signal (with e.g. a S/PDIF connector). Digital
streaming has the advantage that the original audio signal can be send clean without any noise or
spectral changes introduced, nor requires additional amplification in case of large traveling signals.
However, it has the disadvantage that each speaker requires a digital-to-analog converter (DAC) to
convert the digital signal into analogue audio, which makes the speaker both more complex and
introduces additional latency in outputting the audio.

2.1.2 Audio network systems

The default home system could be scaled by a large extend without introducing any novel audio
signal transportation technique, yet rather increasing only the amount of wires. For certain
situations wiring is sufficient, but for certain situations cabling might not be the most convenient
approach to scale up the system. Obviously, cables require to be physically connect from the audio
workstation to each separate output. In case the speakers of a single system are distributed over
larger areas, wiring becomes a burden to quickly set-up, and any reduction in wiring can be a
reduction in e.g. installation costs or maintenance. Therefore, for large-scale audio installations,
such as in theme parks and stadiums, the need rose for audio networking, since it offers a more
flexible, optimized audio signal distribution system [1].

Audio networks introduce another level of complexity on top of the digital-to-analog conversion in
digitally transported cabling, since we have to interpret and respond to network signals. As the
network choices are relevant for the audio networks we will discuss, and to better grasp the variety
of choices, we have outlined the default approach on how to categorize network functionality as
defined by the ISO (International Organization for Standardization) OSI (Open Systems
Interconnection) model, in table 1.
As mentioned in [6], lower level functionality could be implement in a higher level abstraction layer,
and therefore the separation of concerns per abstraction layer in this model shouldn’t be

4

Level Name Function Description
1 Physical Binary

Transmis-
sion

Defines the electrical, mechanical, procedural, and functional
specifications for activating, maintaining, and deactivating
the physical link. Also, transmission and reception of raw bit
streams over a physical medium.

2 Data Link Access to
Media

Defines how data is formatted for transmission and how access
to the network is controlled, with the aim to result in reliable
transmission of data frames between two nodes connected by
a physical layer.

3 Network/Internet Data Deliv-
ery

Structuring and managing a multi-node network, including
addressing, routing and traffic control, which consists of:

• Provides connectivity and path selection between two
host systems.

• Routes data packets.
• Data prioritization (QoS).
• Selects best path to deliver data.

4 Transport End To
End Con-
nections

Provisions transportation between hosts, to obtain reliable
transmission of data segments between points on a network:

• Segmentation, acknowledgment and multiplexing.
• Establishes, maintains and terminates virtual circuits.
• Provides reliability through fault detection and recovery.
• Information flow control - managing the rate of data

transmission between nodes.
5 Session Managing

session
communi-
cation

Defines the procedure to achieve successfully communication
between end-nodes that spans longer time duration. And con-
sists of session establishment, maintenance, termination, au-
thorization, logging.

6 Presentation Data ab-
straction

Data abstraction of objects that may require system-specific
evaluation, yet aim to provide system-independent interpreta-
tion. Such as images, audio, files, etc. Simplifies data sharing.
The web describes it consists of data conversion, character
code translation, compression, encryption and decryption.

7 Application Functionality
abstrac-
tion

High-level API’s that are specifically designed for a certain
application. They aim to simplify and generalize the develop-
ment of communication between devices, by interacting with
abstracted functionality rather than the underlying system.
Such as HTTP for the web-browser.

Table 1: OSI network abstraction layers. Lower four levels description from [2], level 5 description from [3],
level 6 and 7 description combined and self-interpreted from [2][4][5]

5

considered to be an absolute truth.

We will only focus on audio networks which function on top the (level 3) IP (Internet Protocol)
network layer or higher, since these networks can already guarantee to be very performant, as we
will see during the examination of Q-LAN in 2.1.2.1. Afterwards, we examine consumer-oriented
audio reinforcement systems, which guarantee less to no performance guarantees.

2.1.2.1 Q-LAN

Q-LAN is a proprietary audio network solution build by Q-Sys, providing low-latency and high
quality audio integration with the aid of an AoE network, and is developed with high-performance,
large-scale audio setups in mind. Q-Sys has developed their own mechanisms for device discovery,
audio delivery, fault tolerance and clock distribution. The following information is obtained from
their Q-LAN white paper [7].

The entire system is guaranteed to function under 2.5 milliseconds latency, which consists of

• Analog-to-digital conversion of captured audio input.
• Transmitting the data to the CPU.
• Processing the audio data in the CPU.
• Transmitting the resulting audio data to audio output nodes.
• Digital-to-analog conversion at audio output nodes.

Q-Sys proprietary CPU can process up of 512 input channels and 512 output high-resolution audio
channels concurrently, and guarantees an upper limit in the audio distribution latency to 1
millisecond. They introduce and support multiple fault tolerance strategies, such as a fully parallel
deployment of network cabling, switches and/or a second CPU, to switch over to this redundant
network without interrupting audio in case any component within the main system fails.

Since Q-LAN functions on top of IP, it can coexist/mingle among st other types of traffic. However,
this requires the switches in the network to meet certain Quality of Service (QoS) features. The
QoS functionality enables Q-LAN to prioritize time-critical data communication over other
network activities.

Audio data is transmit digitally to each end-node in the Q-LAN network. The audio data carries
along timestamps of when they are supposed to be output over the system speakers. In order to
synchronize the internal time of each end-node with the CPU, the system deploys the Precise Time
Protocol (PTP). With PTP, each switch can address how much time it has takes to send data
forward to the next network node, and with this information the end-nodes can achieve
synchronized clocks with microsecond precision, even if the network has to bridge large distances
(multiple kilometers) and/or multiple hops over intermediary switches. However, as noted in their
white-paper, more switches/hops imply more latency. Even though internal clocks can be
synchronized accurately, the amount of hops should be minimized in order to minimize the network
latency.

6

2.1.3 Consumer-oriented audio reinforcement operating systems

For the consumer at home who wants to listen to music, a high-end business solution such as
Q-LAN highly exceeds their requirements. A performant sound reinforcement system, which only
has to support audio playback, has to support only a fraction of audio streams, doesn’t require the
low audio input processing latency, nor low audio output latency, nor the extensive fault tolerance
mechanics as with Q-LAN. The only strong requirement is to support accurate audio output
coordination between various speakers.

2.1.3.1 Volumio

We will take a look at Volumio[8], an operating system which can be installed on any computer. To
describe the software in our own words, it converts the computer into a participating audio node of
a music streaming installation on a local area network. This conveniently allows connecting
multiple computers either over a network cable or wireless to this network and collaborate in audio
playback to thereby create a reinforcement system. Since it runs on existing, default consumer
hardware, it is a scalable, cheap, and an accessible solution.

Volumio mentions Raspberry Pi’s - small, low-end computers which are considerably cheaper than
laptops or PCs - to install their operating system on and connect speakers to the device. The
consumer only has to make sure each Raspberry Pi has access to the Local Area Network (LAN),
whether that is over Ethernet or WiFi, and it automatically becomes an audio node in the
reinforcement system. The devices ensure that one of them is hosting a web server, which enables
the entire audio reinforcement system to be accessible through a website, and in such the entire
audio system can be controlled through any tablet, phone or computer connected to the local area
network with the use of a web-browser.

In contrast to a default approach for which all speakers are wired to a single audio station, with
optionally speakers present in different rooms, or even different buildings, this approach removes
the burden of wiring through walls, under the ground, etcetera, and from this perspective it can
therefore be considered a more scalable and convenient solution.

2.1.3.2 Shairport Sync

Volumio approaches audio calibration in an equal matter as the application Shairport-Sync [9],
which is an audio software player that runs on Linux, FreeBSD and OpenBSD. Each computer
that participates in the reinforcement system requires to have Shairport Sync installed. One device
will be the source, and streams the audio to it’s Shairport Sync application. The audio data is
transmitted over the local internet, all of the other devices receive the streamed audio data in their
Shairport Sync application, and each device prepares the audio to be output over the connected
speakers.

The Readme-file defines the amount of wander of the playback synchronization - the time
difference of audio emission of speakers of different devices - as ”audio drift”. The default audio
drift tolerance is set to 2 milliseconds ([9], section Tolerance). Also, for any two output speakers
the application claims to emit scheduled audio within less than 4 milliseconds deviation (devices

7

can both deviate by 2 milliseconds from the source). We elaborate on how Shairport Sync works
and thus how the audio drift is measured.

The process of communicating audio over the local internet and afterwards preparing it for output
takes a non-trivial amount of time. Steps consist of:

• Pack the audio data at the source computer.
• Transmit audio data over the local network.
• Retrieve and unpack the audio data at participating computers.
• Send audio to the respective audio outputs of the computer.

Each step may include buffering, compression, encoding, encryption etcetera, and these network
delays and processing times may vary over time.

If a latency peak occurs, such as due network congestion, a device may receive audio data too late
and miss out on participating in the audio playback. Therefore, a time margin is introduced in
such that each computer has sufficient time to prepare the audio. The system introduces an agreed
waiting time, for instance 2 seconds.

For a device to know when exactly the waiting time has passed, it has to know two things: what
the local internal clock time is in relation to the source (computer), and the timestamp of the
audio sample it has to play. The latter can be transferred along with the audio data itself, the
former is resolved by synchronizing the internal clock of the local time with the source time, using
a variant of the Network Time Protocol (NTP). The Readme-file mentions the local time, on a
Local Area Network (LAN), is synchronized to the source clock to within a fraction of a
millisecond with the aid of this NTP variant.

Timestamp and time synchronization itself provides the required knowledge when audio has to be
played, yet it is not sufficient to ensure the playback is synchronized. Namely, the underlying
operating system may introduce additional delay for audio to be processed after the audio leaves
the application. If the operating system can provide accurate feedback to the application on how
much delay it has introduced, the synchronization is considered to be ”full”. In such a sense, that
Shairport Sync can consider (and anticipate towards) this additional delay to adhere even better to
the scheduled time for the audio playback. For instance, the Advanced Linux Sound Architecture
(ALSA) is an audio framework which provides an API to user applications to communicate with
the audio card drivers. It enables Shairport Sync to obtain accurate feedback about the delay for
writing audio data to the audio output node.

We note, that beyond the control of the operating system, the output nodes themselves - the
speakers - also take time to process the audio data. For instance a Bluetooth-speaker can have a
significant latency to output the audio, which we will further discuss in section 2.2.3.1. Therefore,
Shairport Sync offers the functionality to manually compensate for the speaker output latency in
case this is necessary.

We began with describing the operating system Volumio, and explained it’s approach to sound
reinforcement with the aid of the Shairport Sync application. Shairport Sync is a modular solution,
and may provide the expected performance if run on any kind of Linux device. Also, if Shairport
Sync already performs sufficiently, what is the use-case for an entire operating system dedicated to

8

do exactly that? The main reason/benefit for the existence of an operating system such as
Volumio, is the simplicity of not having to install software yourself, less data requirements due
selective, minimal binaries installing, and the possibilities to include a real-time kernel within the
product, to give a higher degree of guarantee about the audio data handling speed/process.

2.1.4 Mobile phone audio reinforcement applications

Shairport Sync doesn’t run on a mobile device, nor provides an extending software product that
can run on iOS or Android. We therefore seek unrelated applications that aim to provide an audio
reinforcement system for these mobile platforms. AmpMe [10] attempts to offer a platform
agnostic solution by supporting macOS, Windows, Android and iOS, and therefore supports
consumer devices both computers and hand-held to participate in sound-reinforcement. We
couldn’t find any information about the functionality of their product. Therefore, we in addition
have taken a look at SoundSeeder [11]. Soundseeder doesn’t offer any information either.

From both their FAQs (SoundSeeder FAQ - ”How does it work?”[12])(AmpMe FAQ - ”Can I use
AmpMe without an internet connection?”[13]), SoundSeeder explicitly mentions to only sync over
internet or WiFi, and AmpMe mentions it supports offline support with a local LAN, which
implies it only syncs over internet as well.

Both software products allow to output audio to Bluetooth-speakers, yet Soundseeder mentions
manual adjustments might have to be taken. They advise to first make steps of 100 milliseconds to
get the synchronization correct roughly, and to further pin-point the synchronization more
accurately with steps of 10 milliseconds [14].

AmpMe doesn’t mention anything about manual synchronization to potentially compensate for any
deviations in output latency, however on the Google Play Store multiple comments about
out-of-sync speakers is present [15] [16] [17]. Each comment has 20 likes or more, we therefore
assume other users to agree on their statement, and therefore we assume these claims to be true
and persistent. We outline in specific the second complaint, who mentions a lag of around half a
second. We assume the reviewer is talking about a large perceived audio drift in the
synchronization, rather than a half second of latency for audio playback to occur (which should
considered expected behavior). This comment, in addition with the third comment mentioning
Android and iOS devices not syncing properly (for which iOS devices is known to provide much
lower output latencies than Android) we conduct from these reviews that AmpMe doesn’t support
”full” synchronization as Shairport Sync does, as otherwise these deviating latencies would have be
compensated for.

2.1.5 Recapping sound reinforcement systems

The reinforcement systems we have mentioned support different use-cases. Each approach offers a
scalable solution, yet differ in the requirements for software and/or hardware. Q-LAN offers
calibration which guarantees audio drift of a few microseconds. Volumio guarantees an audio drift
of a few milliseconds. SoundSeeder offers manual intervention to reduce audio drift in steps of 10
milliseconds. Furthermore, if using Bluetooth-speakers, none of the consumer-oriented solutions
seem to mention (or guarantee) a minimal or maximum audio drift at all.

9

2.2 Platform functionality and performance

In the previous subsection 2.1 we have explored software and hardware available to achieve a sound
reinforcement system. Ideally, we could extend an open-source project - such as Shairport Sync -
to extend support for synchronized web-browser media playback. In the form of a web-application,
the user would navigate to a web-page, synchronize their local clock with the source, and
afterwards play along by correctly anticipating towards it’s audio output latency. With a
web-application, there isn’t the need for mobile platform-specific implementations.

2.2.1 Output latency

Yet to target the mobile phone, we have to anticipate towards the output latencies that occur due
the processing of audio in mobile phones. The audio output latency can vary greatly from
approximately 5 millisecond up to at least 100 milliseconds [18]. However, in combination with
Bluetooth, both the latency and the variation of latency may increase significantly. Values of an
online test case show latencies that range from 200 up to 600 milliseconds. We show their resulting
graph in figure 1. In practice, with different devices, the differences in latencies between devices
and Bluetooth-speakers may be even much larger.

Figure 1: Audio output latencies for different mobile phones over a Bluetooth-speaker, used in combination
with different Bluetooth codecs ([19], Section ”Smartphone Bluetooth latency test results”). These results
are conducted from 100 tests on each handset for each Bluetooth codec.

10

The cause for this increase in latency with Bluetooth usage, is the audio data to be delivered in
batches to the speaker: packaging, fault-tolerant encoding, modulating, transmitting over the ether,
demodulating, decoding, and as last unpacking. The article itself mentions that encoding and
decoding is fast. Also, the Bluetooth encoder/decoder hardware doesn’t influence this latency
much. Differences in Bluetooth encoding therefore have mostly to do with the required buffering
and/or efficiency of data transfer.

We are fine with large audio latencies in our sound reinforcement system, and thus accept variable
or large audio output latencies. However, we have to know the latency very precisely. We are
interested in how the feedback is provided or could be provided with the current software for
mobile, web-browser and Bluetooth.

2.2.2 The audio path

In order to understand whether we can retrieve audio output latency from a web-application, we
analyze the path that audio data travels from it’s starting point - the web-application - all the way
to it’s final destination - the DAC of the speaker. We call this the audio path.

We elaborate on how audio output latency manifests itself in the audio path for the web-browser
Firefox, running on Android, playing audio over a Bluetooth-speaker. Additionally, we analyze the
audio processing system to find the way for a web-application to obtain accurate knowledge about
the audio output latency.

2.2.2.1 Android

We begin with examining Android for the audio path. Superpowered has already analyzed the
audio path within Android[20]. We have added an explanation or changed the explanation at each
step where we have seen fit. Audio data is passed from the first item all the way through to the
last item.

• User Application, the web-browser.
• AudioTrack, Android’s abstraction to audio functionality within user-space (also usable by a

User Application).
• Binder, shared memory where audio is stored by AudioTrack, and retrieved by AudioFlinger.
• AudioFlinger, audio stream handler in the Android media server.
• Android audio Hardware Abstraction Layer (HAL), mobile device agnostic approach to audio

functionality.
• Audio (kernel) driver (such as ALSA), the driver that communicates with the audio card

present in the mobile phone.
• Bus (such as USB, PCI, or Bluetooth), the medium over which the audio data is transferred

to the DAC of the speaker.

Binder itself isn’t adding any latency, it provisions shared-memory and acts like thereby as a
communication medium over which AudioTrack and AudioFlinger share their data. The
AudioTrack writes audio data into a First-In-First-Out (FIFO) buffer, and once the buffer is
sufficiently filled, the AudioTrack stops writing and AudioFlinger begins reading from the first
audio sample onward.

11

Similarly, the HAL acts like a communication medium between the audio stream of the Android
media server (AudioFlinger) and the audio framework. Here as well, a FIFO buffer is used for
sharing audio data, and a certain buffer size is required to be filled before the audio framework will
read out the audio data.

As last, the bus that transfers audio data to the speaker may also communicate data in certain
quantities. In specific Bluetooth, transports data packets, each containing a block of audio data.

A root cause for audio latency, is the choice of the buffer size per read/write between each of the
two. Namely, a larger buffer implies AudioFlinger will have to wait longer before the buffer is ready
to be read. Therefore a smaller buffer size results in a lower audio latency. Yet, the drawback of
decreasing the buffer size, is risking insufficient audio data to be read out by the receiver due some
writing latency or writing loss at the sender’s end. Also, it increases the chance of audio glitching
[19]. Another cause of latency may occur if the application audio processing is preempted for other
activities running on the phone, therefore the application should be given priority over others by
using a higher-priority thread ([21], ”Using a high priority callback”).

2.2.3 Output latency information feedback

There are multiple places in the audio path that introduce audio latency. In order to deduce what
happens, each node in this path should provide feedback on how much time further communication
has taken. We consider each node. We start at the end of the audio path, at the Bluetooth-speaker.

• The Bluetooth driver in the speaker has to provide feedback to the Bluetooth driver in the
mobile device.

• Then the operating system has to read out this latency from the Bluetooth/audio-driver.
• The user application has to be be able to retrieve this information from the operating system.
• The web-browser requires an web API call to inject the information from the user space into

the browser-sandbox.

We elaborate on each point.

2.2.3.1 Bluetooth

The Bluetooth Audio/Video Distribution Transport Protocol (AVDTP) [22] provides audio and
video streaming with latency management. The Bluetooth endpoints synchronize their clocks ([22]
chapter 16, transport and streaming considerations) and during communication provide delay
information by comparing send and receive timestamps ([22] chapter 8.19, delay report signaling).
It should suffice to give accurate latency of the bus during run-time.

2.2.3.2 Android Audio NDK

As we have mentioned for Shairport Sync, an audio framework like ALSA can provide feedback
about the audio samples it has written to it’s output node. Even though we send audio data over
Bluetooth, and it therefore seems logic to write audio data instead to the Bluetooth-driver, audio
data is still processed by the audio framework. And indeed, audio data is afterwards forwarded to

12

the Bluetooth-driver, such as BlueZ. Android provides audio functionality through the Native
Development Kit (NDK) it’s audio Application Programming Interface (API): AAudio and
OpenSL ES [23].

The audio NDK interfaces with the audio framework, also we should be able to address audio
latency information from within an Android application. AAudio for example, supports feedback
on the amount of written samples [24]

2.2.3.3 Web-browser

The last step that remains is obtaining this information within the web-browser. In Firefox,
JavaScript code is evaluated by the SpiderMonkey interpreter (in the form of Just-In-Time (JIT)
compilation). When a certain audio-related function is called, as defined in the audio Web API, the
Java-Native-Interface (JNI) handles the request, and handles it with the underlying
implementation of the web-browser. Also, in the case of Android, web audio API commands are
translated into mobile-native audio API requests.

How a web-browser should function is standardized by the World Wide Web Consortium (W3C),
and we both reference to their documents and adhere to their standards that are considered stable.
Such as the Web Audio API standard [25], that defines how to use and interact with audio within
a web-application, and how the web-browser should respond to API function calls.

An audio media element in the browser supports reporting current time of audio playback of a
song [26]. It therefore could allow the web-browser implementation to precisely deduce the audio
output latency. In addition, the audio context (which we elaborate on in 4.2.2) provides a
read-only attribute outputLatency, that estimates the audio output latency, and depends on the
platform and the connected hardware audio output device.[27]. However, this does not change with
the audio context it’s lifetime ([25], ”DOM audio-context output latency”), also it is only
evaluated once. Evaluating again during run-time would require to build a new audio context,
which is computative expensive and a bad practice: re-evaluation without re-creating a audio
context should have been provided by the API instead. Furthermore, outputLatency is currently
only supported by Firefox version 70 or higher (this does not include Firefox for Android) ([27],
section ”Browser Compatibility”), and therefore, even though the functionality is specified by the
web audio standard, it currently isn’t widely implemented. And even if implemented, the standard
doesn’t guarantee any accuracy, it is only an estimation.

2.2.3.4 Combining output latency

We note, that this information can only be passed back in the accumulated latency by traveling
each node in the audio path, and thus the feedback isn’t provided instantly. However, this
shouldn’t be a problem, since the output latency will be very accurately derived as statistical
information can be gathered over time.

13

2.2.3.5 Recapping audio output latency handling

We have analyzed the audio path for audio from a web-application all the way to the DAC of a
Bluetooth-speaker. Each component through which the audio data travels offers - or is capable to -
provide accurate feedback on the amount of latency it introduces. We have seen from other
research that mobile devices have non-trivial latencies for outputting audio, and that current
mobile web-browsers don’t have the functionality implemented to provide this information to a
web-application. Therefore, we don’t see the current landscape fit to approach audio calibration in
an equal manner as Shairport sync. In the following section 3 we propose a different approach to
calibration, by physically measuring the audio output latency rather than attempting to do so by
API requests.

14

3 Calibration

In section 2.1 we have explored the available sound reinforcement-systems, afterwards we
mentioned the fitness of a web-application to meet the audio calibration approach as Shairport
Sync in 2.2.2 by analyzing the audio path. We concluded that, under the current technological
landscape, the audio output latency is too large to neglect, and the popular web-browser provide
insufficient functionality to provide accurate audio output latency feedback to anticipate towards
the non-trivial audio output latency. Therefore, we approach the calibration differently than
Shairport Sync.

3.1 Signal detection

In order to successfully record the speaker output and afterwards detect the signal the speaker has
output, we need an approach to signal detection. Instead of relying on audio output latency
feedback by the web-browser implementation, we will conduct audio experiments with the
microphone and speaker present in the mobile device to deduce output latency.

We consider two techniques for output latency deduction: the Larsen test, and through signal
detection with the aid of cross-correlation.

3.1.1 The Larsen test

Android used the Larsen test to measure the audio round-trip latency [28]. The device outputs
everything it records in real-time. An impulse - a short-duration, loud sound - is output over the
speaker, recorded by the microphone, and directly output again over the speaker. A successful
Larsen test should have a resulting audio recording with clearly loud peaks at a constant time
interval. The time interval between each audio peak indicates the audio round trip latency, because
this is the time for the device to record the impulse and emit the sound again. The Larsen test
name is derived from the Larsen effect - feedback singing - which occurs when we perceive to hear
a certain frequency at the interval speed at which the impulse is emit.

3.1.2 Cross-correlation

Instead of detecting a loud audio peak, more preferably we could detect a certain sound pattern
which isn’t necessarily more loud than the other sounds in the environment. This is possible with
cross-correlation: The device records itself and concurrently emits a certain sound, and instead of
seeking an audio peak, the audio is analyzed and searched for the specific sound pattern. A
successful cross-correlation results in a graph with a single clear peak at the point in time at which
the recorded material fully matches the target signal pattern output by the speaker.

We consider cross-correlating to be more convenient to latency measuring than the Larsen test,
because it allows for a larger range of sounds to test against, in environments with loud
background noises. Potentially, it might be possible to calibrate against music of an active sound
reinforcement system we want to participate in, removing the need for artificial - or other

15

disturbing sounds - to calibrate against in this system. Furthermore, it is more robust, since
external sounds can more easily influence a loudness peak detector than a sound pattern detector.

3.1.2.1 Algorithm

We begin with approaching the cross-correlation algorithm in respect to the time domain in 3.1.2.1,
and deduct tests for the effectivity of this signal detection algorithm. Cross-correlation defines the
relation between two arrays of integers f and g, both having a size of N real values, and an integer
τ that relates the offset of f in respect to g with the amount of similarity between the two arrays.
The mathematical formula for cross-correlation is defined as:

(f ? g)(τ) =
N−1∑
t=0

[f(t) · g(t+ τ)] (1)

τ ∈ N, (f ? g)(τ)→ R (2)

We interpret f to be the target audio signal we seek in the audio source signal g. We note how our
target signal is only a fraction of a second, while we will be searching for this signal in a second up
to multiple seconds of recorded audio. Therefore, we can consider τ as the start index of g for a
correlation with f . A single cross-correlation value describes the amount of similarity between the
two signals that have been compared with each other. Higher positive indicates more similarity,
while higher negative indicated more anti-similarity.

In a real scenario, in which we record a full second - 44100 samples - of audio into g and seek a
target f consisting of 4096 samples, we expect to obtain 40004 (44100− 4096) results. If we set the
offsets τ against the correlation results and draw this a new graph, we obtain the the
cross-correlation graph of f and g.

A height of the value of (f ? g)(τ) indicates the amount of similarity between f and the partial
samples of g starting at τ . The highest value in the resulting graph indicates the amount of
shifting to obtain the most similarity between the two functions. In case the result is negative, the
signals are anti-similar, also certain to many wave-patterns are present in both the target and
source signal, yet have an opposite phase.

3.1.2.2 Time-domain implementation

We implement the cross-correlation function in JavaScript. Note the usage of Float32Array as we
require float precision. Using something like e.g. Uint8Array magically results in zero-valued
arrays due to implicit float to integer conversion.

1 function correlate(target , source) {

2 let result = new Float32Array(source.length - target.length + 1);

3 for (let tau = 0; tau < source.length - target.length + 1; tau++) {

4 for (let i = 0; i < target.length; i ++) {

5 result[tau] += f[i] * g[i + tau];

6 }

7 }

8 return result;

16

9 }

Listing 1: Cross-correlation JavaScript implementation

There is another implementation that considers the source signal as a circular buffer. We however
do not want to use that variant, since we seek a pattern in consecutive samples, which the
circularity doesn’t support when splitting and gluing the last with beginning samples onto each
other.

3.1.3 Testing effectivity and deriving a test validation technique

Conceptually, we convert the participating devices into an active radar system. The speakers act as
transmitters, the signal the speakers emit is generated Gaussian white noise. The microphones act
as receivers, and the cross-correlation function - with the generated Gaussian white noise as the
target signal, recorded audio as the source signal - acts as the matched filter.

Research into the effectiveness for cross-correlation in respect to passive radar applications is
carried out, such as in [29]. Extensive knowledge available, such as statistical signal analysis -
which is relevant in relation to the auto-/cross-correlation process of Gaussian white noise that we
apply - such as in [30]. Techniques for signal detection choices exist, for instance SNR
improvements as mentioned in [31]. However, these sources are too complex to understand and
apply in the scope in this bachelor’s thesis. We experiment with an simplified approach and rough
indication on the effectiveness/accuracy of the customized signal detection/radar system we
implement, and thus neglect the vast amount of potential points of improvement.

We do some testing with the performance of signal detection of Gaussian white noise.

3.1.4 Virtual signal detection test case

We start with a virtual test on how well the cross-correlation function functions in signal detection.
We relate the peak-to-peak Signal-To-Noise ratio to the accuracy of the cross-correlation algorithm.
We outline the procedure for this test.

1. Pick a target sample size.
2. Generate a target sample size amount of white noise samples, which represents the target

sound of the audio recording.
3. Generate a full second of white noise, which represents the background sound of the audio

recording.
4. Merge target signal into the background signal to create the source signal.

(a) Apply loudness ratio to the signals: Multiply each sample in each recording
appropriately. This allows testing under different Signal-To-Noise Ratio’s (SNRs).

(b) Generate a random index at which to inject the target signal in the background signal,
which

(c) Inject the target signal into the background at the randomly generated sample index.
(d) Store the index of injection for later reference to compare the estimation of the

algorithm against.

17

5. Apply the cross-correlation algorithm to the target signal with the source signal.
6. Store the execution time, correlation result, target signal and source signal.
7. Deduce other statistically relevant information:

(a) Seek the index within the cross-correlation that has the highest value - the correlation
peak - which represents the highest similarity with the the actual injection sample.

(b) Compare the found index against the index of injection. If these two values match, the
algorithm has successfully found the target signal.

Note: The cross-correlation peak must be absolutely valued the highest. It can therefore as well be
negative. In that case, there is the most anti-similarity between the target and source, which in the
signal context implies there is a phase offset.

We test with target signals ranging from 32 samples up to 8192 samples. Additionally, we compare
with different SNR’s, ranging from 0.1 to 10. Each setting we perform a hundred tests, in such the
result is more statistically significant.

The testing is based on exploratory picking ratios. Therefore, there is an inconsistency between the
chosen intervals per target sample size. Each data point in the results, displayed in 2, is the
average of the hundred Monte Carlo tests performed in that setting.

3.1.4.1 Accuracy versus loudness

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

Peak-To-Peak SNR

C
or

re
la

ti
on

ac
cu

ra
cy

16
32
64
128
256
512
1024
2048
4096
8192

Figure 2: Accuracy of cross-correlating a target signal against one second of audio recording under different
peak-to-peak signal-to-noise ratios, for different target sample sizes.

We can clearly see that a larger target sample size results in a more accurate cross-correlation.
Additionally, it seems like the length of the target pattern can outnumber it’s reduced signal
strength in the resulting cross-correlation graph completely.

Without supplying/knowing/having the actual mathematical proof, I think this behavior can be
addressed to the significance of the accumulated contribution of each target sample. White noise -
a fully random signal - doesn’t have similarity with other signals. Also, in theory, an unrelated

18

signal should result in a zero-valued cross-correlation. Since the target signal is present at each
sample index - no matter it’s actual strength - if a sufficiently large sample size is used, each
sample contributes to accumulate into a correlation peak. Also, the target size has to be sufficiently
large, and unique, to become statistically significant and therefore addressable for it’s given SNR.

Note how the cross-correlation algorithm can detect weak signals, which would be impossible to
detect with the Larsen test. Namely, once the background sound becomes more loud than the target
signal, the Larsen test doesn’t provide any mechanism to discriminate between the target signal
and the background sound. Also, the test doesn’t provide a mechanism it sufficiently invalidate
different samples, as the cross-correlation manages to do achieve with statistical significance.

3.1.5 Signal detection result validation

In practice we aim to detect the signal without prior knowledge of the signal occurrence. However,
in case a certain SNR is surpassed, as we have seen in 2, the peak doesn’t have to be the target
value. Unfortunately, we don’t know during measuring the SNR, also we cannot invalidate the
measure beforehand. As we seek a peak, and a peak will almost guaranteed to exist, we can be
certain to detect, and thus we require a measure to decide on whether it is probable a test result is
valid.

We could consider the loudness of the highest peak in contrast to it’s second correlation peak and
consider this as an heuristic value on how strong the correlation peak is. However, nearly adjacent
points could be part of the same signal response and therefore this heuristic value could result in a
very low value - even though the cross-correlation may have a very strong and accurate peak - and
therefore incorrectly invalidated. Also, this naive approach is incomplete: how many peak values
exactly should be considered to be part of the same correlation peak?

We could consider a peak detection algorithm, and compare the two highest peaks found by this
peak detection algorithm to compare the ratio between the two. This may improve the heuristic
correctness significantly, yet requires a peak-detection algorithm that relies on parameters to
fine-tune it for usage. Yet still, even with a proper peak indicator, when exactly should we consider
that peak to be relatable to the target signal?

Instead, we compare the highest peak value of the cross-correlation result with the the average
cross-correlation value of the graph (peak-vs-average ratio). We outline this comparison in the
graph below with the result data from the virtual test.

19

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0

0.2

0.4

0.6

0.8

1

Correlation peak versus average correlation value ratio

C
or

re
la

ti
on

ac
cu

ra
cy

16
32
64
128
256
512
1024
2048
4096
8192

Figure 3: Accuracy versus cross-correlation peak strength to average cross-correlation ratio.

We can see, for each target sample size we have test with, that the signal detection algorithm
guarantees to succeed once the peak is 10 times stronger than the average correlation value. Thus
once the peak-vs-average ratio of 10 or higher, the peak guarantees to be the target peak in this
virtual test environment.

3.1.6 Signal detection speed

As seen in 3 we would clearly prefer a very large target sample size for an increase in accuracy.
However, the drawback of picking a larger target frame size is the increase in computation cost. We
have test the speed of different target sample sizes. In the previous test, we have in addition kept
track of the computation time required. The average computation time per target sample size is
outlined here.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

0

200

400

600

(3)(4.75)(8.03)(13.49)(22.9)(39.14)
(81.75)

(161.76)

(344.59)

(696.09)

Target signal size

C
om

p
u
ta

ti
on

ti
m

e
(m

s)

Figure 4: Speed of computation for cross-correlating with different target signal sample sizes against one
second of an audio recording.

20

There is a linear growth in computation time, which can be explained as followed: A doubling of
the target signal sample size doubles the amount of required comparisons for a single
cross-correlation result. I would have expect a fitting linear function would have a slope slightly
lower than 2, (the computation time to grow a little less than 2), since one additional sample of
target size lowers the amount of correlations to be computed by one. Maybe, the allocation of
larger sized Float32Array’s introduce the additional latency. Yet, we consider it irrelevant to
further investigate this specific algorithmic computation time.

3.1.7 Real signal detection test case

From the results obtained in 3.1.2.1, we conclude that in theory, if the background sound consists
solely of white noise and even if it is ten times louder than the recorded target signal, we can
guarantee to find the target signal by a target sample size of 4096 or larger.

We test the relative cross-correlation peak strength in relation to the peak-to-peak SNR when
using the speaker and microphone for obtaining the source signal, rather than virtually composing
the source signal we did in 3.1.2.1.

3.1.7.1 Ideal environment

We test with a physical measure environment with a high SNR to check whether the algorithm
succeeds in such an ideal situation. We say to have successfully found the target peak, if the
peak-vs-average correlation ratio is 10 or higher. And thus rely on the results of the graph of the
previous section 3.

The setup environment consists of a single speaker functioning at 44100 Hz and a microphone
functioning at 44100 Hz. We use a single speaker - mono channel - to prevent multiple speaker
outputs interfering with each other for the microphone input. We repeat the test a hundred times.
Since we very clearly can capture the target signal with the microphone, we expect each test to
succeed. The resulting peak-vs-average correlation ratio is displayed. Each result 2 had a ratio of

Minimum Average Maximum
37.25 73.78 95.87

Table 2: Strength of the highest cross-correlation peak in relation to the average cross-correlation value of
a measure under ideal circumstances, deducted from a hundred tests performed under the same setting.

37.25 or higher, which greatly surpasses the ratio of 10, and thus we expect to have perfect signal
detection accuracy.

To be certain the signal detection algorithm has actually succeed, we take a closer look at the
results to be sure. Here below the target signal, source signal, and their cross-correlation result of
the first test is visualized. This particular has a peak/average ratio of 67.94.

21

Figure 5: The target signal.

Figure 6: The source signal.

Figure 7: The cross-correlation of the target signal with the source signal.

From the source recording in figure 6 we can see the target signal is loud and clearly received by
the microphone. In addition, the cross-correlation graph displayed figure 7 has a single large spike,
exactly at this point in time, and thus the signal is detected successfully.

In the source signal we see an sudden volume increase caused by the speaker output. The speaker
turns silent equally abrupt after outputting the target signal, yet the dissipation occurs rather
slowly in contrast to an abrupt audio silence. This could be ascribed to echo.

Around the point 12100 we see a rise in correlation. From this point in time the correlation
includes summations with the beginning of the loud (target) audio in the source around 15500,

22

resulting in increased (yet still random) values. Similar behavior occurs at the the tail of the
correlation graph at the point 20000.

Remarkable is the negative value at 16037, which is both negative and stronger than the earlier
found positive peak at 16021. Cross-correlation is known to provide a strong, negative result if the
source signal has a half phase offset to the target: the signals are then multiplied sample wise with
their sample values on the exact opposites sides of the y-axis, and thus each sample-wise
multiplication is either zero or negative.

We aren’t dealing with a single frequency sinusoidal wave for which a clear phase exists. As there is
a 16 samples difference between the positive and negative peak, then with the above reasoning this
implies the wave to have shift by half a phase with 16 samples. Also, the wave phase completes in
32 samples, which would be a wave of 1380 Hz under a sample rate of 44100 that we have record
with. We have displayed the spectral analysis of the source signal 10, where we further elaborate on
this peak.

3.1.7.2 Spectral analysis

We display the frequency spectrum of the 4096 target samples in figure 8, the frequency spectrum
of 4096 samples of the source signal of background noise, taken around 5000 samples before the
cross-correlation peak occurs in 9, and the frequency spectrum of 4096 samples of the source signal
starting at the sample index on which the cross-correlation peak occurred in figure 10.

As we take a Fourier Transform of 4096 samples, we obtain 4096 frequency bins. The second half of
these bins has the exact same values as the first half, yet mirrored, due to the Nyquist rate.
Therefore, we select only the first 2048 frequency bins without information loss. Since we have
recorded audio with a sample rate of 44100, the half of this frequency range, 22100 Hz, is divided
over each frequency bin. Thus, each frequency bin covers a frequency range of approximately 10.8
Hz. The source signal isn’t normalized before calculating the frequency spectrum, we neglect it as
we focus on the frequency distribution.

−200 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

0.2

0.4

0.6

0.8

1

Figure 8: Frequency spectrum of the target signal.

23

−200 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

0.2

0.4

0.6

0.8

1

Figure 9: Frequency spectrum of the source signal at the occurrence of silence - the background noise.

−200 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

0.2

0.4

0.6

0.8

1

Figure 10: Frequency spectrum of the source signal at the occurrence of the target signal.

The background noise has a peak value at the third frequency bin, which is around 30 Hz. This
peak remains visible in the frequency spectrum in the source signal when the target occurs. The
frequency bin values of the target signal seem completely randomized, and once measured in the
source signal a lot of spectral filtering seem to have occurred.

Part spectral filtering can be ascribed to attenuation of the source signal in either the speaker
output or microphone input. In practice, either the microphone, speaker, or both, may fail to emit
or to receive the full range of frequencies. Additionally, microphones may be more sensitive to
certain frequencies, speakers may output certain frequencies more loudly.

Besides attenuation introduced by the hardware, another cause might be that higher frequencies
dissipate more quickly as sound is traveling through air. However, this is unlikely to have occurred
this presently in this specific measure result, since the microphone was place directly next to the
speaker.

24

The spectral filtering that has occurred to the target, has two strong peaks. The first peak around
frequency bin 79, and the second peak around frequency bin 130. The second peak could very well
explain the negative correlation spike: If the target signal got filtered in such a way that in specific
frequencies around 1400 Hz would be the loudest, the resulting signal - even though still white
noise - would have a stronger sinusoidal wave and thus such a phase of that.

We haven’t got an explanation for the first peak. We zoom in to better analyze the signal. We list
the samples 15900 to 16400 of the source signal - where the cross-correlation peaks occur - in figure
11 and the first 300 hundred samples of the target found in the source signal in figure 12.

−20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

−1

−0.5

0

0.5

1

Figure 11: Target signal, samples 0 to 300.

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.2

0

0.2

Figure 12: Source signal, samples 15900 to 16400.

If we zoom in, it remains hard to see any clear recurrence of the target signal in the source. Yet
what can be clearly seen, is that it seems like a sinusoidal wave is introduced to the source signal.
This pattern continues for the entire 4000+ samples. These waves aren’t caused by the background
noise, since we can clearly see there is barely any background sound present in the first hundred
highlighted samples here, and these first hundred samples are background sound only.

25

Therefore, either the audio speaker has introduced this pattern during playback, or the microphone
introduced it with recording, or some external object that began to resonate due the speaker has
become part of the recording. Since the laptop got placed on a table during the test, it is plausible
either the laptop itself, or the table it stood on, resonated along.

3.1.8 Error sources

The resulting table 2 of the physical tests show a large deviation between the minimal and
maximal correlation peak/average ratio. By analyzing the audio, we already have attributed
potential causes for a reduction in, or alteration of, signal detection strength due a variety of
sources, such as echo, background noise, resonating objects, signal attenuation.

However, they may be many more. Audio clipping, malformations/impurities in the speaker output
or microphone input, microphone SPL measuring clock cycles slightly missing the exact moment of
the signal arrival and thereby introducing a kind of signal interpolation, random audio spikes and
other type of changes of the background noise, signal interference once the target signal is
dispatched from multiple speakers simultaneously, even things possible such as minor frequency
shifting due to the Doppler-effect if someone throws it’s phone through the room during calibration.

There is insufficient time available to address the influence of each potential error source.
Therefore, we won’t further elaborate on adjusting/understand/improving/testing the signal
detection algorithm in relation to these aspects.

We do elaborate further on the importance to prevent audio clipping and up-/down-sampling, since
either of these two are common to occur, and are fatal to the signal detection.

3.1.8.1 Audio clipping

Audio input data from the microphone is feed to the web-browser within the range of values
between -1 and 1. Any measured sample value too loud - that ends up outside of this range - is
therefore mapped to the boundary of this range. This is called audio clipping. Audio clipping
causes a loss of information, since it is unclear what exactly the value of a clipped sample is - we
only know it was too loud - and lied somewhere beyond this range of -1 to 1.

Audio clipping - in the context of audio recording - occurs once either the microphone is too
sensitive, the speaker outputs audio too loud, the speaker and microphone are too close to one
another, and/or all of the above.

Decreasing the microphone sensitivity in order to prevent audio clipping might resolve in
insufficient sensitivity to detect a target signal of a device from far away. Additionally, decreasing
the loudness of the speaker may prevent audio clipping.

Audio clipping thereby introduces a constraint on the range in which devices can communicate,
and the level of background noise under which a device can operate. The point made about the
statistical significance of the target sample size to outnumber the reduced influence due a low SNR
in 3.1.4.1, doesn’t hold up once sample values are being clipped: The minor, yet relevant -
information contribution of each target signal sample is lost completely.

26

The web audio API or media stream API is unable to adjust the microphone sensitivity, and audio
data streams in clipped between -1 and 1. Also, a software component in the audio path strictly
clips the input signal. Maybe the user can adjust the sensitivity manually, if such an option is
available. Either way, we are unable to automatically adjust/anticipate to audio input receival
without user interaction. There is a certain convenience built-in feature, which is the autoGain

parameter to define automatic gain control, maybe this is the way to go. We however skip this due
time limitation.

3.1.8.2 Input and output sample rates

We briefly mention the importance of having a matching output and input sample rate. If they
aren’t, signal interpolation will occur and the target signal is rendered differently. A web-browser
may up-sample or down-sample audio for both audio output and/or audio input where it sees fit,
without warning or notification. Even worse, the web API doesn’t mention how to retrieve
up-/down-sampling information.

We ran into this problem during the physical cross-correlation tests. Even though we explicitly
constructed the audio context to function with a sample rate of 48000, and requesting the
microphone through the user media API with a sample-rate 48000 samples, the system silently
down-sampled output to 44100, and up-sampled input of 44100 to 48000, all hidden behind the
scene.

We managed to find this problem by using the audio framework (ALSA) on the laptop - to request
the hardware devices present in the audio system. ALSA gave the feedback that both speaker and
microphone function on a sample-rate of 44100 Hz.

Luckily, both audio hardware components function at the same sample rate of 44100 Hz, and it
was therefore easy to resolve it by updating all audio-related functionality to a sample rate of
44100 Hz. However, if the speaker or microphone functioned on a sample-rate of 48000, it may
have become more problematic.

I haven’t looked in further into how this could be solved. Maybe it must be fixed with two audio
contexts. Or maybe it cannot be circumvented, and in such the speaker and/or microphone have to
anticipate to the interpolation that will occur.

Similarly, the only manner I can think of to detect the hidden up-/down-sampling, is by
performing additional tests. For instance, applying the cross-correlation signal detection, yet
instead of only testing against the original target signal, in addition test against all the possible
interpolated variants that might occur.

3.2 Calibration performance model

In the previous subsection 3.1 we have outlined a technique to signal detection. In this subsection
we elaborate on how to use this functionality to deduce relevant audio latency information. We aim
for mobile devices to output audio at the same time. For each device, we assume to not know
beforehand the exact server time offset nor audio output latency. And thus we use their
microphones for signal detection.

27

With a signal detection algorithm available, we want to develop a model to figure out how we can
define measurement steps and convert their results into relevant latency information. To simplify
the model, we assume the signal detection functions accurately and provides correct information.
Additionally we assume the latencies in the following paragraphs to be static, and thus neglect the
potential of variance or drift over time.

3.2.1 Model variables

In figure 13 we define the latencies we recognize in our model for each device separately.

• e : Audio emission/output latency for the web-browser to speaker
• r : Audio receival/input latency for the microphone to web-browser
• d : Audio signal travel time due distance between devices
• ø : Clock synchronization difference to the server clock

We do not know what the values of these variables are beforehand, also we have to deduce them
with the aid of time synchronization and signal detection.

Microphone

Speaker

Speaker

Microphone

e2

r2

d21

Web-application Web-application

ClockNetwork Network

r1
d1 d2

t + ø2

Clock
t + ø1

e1

Clock

Web server

t

d12

Figure 13: Device latency variables

3.2.2 Model measurement tests

We define the measurements in the scope of two devices. We can define four separate tests: x11, x12,
x21, x22.

• x11 : Audio round-trip latency measurement test case for device 1 .
• x12 : Audio latency measurement test case, from device 1 to device 2 .
• x21 : Audio latency measurement test case, from device 2 to device 1 .
• x22 : Audio round-trip latency measurement test case for device 2 .

Each test measures the time it takes for the web-browser to output audio up to the moment the
web-browser received that audio in it’s input.

28

Since we deal with two different devices in the test cases x12 and x21, we in addition require clock
synchronization to communicate the start time for the test. Both devices 1 and 2 separately
negotiate their local clock time offsets ø1 and ø2, respectively, in relation to the server time s. (We
elaborate on this negotiation process in the proof of concept at 4.4.1.1.)

Let us consider the test case x12, to measure the latency for device 2 to receive a signal from
device 1 . A physical representation is given in figure 14a, and a time-graph of the test is drawn in
figure 14b.

The server initiates the test, by sending the starting time t to both device 1 and device 2 . Device
1 emits an audio signal at time t, and concurrently device 2 begins recording at time t. As both
devices have a (minimal) time-difference in the clock synchronization to the server clock, we note
that the actual physical moment in time the devices begin with the test differs from the server
time with ø1 and ø2 for device 1 and device 2 respectively. We name the physical moment in time
at which the devices begin with the test y11 and y12, and the physical time at which device 2
detects the signal with y•12.

d12e1 r2
d2d1

s
server

t t

t + ø1 t + ø2

(a) Abstraction of measure x12

d1

d2

r2

d12ø1 e1

x12

y12

y11

ø2

y12•

t

(b) Time-graph of test case x12

3.2.3 Decomposing test results into model variables

In this paragraph we provide the mathematical formula’s to relate the variables defined in
paragraph 3.2.1 with the test case results defined in the paragraph 3.2.2. As we will further
elaborate on in paragraph 3.2.7, it is impossible to find the exact value for every unknown variable
in our model with the tests we can perform. However, we don’t need this information to obtain
sample-precise audio output that we want for perfect perceived performance.

First, we derive how the result of x12 is composited of the known variable s, and unknown
variables ø1, ø2, e1, e2, r1 and r2 present in our model. Note, x21 can be deduced in the exact same

29

manner as x12.

y11 = s+ ø1

y12 = s+ ø2

y•12 = y11 + e1 + d12 + r2

= (s+ ø1) + e1 + d12 + r2

x12 = y•12 − y12
= (s+ ø1 + e1 + d12 + r2)− (s+ ø2)

= e1 + r2 + d12 + ø1 − ø2

The formula of x11 is different than x12, since there isn’t a time synchronization difference present,
because it is a self-measure. Equally, x22 is deduced in the exact same manner as x11.

y11 = s+ ø1

y•11 = s+ ø1

x11 = y•11 − y11
= (s+ ø1 + e1 + r1)− (s+ ø1)

= e1 + r1

We list the four formula’s that describe how the results of the tests we perform can be decomposed
into the variables of our calibration model.

x11 = e1 + r1

x22 = e2 + r2

x12 = e1 + r2 + d12 + ø1 − ø2

x21 = e2 + r1 + d21 + ø2 − ø1

3.2.4 Deducing the distance between two devices

We assume devices to remain at a fixed position during the calibration process. Also, we assume the
audio signal traveling time d12 in the measure x12 to equal the audio signal traveling time d21 in
x21. With this assumption, we can calculate the distance between device 1 and device 2 as follows:

x12 + x21 = e1 + r1 + e2 + r2 + 2 · d

d =
(x12 + x21)− (x11 + x22)

2

3.2.5 Deducing the calibration performance

The perceived calibration performance for a listener consists of the difference in arrival time of the
audio output of device 1 in relation to the audio output of device 2 . We describe the calibration
performance as the difference in arrival times for a given time sample.

30

A lower difference in arrival time implies a better performance. The performance is optimal, once
the the arrival times are simultaneous. Given a audio sample is played at time t, device 1 will play
the sample at time t+ ø1, output the audio with an emission latency of e1, and it is travels to the
listener through the air over a distance with a latency of d1. Equally, device 2 plays the sample at
time t+ ø2, emits the sample with a latency of e2, and afterwards travels with latency d2 to the
listener. Also, an audio sample of device, scheduled at the time t by the server, arrives at the
listener from device 1 at the time point t+ ø1 + e1 + d1, and from device 2 at the time point
t+ ø2 + e2 + d2.

We don’t know, nor can measure, where the user is positioned in relation to the speakers. Therefore,
we simply assume the user is located at a central place in relation to both speakers, and neglect
the difference in distance between the devices and the listener. This simplifies the requirement for
optimal calibration, which now occur for device 1 and 2 if t+ ø1 + e1 equals t+ ø2 + e2.

Since we don’t know the values of the model variables ø and e, we derive the calibration
performance with the test results. We apply the the variable decomposition equations of the
previous paragraph 3.2.3. The calibration performance p (the difference of the arrival for an audio
sample of device 1 and device 2) can then be described as

p = |e1 + ø1 − (e2 + ø2)|
= |(e1 + r1)− (e2 + r1 + d21 + ø2 − ø1) + d21|
= |x11 − x21 + d21|

=

∣∣∣∣x11 − x21 +
(x12 + x21)− (x11 + x22)

2

∣∣∣∣
Note that, due the absolute value, we can invert the numbers to obtain the same result

p = |e1 + ø1 − (e2 + ø2)|
= |(e2 + ø2)− (e1 + ø1)|

=

∣∣∣∣x22 − x12 +
(x21 + x12)− (x22 + x11)

2

∣∣∣∣
3.2.5.1 Optionally choose which microphone to use

In practice, we are most probably dealing with short-range audio reinforcement only. Also, the
distances are negligibly small, and in such the actual formula’s we require to measure to the
calibration performance is either |x11 − x21| and/or |x22 − x12|. This implies that - under the
assumption the distance is negligibly small - we can make the system functional with only one
microphone present, even if we have more than two sources.

As an example, we extend the model to three devices (and consider distance to be negligibly small).
Consider device 1 to have a microphone. Define p12 the calibration performance considering device
1 and device 2 , and the calibration performance between device 1 and 3 to be p13. Then

p12 = |x11 − x21|
p13 = |x11 − x31|

31

If we have p12 and p13 to equal zero, then certainly we have p23 to be zero as well. And this way
the system is optimally calibrated by using a single microphone.

3.2.6 Optimizing the calibration performance

After performing the tests x11, x21 and/or x22, x12, we deduce the calibration performance p. The
performance however, may not yet be optimal, also p to be greater than zero. Recall from the
previous subsection that we have p = |(e1 + ø1)− (e2 + ø2)|.

We cannot increase nor decrease the output latencies e, as this occurs outside of the reach of the
web-browser. We could adjust the local clock, in such the calibration becomes optimal. However,
this we consider bad practice, since we may be de-syncing perfectly synced clocks that have a bad
calibration performance due to very large deviating output latencies.

Therefore, instead of changing the local clock, we introduce the variable τ : the audio scheduling
latency. The calibration performance can now be optimized by adjusting the variable τ , and in
such the new calibration performance formula becomes:

p = |(e1 + ø1 + τ1)− (e2 + ø2 + τ2)|

We add some restrictions to the values that τ may take. First, we may not address a negative value
to τ as this may result into scheduling audio into the past for that device. Secondly, we aim to
keep the scheduling at a minimum to prevent excessively large playback latencies. Unconditionally
increasing audio scheduling latencies could result in scheduling unnecessarily far ahead in the
future, which thereby will result in a unnecessarily slow and unresponsive application. Therefore,
to minimize the latency we introduce, the slowest performing device (for which e + ø is the highest
value) should maintain an audio scheduling latency of zero.

Here we outline an example on how device-related audio scheduling latencies of τ can optimize the
calibration performance.

s

d1
ø1

d2

τ1 = 0
e1

e3ø3

ø2

τ3

τ2 e2

Figure 15: An example of three devices that have different audio output latencies and clock synchronization
offsets. The calibration performance is optimized by applying device-related audio scheduling latencies.

In this example, device 1 is the slowest in participation due to the relatively largest accumulated
audio output time and clock synchronization offset. We therefore set it’s scheduling latency to zero
and deduce τ2 and τ3 appropriately.

32

We deduce the required values for τ2 and τ3 with the measure results. Note, there are multiple
ways to derive the calibration performance, as mentioned in at the definition of the calibration
performance in sub-subsection 3.2.5. We outline each of them below.

p12 =(e1 + ø1)− (e2 + ø2) =

(
x11 − x21 +

(x12 + x21)− (x11 + x22)

2

)
p12 = −((e2 + ø2)− (e1 + ø1)) = −

(
x22 − x12 +

(x21 + x12)− (x22 + x11)

2

)
p13 =(e1 + ø1)− (e3 + ø3) =

(
x11 − x31 +

(x13 + x31)− (x11 + x33)

2

)
p13 = −((e3 + ø3)− (e1 + ø1)) = −

(
x33 − x13 +

(x31 + x13)− (x33 + x11)

2

)

3.2.6.1 Algorithm performance optimization algorithm

With the math outlined, we can describe the algorithm for implementation. Note that for any two
given devices a and b, we got pab equals −pba. We find the slowest device x, for which every other
device y the value of pxy is negative. The device x takes on a scheduling latency of zero, and each
other device y takes on the the scheduling latency −pxy.

The algorithm can be made more robust in the absence of microphones. Consider for example only
device 1 to have a microphone. Under this assumption, we must neglect the distance measure (as
mentioned in 3.2.5.1). Compare each device y with device 1 to obtain the highest value of τ1y. The
slowest device (which could be device 1), we name x, and each device y takes on the scheduling
latency τy = τ1x − τ1y.

3.2.7 Bonus: No alternative approach with given measures

Before I approached the problem to solely deduce the calibration performance, I attempted on
obtaining knowledge about e1, ø1 and r1 separately. As we outlined in the previous paragraphs, we
don’t need their respective information, as we only care about the combined latency of e1 and ø1.
However, let me emphasize why I think it isn’t possible to deduce the calibration-variables values
under our defined model and test cases.

After calculating the distance with 3.2.4, we remain with six unknown variables, namely the
emission, receival, and server offset values. Therefore, to simplify further calculations, we neglect
the distance variable from our equations.

x11 = e1 + r1

x12 = e1 + r2 + ø1 − ø2

x22 = e2 + r2

x21 = e2 + r1 + ø2 − ø1

33

We can translate these equations into a matrix to solve.

e1 e2 r1 r2 ø1 ø2 x11 x12 x21 x22
1 0 1 0 0 0 1 0 0 0
1 0 0 1 1 −1 0 1 0 0
0 1 1 0 −1 1 0 0 1 0
0 1 0 1 0 0 0 0 0 1

Preferably we could solve this matrix and find all or some of the unknown variables of the left
matrix. However, since we have more unknown variables than equations, nor can we cancel out due
the singularity of this matrix, we aren’t able to find a unique solution. And since we already have
an identity matrix on the right side, we won’t be able to find more linearly independent equations.

We assume emission and receival (e1, e2, r1, r2) to be static variables, also the only dynamic
variables are ø1, ø2. As x11 and x22 depend solely on the static variables, this implies x11 and x22
won’t change if we do additional measurements. Any change we would apply in either ø1 and/or ø2
will result in linear change in both x12 and x21, which we can also conduct theoretically without
having to do an additional measure.

Also, from this theoretical perspective, additional measurements won’t result in more information
about our unknown variables. We therefore conclude we aren’t able to find the exact values for
these unknown variables from the measures we have defined this far.

We could attempt to solve the above defined linear system by finding the most-likely values each
variable could take. Even though we could make assumptions, or have knowledge about latencies of
certain devices, it’s questionable how this knowledge can be obtained from a mathematical point of
view. Namely, the problem isn’t statistical, nor can we assume any relation to exist between e1, e2,
r1 or r2. Therefore, using standard linear approximation techniques, such as searching for the
minimal euclidean distance, we therefore consider not to be applicable to our problem.

3.3 Calibration topology

The calibration model outlined in the previous subsection 3.2 has focused on how calibration can
be computed between two devices both having a speaker and a microphone. In this subsection we
elaborate on the calibration under more diverse spatial circumstances.

In practice, devices may not be connected with a microphone, or devices have a microphone but
not a speaker, or a device may have multiple speakers and/or microphones. Besides the available
hardware, certain devices may be in range of one another, while others are not. We therefore could
end up with different scenarios under which different topologies may function or outperform others.

We assume to be operating on a sensor network with fixed sensor nodes, assume accurate measures,
and no drifting/variance in measure results. This simplifies in such we aren’t in need for continuous
measuring and analyzing, and additionally do not have to introduce a separate statistical model to
support error reduction.

34

3.3.1 Neglecting distance latency

The most important differentiation is whether distance latency is trivial, such as in a small-sized
room.

3.3.1.1 Trivial case

In case a single microphone can oversee the entire system, as in figure 16, we have a trivial case to
compute the latency output latency. To rephrase the trivial case, it is when all transmitters are
detectable by a single receiver. The formula defined in 3.2.6.1 can be directly applied and we are
set.

o2o1 i1

Figure 16: Trivial example of a scenario neglecting distance

3.3.1.2 Non-trivial case

A minimal case occurs when multiple microphones are involved, and at least one speaker isn’t in
range for each participating microphone, as in figure 17.

35

o1
o2

o3i2i1

Figure 17: Non-trivial, yet minimal example of a scenario in need of a topology.

The speaker o3 cannot be detected by microphone i1, and the speaker o1 cannot be detected by
microphone i2. There isn’t knowledge available on the input latency of both microphones, therefore
in order to relate the latency of i1 with i3, we require the microphone input latency difference
between i1 and i2. In other words, we want to relate all output devices to a single input device: in
such that the input latency differences aren’t influencing the calibration performance.

As both i1 and i2 detect the signal emitted by o2, we can use their results x21 and x22 respectively
to deduce difference of input latency of i1 and i2. We define the input latency difference between
the two inputs with

δi1i2 = x21 − x22
δi2i1 = x22 − x21

Then we are able to relate all three output speakers with both input 1 or input 2.

x31 = x32 + δi1i2 = x32 + x21 − x22
x12 = x11 + δi2i1 = x22 + x22 − x21

And from this point on we can calibrate the results again with the calibration formula described in
3.2.6.1.

To describe the formula more abstract, for any input ia and input ib, we can transfer any measure
from one input device to the other, if there exists a speaker oo in such the measure xca and xcb
exists.

There seems to be an advantage if nodes are controlled by the same device: they are time
synchronized. Yet, time synchronization is a part of the latency and therefore doesn’t conceal
actual useful information, and therefore we consider it insufficiently to integrate into the model.
Therefore, it seems applicable to consider the whole as a virtual input array and a virtual output

36

array, such as done in [32], which combines any kind of microphone to add it to the bundle make it
contribute to analyzing what is being said in a conversation/meeting. This clearly adds a
centralized component in the calibration process.

To give a example of clusters, consider the following spatial setup that consists of three separate
clusters.

i1

o3

o1

o2

o4 i2

o5

o6

o7

o8

o9

o10

i3

Figure 18: Multiple clusters

Placing them in a matrix

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
i1 a b c d 0 0 0 0 0 0
i2 0 0 0 e f g h 0 0 0
i3 0 0 0 0 0 i 0 j k l

Non-zero values in columns connects clusters. First, we could obtain output latency variables for
the three separate clusters, which relate to each microphone. Due o4, the cluster that results of i1
and i2 can be merged into a single cluster. And due o6, the results of i2 and i3 become accessible as
well, merging the whole into a single cluster.

3.3.2 Considering distance latency

Even if we are neglecting distance in our model, we could still benefit from considering distance
latency to be a part of the network. Namely, in the last example in figure 18, if there would have
been more clusters, devices could have large distance differences which would strongly impact

37

perceived playback synchronization. However, one could argue these distance latencies won’t
impact the listening experience, since the outputting speakers are seemingly this far and thus
heard softly, the microphones didn’t manage to detect their emitted signal, nor will the users.

Another argument against considering distance latencies to be relevant, is, which point in space
should the devices be calibrated to? Consider a person A standing next to speaker o1 and another
person B standing next to speaker o10 from figure 18. If we would decide to calibrate in order to
optimize the calibration performance for person A, that would imply further lying outputs, such as
o10, will have to compensate their distance traveling time by decreasing their relative output
latency in contrast to other, more nearby speakers. Person B however, would require the exact
opposite output latency compensation. The more the spatial calibration point is moved towards
the left, the worse the perceived calibration performance becomes as we move to the right.
Therefore, we decide to fully neglect the presence of distance latency.

Under certain scenario’s there may still be a preference to consider the spatial calibration point. If
there is an interest to consider distance, and the connectivity information is available as we have
described above, a promising approach that claims to cover exactly that would be multidimensional
scaling (MDS): ”position estimation using mere connectivity information. Additional distance
estimation may contribute, and the algorithm works even if no beacon nodes are available in which
case relative coordinates are generated for the dumb nodes.”([33], Chapter 5.4 over MDS, page 36).

3.4 Location estimation

An interesting property of calibrating devices could be to locate devices in space. If we manage, for
instance, in the browser a calibration precision of 1 milliseconds, in theory that would induce a
devices can relate it’s position to other devices with an precision of 0.3 meters.

We explore whether a web-application could provide a solution to obtain location estimation. The
challenge to deduce the positions of devices is extensively researched in radar positioning networks,
therefore we use this domain knowledge.

3.4.1 Location estimation specifications

Multiple aspects have to be considered, outlined in [33]. To begin with, is the goal to obtain
range-based or range-free/proximity-based results? If clusters have to behave in a distinct manner,
such as distinguishing different rooms to apply different sound effects or playing different songs, a
course-grained solution is required. If a device has to be localized more precisely in space, a
fine-grained solution is required.

Afterwards, will devices function fully autonomously - thus we end up with a distributed network -
or do they address directly a server - and thus the network is centralized. Autonomy is as well
interesting from the perspective of the end-user. Functionality choices could decide on what a
participant is allowed to do in a session: who decides in a collaboration effort what song will be
played? Does the entire system wait for devices to be ready, or should uncalibrated devices mute
themselves?

38

The network may function in a indoor constrained environment or an outdoor unconstrained
environment. Additionally, nodes in the network could be statically positioned, yet most likely will
be mobile as users walk around with their device.

3.4.2 Solution directions

Without providing solutions, we consider a few directions to location estimations. Which is,
considering Bluetooth for position estimation, the approaches RSS, ToA and TDoA, An obvious
alternative to speakers and microphones as the receivers/transmitters in the position network,
would be considering Bluetooth to complete this task. However, under the current standards it is
questionable how scalable this approach is: communication initialization is cumbersome due
standardized security policies. Additional, the bandwidth in which Bluetooth functions limits 16
separate channels. This makes the approach inaccessible.

Currently we have considered a centralized approach. However, once many devices could
participate in a single session, such centralized network communication could become a bottleneck.
When such a turning point is reached - that network communication becomes the factor for
performance degradation - autonomous/decentralized/distributed communication becomes more
interesting to consider as a solution.

Besides signal detection, more approaches to distance measuring could be considered.

• Received Signal Strength Indicator (RSS)
• Time of Arrival (ToA)
• Time Difference of Arrival (TDoA)

Relying on Received Signal Strength (RSS) is very hard to do in our context, since speaker
loudness is too variable: users could change the volume on the fly. Additionally, there is no
standard available on the loudness of mobile device speakers in the context of a web-browser.
Therefore, we fully neglect this as a viable parameter for location estimation.

We use the Time of Arrival in the calibration process outlined above. However, time of arrival is
only useful once input nodes are synchronized. Under the hood, the time of arrival is depending on
the time differences of arrival in relation to a certain output node. Therefore, ToA is not applicable
either.

The only approach which remain is using the time difference of arrival. TDoA can be separated into

• Multi-node TDoA
• Multi-signal TDoA

In the multi-signal TDoA, instead of a single signal, multiple signals - on different frequencies - are
emitted by a speaker. As signals travel at different speeds depending on their frequency, the time
difference of arrival can be used to deduce the distance of the node. However, as we work with
default consumer speakers, the speed difference between low and high frequencies in the bandwidth
of 20 Hz to 20 kHz is too small for accurate results.

39

3.4.3 Multi-node TDoA

So the only option to consider as a location estimation approach is multi-node TDoA.
Unfortunately, we haven’t got knowledge beforehand what the exact audio input latencies are.
Without this information, we won’t be able to apply multi-node TDoA. Therefore, we need
speakers that are detected by multiple microphones in order to gain awareness of relative input
latencies for microphones. However, we aren’t certain where exactly such a speaker is placed in
relation to these microphones, also there still isn’t sufficient information available to decide on how
much transfer latency is involved.

3.4.3.1 Node types

At this point it becomes usefully to name different type of nodes in the network.

• full network nodes: contains both a microphone and a speaker
• silent network nodes: contains only microphone
• deaf network nodes: contains only speaker

Full nodes provide more information, as there is no transfer distance in a self-measure. We have
already shown that two full nodes can obtain the distance to each other with the formula outlined
in 3.2.4. Due to the incomplete knowledge on input latencies, output latencies, and positioning,
both beacon nodes and full nodes could greatly contribute to filling in the gaps. Due time
limitations we won’t elaborate further on location estimation.

40

4 Proof of concept

We build a reference prototype as a proof of concept to test whether automatic, synchronous audio
playback collaboration is possible within a web browser. We apply the signal detection algorithm
outlined in 3.1 and the calibration model outlined in 3.2.

First we describe some interesting things on important audio components in our prototype.
Afterwards, we describe how the implementation functions. We test the proof of concept, and as
last conclude on the functioning of the prototype.

4.1 Time

In the web-browser we have three concepts to time. The first is Date, which tracks the system time.
The second is performance, which tracks the lifetime of a thread. The third is the currentTime

property of the audio context, which tracks the lifetime of the audio context.

Audio scheduling depends on the time of the audio context. Since this time is ever-increasing,
scheduling has to be done in the future: at a later point in time that it currently is at the audio
context. Therefore we must use the audio context time.

Additionally, communication handled between devices can rely on their system time or thread
lifetime. Both should be sufficiently accurate. performance should be faster, since it doesn’t
require a API call to the system. Additionally, the API specification mentions it could have
microsecond precision. However, most web-browsers have this precision purposefully lowered to
prevent both fingerprinting and security threats [34].

4.2 Recording

In order to calibrate we have to retrieve microphone input and process it accordingly.

4.2.1 User media stream

The first step is to retrieve user-media.

1 let mediastream = null;

2 export async function get_mediastream () {

3 if (window.isSecureContext == false) {

4 throw Error("Insecure window context , microphone inaccessible.");

5 }

6 let mediastream = await navigator.mediaDevices.getUserMedia ({

7 audio: {

8 noiseSuppression: false ,

9 echoCancellation: false ,

10 autoGainControl: false ,

11 sampleRate: 44100 ,

12 sampleSize: 128,

13 channelCount: 1,

14 },

15 video: false

41

16 });

17 return mediastream;

18 }

Listing 2: Retrieve user-media audio stream JavaScript implementation

First ensure the web-browser considers itself to be processing within a secure environment,
otherwise functionality such as microphone input will be disabled (as is the case in most browsers).

Disable the noise suppression, echo cancellation, autoGain control, and provide sample rate with
sample size and channel count. These parameters are provided as a request, the actual parameters
applied therefore may differ.

Cache the result and re-use the mediastream on subsequent calls. To close down a mediastream in
our audio case, close each mediaTrack in the stream with a code line such as
mediastream.getAudioTracks().forEach(function(track) track.stop(););.

4.2.2 Audio context

We need an audio context to process audio.

1 let context = null;

2 export default function get_context () {

3 if (context) { return context }

4 context = new AudioContext ({

5 sampleRate: 44100

6 });

7 return context;

8 }

Listing 3: Retrieve audio context

Specify the sample rate to 44100. In the application only a single audio context is created, cache
the result and re-use the same audio context on subsequent get context() calls. To close down a
context, call context.close() anywhere in the code.

4.2.3 Audio node

We convert the media-stream into an audio node that we can process, do so with the let node =

await context.createMediaStreamSource(stream). Now we can connect our node to an
audio processing node with node.connect(processor).

4.2.4 Processing node

4.2.4.1 AudioWorkletNode and ScriptNode

The approach to writing customized audio nodes is with the AudioWorkletNode, which runs in a
separate thread. Older web-browsers don’t support this feature, and instead require to define a
ScriptProcessorNode that runs on the main thread.

Two poly-fills are available in the wild to substitute the audioWorkletNode functionality on older
browsers that do not support that new web API. One poly-fill approaches it by emulating a

42

AudioWorkletNode by forwarding all processing of a ScriptProcessorNode to a Web Worker [35].
Even though limited, this has the advantage to support multi-threading.

Another poly-fill approaches it by, in addition to emulating the AudioWorkletNode, as well
emulating a Web Worker on the main thread [36]. This solution provides zero performance gain,
and is only meant to not having to rewrite logic to support deprecated web-browser versions.

We stick with the AudioWorkletNode. This node itself doesn’t do any processing, instead it
directly forwards all incoming audio data (from the microphone) over it’s port to the main thread.

1 class MonoAudioStream extends AudioWorkletProcessor {

2 process (inputs , outputs) {

3 this.port.postMessage({ frame: inputs [0][0] , time: Date.now() });

4 return true;

5 }

6 }

7 registerProcessor(’mono -audio -stream ’, MonoAudioStream);

Listing 4: AudioWorkletNode script

Note how we add a self-generated timestamp to preserve the time receival information. We will
explain this choice in 4.2.4.2.

In the main thread we listen for incoming events transmitted over the AudioWorkletNode-port,
and process the data accordingly.

1 let timestamps= [];

2 let recording = [];

3 let processor = new AudioWorkletNode(context , "mono -audio -stream");

4 processor.port.onmessage = (evt) => {

5 let { data: { frame , time } } = evt;;

6 timestamps.push(time);

7 recording.push (evt.frame);

8 }

Listing 5: Processor node

4.2.4.2 Input latency due event handling

The process of sending data from the AudioWorkletNode to the main thread takes time. If this
time is fixed it wouldn’t deteriorate the accuracy, it just only adds up to the total audio input
latency. However, if we take a close look at the flame-chart of the event-handling of the autoworker
communication, we see a non-negligible deviation. The behavior is shown in figure 20.

Audio frames in the AudioWorkletNode are processed with the exact size of 128 of samples, and
each frame is encapsulated and forward over an port message event. Ideally, each event would be
forward directly, and the flame chart would only show behavior of exactly one message every 2.9
milliseconds (under a sample rate of 44100 Hz). However, instead events are are sometimes stalled
and afterwards send together in batches.

43

Figure 19: Flame chart of audioWorkletNode port handling with 20 milliseconds of latency for two
subsequent events to arrive and get handled on the main thread.

Figure 20: Flame chart of audioWorkletNode port handling with 3 milliseconds of latency for two subsequent
events to arrive and get handled on the main thread.

4.2.4.3 Preserving time receival information when forwarding data to the main thread

In order to circumvent the inconsistency in time of arrival, instead of relying on the time of arrival,
we can rely on the timestamp of the event creation. Every event in the JavaScript environment
carries along a timestamp property of it’s time of creation. This timestamp is generated with
performance.now() of the running thread. This enables us to circumvent the speculative latency
introduced by the port-message forwarding and we can ensure to have accurate knowledge of the
original time of arrival.

Due convenience we rather use Date.now() than performance.now(), even though this API call
may be a little slower/accurate. As an additional excuse besides convenience, converting
performance.now() to it’s counterpart in Date.now() would as well take time and may end up to
be just as inaccurate. To realize this, a self-generated timestamp is send along the frame data in
the event message.

An additional measure we could take to reconstruct the time of arrival, is by calculating the
average time per sample and applying this to deduce which sample arrived when. In the calibration
procedure, we use this to improve

4.3 Playing

Playback of audio is scheduled on the audio context in relation to it’s time. Schedule a
AudioSourceNode to playback the target signal at a specified time. This is done by writing first
audio data into a BufferSourceNode.

1 export default async function signal (sound , time) {

2 let context = get_context ();

3 let buffer = context.createBuffer(1, sound.length , 44100);

4 buffer.copyToChannel(sound , 0);

5 let node = context.createBufferSource ();

6 node.buffer = buffer;

7 node.start (time);

8 node.connect(context.destination);

9 };

Listing 6: Playback a signal

Time is handled as seconds, and actual time to wait to play depends on the readable property
currentTime of the audio context. Any audio scheduled before the current time of the audio

44

context will fail and throw an error.

4.4 Calibrating

The proof of concept supports to calibrate two devices for which we assume to have both a
microphone and a speaker, close in range in such we can neglect their distance.

4.4.1 Server time offset

Before we can continue with signal detection we have to know at what time each device is
supposed to act. In our implementation we have chosen the server time to be the reference time
point on which moments of action should be related to.

4.4.1.1 NTP

We synchronize the internal time of each device with the server with an overly simplified variant of
NTP. We skip all procedures and variables of the NTP-specification [37], and just copy their
naming for time-stamping, round-trip latency, and clock offset.

1 let socket = io (address);

2 let t1 = Date.now();

3 socket.emit("NTP", t1 , function(t2) {

4 let t3 = Date.now();

5 delta = t3 - t1; // round -trip latency

6 theta = 0.5 * ((t2 - t1) + (t2 - t3)); // time offset

7 })

Listing 7: NTP client code

1 import socketio from "socket.io";

2 const io = socketio(server)

3 io.on("connection", socket => {

4 socket.on("NTP", async (cb) => {

5 cb (Date.now());

6 });

7 });

Listing 8: NTP server code

We expect a round-trip latency below 100 milliseconds, and we are set. Otherwise we fail the time
measure, and thus must retry before we can continue with the calibration procedure. We add 200
milliseconds safety-time to the preparation time-frame in the measure phase, to be certain there
won’t be a signal detection miss due overly large clock differences: e.g. to prevent the scenario that
device 1 emits this far up front that device 2 isn’t even recording yet.

4.4.2 Target signal

Providing the target signal is done with fetching a WAVE-file (a song of 4096 noise samples) from
the web-server and decoding it. We store it under a 441000 Hz sample rate, mono channel.

45

4.4.3 Deducing latency

The recorder records 1700 milliseconds of audio, to cover for a variety of latencies in order to
detect the target signal:

• 200 milliseconds due potential clock differences.
• 800 milliseconds of audio output latency.
• 200 milliseconds of signal traveling.
• 500 milliseconds of audio input latency.

We have fixated these values, to simplify prototyping the proof of concept. We have chosen these
values to be quite large, to increase the likeliness that both devices used in the proof of concept are
fast enough to reach time deadline at each step in the process.

4.4.3.1 Microphone preparation

On a calibration request, we initiate the recorder as quickly as possible, and then test some things
before we consider the incoming audio input to be valid:

1. Is audio input processed by the audioWorkletNode? If not, the data stream is undefined.
2. Is the audio input unmuted and receiving audio? If not, the data stream consists of only

zero-valued signal samples.
3. Is the audio input stabilized? If not, audio input is glitched: sample values fluctuate

enormously, and the signal samples don’t correctly reflect the actual audio environment.

In such, audio input is discarded as long as it is either streaming only sample values of undefined
or zero. Once non-zero audio data starts streaming in, we enter a ”stabilization” period, in which
we wait 200 milliseconds to settle on the glitches. After this point forward we just assume the
audio to be stable and correct.

The task of recording is initiated with the same time as the playback for the target signal. Due the
stabilization period, the recorder must have started earlier than the signal scheduler. In case the
recorder is prepared earlier, we drop all incoming audio with a timestamp of a 100 milliseconds or
earlier than the start time. Afterwards we record (in addition of these first approximate 100
milliseconds) another 1700 milliseconds.

Any incoming audio data with a time-stamp that surpasses the end time, is discarded.
Additionally, once this happens, the microphone input node is disconnected from the processor
node. We deduce when the first sample of this 1700 ms recording occurred, then we slice from that
index the 74970 samples to obtain 1700 milliseconds of recording.

4.4.3.2 Cross-correlating

Consider this slice of 1700 milliseconds to be the source, and cross-correlate it against the target
signal. The index of the cross-correlation peak can be directly translated into the audio receival
latency.

46

4.4.3.3 Validating the calibration step

The calibration process should be invalidated if:

• The microphone isn’t receiving non-zero audio data 400 milliseconds before the time of signal
emission. Namely, we require 200 milliseconds of stabilization and 200 milliseconds of
potential time clock difference. This step could be left out, namely if it did miss the signal
detection it wouldn’t correlate in the first place, which brings us to the second reason for
invalidation:

• The cross-correlation peak/average ratio is below 10. As we have found in 3.1.5, this ratio
was sufficient to correctly classify a cross-correlation peak to relate to the target signal.

4.4.4 Additional implementation details

The goal of the full calibration process is to deduce the following three variables:

• theta : Time offset to server.
• tau : Time difference to compensate for audio latency and server time offset (theta).
• delta : Time difference to the audio context time.

With this information, we should theoretically be able to schedule audio and successfully play back
audio synchronously over multiple devices.

The implementation is aimed at realizing the experiment that we further describe in 4.5. We
consider two devices to participate, both with a microphone and speaker connected.

We obtain theta with the time request outlined in 4.4.1.1. Afterwards, the calibration measure is
initiated to emit the signal from device 1 or from device 2. Whether only detecting, or additionally
emitting the signal, both devices receive the same server time that mentions when the calibration
test starts. Therefore, both devices require to have knowledge of theta, otherwise they haven’t got
sufficient knowledge to be certain in what time frame the other device may start emitting the
audio signal. The administrator of the session can decide which device emits the target signal, and
has the option to repeat it, for example in case a device fails to detect the emitted signal.

When both devices have a successful measure of their own and the other device their target signal,
the server requests their times, calculates τ1 and τ2, sends it back to the users, and the users are
able to schedule their audio synchronously with the formula node.start(servertime + delta

+ theta + tau).

We will further elaborate on delta in the subsection about audio context time drift in 4.9.

4.5 Experiments

With each component described in the previous subsection, we can build the proof of concept. We
do four separate tests, each involves both a laptop and a phone that play either play together
calibrated or uncalibrated The phone is a Motorola Moto G5, running Chrome for Android version
84.The laptop runs on an Intel i5-1035G1, 8 cores, at 3.6GHz, using PulseAudio with ALSA as the
sound system, Firefox version 78 (64-bit)

47

The experiment didn’t work with Firefox for Android, some issue occurred with the preparation
phase. Therefore instead Chrome was picked as the web-browser.

Both devices start outputting clicks, scheduled under 500 millisecond intervals. The level of
calibration is thereby clearly hearable unveiled by the difference of the time of output between the
clicks of both devices. This activity is recorded and these results are outlined below in here in
subsection 4.6.

Audio output loudness, microphone input sensitivity, silent surrounding, stable internet connection,
were are manually set to create an ideal environment.

4.6 Results

The four tests performed are:

1. The phone over Bluetooth-speakers and the laptop over internal speaker.

(a) Uncalibrated playback, in figure 21
(b) Calibrated playback, in figure 22

2. The phone over internal speaker and the laptop over internal speaker.

(a) Uncalibrated playback, in figure 23
(b) Calibrated playback, in figure 24

Figure 21: Uncalibrated audio playback with the internal speaker of a phone and the internal speaker of a
laptop.

Figure 22: Calibrated audio playback with internal speaker of a phone and internal speaker of a laptop.

48

Figure 23: Uncalibrated audio playback over Bluetooth-speakers connected to a phone and internal speaker
of a laptop.

Figure 24: Calibrated audio playback over Bluetooth-speakers connected to a phone and internal speaker
of a laptop.

4.7 Comparing synchronization performance of calibrated- against un-
calibrated audio scheduling

If the phone and laptop both use their internal speaker, the offsets between the peaks are clearly
smaller once calibrated, and quite regularly, clicks are emitted by both speakers fully
synchronously. In contrast, in uncalibrated audio scheduling, the difference of playback is
approximately 200 milliseconds, and additionally, clicks are never emit synchronously.

If we use Bluetooth-speakers with the phone, the uncalibrated playback results are far worse in
consideration of the synchronization performance. In figure 23 there are three clicks visible of the
internal laptop speaker, once the first click is output over the Bluetooth-speaker. Also, the
difference of output between the two devices is over 1500 milliseconds. In contrast, if we apply our
calibration technique and schedule the clicks calibrated, the clicks are sometimes output fully
synchronously, and otherwise stay below a difference of approximately 150 milliseconds.

4.8 Variance in click offset differences

During playback, whether calibrated or not, we only require static variables. Yet, in each result we
see a variation in the click offset differences. The test-results of the experiment with the
Bluetooth-speaker involved, clearly shows a larger amounts of deviation between the

49

synchronization performance. Since this behavior cannot be declared with the simplified model,
and each signal is scheduled beforehand on a 500 millisecond interval, the only point that could
introduce this variation is the note scheduling line of 6.

4.9 Audio context time drift

In order to see whether the audio context drifts in relation to the thread lifetime, we have
compared the drift between performance.now() and context.currentTime over a time span of a
thousand seconds. The test code is listed here.

1 let results = [];

2 let context = new AudioContext ();

3 let reference = performance.now() - (context.currentTime * 1000);

4 for (let i = 0; i < 1000; i ++) {

5 results.push(performance.now() - (context.currentTime * 1000) - reference

);

6 await sleep(1000 - (performance.now() % 1000)); // [1][2][3]

7 }

Listing 9: Drift test performance.now() with context.currentTime

1. This is run in an asynchronous function.
2. sleep is a simple sleeping function:

1 export default function sleep (ms) {

2 return new Promise((resolve , reject) => {

3 setTimeout(resolve , ms);

4 });

5 };

Listing 10: Sleep milliseconds

3. Pick await sleep(1000 - performance.now() % 1000) to start a new test on the
beginning of the second. await sleep(1000) results in a small additional delay that
accumulates over time, and thus won’t necessarily start at the beginning of each second.

50

−100 0 100 200 300 400 500 600 700 800 900 1,000

−50

0

50

100

150

Time (seconds)

L
at

en
cy

(m
s)

laptop with internal speaker
phone with Bluetooth-speaker

Figure 25: Drift results of performance.now() with context.currentTime for both a laptop with it’s
audio output connected to it’s internal speakers, and a phone with it’s audio connected to a Bluetooth-
speaker.

−100 0 100 200 300 400 500 600 700 800 900 1,000

0

10

20

Time (seconds)

L
at

en
cy

(m
s)

laptop with internal speaker

Figure 26: Zoomed in drift results of performance.now() with context.currentTime of the laptop,
outputting it’s audio to it’s internal speakers.

In addition the test is repeated for a phone without using Bluetooth-speaker output.

51

−100 0 100 200 300 400 500 600 700 800 900 1,000
−30

−20

−10

0

10

20

Time (seconds)

L
at

en
cy

(m
s)

laptop with internal speaker
phone with internal speaker

Figure 27: Drift results of performance.now() with it’s audio output connected to it’s internal speakers,
and a phone with it’s audio connected to it’s internal speakers.

This drift in latency seems to be quite problematic as the context.currentTime cannot be
neglected as audio playback scheduling directly depends on it. Even if we attempt to remove the
minimize the use of this variable, for instance by to once calculate an offset in relation to
performance.now(), and to further on only depend on performance.now(), devices will still
deviate: As we can clearly see in the graph 25, after a thousand seconds the phone will have got an
additional approximate hundred milliseconds audio output latency in comparison to the laptop.

If we are able to measure the drift continuously, we might be able to stabilize the time difference to
the audio context time (the delta variable) by statistically deducing the context audio drift at a
certain point in time. The drift seems to change linearly over time with quite uniformly
distributed variation. This is convenient, as possibly a least square fitting algorithm may suffice to
tackle this problem. We won’t implement and elaborate on this due time constraints.

4.10 Neglecting context drift

Thus, if we neglect the presence of the audio context time drift, will the calibration result in
successful synchronization? Yes, in both test-cases, in the stream of clicks, at least one click was
output in both speakers fully synchronous. In specific, if we consider an output latency difference
of over 1500 milliseconds if no calibration is applied, it emphasizes the use for this technique to
synchronize devices on their audio playback.

52

5 Provisioning audio-related activities

With a proof of concept available, and a more clear picture of the capabilities of audio handling
under the current state of web-applications, the question arises what audio-activities could be
provisioned with a web-application. Therefore we have to know whether a web-application could
provision the performance requirements.

First we define the performance requirements of synchronous, co-located, concurrent audio-related
activities. Afterwards, we consider classifying the range of activities that could be performed, in
such we are able to relate classification to performance requirements. however, due to the
incompleteness of the available classifications, and due to not being able to provide a solid relation
of any such categorization to the our performance requirements, we define a benchmark for an
activity to be benchmarked on it’s fitness to be implemented by a web-application.

5.1 Performance requirements for activities

Note, we won’t define here what user-interaction is expected, nor the behavior of the application,
nor the behavior of collaborative efforts. Instead, we only consider what the specifics of the
performance requirements are for the whole (and thus each separate device) to function
successfully.

Additionally, note how requirements could be asymmetrical, as certain devices may have to be
more performant than other devices. As well note how activities may support degradation, by
offering an alternative solution if certain requirements cannot be met.

Considering the performing requirements, at least three different types of performance
requirements could be considered. First, is time-criticality, which consists of response speed and
scheduling accuracy. Secondly, is the scalability, which consists of inter-device communication,
information load, and group size. Thirdly, is the computative load, which consists of processing
power and memory size.

5.1.1 Time-criticality

We could consider time-criticality for multiple aspects, yet as we focus on audio-activities we only
mention the time-criticality of auditory feedback.

5.1.1.1 Response speed

With responsiveness, we aim at the time it takes for generating auditory feedback to performed
actions by the user or the device. This is obviously related to the audio output latency. However,
additionally audio output could be dependent on inter-device communication, also the
communication speed could as well be a relevant factor on the response speed.

We give two examples on response speed. Playing an instrument would require a very low response
speed, as direct auditory feedback is preferred. In contrast, a playback system as the proof of
concept allows a high response speed.

53

In a web-application, the activity may not demand a low response speed performance. Namely, due
to high audio output latency, and slow internet communication.

5.1.1.2 Scheduling accuracy

With scheduling accuracy we directly aim at both users and devices to accurately define when
audio actions should occur. From the perspective of the device, it is only relevant to consider the
accuracy - the drift - between several devices. However, if an action - that requires scheduling -
depends on user-interaction, the accuracy of this user-to-device communication becomes relevant
to.

In a web-application, due to the drifting audio-context timer, only activities which require a low
scheduling accuracy could be provisioned.

5.1.2 Scalability

With scalability we aim at the amount of devices which attend to an activity. It are three separate
properties that define how congested the communication channels will become, and thus define the
performance requirements in order to scale.

5.1.2.1 Inter-device communication

The amount of inter-device communication, is the amount of devices which have to directly, or
indirectly, have to exchange information with one another. As the group size grows, the
inter-device communication doesn’t necessarily have to. For this, consider for instance an
application that functions on communication clusters, or an application in which each device
communicates with exactly two other devices, to create something like a linked-list of the
participating nodes to forming a chain of communication. In a web-application, as in the proof of
concept, all communication flows centrally through the web-server. This restricts on the
inter-connectivity of devices. Additionally, it is

5.1.2.2 Information load

The information load describes the amount of information that is being communicated between
two devices. Exchanging relevant information doesn’t necessarily require a high load. For example,
a device could interpret raw data itself and communicate only relevant, abstract information.

In a web-application, as in the proof of concept, the information load is quite restricted. Raw
information transfers, for instance that of sensor data, can be extreme costly and congest the
network instantly. Instead, an efficient communication strategy must be provided for the network
to be able to handle it.

5.1.2.3 Group size

The group size describes the amount of devices which can, or have to, participate in the activity.

54

In a web-application, as in the proof of concept, the group size isn’t a restrictive requirement. The
centralized solution with a web-server, only suffers from network congestion and server load, which
can be compensated by a decreased information load, as well with packing separate communication
packages together under a high inter-device connectivity. In contrast, a distributed communication
approach, such as Bluetooth, the maximum group size is heavily limited due to the low amount of
concurrent connections a device can have.

5.1.3 Resource intensity

The device itself has several resources available. There will be computations and data involved,
thus we can talk about computative and memory load.

5.1.3.1 Computative load

If we consider the computative load, we cannot directly address the computative complexity.
Namely, if we consider a web-application, algorithms could be optimized quite well with the aid of
for instance Web-Assembly, multi-threading, GPU computing. However, older browsers may not
support certain of these optimizing functionalities, and therefore may have a stronger boundary of
the algorithmic complexity.

Additionally, besides the performance of the software, additionally there can be changes in the
hardware. Older phones have a slower CPU, or less cores, than the newest models. Nor can we
assume older devices to have a viable GPU for computative tasks to be outsourced to.

5.1.3.2 Memory load

If we consider the memory load, we can both address the memory usage of the application, as well
the total memory size of downloadable assets. In a web-application, there is quite a strong
limitation on the memory load. Not only may the internal memory be restricted, as background
processes and the web-browser itself have a lot of memory allocated. Additionally, fetching data
over mobile networks could be expensive, and fetching over bad internet connections could result
into the fetching to take a very long time, therefore the sizes of assets should remain small.

5.1.4 Influence of the the properties

The properties within the categories we have defined above can influence one another.

• Response speed and scheduling accuracy rely on each others, as intuitively, users will require
a low response speed to accurately schedule their actions.

• Inter-device communication relates to group size. For instance, high inter-device
communication could demand exponentially more bandwidth per additional participant, and
thereby limits the maximally supported group size.

Additionally, we could consider the influence of performance requirements between the different
categories.

• Relation of time-criticality with computative load: If an application requires a low response
speed, and in this time audio responses have to be computed as well, the amount of
computations for such an application have to be limited or the response speed will increase.

55

5.2 Categorizing audio activities

We could question how to consider the activity: maybe it can be sub-categorized into it being a
game, or an artwork. If we consider it to be a game, we could extract insights from the gaming
industry, which already has a lifetime of knowledge creating digital experiences. The industry tends
to first directly categorize based on it’s most prevalent gaming-type, such as puzzle, action,
adventure, etcetera. Afterwards, tag-based filtering/selection further filters down on criteria, which
could still be quite general and standard, which contains relevant attributes such as the properties
of in-game atmosphere, community, game-play, or any other type of custom yet relevant selection
criteria.

If we consider it to be an art form, research in the area of interactive artwork [38] gives us a list of
taxonomies of interactive systems, levels of interactions, and taxonomies of interactive art.
Additionally, more on the interactivity of the activity could be described by considering the
underlying model which is being applied [39].

Whichever approach we use, we will need to be able to relate the categorization/separation of
activities with it’s performance requirements: that is the only way we could tell whether the
activity could be performed with the aid of a web-application. The descriptions and taxonomies
are very useful for describing activities, however unfortunately they won’t offer a quantitative
specification on the performance requirements. It may imply certain functionality or requirements
to be more relevant, e.g. a co-authoring interactive application most probable requires a lower
response speed than a passive interactive application, however this doesn’t provide a concrete value
of the technical requirement.

5.3 Benchmarking audio activities for fitness based on it’s performance
requirements

I don’t see fit how any type of approach to categorization could provide a structural link to the
performance requirements of the application. For example, how could an abstract description of
an activity to be a puzzle game, guarantee anything about it’s performance requirement on
time-criticality? Even if we consider it from a more technical perspective, such as the type of
interaction model, it doesn’t provide much information on the scalability or computative
requirements. Even in consideration of the time-critically, which can be more directly related to the
interaction models, it cannot say exactly how accurate an application must be.

Therefore, instead of approaching the challenge by attempting to categorize audio activities and
dividing these categories on being implementable by a web-application. Instead, we approach the
challenge by setting up a benchmark, in such that any separate use-case can be checked/tested
against this benchmark whether a web-application could be provision it’s technical solution. The
benchmark consists of the seven points on performance requirements outlined in 5.1.

There may be a variety of other types of performance requirements, which we haven’t covered here.
Such as, the need for localization, and whether this localization has to be granular or fine. Or,
recording requirements in it’s sensitivity and/or audio-analyzing capabilities to, for instance,
recognize or even understand speech, tones, instruments, etcetera. Also, even if a certain activity

56

it’s requirements are met by the web-application as we have defined above, the activity may still
not to be provisionable by a web-application.

5.4 The fundamental qualities of microphone and speaker usage in
audio-related activities

Both Bluetooth and WiFi function by communicating sound signals. A Bluetooth transmitter and
receiver could be used for location estimation in the same manner as the speaker and microphone.
However, microphone and speaker usage offers us two fundamental qualities that both Bluetooth
and WiFi cannot offer.

The first fundamental quality, is the ability for the mobile device to sense the same audio signals
we are able to hear. It enables the device to directly extract knowledge from the audio source
without requiring an interface that translates intentions. A prominent use-case where this
fundamental quality becomes clear for human to device interaction, is speech recognition. Not only
we are able to hear what a person is saying, so is the computer. It shows this receival of audio
microphone and analysis of audio data is capable to understand complex behavior.

A typical example of signal perception from the the device would be audio queues. Phone ringing,
alarm clocks, notifications. Which brings us to another fundamental quality of the microphone
and speaker: the mobile device is capable to create audio signals in the same frequency domain as
humans are. Signal perception with signal creation allows us to create a bi-directional
communication channel, from user to device, from device to user, device to device, and user to user.
As mentioned in [38] it allows for a dialogue between human and computer.

All communication is hearable, it can create transparency and visibility on what is going on, and
thereby allow users and devices to anticipate on what other agents may, or may not, be doing in
their surrounding. This can strengthen autonomous, decentralized behavior. And in addition,
considering collaborative efforts, a dialogue could target more than just two agents and thereby
introduce more complex behavior.

57

6 Discussion

6.1 Background

In the background in 2.2 we mentioned how audio feedback could be provided. Additionally, the
web-browser specifications support requesting it as mentioned in 2.2.3.3. Yet, as the changes
occurring with the switch to audioWorkletNodes, it shows considering the web as an audio
application target is not mature.

The calibration efforts are all a workaround to circumvent the missing functionality of audio output
latency feedback, which was supposed to be implement by the AudioContext.outputLatency.
Then it would be able to perform like software as Shairport Sync. If both the web-audio API and
it’s implementations would be more complete the need for calibration would become unnecessary
for a few audio-activities, such as the default activity of sound-reinforcement.

6.2 Calibration

We mention in 3.1.2.1 a cross-correlation algorithm, however this implementation isn’t performant.
A far more performant algorithm transforms the signals into the frequency domain, in which
cross-correlation is applied more efficient. However, it requires to consider windowing, overlapping,
circular buffering, and the conversion itself, for which each could influence the cross-correlation
result. Even more improvements could be made by writing this computative-intensive part of the
application in web assembly. Implementing such improvements would cost time which wasn’t
available.

Due the long computation time of the algorithm we stick with, it influenced the design of the proof
of concept. Namely, if cross-correlating would be so cheap to apply that it could conveniently and
continuously analyze incoming audio streams, or even multiple audio streams, there wouldn’t be
need to write this much logic about ensuring simultaneous measuring. There wouldn’t even be a
need to initiate this process, the web-application would simply detect signals as it runs.

Additionally, we made a choice to stick with 4096 sample sized target signals due performance
speed. Yet, if the algorithm would be optimized, we might be able to increase this number
significantly. This therefore might as well greatly decrease the SNR on which the signal detection
can perform, and thus drastically improve the signal detection range.

We have done some testing on the behavior on signal detection in . The virtual tests we perform
for the signal detection algorithm, tests against background noise consisting of Gaussian noise.
However, Brownian noise would be more natural to test against, as higher frequencies are
attenuated more quickly in audio transmission. Due to the high spectral energy density of Gaussian
noise, it does remain a good comparison to function as an upper boundary on the SNR accuracy.

Additionally, the target signal has been Gaussian noise as well. Interesting would be, what the
behavior would be for signal detection accuracy if the target signal was a song. In particular it is
interesting, how well it could be able to pinpoint at what time of the song is being played back. If
this is possible, it would enable devices to calibrate without having to emit noise at all.

58

Input and output hardware sample rate conversion is serious challenge that requires research, in
order to figure out how to detect conversion takes place, and how to alter the target signal at
transmitter and receiver to be able to be detectable in case such conversion does take place.

The calibration performance model neglects variability in measure results and measure errors. This
variability and errors however may be non-trivial, and therefore incorrect measurements have to be
flagged, and over time measures should be repeated to ensure drifted latencies are corrected.

We haven’t touched upon the challenge on how to realize signal emission and detection in the
calibration process when there are a lot of devices. One challenge here, is to decide in what order
devices emit their signal, in such they won’t interfere with others. Another challenge is, how this
could be optimized in contrast to the proof of concept, which takes approximately 2 to 3 seconds
per measure. Particularly interesting with such long measure time, is the eligibility to perform
measurements concurrently, as this could heavily reduce the total calibration duration.

6.3 Proof of concept

The proof of concept is functional, yet very minimal. In particular, the incomplete support of the
Web Audio API for up-to-date browsers has been annoying during testing and experimenting.
Unit-testing could be done in a large degree, however integration-tests are problematic as it would
require emulation of physical space and the full audio path, including audio path latency. As we
mentioned already, there was incomplete support for different web-browsers. This made
experimenting challenging, and additionally it reduced the total amount of experiments.

The scope of this project is on audio synchronization within a web-application, therefore we
embrace all the limitations and restrictions this platform provides to us. The results are promising,
only the audio-context time-drift seems to be a barrier to succeed in synchronized audio playback.
Additionally, hardware sample rate conversion may be a serious challenge, however we managed to
set-up a test case in which this did not occur. Resolving this however, would require both detection
and resolution.

The most problematic in consideration of the signal detection is the hidden layer of
up-/down-sampling performed under the hood. However, more functionality could simplify
development extensively.

• There isn’t an API function provided to retrieve frequency information without converting to
dB - thus keeping the complex audio values.

• Nor functionality to adjust FFT parameter settings, such as overlapping percentage or
windowing function.

• Nor a convenient audio analyze part. There is a recorder API, which stores recording directly
as ’.ogg’. This may be convenient for straightforward recording and playback, yet for more
advanced functionality that requires sample-precise and/or direct audio sample analyzing
requires some juggling with inter-process communication - audio processor port
communication with audio worklet node.

• As we already mentioned, Web API specifications aren’t implement in every browser. The
outputLatency parameter is support by only a single web-browser, and it doesn’t even
guarantee or suggest an upper boundary on the precision.

59

• Older web browsers only support AudioScript-nodes, while newer ones expect
AudioWorklet-nodes, yet there are polyfills available to support both variants with a single
code implementation.

•

Platform-specific software solutions could provide substantially more freedom in deciding on the
implementation approach, as well provide far better accuracy. Therefore, native applications are
feasible to consider as a solution for mobile phones. And the drawback in a reduced plug-and-play,
for which the reduction is quite small anyway, could thereby be worth taking if there are large
performance gains. Playback participation by listening to the song and playing along would be an
interesting use case we haven’t explored. Arguably the signal detection becomes harder to do as
music is both repetitive and using natural signals which will make it harder to signal detect due
the decreased target signal uniqueness.

We have neglect security concerns. Which in this case seem to not be present for the proof of
concept besides a denial of service by flooding noise signal to prevent calibration. However, if it is
used for security-sensitive tasks, e.g. identification, important commands, etcetera, security will
become a more important aspect to consider in the development process.

6.4 Activities

The performance requirements that a web-application can adhere to require further description of
it’s concrete values. We could consider the requirements that can be met for different hardware.
For instance, the web-application would be more scalable if all participating devices communicate
on a 5G network rather than on a 3G network. Likewise, older phones and older web-browsers can
only support a reduced computative load. A typical approach, within the domain of
web-technologies, is considering concrete requirement values which target different percentages of
devices. Also, if we require a very high time-criticality, we would target e.g. 40 percent of
consumers that carry a high-end device.

7 Future research

7.1 Providing a solution under the current web-browser landscape

Thee proof of concept we have build is susceptible to all the shortcomings in performance and
available functionality of the web-browser running on the mobile phone. Yet, with more research it
may be able to resolve some problems to create a usable solution that can already be used in audio
applications. Therefore the first field for future research is in consideration of the proof of concept
itself.

7.1.1 Fixing the proof of concept

The first thing to do is solving the audio context time drift by stabilizing it. This is the only
barrier left to obtain proper calibration of the proof of concept under our test environment.

60

7.1.2 Improving stability of the proof of concept

Even though the proof of concept works, it lacks a lot of support, both for modern web-browsers
and older web-browsers. The error handling isn’t complete, which makes debugging much harder.
Furthermore, partly due to the dynamic nature of the web-application, there isn’t any testing
performed, which causes the debug process to take a long time and to be cumbersome.

Additionally, there is the sample rate conversion challenge we have talked about in 3.1.8.2. And
we have neglect the presence of time drifting over time, which might be cause performance issues
over time.

There isn’t any differentiation between target signals, which may become problematic both from a
scalability perspective - it hinders concurrent signal detection. As well from a security perspective,
it is easy to interfere with the calibration process. This requires more research to find a proper
technique.

7.1.3 Providing modular integration to other software

Ideally, the concepts and techniques developed could be applied and integrated to other platforms,
or allow them to extend support for this calibration technique. If it becomes an available module
to integrate in other web-applications, more functionality could be build that relies on calibrated
audio output.

Additionally, if better specifications are available, it as well could be integrated in native
applications, or to embedded devices, which may improve further on the possibilities with spatially
distributed audio activities. This would for instance allow embedded devices to participate,
without being required to own the full software stack to run a web-browser.

7.2 Considering web-browser technology

The AudioContext outputLatency variable is currently defined by the Web Audio API standard
as a static value, without any additional information or guarantee on it’s accuracy. Besides,
currently it is not widely implemented. A step worthwhile to research into is whether more
implementations for this function can be build, how accuracy could be guaranteed with and
without Bluetooth output, and how the Web Audio API standard could be adjusted in order to
provide better support and assure performance.

61

8 Conclusion

Multiple hardware and software solutions have been engineered to tackle the challenge of spatially
distributed audio playback. However, the solutions provided for mobile devices is very limiting, and
doesn’t guarantee automatic calibration once audio output latencies are large. Which is
inconvenient, since both hardware such as Bluetooth-speakers, and software such as Android,
introduce non-trivial audio output latency.

This thesis has explored how a spatially distributed audio synchronization could be engineered for
the mobile phone, and addition implemented it in a web-application. A proof of concept is build,
which succeeds in performing automatic audio output calibration of two devices, and significantly
improves the playback in comparison to uncalibrated playback. However, the proof of concept did
not succeed to stay within an audio playback time offset less than 10 milliseconds. This inaccuracy
can be addressed to the variable latency offset between the system time and audio context time,
what requires additional research to understand on how this variability can occur, and how to
resolve it.

The integrated microphone and speaker of the mobile phone provide fundamental qualities that
show potential to provision interactive, collaborative, co-located, spatially distributed audio-related
activities. However, web-applications, mobile phones, and Bluetooth integration, all lack certain
functionality or performance specifications, to create low-latency, yet highly accurate, audio-related
interactivity. And therefore further development of functionality is required to obtain stable
performance for the vast amount of web-browsers and available audio consumer hardware.

62

References

[1] Best practices in network audio. Technical report, 2009.

[2] Cisco - smb university - networking fundamentals. https://www.cisco.com/c/dam/global/
fi_fi/assets/docs/SMB_University_120307_Networking_Fundamentals.pdf.

[3] Ipcisco - lessons - osi referance model.
https://ipcisco.com/lesson/osi-referance-model/.

[4] Wikipedia - osi model presentation layer.
https://en.wikipedia.org/wiki/Presentation_layer.

[5] The linux information project - presentation layer definition.
http://www.linfo.org/presentation_layer.html.

[6] Ietf - rfc 3439 - some internet architectural guidelines and philosophy.
https://tools.ietf.org/html/rfc3439#section-3.

[7] K. Gross. Q-lan - the architecture and network redundancy. Technical report, 2009.

[8] Volumio. https://volumio.github.io/docs/FAQs/General.html.

[9] Shairport-sync. https://github.com/mikebrady/shairport-sync.

[10] Ampme - home page. https://www.ampme.com/.

[11] Soundseeder - home page. https://soundseeder.com/.

[12] Soundseeder - frequently asked questions. https://soundseeder.com/.

[13] Ampme - faq. https://www.ampme.com/faq?locale=en_US.

[14] Soundseeder - help, syncing the speaker playback.
https://soundseeder.com/help/sync-playback/.

[15] Ampme - google play store review sync problem.
https://play.google.com/store/apps/details?id=com.amp.android.

[16] Ampme - google play store review sync problem, second.
https://play.google.com/store/apps/details?id=com.amp.android&reviewId=gp%

3AAOqpTOGlSNbjXCSmfPH5hQsKapmPrCKyYrgtJyKWLYn3-DXGjy9Awh4uXWGq93AeWmJQE9bgBTlaJ7rYneg2wQ.

[17] Ampme - google play store review sync problem, third.
https://play.google.com/store/apps/details?id=com.amp.android&reviewId=gp%

3AAOqpTOGlSNbjXCSmfPH5hQsKapmPrCKyYrgtJyKWLYn3-DXGjy9Awh4uXWGq93AeWmJQE9bgBTlaJ7rYneg2wQ.

[18] Superpowered - mobile phone audio round-trip measurement results.
https://superpowered.com/latency.

63

https://www.cisco.com/c/dam/global/fi_fi/assets/docs/SMB_University_120307_Networking_Fundamentals.pdf
https://www.cisco.com/c/dam/global/fi_fi/assets/docs/SMB_University_120307_Networking_Fundamentals.pdf
https://ipcisco.com/lesson/osi-referance-model/
https://en.wikipedia.org/wiki/Presentation_layer
http://www.linfo.org/presentation_layer.html
https://tools.ietf.org/html/rfc3439#section-3
https://volumio.github.io/docs/FAQs/General.html
https://github.com/mikebrady/shairport-sync
https://www.ampme.com/
https://soundseeder.com/
https://soundseeder.com/
https://www.ampme.com/faq?locale=en_US
https://soundseeder.com/help/sync-playback/
https://play.google.com/store/apps/details?id=com.amp.android
https://play.google.com/store/apps/details?id=com.amp.android&reviewId=gp%3AAOqpTOGlSNbjXCSmfPH5hQsKapmPrCKyYrgtJyKWLYn3-DXGjy9Awh4uXWGq93AeWmJQE9bgBTlaJ7rYneg2wQ
https://play.google.com/store/apps/details?id=com.amp.android&reviewId=gp%3AAOqpTOGlSNbjXCSmfPH5hQsKapmPrCKyYrgtJyKWLYn3-DXGjy9Awh4uXWGq93AeWmJQE9bgBTlaJ7rYneg2wQ
https://play.google.com/store/apps/details?id=com.amp.android&reviewId=gp%3AAOqpTOGlSNbjXCSmfPH5hQsKapmPrCKyYrgtJyKWLYn3-DXGjy9Awh4uXWGq93AeWmJQE9bgBTlaJ7rYneg2wQ
https://play.google.com/store/apps/details?id=com.amp.android&reviewId=gp%3AAOqpTOGlSNbjXCSmfPH5hQsKapmPrCKyYrgtJyKWLYn3-DXGjy9Awh4uXWGq93AeWmJQE9bgBTlaJ7rYneg2wQ
https://superpowered.com/latency

[19] Soundguys - android bluetooth latency.
https://www.soundguys.com/android-bluetooth-latency-22732/.

[20] Superpowered - the android audio path latency explained.
https://superpowered.com/androidaudiopathlatency.

[21] Android developer - aaudio.
https://developer.android.com/ndk/guides/audio/aaudio/aaudio.

[22] Bluetooth - audio/video distribution transport protocol specification. Technical report, 2012.

[23] Android developers - stable ndk api’s - audio.
https://developer.android.com/ndk/guides/stable_apis#audio.

[24] Android developers - ndk audio - aaudiostream - getframeswritten. https://developer.
android.com/ndk/reference/group/audio#aaudiostream_getframeswritten.

[25] W3 web audio api standard. https://www.w3.org/TR/2018/CR-webaudio-20180918.

[26] Whatwg - media - current playback position.
https://html.spec.whatwg.org/multipage/media.html#current-playback-position.

[27] Mdn - audiocontext outputlatency.
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/outputLatency.

[28] Android developers - audio round-trip measuring.
https://source.android.com/devices/audio/latency/measure#measuringOutput.

[29] Jun Liu, Hongbin Li, and Braham Himed. On the performance of the cross-correlation
detector for passive radar applications. Signal Processing, 113:32 – 37, 2015.

[30] R. (Rene) Carmona. Practical time-frequency analysis : Gabor and wavelet transforms with an
implementation in S. Wavelet analysis and its applications ; Volume 9. 1998.

[31] J Palmer, S Palumbo, A Summers, D Merrett, S Searle, and S Howard. An overview of an
illuminator of opportunity passive radar research project and its signal processing research
directions. Digital Signal Processing, 21(5):593–599, 2011.

[32] Takuya Yoshioka, Zhuo Chen, Dimitrios Dimitriadis, William Hinthorn, Xuedong Huang,
Andreas Stolcke, and Michael Zeng. Meeting transcription using virtual microphone arrays.
Technical Report MSR-TR-2019-11, Microsoft, July 2019. Revised version.

[33] M.N. Ayyaz M. Farooq-i Azam. Location and position estimation in wireless sensor networks.
Master’s thesis, 2017.

[34] Web performance api - performance.now().
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now.

[35] Github - audioworkletnode polyfill that uses a web worker.
https://github.com/jariseon/audioworklet-polyfill.

64

https://www.soundguys.com/android-bluetooth-latency-22732/
https://superpowered.com/androidaudiopathlatency
https://developer.android.com/ndk/guides/audio/aaudio/aaudio
https://developer.android.com/ndk/guides/stable_apis#audio
https://developer.android.com/ndk/reference/group/audio#aaudiostream_getframeswritten
https://developer.android.com/ndk/reference/group/audio#aaudiostream_getframeswritten
https://www.w3.org/TR/2018/CR-webaudio-20180918
https://html.spec.whatwg.org/multipage/media.html#current-playback-position
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/outputLatency
https://source.android.com/devices/audio/latency/measure#measuringOutput
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://github.com/jariseon/audioworklet-polyfill

[36] Github - audioworkletnode polyfill that does not use a web worker.
https://github.com/GoogleChromeLabs/audioworklet-polyfill.

[37] Rfc 5905 - ntp specfications. https://www.ietf.org/rfc/rfc5905.txt.

[38] Hanna K. Schraffenberger and Edwin van der Heide. Audience-artwork interaction.
International Journal of Arts and Technology, 8:91 – 114, 2015.

[39] Danyi Liu and Edwin van der Heide. Interaction models for real-time participatory musical
performance usingmobile devices. International Computer Music Association, 2017:305 – 310,
2017.

[99]

65

https://github.com/GoogleChromeLabs/audioworklet-polyfill
https://www.ietf.org/rfc/rfc5905.txt

	Introduction
	Overview

	Background
	Sound reinforcement systems
	Wired audio systems
	Audio network systems
	Consumer-oriented audio reinforcement operating systems
	Mobile phone audio reinforcement applications
	Recapping sound reinforcement systems

	Platform functionality and performance
	Output latency
	The audio path
	Output latency information feedback

	Calibration
	Signal detection
	The Larsen test
	Cross-correlation
	Testing effectivity and deriving a test validation technique
	Virtual signal detection test case
	Signal detection result validation
	Signal detection speed
	Real signal detection test case
	Error sources

	Calibration performance model
	Model variables
	Model measurement tests
	Decomposing test results into model variables
	Deducing the distance between two devices
	Deducing the calibration performance
	Optimizing the calibration performance
	Bonus: No alternative approach with given measures

	Calibration topology
	Neglecting distance latency
	Considering distance latency

	Location estimation
	Location estimation specifications
	Solution directions
	Multi-node TDoA

	Proof of concept
	Time
	Recording
	User media stream
	Audio context
	Audio node
	Processing node

	Playing
	Calibrating
	Server time offset
	Target signal
	Deducing latency
	Additional implementation details

	Experiments
	Results
	Comparing synchronization performance of calibrated- against uncalibrated audio scheduling
	Variance in click offset differences
	Audio context time drift
	Neglecting context drift

	Provisioning audio-related activities
	Performance requirements for activities
	Time-criticality
	Scalability
	Resource intensity
	Influence of the the properties

	Categorizing audio activities
	Benchmarking audio activities for fitness based on it's performance requirements
	The fundamental qualities of microphone and speaker usage in audio-related activities

	Discussion
	Background
	Calibration
	Proof of concept
	Activities

	Future research
	Providing a solution under the current web-browser landscape
	Fixing the proof of concept
	Improving stability of the proof of concept
	Providing modular integration to other software

	Considering web-browser technology

	Conclusion
	References

