
Master Computer Science

Learning Context for Weakly-Supervised Action Detection
Using Graph Convolutional Networks

Name: Michail Tsiaousis
Student ID: s2082896

Date: [07/07/2020]

Specialisation: Data Science

1st supervisor: Peter van der Putten (LIACS)
2nd supervisor: Gertjan Burghouts (TNO)

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

This paper concerns the task of detecting and classifying human actions in video. The dom-
inant paradigm for action detection is to learn spatio-temporal features using 2D or 3D Con-
volutional Networks. We argue that several actions are characterized by their context, such as
relevant objects and actors present in the video. To this end, we introduce an architecture based
on self-attention and Graph Convolutional Networks in order to model contextual cues, such as
human-human and human-object interactions, so as to improve the classification of human actions
in video for the task of action detection. We are interested in achieving this in a weakly-supervised
setting i.e. using as less annotated data as possible in terms of action bounding box annotations.
Furthermore, we investigate the ability of our model to explain its predictions by visualizing the
learned contextual cues, encoded in the adjacency matrix, as an attention map. We show that our
model is able to model relations between the actor and relevant context, even for actions unseen
during training. Furthermore, we introduce an evaluation metric, based on recall, to quantita-
tively evaluate how well the attention highlights the important context. Our model relies on a
3D convolutional single (RGB) stream architecture, and does not require expensive optical flow
computation. We evaluate our models on the challenging DALY dataset, which consists of human-
object interaction actions and it is suitable for weakly-supervised action detection. Experimental
results show that our contextualized approach outperforms a baseline action detection approach
by more than 2 points in Video-mAP.

1

Acknowledgements

I would like to thank my university supervisor, Peter van der Putten, and TNO supervisors,
Gertjan Burghouts and Fieke Hillerström, for their guidance and support during my thesis.

I would like to thank my beloved friends in Greece and Leiden. You have supported me during
this journey more than you can imagine.

I would like to thank my family for their continuous, unconditional support.

2

1 Introduction

Human action recognition is an important part of video understanding, with potential applications
in robotics, autonomous driving, surveillance, video retrieval and healthcare. Given a video, spatio-
temporal action detection, also known as spatio-temporal action localization, aims to localize all
human actions in space and time, and classify the actions being performed. With the success of
Convolutional Neural Networks (CNNs) in various computer vision tasks [16,19,25,27], the dominant
paradigm is to extend CNN-based object detectors [15, 16, 28, 36] to learn appearance and motion
representations in order to jointly localize and classify actions in video. Per-frame detections are
linked throughout the video using tracking-by-detection [54] or tube-linking algorithms [5, 17, 39, 43]
to form action tracks, or action tubes [17]: a sequence of bounding boxes connected in time that
enclose the action.

In contrast to object detection, action detection requires learning of both appearance and motion
features. This is achieved using two-stream 2D CNNs [42] operating on RGB and optical flow inputs,
Long-Short Term Memory (LSTMs) networks [3, 21, 41] or 3D CNNs [6, 46, 57] and their two stream-
variants, which perform convolutions in space and time. Spatio-temporal feature learning is essential
to accurately localize and classify actions. Nevertheless, several actions share similar characteristics
in terms of appearance and motion, which makes them difficult to differentiate. For example, consider
the person performing the ”Taking Photos” action in Figure 1. Learning only spatio-temporal features
might be inadequate to differentiate this action from a similar one, such as ”Phoning”, since both share
similar spatio-temporal characteristics (e.g similar posture, motion around the head). As humans, we
make use of context to put actions and objects in perspective, which can be an important cue to
improve action recognition. In Figure 1, context can refer to actor-object interactions; a person
holding a camera is more likely to perform the action ”Taking Photos” than ”Phoning”, and vice
versa. Such interactions are typically encoded only implicitly by stacking several convolutional layers
to capture a wider receptive field. In contrast, we are interested in directly modeling actor-actor and
actor-object interactions.

In this paper, we introduce an approach to learn contextual cues, such as actor-actor and actor-
object interactions, so as to aid action classification for the task of action detection. Our model,
inspired by recent work on graph neural networks [26, 50], learns context by performing relational
reasoning on a graph structure using Graph Convolutional Networks (GCN) [26]. The graph consists
of context nodes and an actor node. The adjacency matrix, which encodes how relevant or important
each context node is to the actor, is learned during training via gradient descent. Message passing
in the graph in the form of weighted averaging of context node features adds context to the actor
node. By adding relevant context to the actor, we expect to aid classification of the action being
performed. A high-level overview is illustrated in Figure 1. Given a detected actor in a short video
clip, we extract spatio-temporal features from the whole clip up to an intermediate convolutional
layer. Every 1×1 spatio-temporal location of the output feature map corresponds to a context node
in the graph. Features of the detected actor are converted to a fixed feature representation using
RoI pooling [15] and spatio-temporal (3D) average pooling. Accordingly, the actor is represented by
a single (gray) node in the graph. The adjacency matrix consists of relation values, indicating how
relevant or important each context node feature is to the actor. Context is added to the actor via
weighted averaging of context node features, weighted by their respective relation values.

We are interested in an approach to learn contextual cues using as less annotated data as possible.
Action detection datasets such as J-HMDB [23] and AVA [18] lack object annotations, actor-actor
and actor-object interaction labels. Therefore, recent works in action detection [13, 45, 47, 60] learn
contextual cues in a weakly-supervised manner, requiring only actor bounding box annotations. How-
ever, they rely on full actor supervision during training, with annotations at every frame for J-HMDB,
and at 1Hz for AVA which results in 1.5 million bounding boxes due to its immense size. Extensive
video annotation is expensive, error-prone, and time consuming [30]. In this work, we are interested
in learning context for the task of weakly-supervised action detection. Weakly-supervised action de-
tection concerns the task of recognizing and detecting actions when a handful of annotated frames are

3

available throughout the video. Following the setting of sparse spatial supervision [55], we require up
to five actor bounding box annotations throughout the action instance. Annotation takes place per
actor, rather than per frame, that is, for multiple, concurrent actions, only one actor is annotated at
a given frame. To this end, we use the Daily Action Localization in Youtube (DALY) [55] dataset
annotated based on sparse spatial supervision. DALY consists of 10 action classes of human-object
interactions (e.g. Drinking, Phoning, Brushing Teeth), which makes it a suitable testbed to model
context for the task of weakly-supervised action detection.

In summary, we present an approach using Graph Convolutional Networks [26] to learn contextual
cues, such as actor-actor and actor-object interactions, to aid action classification for the task of action
detection. This is realized using weak supervision with respect to actor bounding box annotations
and action labels. Our contributions are as follows:

1. We introduce an architecture employing Graph Convolutional Networks in order to model con-
textual cues so as to improve classification of human actions in videos.

2. Our model aids explainability by visualizing the graph’s adjacency matrix in the form of attention
maps, which highlight the learned context.

3. We achieve 1) and 2) when annotated data are sparse throughout the video, i.e. using up to 5
actor bounding box annotations per action instance.

4. We introduce an intuitive metric based on recall of retrieved objects in order to evaluate how
well the model highlights the important context, such as objects relevant to the action.

5. We evaluate our model using the aforementioned metric on a zero-shot setting, namely, on
actions and context unseen during training.

The paper is structured as follows. In Section 2, we present related work on action recognition,
fully-supervised and weakly-supervised action detection, along with approaches on relational reason-
ing for action recognition. In Section 3, we present the baseline model and our approach on learning
context by performing reasoning on a graph structure using Graph Convolutional Networks. Ad-
ditionally, we discuss training of these models using sparse spatial supervision [55] and we provide
implementation details. Section 4 presents the experimental setup, experiments and results. In Sec-
tion 5, we perform a quantitative and qualitative analysis of our GCN model. In Section 6, we discuss
similarities and differences of our method to related approaches, we reflect on the obtained results and
we outline limitations of our approach and directions for future work. Finally, Section 7 concludes the
paper.

2 Related Work

Our aim is to develop a model that reasons with respect to context so as to improve action classification
for the task of action detection. Nevertheless, such a task usually requires a large amount of annotated
data in the form of bounding boxes and class labels. In this paper, we are interested in modeling
context when a handful of annotated frames are available throughout the video. In this section, we
discuss related work on action recognition, fully-supervised and weakly-supervised action detection.
Finally, we present related approaches on relational reasoning for action understanding.

2.1 Action Recognition

Action recognition aims to classify the action taking place in a video. Early approaches on action
recognition employ two-stream architectures [42] operating at the frame level. The first stream receives
RGB input to model appearance, and the second stream receives optical flow to model temporal
information. Recent approaches operate on short video clips by directly performing spatio-temporal

4

Figure 1: A high-level overview of our approach. Given a short input clip, features are extracted
up to a convolutional layer. A graph is constructed on the resulting feature map with an actor
(grey) node representing the detected actor and context nodes corresponding to every 1×1 spatio-
temporal location. Our model performs relational reasoning on the graph to learn the relevant context
for recognizing the action and accumulates contextual information to the actor node using graph
convolutions.

(3D) convolutions [6, 46, 57]. The architecture is either one-stream (RGB), or two-stream (RGB and
optical flow).

While action recognition considers the classification task, action detection carries out both classi-
fication and detection of the action(s) in a video. Next, we present related work on fully-supervised
and weakly-supervised action detection.

2.2 Fully-Supervised Action Detection

Action detection is usually addressed in a fully-supervised setup. In this setting, an action detector
is trained on action bounding box annotations and class labels, provided at every frame. Based on
the two-stream architecture [42] for action recognition, early approaches [17, 35, 39, 43, 54, 59] rely on
object detectors [15, 16, 28, 36] operating on RGB and optical flow inputs. Action classification and
bounding box regression is performed at the frame level by fusing appearance and motion features
generated by the the two streams. In [61], model complexity of two-stream networks is reduced by
embedding RGB and optical flow representations into a single stream. Instead of operating at the
frame level, Kalogeiton et al. [24] captures temporal context by stacking features extracted from a
sequence of frames. Hou et al. [22] employ C3D [46] as a backbone network to model spatio-temporal
features with 3D convolutions. To this end, they extend Region of Interest (RoI) pooling [15] and the
Region Proposal Network (RPN) of Faster R-CNN [36] to operate on 3D volumes. Saha et al. [38]
regresses and classifies micro-tubes from 3D region proposals spanning two successive frames. Their
method is able to model temporal information without the use of optical flow. Finally, Gu et al. [18]
extend Faster R-CNN [36] to operate on short video clips by incorporating the 3D CNN, I3D [6], as
a backbone network for feature extraction.

2.3 Weakly-Supervised Action Detection

Deep learning classification and detection models require a large amount of annotated data. In fully-
supervised action detection, annotation is in the form of action bounding boxes and corresponding class
labels for every video frame. Clearly, annotation is expensive, time consuming and error prone [30].

5

Weakly-supervised action detection is used to train models when annotations are not provided at
every frame. For action detection, weakly-annotated data might consist of a few annotated frames
with bounding boxes and their class labels, class labels at the video level, or even binary class labels
indicating the presence or absence of a class.

Sivan and Xiang [44] approach weakly-supervised action detection using Multiple Instance Learning
(MIL). Their approach requires binary labels at the video level, indicating the presence of an action.
In [12], action class labels at the video level are used as supervisory signal. The authors rely on a
pre-trained detector and tracker to localize actors, and develop a novel actor-attention mechanism for
action classification. Mettes et al. [30] propose action annotation using points, instead of boxes. A MIL
algorithm is presented to select positive and negative proposals based on annotated points to train an
SVM classifier. In a following work [29], the authors extend point-supervision to pseudo-annotations
based on visual cues such as person detections and motion, among others. Their method assumes
action labels at the video level. Chéron et al. [10] present a unified framework for action detection by
incorporating varying levels of supervision in the form of labels at the video level, actions’ temporal
bounds, a few bounding boxes, etc.

Weinzaepfel et al. [55] introduce DALY and the setting of sparse spatial supervision, in which, up
to five bounding boxes are available per action instance. Actors are detected using Faster R-CNN [36]
and tracked throughout the video using a tracking-by-detection approach [54]. Tubes are classified
using Fast R-CNN [15] and Improved Dense Trajectories (iDT) [51]. Chesneau et al. [11] produce
full-body actor tubes inferred from detected body parts, even when the actor is occluded or part of
the actor is not included in the frame.

2.4 Visual Relational Reasoning

Relational reasoning refers to reasoning with respect to relations between abstract entities, and per-
forming inference for the task at hand based on these relations. There has been recent research on
augmenting deep learning models with the ability to perform relational reasoning. In the following, we
present approaches on relational reasoning for action understanding based on the relation network [40],
attention mechanisms [9, 32, 34,49] and Graph Convolutional Networks [26].

Santoro et al. [40] proposed the relation network which models relations between pairs of feature
map pixels exhibiting state-of-the-art performance on visual question answering. This idea has been
extended for action recognition to model object relations [4] and temporal dependencies [62] in suc-
cessive video frames, and for action detection [45] so as to model relations between the actor and its
surrounding scene, the latter representing the context.

The self-attention mechanism of the Transformer architecture [49] can also be seen as a form
of relational reasoning, where an output is formed as a weighted sum of inputs, the weights being
the attention or relation values. With regard to visual attention for action recognition, Girdhar et
al. [14] present a novel attentional pooling layer, and non-local neural networks [52] compute the
output of a feature map pixel as a weighted sum of all input pixels. For action detection, attention
maps conditioned to each actor [47] provide contextual cues to improve action classification. Finally,
Girdhar et al. [13] extend the Transformer architecture [49] for action detection.

When data are represented as graphs, relational reasoning with respect to a graph node corre-
sponds to aggregating information from its local neighbors, with edge weights representing relation
values. In this work, we apply Graph Convolutional Networks (GCN) [26], initially proposed for node
classification on graphs. Recently, GCN have been used for visual relational reasoning for the tasks
of action recognition [8,53], group activity recognition [56], and action detection [60]. In these works,
nodes represent detected actors and objects [53,60], actors performing group activities [56], and con-
volutional features mapped to a lower dimensional space [8].

6

Baseline Model

256-d
Context
Features

Mixed 4f

1024-d
Actor

Features

Context
Location

Embedding

Actor Location
Embedding

RoI
Pooling

Dot
Product

Weighted
Average

SumAdjacency Matrix
(Relation Values)

I3D Tail

Dropout

Dropout

Dropout

Concat

Concat

Context Features

Detected actor

I3D

RoI
Pooling

I3D Tail 1024-d
Actor

Features

Pooled
Actor Features

(C + 1)
Classes

Context node
Actor node

Input Clip

Mixed 4f

Dropout

256-d
Actor

Features

...... ...

Updated
Actor Node

Adding Context to Actor
Using Graph Convolutions

Learning Relations
Between

Actor and Context

Graph of
Actor and Context Nodes

Learning Relations (Dot Product)
Graph Convolutions (Message Passing)

Updated
Actor Features

Graph 1

ConcatGraph 2

Graph K

Single Graph/Head - Architecture

Updated
Actor Features

(C + 1)
Classes

Single Graph/Head - Graph Representation

Multiple Graphs/Heads - Architecture
GCN Model

Figure 2: Method overview. The first branch depicts the baseline model. The second branch illustrates
the proposed architecture based on Graph Convolutional Networks. The middle part of the GCN
model shows the model architecture for a single graph, which is shown as a graph representation in
the lower part. The top part of the GCN model illustrates the construction of multiple graphs in
order to learn different types of context (Section 3.3.3).

3 Methods

We propose an approach to learn contextual cues, such as actor-actor and actor-object interactions,
by performing relational reasoning between the actor and the context on a graph structure using
Graph Convolutional Networks (GCN) [26]. These contextual cues are added to the actor feature
representation so as to improve action classification, as we expect them to be discriminative for the
action being performed. We compare the GCN model to a baseline model that uses no context, and
classifies the action using the feature representation corresponding to the actor bounding box.

An overview of the baseline model and our proposed method is presented in Section 3.1, and they
are described in detail in Section 3.2 and Section 3.3, respectively.

3.1 Method Overview

An overview of our baseline action detection model is shown in the first branch of Figure 2. The
input is a short video clip with at least one actor performing an action. A 3D convolutional network
extracts spatio-temporal features for the input clip, up to a convolutional layer. Actor features, i.e.
features for each detected actor, are extracted by RoI pooling [15] on the resulting feature map, and
they are passed though subsequent 3D convolutional layers and a spatio-temporal average pooling

7

layer. Finally, a linear layer outputs classification scores for C action classes and a background class.
We are interested in developing a model with the ability to reason with respect to contextual

cues, such as interactions between different actors and objects. We expect such contextual cues to
improve action classification, as they can be discriminative for the actions performed. The idea is to
learn which parts of the feature map (context) are important to correctly recognize the action, and
accumulate these contextual features to the actor features resulting in updated actor features.

To this end, we utilize GCN to model relations between the actor and the context. An overview
of our method is illustrated in the second branch of Figure 2. The middle part of the second branch
illustrates the model architecture for a single graph (see Section 3.3.3). The lower part provides
a high level representation of the architecture using a graph structure. Similar to the baseline, a
3D convolutional network extracts features for the input clip. As the resulting feature map already
encodes contextual information from the whole scene, we treat every 1×1 spatio-temporal location of
the feature map as context. Actor features are extracted by RoI Pooling [15], and they are passed
though subsequent 3D convolutional layers and a spatio-temporal average pooling layer. We construct
a graph consisting of context nodes and an actor node, with connections drawn from every context
node to the actor node. In order to accumulate context to the actor, we calculate a weighted average
of the context features, weighted by their respective graph edge values. The original actor features
are included in the graph by imposing an identity connection to the actor node. Following the self-
attention mechanism [49, 50], the adjacency matrix, i.e. the graph edge values, is learned during
training using a dot-product operation between context features and actor features. Accumulating
context to the actor results in updated actor features, which are then used for classification of C action
classes and a background class.

3.2 Baseline

Our baseline model consists of a 3D convolutional network augmented with a RoI pooling layer [15]
to extract features for each actor for action classification. We use I3D [6] as a backbone network for
feature extraction, which has exhibited impressive results on action recognition. The input to I3D is
a sequence of frames of size C × T ×H ×W , where C denotes the number of channels, and T is the
number of input frames. H and W represent the height and width of the input sequence, respectively.

A sequence of T frames is passed through I3D which extracts features up to Mixed 4f layer. The
size of the output feature map is of size D′ × T ′ ×H ′ ×W ′, where D′ denotes the number of feature
channels, T ′ = T

8 , H
′ = H

16 , and W ′ = W
16 . For each tube, a RoI pooling layer extracts a fixed feature

representation of size D′×T ′×7×7, encoding the feature representation of each actor. RoI pooling is
performed independently on each of the T ′ temporal feature map dimensions. The actor features are
then passed through I3D tail consisted of 3D convolutional layers Mixed 5b and Mixed 5c. Spatio-
temporal (3D) average pooling is applied to the output, and the resulting representation is passed
through a linear layer that outputs scores for C action classes and a background class.

3.3 Graph Convolutional Networks

In this section, we present our approach on learning contextual cues using GCN. In Section 3.3.1, we
describe the graph construction, we define the nodes and edges of the graph, and present the mecha-
nism of learning the adjacency matrix, i.e. the relations between the actor and the context. Section
3.3.2 presents the convolution operation on the graph structure, that is, information propagation on
the graph and context accumulation to the actor. In Section 3.3.3, we extend our approach to multi-
ple graphs in order to capture different types of context. In Section 3.3.4, we model spatial relations
between the actor and the context by adding location information in the graph, a property which is
lost when moving from regular convolutions to convolutions on a graph structure. In Section 3.4, we
describe model training in a weakly-supervised setting using sparse spatial supervision [55]. Finally,
Section 3.5 provides implementation details.

8

3.3.1 Graph Construction

Our graph consists of two types of nodes: context nodes and actor nodes. Context node features are
obtained from the output feature map of Mixed 4f layer, and composes the set, f ′ = {f ′

1, f
′
2, . . . , f

′
M},

where f ′
j ∈ R

D′×1×1×1, M = T ′H ′W ′, and j indexes the 1 × 1 × 1 spatio-temporal location of the
feature map. Accordingly, every D′-dimensional feature of the output feature map acts as a context
node in the graph. Actor nodes is the set, a′ = {a′1, a′2, . . . , a′N}, a′i ∈ R

D′′×1, where, N , is the number
of detected actors in the input clip. The set of actor features, a′, is obtained by RoI pooling [15] on the
output of Mixed 4f, passing the pooled features through I3D tail, and then applying spatio-temporal
(3D) average pooling.

Learning of relations between actor and context is shown in orange arrows in Figure 2. Relation
or attention values are computed using a dot-product operation between each pair of actor features
and context features. Prior to dot-product computation, a learnable linear transformation projects
actor features and context features, respectively, into a lower dimensional space. During training, the
model learns appropriate feature projections for the actor and the context, so that their dot-product
outputs meaningful relations. Formally, ai = Wθa

′
i + bθ and fj = Wφf

′
j + bφ, are transformations

for the actor features and context features, respectively, with Wθ ∈ R
D′′×D,Wφ ∈ R

D′×D; bθ,bφ ∈
R

D×1; D < D′, D′′. We denote the set of transformed context features by f = {f1, f2, . . . , fM},
fj ∈ R

D×1×1×1 and transformed actor features by a = {a1, a2, . . . , aN}, ai ∈ R
D×1. In matrix form,

F ∈ R
M×D for context features, and A ∈ R

N×D for actor features.
The graph is represented by an adjacency matrix, G ∈ R

N×M , where gij ∈ G denotes the relation
or attention value, indicating the importance of context feature, fj , to actor feature, ai. Consequently,
G is a directed graph connecting every context node to every actor node. The dot-product is given
by

eij = aTi · fj (1)

and relation values are obtained by applying a softmax normalization across context features

gij =
exp(eij)

∑

k exp(eik)
(2)

Softmax normalization stabilizes training by transforming the unnormalized relation values, eij , i =
1, . . . , N, j = 1, . . . ,M , into a discrete probability distribution across context features, i.e. 0 ≤ gij ≤
1,

∑

j gij = 1.

3.3.2 Convolutions on Graphs

Having defined the graph structure, we perform reasoning on the graph using GCN. The output of
the lth layer can be expressed as

A(l+1) = σ
(

Z(l)W(l)
)

= σ
((

G(l)F(l) +A(l)
)

W(l)
)

(3)

where Z(l) = G(l)F(l) +A(l), Z(l) ∈ R
N×D, G(l) ∈ R

N×M is the adjacency matrix, W(l) ∈ R
D×D is

the weight matrix of a learnable linear transformation, and σ(·) is a non-linear activation function,
such as ReLU. Message passing in the lth layer is performed by Z(l) = G(l)F(l) +A(l), and is shown
in blue arrows in Figure 2. Namely, weighted average of F(l) with the relation values, G(l), produces
weighted context features. Adding the actor features, A(l), to the resulting representation imposes
identity links for all actor nodes in the graph. Z(l) is then passed through linear transformation,
W(l), and non-linear activation, σ(·), that outputs updated actor features, A(l+1). The updated actor
features can serve as an input to the next GCN layer, l + 1.

9

3.3.3 Building Multiple Graphs

A single graph may capture a single type of relation between the actor and the context. Building
multiple graphs is equivalent to performing multi-head attention [49], which has shown to be effective
in modeling different types of relations. To this end, we employ multi-head attention similar to
[13, 49, 50, 53, 56] by constructing multiple graphs at a given layer and merging their outputs. This
process is shown in the top part of the GCN model in Figure 2. Formally, we extend Equation 3 to
operate on multiple graphs as follows

A(l+1) =

Kn

k=1

σ
(

Z(k,l)W(k,l)
)

=

Kn

k=1

σ
((

G(k,l)F(k,l) +A(k,l)
)

W(k,l)
)

(4)

where K is the number of graphs in the lth layer, and ‖ denotes concatenation. Weight matrices

and bias terms for dot-product computation, W
(k,l)
θ ,b

(k,l)
θ ,W

(k,l)
φ ,b

(k,l)
φ , and layer weight matrices,

W(k,l), are independent across multiple graphs, i.e. their parameters are not shared.

3.3.4 Location Embedding

Location information, such as the position of an actor with respect to other actors and objects, is
important for modeling contextual cues. As an example, the ”Drinking” action consists of object
manipulation around the head, and actors or objects located far away from the actor of interest
provide, possibly, less important context.

Location information encoded indirectly by regular convolutions is lost when represented as a
graph structure. Note that the colored context features in Figure 2, i.e. the context nodes of the
graph, do not posses any specific order or position to associate them with their spatial location in the
output feature map.

We incorporate location information to both context features and actor features. For context
features, we concatenate coordinates (x, y) along the channel dimension of the feature map, prior to
applying Wφ. Coordinates indicate the spatial location of each 1×1 cell on the feature map, and
they are normalized between [−1, 1]. For actor features, we concatenate vector (cx, cy, w, h) before
applying Wθ, corresponding to the average center, width and height of the actor tube across the
input clip. Actor coordinates are normalized between [−1, 1]. We expect location information to
aid transformations Wθ and Wφ in learning better feature representations, so that, in turn, the
dot-product of the resulting vectors produces more meaningful relations between the actor and the
context.

3.4 Sparse Spatial Supervision

We are interested in learning context for action detection using only a handful of annotated frames
per action instance. For an annotated frame, annotation is in the form of an action bounding box
and corresponding class label. Additionally, annotation takes place per actor, rather than per frame,
that is, for multiple, concurrent actions, only one actor is annotated at a given frame. To this end,
we train our models using sparse spatial supervision as introduced in [55].

Tubes are labeled using sparse spatial supervision as follows. Actors are detected using an external
detector, and then tracked throughout the video using a tracking-by-detection approach. Actor tubes
are labeled based on spatio-temporal Intersection over Union (IoU) with sparse annotations, i.e.
ground truth tubes comprised of up to 5 bounding boxes. In detail, we label each tube by computing
the spatio-temporal IoU between the predicted tube and the ground truth tube in the action’s temporal
interval. The spatio-temporal IoU is defined as the average spatial IoU between the annotated boxes
and the corresponding detections in the tube [55]. Tubes with spatio-temporal IoU greater than 0.5
are assigned to the action class of the ground truth tube with the highest IoU. Tubes are labeled as
background when the spatio-temporal IoU with all ground truth tubes is less than 0.5

10

After extracting features for the input clip using I3D, the boxes of each tube corresponding to
the input clip are appropriately scaled and mapped to the feature map produced by Mixed 4f layer.
Boxes are mapped with a temporal stride of four frames, resulting in T ′ boxes for each tube, which
is equal to the temporal dimension of the output feature map of Mixed 4f layer. Actor features are
extracted by applying RoI Pooling independently on each temporal dimension, followed by I3D tail
and spatio-temporal average pooling.

3.5 Implementation Details

In this section, we provide implementation details with respect to model architecture, weight initial-
ization, training and inference procedure. We implement our models in PyTorch [33].

3.5.1 Architecture

I3D is pre-trained on ImageNet [37] and then on Kinetics [6] action recognition dataset. Input is a clip
of 32 (T) RGB frames with spatial resolution of 224× 224 (H ×W). The output of Mixed 4f layer is
832× 8× 14× 14 (D′ × T ′ ×H ′ ×W ′). Accordingly, every context feature is of size 832× 1× 1× 1.
The actor feature obtained by RoI pooling has dimensions 832× 8× 7× 7. Passing them through I3D
tail results in dimensions 1024× 8× 7× 7 (D′′ ×T ′ ×H ′ ×W ′) , and spatio-temporal average pooling
reduces the size to 1024 × 1 × 1 × 1. Transformations, Wθ, W, are implemented as fully connected
layers, and, Wφ, as a 3D convolutional layer with kernel size 1× 1× 1. The output dimension is set
to D = 256. We apply 3-dimensional dropout to context features before applying Wφ. Additionally,
1-dimensional dropout is applied to actor features before applying the actor transformation of the

first GCN layer, W
(k,1)
θ , k = 1, 2, . . . ,K, and before W in all GCN layers. Finally, dropout is applied

prior to the final linear layer in both GCN and baseline model. Dropout probability is 0.5 in all cases.

3.5.2 Weight Initialization

All fully connected layers are initialized using a Normal distribution with standard deviation, std =
gain√
fan in

, according to [20], where fan in refers to the layer’s input dimension. We set the gain

parameter to 1 for Wθ and to
√
2 for the rest of the fully connected layers. Biases are initialized to

zero.
3D convolutional layer, Wφ, is initialized using a Uniform distribution according to [20] in the

range (−b, b), where b = gain·
√

3
fan in

, with gain = 1√
3
and fan in = D′. Biases ofWφ are initialized

to zero. We found useful to slightly reduce the range for the initialization of W
(k,1)
φ , k = 1, 2, . . . ,K,

i.e. context transformation in the first GCN layer. In practice, we use (−b + 0.01, b − 0.01) in
the first GCN layer and (−b, b) in subsequent layers. We motivate this choice by the fact that the

actor transformation in the first layer, W
(k,1)
θ , is initialized with standard deviation, 1√

D′′
, which

is smaller than the standard deviation of the same transformation in the second layer, 1√
K·D

. The

inequality holds for D′′ = 1024,K ≤ 3 and D = 256. Since the dot-product of the output of the
context transformation and actor transformation produces the adjacency matrix (after a softmax
normalization), we argue that the initialization of the context transformation may affect the weights
of the actor transformation during training, and vice versa.

3.5.3 Detector

As described in Section 3.4, we rely on an external object detector to detect and track each actor
throughout the video clip. In this paper, we use tubes provided by [55]. A Faster R-CNN [36] pre-
trained on MPII Human Pose dataset [1] detects all actors in each frame, and detections are tracked
throughout the video using a tracking-by-detection approach. Readers are referred to [54, 55] for a
description of the tracking-by-detection approach.

11

3.5.4 Training and Inference

Models are optimized using SGD and cosine learning rate annealing schedule. Cosine annealing reduces
the learning rate from a maximum value,max lr, to a minimum value,min lr, for total epochs number
of epochs, following a cosine curve. For the baseline model, we use max lr = 2.5·10−4 and min lr = 0,
for a total of 150 epochs. For GCN, we use max lr = 4.7 · 10−5 and min lr = 0, for 450 epochs.

For GCN, we have also experimented with linear learning rate warm-up, in which, the learning
rate increases linearly from an initial value, init lr, to max lr for warmup epochs number of epochs,
and then follows a cosine curve. The intuition of using warm-up is that during the early stages of
training, a small learning rate might prove helpful in mitigating noisy changes in the adjacency matrix,
resulting from the random initialization of layers Wθ and Wφ. Such noisy changes might lead the
model to converge to a bad local minimum in later stages of training. When warm-up is used, we set
init lr = max lr

10 and warmup epochs = 3 (1461 iterations).
We train our models by randomly sampling a 32-frame clip from each video in the training set.

Tubes of each clip are scored using the softmax scores produced by the model. Models are trained
using a batch size of 3 clips. Training time is approximately one day for GCN and less than half a
day for the baseline on a GTX 1080 Ti GPU.

During inference, we sample 10 32-frame clips from each video, and tubes are scored by averaging
the softmax scores across the clips. The same clips are sampled in order to facilitate fair comparison
between different models. Finally, we apply per-class non-maximum-suppression (NMS) on the scored
tubes of each action instance. NMS discards a tube if the latter has an IoU greater than a threshold
with a higher scoring tube of the same class. NMS threshold is set to 0.2.

4 Experiments

In this section, we conduct experiments in order to evaluate the baseline and GCN model. In Section
4.1, we present the DALY dataset and the evaluation metric used throughout the experiments. Section
4.2 presents results for the baseline model, which is trained five times so as to examine model stability
in terms of variance across different repetitions. In Section 4.3, we evaluate the effect of using more
than one GCN layer and building multiple graphs per layer. Additionally, we consider two functions
to merge the output of multiple graphs. The addition of linear learning rate warm-up is studied in
Section 4.4. In Section 4.5 and Section 4.6, we evaluate the effect of removing the location embedding
and I3D tail, respectively. The impact of weight initialization is studied in Section 4.7, and in Section
4.8 we compare our models with the state-of-the-art on DALY. Finally, in Section 4.9, we report results
when minimum spatial supervision, i.e. one actor bounding box annotation per action instance, is
used during training and inference.

We report results for Section 4.8 and Section 4.9 on the test set of DALY. Results for the rest of
the experiments are reported on the validation set.

4.1 Dataset and Evaluation Metric

We develop and evaluate our models on the Daily Action Localization in Youtube (DALY) [55] dataset.
It consists of 510 videos of 10 human actions, such as ”Drinking”, ”Phoning”, or ”Brushing Teeth”.
It is suitable for temporal action localization, and therefore, out of 3.3 million frames (31 hours),
approximately 700.000 of them contain an action. In this paper, we do not perform temporal localiza-
tion, and we assume that the temporal boundaries of each action instance within a video are known.
An action instance may contain more than one person performing an action. Each of the 10 actions
classes contains an interaction between a person and an object that define the action taking place.
For example, it is common for the actor to use a cup or a glass during the ”Drinking” action. Hence,
DALY is a suitable dataset for contextual modeling with respect to actor-object and actor-actor in-
teractions. There are 31 training videos and 20 test videos per class. In order to fine-tune our models,
we hold out a subset of the training set as a validation set, consisted of 10 videos from each class.

12

Model Val. mAP

Baseline 46.8 (± 0.928) (47.79)

Table 1: Mean mAP, standard deviation and maximium mAP on the validation set across five repe-
titions of the baseline model.

We evaluate our models based on mean Average Precision (mAP) at the video level at IoU thresh-
old, δ (Video-mAP@δ) [17]. Video-mAP is calculated as the mean of Video-AP. Video-AP measures,
for each class, the area under the precision-recall curve of the tube detections. A detection is a
true positive if the spatio-temporal IoU between the detected tube and ground truth tube is above
threshold δ and the action is correctly classified. We report results for IoU threshold, δ = 0.5.

4.2 Baseline

We train the baseline model five times in order to examine the variance in performance across different
repetitions. We report in the following order, mean mAP, standard deviation and maximum mAP.
Results are shown in Table 1. We obtain a mean mAP of 46.8 with a standard deviation of 0.928 and
a maximum mAP of 47.79.

4.3 Number of Layers and Graphs

Our GCN model can employ multiple GCN layers by providing the output of one layer as input to
the next layer. By increasing the number of GCN layers, we expect to encode contextual information
on a higher level. Additionally, in order to capture different types of context, we perform multi-head
attention by building multiple graphs in each layer (Section 3.3.3).

We experiment with up to two layers, and up to three graphs per layer. Additionally, we compare
concatenation and summation as merging functions in order to combine the output of multiple graphs
in the last GCN layer. Irrespective of the choice of merging function, for a two-layer GCN model,
the first layer always uses concatenation. We provide the number of model parameters for every
configuration (choice of merging function and number of layers and graphs). I3D parameters are not
included, as they remain constant across different configurations.

Results are shown in Table 2. We observe an increase in mAP by moving from one graph to two
graphs per layer, for both merging functions. For concatenation and two GCN layers, mAP increases
even for three graphs per layer. Regarding the number of layers, it is interesting that mAP increases
for a 2-layer GCN model with concatenation as merging function, but not with summation. Finally,
concatenation outperforms summation in nearly all configurations.

For the rest of the experiments, we choose a 2-layer, 2-graph GCN model with concatenation as
merging function. Although the best performance in terms of mAP is achieved using a 2-layer, 3-
graph GCN model, we argue that two layers and two graphs per layer provide a good balance between
performance and number of model parameters.

4.4 Learning Rate Warm-Up

In the following, we include linear learning rate warm-up during training in order to examine its effect
on model performance. We perform five repetitions with warm-up, and without warm-up, of a 2-layer,
2-graph GCN model with concatenation as merging function. We report in the following order, mean
mAP, standard deviation and maximum mAP.

Results are shown in Table 3. We obtain similar performance with respect to mean mAP, while
the standard deviation is approximately two times larger when warm-up is added. On the other
hand, warm-up results in greater maximum mAP (53.14). We conducted two two-sided significance
tests, t-test and Mann-Whitney-Wilcoxon test, to compare the mAP means of the two models on

13

Layers # Graphs Merging Function # Parameters Val. mAP

1 1 - 543K 49.39

1 2
Sum 1.084M 51.39

Concat 1.086M 51.3

1 3
Sum 1.624M 50.7

Concat 1.630M 50.98

2 1 - 887K 47.28

2 2
Sum 1.903M 50.1

Concat 1.906M 51.82

2 3
Sum 3.050M 49.98

Concat 3.055M 52.09

Table 2: Validation mAP with respect to different number of layers, number of graphs per layer and
merging functions for combining the output of multiple graphs. The number of model parameters are
provided for every configuration.

a significance level of 0.05. The tests did not result in significant evidence for a difference in mAP
means, with p-values 0.887 and 0.841, respectively. Due to the large standard deviation in mAP, we
opt for a model without warm-up for the rest of the experiments.

4.5 Location Embedding

We evaluate model’s performance when the location embedding is not included in the architecture.
To this end, we remove the coordinates for both context features and actor features. Accordingly,
the model has no information of the actor’s location relatively to other actors and objects. Relations
between the actor and the context are calculated based solely on visual features.

Table 3 presents the results. By removing the location embedding, performance decreases by
approximately 1.1 point in terms of mAP. This result indicates that encoding spatial information is
beneficial for learning meaningful relations between the actor and the context.

4.6 I3D Tail

In this section, we examine the effect of I3D tail, i.e. 3D convolutional blocks Mixed 5b and Mixed 5c,
on model performance. Accordingly, we remove the I3D tail from model’s architecture, and actor
features are extracted by applying RoI Pooling and spatio-temporal average pooling on the output of
Mixed 4f layer. Note that the output of Mixed 4f is still used to encode the context features.

Results in Table 3 highlight the importance of using the I3D tail to encode the actor features.
Removing the I3D tail results in a decrease of more than four points in mAP (47.42). Interestingly,
this result is close to the one achieved by the baseline model (Table 1).

4.7 Weight Initialization

We experiment with different weight initializations for transformation, Wφ, the 3D convolutional layer
that produces the transformed context features prior to dot-product computation. We use normal and
uniform initialization with gain equal to 1 and 1√

3
. Additionally, we use the adjustment of reducing

the range of the uniform distribution for the first GCN layer, as described in Section 3.5.2.
Results are presented in Table 4. For normal initialization, the choice of gain results in almost two

points difference in mAP. It is interesting that, for uniform initialization, the choice of gain by itself

14

Warm-up Loc. emb. I3D tail Val. mAP

X X 51.22 (± 0.55) (51.82)
X X X 51.31 (± 1.05) (53.14)

X 50.7
X 47.42

Table 3: Validation mAP with respect to different model configurations including learning rate warm-
up, location embedding and I3D tail.

Weight Init. (Wφ) Gain Val. mAP

Normal
1 51.52
1√
3

49.78

Uniform
1 50.19
1√
3

50.28

Uniform w/ adjustment
1 49.83
1√
3

51.82

Table 4: Validation mAP for different initializations and gains of the context transformation, Wφ.
”Adjustment” refers to the adjusted initialization described in Section 3.5.2.

does not affect performance. Nevertheless, the combination of gain = 1√
3
with the proposed adjust-

ment is comparable with normal initialization (gain = 1) and outperforms all other initializations.
We conclude that, firstly, weight initialization affects the final performance of the GCN model.

Secondly, weight initialization might be an important architecture choice when learning contextual
cues for action detection. Note that weight initialization has not been explored in related work
[13,45,47,60].

4.8 Comparison with the State of the Art

We compare the GCN model with the baseline model and the state-of-the-art on DALY [11, 55]. For
GCN and baseline model, we report results on the validation set and test set across five repetitions.
Finally, we report mAP results on the test set for [11, 55].

It is worth noting that our method is not directly comparable to [11, 55] for two reasons. Firstly,
our models are trained using fewer videos, since we hold out a part of the training set as a validation
set for fine-tuning. Secondly, although we use tubes provided by [55], these tubes are used in [11, 55]
to label the region proposals produced by the detector (Section 3.5.3), as positive or negative. A Fast
R-CNN [15] is then trained to classify these proposals. In contrast to [11, 55], we do not have access
to the region proposals, so we classify directly the tubes produced by the detector. Consequently, we
train our models using far less number of detections, since the RPN of Faster R-CNN [36] produces
a large number of proposals which are then filtered by classifying them to one of the action classes or
background, and by performing per-class NMS.

Results are shown in Table 5. We observe a large difference in validation and test mAP, which is
apparent in both the baseline and GCN model. Using a different validation split resulted in a similar
gap, therefore, we believe that the large difference is due to validation set size, which comprises 20%
of the dataset, while the training set and test set size is 40%, respectively.

The GCN model outperforms the baseline model in terms of mAP in both validation set and
test set. In the validation set, we obtain an absolute increase of 4.42 points in mean mAP and 4.03
points in maximum mAP, a relative increase of 9.44% and 8.43%, respectively. In the test set, the

15

Model Architecture Input Val. mAP Test mAP

* Weinzaepfel et al. [55] Fast R-CNN (VGG-16) RGB, OF - 61.12
* Chesneau et al. [11] Fast R-CNN (VGG-16) RGB, OF - 63.51

Baseline (Ours) I3D RGB 46.8 (± 0.928) (47.79) 59.58 (± 0.22) (59.79)
GCN (Ours) I3D RGB 51.22 (± 0.55) (51.82) 61.82 (± 0.51) (62.73)

Table 5: Comparison of the GCN model with the baseline model and with the state-of-the-art on the
validation set and test set of DALY. Additionally, we report model architecture and input modality
(OF stands for Optical Flow). We mark approaches that are not directly comparable to the GCN
model with an asterisk (*); refer to Section 4.8 for details.

.

Figure 3: Average precision per class on the test set across five repetitions of GCN and baseline model.

corresponding increase is 2.24 points (3.75%) in mean mAP and 2.94 points (4.91%) in maximum mAP.
On a significance level of 0.05, one-sided t-test and Mann-Whitney-Wilcoxon test provided significant
evidence of a greater mean for the GCN model, with p-values 0.00016 and 0.0039, respectively. Figure
3 illustrates per-class average precision for the baseline and GCN model. GCN performs comparably
or better than the baseline model in all classes except ”TakingPhotosOrVideos”.

Comparing our GCN model with the state-of-the-art [11, 55] on the test set, we obtain slightly
improved performance in comparison to [55], while Chesneau et al. [11] achieve better performance
by 1.69 points in mean mAP and 0.78 points in maximum mAP. As mentioned, however, our method
is not directly comparable to [11, 55]. Finally, we note that our approach employs only RGB input,
while [11, 55] use RGB and optical flow.

4.9 Reducing Annotation to One Bounding Box

Up to this point, all of our models have been trained with sparse spatial supervision using up to five
annotated frames per action instance. For the following experiment, we examine the impact of the
number of annotated frames on model’s performance.

We label tubes as described in Section 3.4, but we restrict the number of annotated frames to one
by randomly choosing a keyframe for each action instance. Then, we train a 2-layer, 2-graph GCN
model using the newly labeled tubes.

During inference time, we evaluate our model on the test set in two ways: 1) we use ground truth

16

Training GT Keyframes # Evaluation GT Keyframes Test mAP

1 1 58.67
1 up to 5 61.07

up to 5 up to 5 61.82 (± 0.51) (62.73)

Table 6: Test mAP with respect to different sparse supervision settings using one and up to five
annotated frames for each action instance during training and evaluation.

tubes comprised of one randomly chosen annotated frame in order to evaluate the model in a realistic
setting where the test set is annotated in the same way as the training set; 2) we report results
using ground truth tubes comprised of up to five annotated frames in order to evaluate the effect on
performance when training with minimum spatial supervision.

Results are shown in 6. Tubes in the training set are labeled using ground truth tubes comprised
of a number of keyframes shown in the first column of Table 6. Accordingly, ground truth tubes in
the test set consist of a number of annotated frames shown in the second column. Evaluating with
up to five keyframes and training a model with one keyframe instead of up to five, results in a small
decrease in test mAP from 61.82 to 61.07. Therefore, by annotating significantly less frames in the
training set, we obtain a decrease in performance of less than one point in mAP. On the other hand,
when we use one keyframe during evaluation, performance decreases by 2.4 points in mAP. The reason
for such a decrease is that mAP is not estimated sufficiently well, since ground truth tubes consist of
only one annotated frame.

We conclude that training a model with one keyframe per action instance and evaluating with up
to five keyframes provides a good trade-off between annotation effort and model performance.

5 Analysis of Attention and Embeddings

In this section, we perform qualitative and quantitative analysis of our GCN model. In Section 5.1,
we visualize the graphs’ adjacency matrix in the form of attention maps, which highlight the context
regions the model pays most attention to. In previous works [13,45,47], attention maps are evaluated
only qualitatively. In this paper, we go one step further by quantitatively evaluating the ability of
the model to highlight the relevant context. To this end, in Section 5.2, we introduce a metric to
quantitatively evaluate the attention maps. The proposed metric is based on the recall of retrieved
context, such as objects relevant to the action. In Section 5.3, we evaluate the ability of our model
to pay attention to contextual cues in a zero-shot setting, i.e. for action classes and objects unseen
during training. Finally, in Section 5.4, we visualize learned feature representations of actions and
objects as t-SNE embeddings.

5.1 Visualization of Attention Maps

The adjacency matrix contains the relation or attention values, indicating the importance of every
context node to the actor node. By visualizing the adjacency matrix, we obtain an attention map that
highlights, for a given actor, the important context regions the model attends to. The highlighted
regions comprise the context added to the actor via weighted averaging of context features.

For a detected actor, the adjacency matrix is calculated during the forward pass by computing the
dot-product of the actor features with the context features. The adjacency matrix has T ′×H ′×W ′ =
8 × 14 × 14 entries, as context features comprise every 1×1 spatio-temporal location of the output
feature map of Mixed 4f layer. The adjacency matrix is interpolated to the original frame size using
bicubic interpolation over 4×4 neighborhoods.

Figure 4 illustrates a set of attention maps per class for a 2-layer, 2-graph GCN model with
concatenation as merging function. Each attention map is the combination of four adjacency matrices

17

Figure 4: Learned adjacency matrix visualized as an attention map highlights the context regions
considered most important by the model for recognizing the action. We provide one example per
class. Horizontal axis represents time progression throughout the video clip. From left to right: ”Ap-
plyingMakeUpOnLips”, ”BrushingTeeth”, ”CleaningFloor”, ”CleaningWindows”, ”Drinking”, ”Fold-
ingTextile”, ”Ironing”, ”Phoning”, ”PlayingHarmonica” and ”TakingPhotosOrVideos”.

(two graphs per layer) by summing their values along the spatial dimensions. Additionally, each
example contains four attention maps along the x-axis, representing time progression along the input
video clip.

The attention maps show that our GCN model attends to relevant context, such as objects, hands
and faces. For example, the model focuses on the lips and pencil in ”ApplyingMakeUpOnLips” action,
on the toothbrush and hand in ”BrushingTeeth” action and on the harmomica in ”PlayingHarmonica”
action. Furthermore, it is interesting that the model is able to track objects along time, for example,
in ”CleaningWindows” and ”Ironing” actions.

We visualize success and failure cases in Figure 5. On the left-hand side of the first row, the
attention misses the relevant object and focuses on the actor’s hand instead. Nevertheless, the action
”Ironing” is correctly classified. Although the attention misses the relevant object, it is possible
that the visual appearance, motion and position of the hand still provide enough contextual cues.
On the right-hand side, the model focuses on the object of interest, but the action is classified as
”CleaningWindows” instaed of ”TakingPhotosOrVideos”. Further, on the left-hand side of the second
row, the model adds context to the wrong actor resulting in classifying background as ”CleaningFloor”.
Finally, in the last example, the attention map misses the relevant object and classifies the action as
”PlayingHarmonica” instead of ”Drinking”.

18

Figure 5: Success and failure cases of predictions and attention maps. On the top left example, the
attention map misses the object, but the action is classified correctly. On the top right, although
attention focuses on the relevant object, the action is misclassified. Bottom left, attention is added to
the wrong actor. Finally, attention misses the object and the action is classified as ”PlayingHarmonica”
instead of ”Drinking”.

5.2 Quantitative Evaluation of Attention Maps

We introduce a metric to evaluate how well the model attends to relevant context. DALY consists of
10 human-object interaction actions, and therefore, objects comprise the most important contextual
cue for recognizing actions. We expect our model to attend to relevant context so as to aid action
classification, that is, we expect the attention maps to highlight objects relevant for recognizing the
action.

In order to evaluate how well the attention maps highlight relevant objects, we introduce a metric
based on recall of objects; the proportion of retrieved objects out of the total amount of objects,
as highlighted or retrieved by attention maps. The location of objects, such as ”phone” for action
”Phoning”, is known, since DALY provides object bounding box annotations on annotated frames,
also called, keyframes.

Given the attention map produced for a detected actor on the keyframe, we sum the attention
values inside the object’s bounding box. An attention threshold varying from 0 to 1 defines correct
instances, i.e. whether the object has been retrieved or not. An instance is a true positive if the sum
of attention values is larger than the threshold. Otherwise, an instance is considered a false negative.
The aforementioned process is summarized in a single curve by plotting the recall on the y-axis and
the attention threshold on the x-axis. Note that the attention threshold varies from 0 to 1, since the
attention map is a discrete probability distribution due to softmax normalization (Section 3.3.1).

Per-class recall curves are shown on left plot of Figure 6 as solid curves. For six out of ten action
classes (”Ironing”, ”FoldingTextile”, ”Drinking”, ”PlayingHarmonica”, ”CleaningFloor”, ”Brushing-
Teeth”), the recall of retrieved objects remains high even even for large attention thresholds, with 40%
to 60% of objects concentrating 100% of the attention. For actions ”CleaningWindows”, ”Applying-
MakeUpOnLips” and ”TakingPhotosOrVideos”, almost 40% of objects contain 50% of the attention.
Finally, ”Phoning” class exhibits the lowest recall for thresholds greater than 15%.

As it is more likely for the attention to fall within a large object bounding box, we introduce
the following normalized variant of the metric to account for object’s box size. We multiply the
added attention values inside the bounding box with a normalization coefficient, which is inversely
proportional to object’s bounding box size. The coefficient can be written as, wi = 1− bi

fi
, 0 ≤ wi < 1,

where bi is the area of the bounding box and fi is the total area of the frame. In this way, we reduce
the summed attention corresponding to large object bounding boxes and we promote the summed
attention of small bounding boxes.

The right plot of Figure 6 illustrates results of normalized recall curves. Smaller recall is obtained
for large values of attention threshold (i.e. 90%-100%) for almosts all classes. For the rest of the
thresholds, the largest decrease in recall is obtained for classes ”CleaningFloor” and ”FoldingTextile”,

19

Figure 6: We evaluate how well the attention maps focus on relevant objects by plotting the recall of
retrieved objects for a varying attention threshold. The plot on the right-hand side illustrates curves
normalized with respect to object’s bounding box size. Dashed curves evaluate the attention maps in
a zero-shot setting for classes that the model has not been trained to recognize.

which usually contain relatively large objects, such as mop, towel and cloth.

5.3 Zero-Shot Attention Maps

In the following, we evaluate the attention maps on a zero-shot setting. Namely, we evaluate how
well our model generalizes on modeling context for objects and action classes unseen during training.
We expect the model to be able to relate an unseen action with its relevant context. Intuitively,
the dot-product can be seen as a distance metric which measures the similarity or relation between
actor features and context features. During training, the actor and context transformations learn a
projection of these features so that a large dot-product corresponds to a large similarity or relation.
Therefore, for an unseen action class, we expect the projected features of the actor to be more related,
i.e. have a larger dot-product, to a relevant context feature, compared to irrelevant ones.

To this end, we train a 2-layer, 2-graph GCN model by excluding two action classes. In order to
avoid overfitting, we perform a simple interpolation based on the total number of tubes in the training
set in order to determine the total number of training epochs. Accordingly, we train the model for 344
epochs, instead of 450. During inference time, we extract the attention maps for input clips belonging
to excluded classes. We evaluate the attention maps as described in Section 5.2.

Figure 7 illustrates success and failure cases of attention maps for two excluded classes, namely,
”Ironing” and ”TakingPhotosOrVideos”. The first two rows present two examples per class, where
the attention focuses on relevant objects even though the model has not been trained to recognize
these actions, nor encode context with respect to the objects present. The last two rows display two
examples per class where the model was unable to focus on relevant objects, and focuses mostly on
the actor’s head instead.

An evaluation of zero-shot attention maps for two excluded classes is shown with dashed curves
in Figure 6. The right plot contains the normalized variant of the metric. Given the zero-shot
setting, we obtain a relatively high recall for small attention thresholds, with approximately 40% and
25% of objects retrieved for ”Ironing” and ”TakingPhotosOrVideos”, respectively, for 30% attention
threshold. Although our model has not been trained to recognize the two actions, it is able to highlight
their relevant objects.

20

Figure 7: Zero-shot attention maps for classes ”Ironing” and ”TakingPhotosOrVideos”. Although the
GCN model has not been trained to recognize these two actions nor their context, it is able to focus
on relevant objects. The first two rows illustrate such cases. The last two rows show failure cases,
where the attention usually focuses on the actor’s head, instead of the object.

5.4 Embeddings of Actions and Objects

In this section, we visualize learned feature representations of actions and objects as produced by the
GCN and baseline model. We embed these feature representations in a 2-dimensional space using
t-distributed Stochastic Neighbor Embedding (t-SNE) [48].

For the GCN model, we visualize the updated actor features, i.e. the original actor features with
added contextual cues as a result of applying graph convolutions (Section 3.3.2). Object features are
obtained from the output of 3D convolutional layer, Wφ, by selecting the activations corresponding
to the object bounding box and then applying spatial average pooling. Actor and object features are
512-dimensional as a result of concatenating the outputs of two graphs of the last GCN layer in a
2-layer, 2-graph GCN model. For the baseline model, we visualize the actor features produced by the
I3D tail, which are 1024-dimensional. Object features, which are 832-dimensional, are obtained from
the output feature map of Mixed 4f layer.

Embeddings for actions are shown in the top-left and lower-left of Figure 8 for the GCN model and
baseline model, respectively. Compared the baseline model, the GCN model produces more distinct
clusters with smaller intra-group variance. It is interesting that actions are separated in three super-
clusters, which is more apparent for the GCN model. The first one is formed from ”CleaningFloor”
and ”CleaningWindows” actions, the second consists of ”Ironing” and ”FoldingTextile” and the third
contains ”TakingPhotosOrVideos”, ”PlayingHarmonica”, ”Drinking”, ”Phoning”, ”BrushingTeeth”,
”ApplyingMakeUpOnLips”. Indeed, actions within super-clusters are similar in terms of visual posture
and motion.

Object embeddings are shown in the top-right and lower-right of Figure 8 for the GCN model and
baseline model, respectively. Although the clusters produced by the two models are similar, the GCN
model is still able to produce relatively tighter clusters. We observe that clusters of similar objects
are located closer to each other, e.g. ”camera” and ”phone”, ”bedsheet” and ”towel”, (cleaning)
”cloth”, ”scrubber” and ”squeegee”. A possible explanation is that similar objects share similar
visual characteristics and/or are semantically similar i.e. relevant objects for recognizing the same

21

Figure 8: Left: T-SNE embeddings of actions and objects for a 2-layer, 2-graph GCN model (top) and
baseline model (bottom). For actions, every point corresponds to a detected actor and color represents
the action class. For objects, every point corresponds to a different object and color indicates the type
of object.

action class.

6 Discussion

We discuss similarities and differences between our method and related work [13,45,47,60] on modeling
context for action detection in Section 6.1. Further, we reflect on the results and analysis of Section
4 and Section 5 in Section 6.2 and Section 6.3, respectively. Finally, we discuss limitations of our
approach and directions for future work in Section 6.4.

6.1 Comparison to Related Work

The relation network [40], initially proposed for visual question answering, is extended in [45, 47] to
model context for action detection. Similarly to these works, we adopt the idea introduced in [40,45]
to treat every 1×1 location in the feature map as context. In [45, 47], learned relation features
between the actor and the context are used for action classification. In contrast, we classify actions
using contextualized actor features obtained by applying graph convolutions on a graph structure.
In [45, 47], per-class attention maps are produced by relying on class activation maps [63], while our

22

model is able to highlight the exact learned context by visualizing the adjacency matrix as an attention
map.

Girdhar et al. [60] extend the Transformer architecture [49] to model context for action detection.
Similar to their work, we also use dot-product attention to model relations between the actor and
the context, while a weighted average of context features produce updated actor features. In contrast
to [60], we formulate contextual modeling as a graph learning problem, in which, relational reasoning is
performed using Graph Convolutional Networks [26]. Although a Transformer can be represented as a
graph neural network and vice versa, we argue that a graph representation is simpler and more intuitive
compared to the Transformer representation of Queries, Keys and Values. Whilst [60] represent context
using Keys and Values obtained by two linear transformations of the feature map, this mechanism does
not have a direct interpretation in a graph. To this end, we use a single linear transformation of the
feature map, called the context transformation, that outputs transformed context features. Context
features correspond to nodes in a graph, called context nodes. Therefore, since we represent context
using a single linear transformation of the feature map, we consider Keys to be equivalent to Values.
Furthermore, our architecture uses no residual connections nor Layer Normalization (LayerNorm),
two essential components of the Transformer. Although LayerNorm is irreplaceable in [49], it can
increase overfitting [58] and its placement in the architecture can make the difference between stable
and unstable training [7, 31]. Additionally, it is worth noting that Girdhar et al. [60] use scaled
dot-product [49], while we employ its unscaled counterpart as it provided a significant increase in
performance. Finally, although [60] produce similar attention maps, the attention maps produced by
our architecture are obtained by visualizing the graph’s adjacency matrix.

Similar to our work, Wu et al. [56] and Zhang et al. [60] employ Graph Convolutional Networks [26]
to model contextual cues. Nodes in the graph represent detected actors [56] and detected actors and
objects [60]. In contrast, we do not restrict our model to a specific set of actors and/or objects to
accumulate context from, but rather, our model implicitly learns the most relevant context regions to
pay the most attention to. Hence, our approach is suitable to reason with respect to arbitrary context
and objects which cannot be detected, e.g. because the object detector has not been trained to do
so. Finally, [56,60] are not able to produce attention maps, as their adjacency matrix is restricted to
represent actor and/or object detections.

All aforementioned approaches [13, 45, 47, 60] rely on full actor supervision during training. We
show that learning context can be achieved using weak actor supervision, requiring up to five, or
even one, actor bounding box annotation throughout the action instance. Furthermore, our work is
the first to quantitatively evaluate how well the attention focuses on important context and evaluate
model’s generalization in a zero-shot setting.

6.2 Experimental Results

The experimental results show that learning contextual cues improves performance with respect to
Video-mAP compared to a baseline model which does not use context. In Section 4.3, we show that
using two GCN layers and constructing multiple graphs per layer is beneficial. Additionally, we find
that concatenation outperforms summation for combining the output of multiple graphs.

In Section 4.5, we show that performance improves by adding spatial information in the graph
with respect to actor and context coordinates. This result indicates that the model is able to learn
spatial relations between the actor and the context.

We find that I3D tail plays an important role in encoding actor features, in Section 4.6. Removing
I3D tail results in a decrease of more than four points in mAP. This result suggests that the rest
of I3D backbone (prior to I3D tail), which encodes the whole input clip, fails to encode fine-grained
actor features. Accordingly, fine-grained actor features are handled by the I3D tail, which is placed
directly after RoI Pooling.

Results in Section 4.7 suggest that weight initialization affects model’s performance. We propose
to slightly reduce the range of uniform initialization for the context transformation in the first GCN

23

layer. We experimentally demonstrate that combining this adjustment with a proper choice of gain is
beneficial in terms of performance.

With respect to weak supervision, in Section 4.9, we train our model with minimum spatial su-
pervision, i.e. using only one annotated frame per action instance. Results suggest that performance
is comparable to training a model using up to five annotated frames. Nevertheless, a requirement is
that the model is evaluated during inference using up to five annotated frames so as to sufficiently
estimate Video-mAP.

6.3 Attention

Section 5 presents a qualitative and quantitative analysis of our GCN model. The adjacency matrix,
visualized in the form of attention maps, focuses on important context regions, such as objects, hands
and faces. Additionally, the attention tracks important context regions across time. Our proposed
metric, based on recall of retrieved objects, validates that the attention highlights objects relevant to
the action. The GCN model is able to even attend to relevant objects in a zero-shot setting, namely,
for actions unseen during training.

6.4 Future Work

In the following, we outline promising directions for future work. First, we discuss limitations of our
model and propose research directions to overcome these limitations. Finally, we discuss future work
with respect to extensions of our existing work.

One limitation is the requirement of an external detector to localize actors. As a result, our
approach does not address detection and classification jointly. Therefore, an interesting direction could
be the development of models for end-to-end weakly-supervised action detection. Furthermore, relative
spatial information, instead of absolute coordinates, could be more effective in learning relations
between the actor and the context. Another research direction is to obtain a better understanding of
how weight initialization affects model’s performance and develop effective initialization techniques.

With respect to extensions of our current work, including a second stream that operates on op-
tical flow would be beneficial for model performance. Furthermore, we are interested in addressing
relational reasoning on a hierarchical level. Specifically, our current model reasons with respect to
context on a low level, aggregating context around the actor in a short temporal interval. Hierarchical
reasoning could investigate reasoning on a higher level, such as among consecutive clips to model
longer temporal dependencies and clips of different videos from the same or related action(s). Finally,
as our model is not restricted to a particular attention mechanism, it would be interesting to examine
other mechanisms for modeling relations, such as additive attention [2, 40, 50].

7 Conclusion

An approach is proposed to learn context, such as actor-actor and actor-object interactions, so as
to improve action classification for the task of action detection. Our models learns spatio-temporal
context for a detected actor by performing relational reasoning on a graph structure using Graph
Convolutional Networks. We show that our model outperforms a baseline which uses no context.
The learned adjacency matrix, visualized as an attention map, aids explainability by highlighting the
learned context, such as objects, hands and faces. We evaluate how well the model learns relevant
context using our proposed metric, which shows that objects relevant for recognizing the action are
retrieved with high recall by the attention. Additionally, we demonstrate learning of context in a zero-
shot setting: our model is able to learn what object is relevant for recognizing an action, even though
it has not been trained to recognize the action. All the above are achieved in a weakly-supervised
setting using only up to five or even one actor bounding box annotation per action instance.

24

References

[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New bench-
mark and state of the art analysis. In Proceedings of the IEEE Conference on computer Vision
and Pattern Recognition, pages 3686–3693, 2014.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. In 3rd International Conference on Learning Representations, Conference Track
Proceedings, 2015.

[3] N. Ballas, L. Yao, C. J. Pal, and A. C. Courville. Delving deeper into convolutional networks for
learning video representations. CoRR, abs/1511.06432, 2015.

[4] F. Baradel, N. Neverova, C. Wolf, J. Mille, and G. Mori. Object level visual reasoning in videos.
CoRR, abs/1806.06157, 2018.

[5] H. S. Behl, M. Sapienza, G. Singh, S. Saha, F. Cuzzolin, and P. H. S. Torr. Incremental tube
construction for human action detection. CoRR, abs/1704.01358, 2017.

[6] J. Carreira and A. Zisserman. Quo vadis, action recognition? A new model and the kinetics
dataset. CoRR, abs/1705.07750, 2017.

[7] M. X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. F. Foster, L. Jones, N. Parmar,
M. Schuster, Z. Chen, Y. Wu, and M. Hughes. The best of both worlds: Combining recent
advances in neural machine translation. CoRR, abs/1804.09849, 2018.

[8] Y. Chen, M. Rohrbach, Z. Yan, S. Yan, J. Feng, and Y. Kalantidis. Graph-based global reasoning
networks. CoRR, abs/1811.12814, 2018.

[9] J. Cheng, L. Dong, and M. Lapata. Long short-term memory-networks for machine reading.
CoRR, abs/1601.06733, 2016.

[10] G. Chéron, J. Alayrac, I. Laptev, and C. Schmid. A flexible model for training action localization
with varying levels of supervision. CoRR, abs/1806.11328, 2018.

[11] N. Chesneau, G. Rogez, K. Alahari, and C. Schmid. Detecting parts for action localization.
CoRR, abs/1707.06005, 2017.

[12] V. Escorcia, C. D. Dao, M. Jain, B. Ghanem, and C. Snoek. Guess where? actor-supervision for
spatiotemporal action localization. CoRR, abs/1804.01824, 2018.

[13] R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman. Video action transformer network. CoRR,
abs/1812.02707, 2018.

[14] R. Girdhar and D. Ramanan. Attentional pooling for action recognition. CoRR, abs/1711.01467,
2017.

[15] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[16] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. CoRR, abs/1311.2524, 2013.

[17] G. Gkioxari and J. Malik. Finding action tubes. CoRR, abs/1411.6031, 2014.

[18] C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross, G. Toderici, Y. Li, S. Ricco,
R. Sukthankar, C. Schmid, and J. Malik. AVA: A video dataset of spatio-temporally localized
atomic visual actions. CoRR, abs/1705.08421, 2017.

25

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. CoRR, abs/1502.01852, 2015.

[21] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[22] R. Hou, C. Chen, and M. Shah. Tube convolutional neural network (T-CNN) for action detection
in videos. CoRR, abs/1703.10664, 2017.

[23] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards understanding action recog-
nition. In International Conf. on Computer Vision (ICCV), pages 3192–3199, Dec. 2013.

[24] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid. Action tubelet detector for spatio-
temporal action localization. CoRR, abs/1705.01861, 2017.

[25] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1725–1732, June 2014.

[26] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
CoRR, abs/1609.02907, 2016.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60(6):84–90, May 2017.

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg. SSD: single shot
multibox detector. CoRR, abs/1512.02325, 2015.

[29] P. Mettes, C. G. M. Snoek, and S. Chang. Localizing actions from video labels and pseudo-
annotations. CoRR, abs/1707.09143, 2017.

[30] P. Mettes, J. C. van Gemert, and C. G. M. Snoek. Spot on: Action localization from pointly-
supervised proposals. CoRR, abs/1604.07602, 2016.

[31] T. Q. Nguyen and J. Salazar. Transformers without tears: Improving the normalization of self-
attention. arXiv preprint arXiv:1910.05895, 2019.

[32] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A decomposable attention model for
natural language inference. CoRR, abs/1606.01933, 2016.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[34] R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive summarization.
CoRR, abs/1705.04304, 2017.

[35] X. Peng and C. Schmid. Multi-region two-stream r-cnn for action detection. In European con-
ference on computer vision, pages 744–759. Springer, 2016.

[36] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection
with region proposal networks. CoRR, abs/1506.01497, 2015.

26

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. S. Bernstein, A. C. Berg, and F. Li. Imagenet large scale visual recognition challenge. CoRR,
abs/1409.0575, 2014.

[38] S. Saha, G. Singh, and F. Cuzzolin. Amtnet: Action-micro-tube regression by end-to-end train-
able deep architecture. CoRR, abs/1704.04952, 2017.

[39] S. Saha, G. Singh, M. Sapienza, P. H. S. Torr, and F. Cuzzolin. Deep learning for detecting
multiple space-time action tubes in videos. CoRR, abs/1608.01529, 2016.

[40] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap.
A simple neural network module for relational reasoning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 4967–4976. Curran Associates, Inc., 2017.

[41] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo. Convolutional LSTM network: A
machine learning approach for precipitation nowcasting. CoRR, abs/1506.04214, 2015.

[42] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in
videos. CoRR, abs/1406.2199, 2014.

[43] G. Singh, S. Saha, M. Sapienza, P. H. Torr, and F. Cuzzolin. Online real-time multiple spatiotem-
poral action localisation and prediction. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3637–3646, 2017.

[44] P. Siva and T. Xiang. Weakly supervised action detection. In BMVC, 2011.

[45] C. Sun, A. Shrivastava, C. Vondrick, K. Murphy, R. Sukthankar, and C. Schmid. Actor-centric
relation network. CoRR, abs/1807.10982, 2018.

[46] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features
with 3d convolutional networks. In Proceedings of the IEEE international conference on computer
vision, pages 4489–4497, 2015.

[47] O. Ulutan, S. Rallapalli, M. Srivatsa, and B. S. Manjunath. Actor conditioned attention maps
for video action detection. CoRR, abs/1812.11631, 2018.

[48] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605, 2008.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[51] H. Wang and C. Schmid. Action recognition with improved trajectories. In IEEE International
Conference on Computer Vision, Sydney, Australia, 2013.

[52] X. Wang, R. B. Girshick, A. Gupta, and K. He. Non-local neural networks. CoRR,
abs/1711.07971, 2017.

[53] X. Wang and A. Gupta. Videos as space-time region graphs. CoRR, abs/1806.01810, 2018.

[54] P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to track for spatio-temporal action
localization. CoRR, abs/1506.01929, 2015.

27

[55] P. Weinzaepfel, X. Martin, and C. Schmid. Towards weakly-supervised action localization. CoRR,
abs/1605.05197, 2016.

[56] J. Wu, L. Wang, L. Wang, J. Guo, and G. Wu. Learning actor relation graphs for group activity
recognition. CoRR, abs/1904.10117, 2019.

[57] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 305–321, 2018.

[58] J. Xu, X. Sun, Z. Zhang, G. Zhao, and J. Lin. Understanding and improving layer normalization.
pages 4381–4391. Curran Associates, Inc., 2019.

[59] Z. Yang, J. Gao, and R. Nevatia. Spatio-temporal action detection with cascade proposal and
location anticipation. CoRR, abs/1708.00042, 2017.

[60] Y. Zhang, P. Tokmakov, C. Schmid, and M. Hebert. A structured model for action detection.
CoRR, abs/1812.03544, 2018.

[61] J. Zhao and C. G. M. Snoek. Dance with flow: Two-in-one stream action detection. CoRR,
abs/1904.00696, 2019.

[62] B. Zhou, A. Andonian, and A. Torralba. Temporal relational reasoning in videos. CoRR,
abs/1711.08496, 2017.

[63] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for dis-
criminative localization. CoRR, abs/1512.04150, 2015.

28

	Introduction
	Related Work
	Action Recognition
	Fully-Supervised Action Detection
	Weakly-Supervised Action Detection
	Visual Relational Reasoning

	Methods
	Method Overview
	Baseline
	Graph Convolutional Networks
	Graph Construction
	Convolutions on Graphs
	Building Multiple Graphs
	Location Embedding

	Sparse Spatial Supervision
	Implementation Details
	Architecture
	Weight Initialization
	Detector
	Training and Inference

	Experiments
	Dataset and Evaluation Metric
	Baseline
	Number of Layers and Graphs
	Learning Rate Warm-Up
	Location Embedding
	I3D Tail
	Weight Initialization
	Comparison with the State of the Art
	Reducing Annotation to One Bounding Box

	Analysis of Attention and Embeddings
	Visualization of Attention Maps
	Quantitative Evaluation of Attention Maps
	Zero-Shot Attention Maps
	Embeddings of Actions and Objects

	Discussion
	Comparison to Related Work
	Experimental Results
	Attention
	Future Work

	Conclusion

