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Abstract

The field of autonomous movement has advanced rapidly over the last decade. Applica-
tions of autonomous movement include transportation, surveillance and navigation. One of
the main problems in these applications is detecting and avoiding obstacles. On these sys-
tems, mobility, power usage and accuracy are of the essence. This indicates the demand for a
lightweight, embedded solution for obstacle avoidance.

We propose multiple, lightweight and embedded methods, based on earlier work. These
single-image processing methods use Convolutional Neural Networks based on the StixelNet
architecture (Garnett et al., 2017[9]) to continually identify obstacles in the systems direct
field of view using a monocular camera setup.

Performance of these architectures was improved by making use of specialized optimization
techniques to achieve real-time performance on a Jetson Nano.

Whereas the baseline StixelNet network reaches an average prediction time of about 1.2
seconds on the Jetson Nano, our network showed prediction times up to 27 times faster, down
to about 0.04 seconds. This was achieved while keeping accuracy (average bin error) within
about 16% of the baseline model, which is better than the original StixelNet model. The
amount of trainable parameters was furthermore reduced from 31.404.402 to 523.537, which
is a reduction of more than 98%.
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1 Introduction

Over the last couple of years, developments in the field of autonomous movement methods have
improved greatly. While autonomous driving and automatic surveillance are still relatively new in
the technological landscape, many of these novel solutions were, until recently, only theorized to be
possible far further into the future. One of the main tasks of a system that moves autonomously
is that of obstacle detection: “To what places can the system move without colliding with an
obstacle?”. In the case of autonomous driving, these objects might represent cars, or curbs. In the
case of rescue robots, obstacles might be trees, boulders and any other obstacle we might imagine.
Practically every such system is in need of a general-purpose obstacle detection method.

There are many ways to detect such obstacles; but all methods utilize a sensor that is used
to get input from the surroundings. We might employ sensors like lidars, radars, and sonars to
retrieve this data. While these might be accurate in some cases, they also have several drawbacks:
the main one being the cost. Accurate sensors such as these are often quite expensive, making
them unsuitable for many applications. A more accessible sensor type, that has become more and
more affordable due to the introduction and prevalence of smartphones is the camera. We will be
using a method that can use a generic RGB webcam camera to process obstacle data in the direct
field of view.

To use the raw sensor output to drive the autonomous system, in this case an image, we must
have some way to interpret the input data. An example of such an algorithm would take 2 consec-
utive images while moving, 2 points can then be chosen on an object. These 2 points can then be
located in the consecutive inputs. Comparing the resulting difference in distance of the 2 points
in both images would indicate whether the obstacle is nearby or far away. The weakness of this
algorithm lies in the fact that it needs to move between the 2 taken pictures, as well as the fact
that the same points should be .

The overwhelming majority of the state of the art obstacle-detection methods in our use-
case, use some form of computer learning. We use a Convolutional Neural Network based on the
StixelNet (Levi, Garnett and Fetaya, 2015[25]) architecture to predict obstacle locations using a
single-frame monocular camera input.

2 Related work

The field of embedded neural networks with respect to obstacle detection has been very active.
Convolutional neural network based obstacle detection for unmanned surface vehicle (Ma, Xie and
Huang, 2019 [26]) introduces a neural network based on CNN’s, which is used to detect obstacles
and to autonomously navigate on bodies of water. Other research (Omoifo [30]), focuses on sur-
veillance using an autonomous land vehicles which performs obstacle detection and classification.
Using 10.000 images, 85% accuracy was achieved while using a Visual Geometry Group model.

Research aiding in the field of obstacle detection is that of depth estimation. From a single
image, a depth map can be deduced. These depth maps can then be utilized to autonomously
navigate through various areas. ( Eigen, Puhrsch and Fergus [8]) proposed a new depth estimation
method. This new lightweight method uses a very limited amount of learning parameters, thus
being much more suited for embedded applications.

Embedded applications of neural networks have been tested as far back as 2003 by the university
of science and technology in Missouri (Yao et al. [37]). Whereas CNN’s are very popular in these
pattern-recognition task, these also use relatively many computer resources; this neural network



used a simple micro controller with 512 bytes of ram. Results showed the robot to be able to
detect obstacles and navigate between them, all in real-time.

With the introduction of powerful microcomputers such as the Raspberry Pi and Jetson
Nano, embedded neural networks applications became more accessible than ever. An example
is DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car (Bechtel et al., 2018 [3]).
This small Raspberry Pi-Based vehicle uses a a small front-facing camera to continuously take
images of the surroundings. A CNN is then used to process this image; a steering angle is then
calculated in order to avoid obstacles. The DeePicar neural network architecture is the same as
the Dave-2 car made by NVIDIA. Even though a low-cost embedded computer is used, promising
results have been achieved, the vehicle navigated on a premade track autonomously for more than
10 minutes.

Other embedded obstacle avoidance techniques use distance sensors to find new paths, such
as a rescue robot (Budiharto and Pietro [4]). This Raspberry Pi based autonomous vehicle uses
a neural network to interpret sensor data in order to navigate through obstacle courses. A small
front-facing camera picks up video signal, applies a facial recognition algorithm and streams the
video over de 2.4 Ghz Band. Applications include finding victims after earthquakes and other
natural disasters. Due to the low cost, many individual vehicles can be deployed. Especially as
microcomputers become more and more powerful, these applications become increasingly viable.

As for our embedded system: the Jetson Nano, there are already numerous neural networks
made by both the Jetson community as well as NVIDIA itself. From image recognition to obstacle
avoidance, embedded as well as powered by a remote machine. In the standard github repository,
NVIDIA provides a pretrained neural network for the Jetbot [19], a Jetson Nano-driven vehicle
purchase-able as a set from NVIDIA. This pretrained network allows for simple object detection
and avoidance, which enables the Jetbot to autonomously avoid obstacles.

The functioning of some of these pretrained networks can be fairly rudimentary; the model
provided by NVIDIA only predicts whether the Jetbot is being blocked or not. The Jetbot then
continues turning until the network outputs a positive with a confidence level that is deemed higher
than a predefined value (e.g. 30% chance of being blocked), indicating that the Jetbot can either
move forwards, or is blocked.

We base our network on the state-of-the-art Convolutional Neural Network architecture called
StixelNet [25] (see Section 4). This architecture is based on the LeNet [24], a relatively simple
5 layer network in which the first two layers are convolutional layers, with the last 3 remaining
being fully connected layers. StixelNet is trained on the KITTI open image dataset [11], an image
library containing data captured by a car equipped with both a stereo camera setup, as well as a
360°Velodyne laser scanner and GPS.

The idea of StixelNet was later expanded upon in Real-Time Category-Based and General
Obstacle Detection for Autonomous Driving (Garnett et al., 2017 [9]) (see Section 4.2). Here, a
new network architecture is introduced that is based around the obstacle classification problem.
In everyday situations, one might be able to classify most of the objects in view. A disadvantage
of a purely classification-based obstacle detection method, however, is that it is relatively resource-
intensive, as well as difficult to accurately pull off. In practice, a significant amount of obstacles are
difficult to accurately classify. This problem can be solved by using a general obstacle detection
method.

To this end, the authors introduce a unified network that combine both classification and



general obstacle detection. This network consists of two sections: a classification section and a
general column-wise obstacle detection, both sharing computation with each other.

3 Hardware and Software

In this section, we give an overview of the hardware and software used during this project. For
further information on the Jetson Nano as well as CNN’s in general, see Section 12.

3.1 Jetson Nano

The Jetson Nano [28] is a small, nevertheless powerful
computer. It has been designed with AI applications
and especially Deep Neural Network (DNN) applications in
mind.

Whereas earlier products in the NVIDIA Jetson line cost up-
wards to hundreds of euros [29], this more recent embedded
computer, released in 2019, takes the Jetson line to an afford-
able price. The small computer comes in at around 100 euros,
opening up a whole range of new possibilities for a wide audi-
ence.

It mainly differs from alternatives on the market, like the Rasp-
berry Pi, with its computing power. Figure 1: The Jetson Nano
20]
Further in-depth information on the installed packages and
setup can be found in Section 7, as well as the Appendix 12.

3.1.1 JetPack SDK

The JetPack software development kit, developed by NVIDIA, aims to be a comprehensive and
simple solution for quickly setting up the Jetson Nano. It contains an OS, specifically designed for
the Jetson Nano, as well as APIs, samples, developer tools and documentation [18].

JetPack, a development kit and flashing file produced by NVIDIA for the Jetson Nano, con-
tains TensorRT (sec 3.3), cuDNN and CUDA libraries. This is also where the main strength of
the JetsonNano lies compared to other solutions on the market. These libraries contain powerful
tools to efficiently compile and run Artificial Neural networks using GPU support, increasing the
performance dramatically compared to cpu-based inference while maintaining a small form-factor.

The Jetson Nano uses a custom driver package called L4T, this package contains the Linux
kernel, bootloader and NVIDIA drivers based on Ubuntu 18.04 especially designed for the Jetson
Platform [16].

3.2 Tensorflow

Tensorflow is a low-level software platform used for machine learning. It was originally developed
by Google Brain (a deep learning research team at Google). In the year 2015 it became available
to the public under the Apache license.



We use the Tensorflow libraries to implement our CNN. In order to simplify the creation/training
of models, a version of Keras is used (Section 3.4).
Tensorflow offers GPU support, using NVIDIA CUDA (Compute Unified Device Architecture): a
parallel computing platform developed by NVIDIA. Although Neural Networks can be trained on
the CPU alone, performance increases dramatically when enabling the use of the relatively large
parallel-computing power of modern graphics cards.

3.3 TensorRT

TensorRT (TRT) is a software development kit used for deep learning applications. TensorRT’s
goal is to optimize neural network models for use on GPUs. It is built on CUDA and claims a
prediction-time speedup of up to 7x compared to conventional Tensorflow models.

The general workflow for using Tensorflow in combination with TensorRT (converting a TF
model to TRT representation in short: TF-TRT) is shown in figure 2:

Optimize with

TF-TRT

Figure 2: Workflow of optimization using tensorflow in combination with TensorRT [17]

TensorRT achieves a significant speedup by going over the layers and performing optimizations
and transformations based on the architecture the model should be optimized for. Layers are
fused wherever possible by combining convolutional, ReLU and bias layers. Layers can also be
fused using layer aggregation. This combines layers that perform similar operations [17].

When training a network using Keras, a ”.h5” file format is used to store the models in order
to be able to quickly load the models and continue training. TensorRT conversion is done by first
converting this Keras file format to the Tensorflow SavedModel format (”.pb”).

The output of this operation can then be converted with a call to TrtGraphConverter (). This
operation should always be performed using the device on which the TensorRT model is going to
be used since the optimization process is based on the architecture specifications.

Models can be converted using different precision modes, FP32, FP16 and INT8. As the names
imply, these numbers represent in how many bits the models parameters are represented.

3.4 Keras

Keras is an open-source library used in neural network applications. It is created on top of multiple
other neural network libraries, making it very modular. The primary goal of Keras is to ease the
creation of and the experimentation on neural networks. Its focus lies in user-friendliness, which
contributes to Keras being widely used in educational deep learning activities.

While Tensorflow also provides some high-level APIs, Keras is built in Python, making the
design process much more user-friendly. Keras has, as of Tensorflow version 2.0, been part of the
tensorflow package.



4 StixelNet

In this section, we describe the baseline model, as well as the adaptations to the network that were
made which resulted in our improved Stixel5x5 model.

4.1 Original StixelNet

We base our network on the state-of-the-art Convolutional Neural Network architecture called
StixelNet [25]. This architecture is based on the LeNet [24], a relatively simple 5 layer network in
which the first two layers are convolutional layers, with the last 3 remaining being fully connected
layers. StixelNet is trained on the KITTT open image dataset ([11]), an image library containing
data captured by a car equipped with both a stereo camera setup, as well as a 360° Velodyne laser
scanner and GPS.

The representation of output of the StixelNet model is based on previous research on medium-
level representation of the complex surroundings and points of interest in real-life road situations
from The Stizel World - A Compact Medium Level Representation of the 3D-World (Badino, Franke
and Pfeiffer, 2009 [2]). Which proposed a stixel-world representation for interpreting road scenes:
vertical objects in front of the vehicle are approximated by rectangles, resulting in a compact yet
efficient representation of the complex dimensional traffic situation.
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Figure 3: Stixel representation of a traffic situation [

StixelNet operates on single RGB images and attempts to outline obstacles by
solving the following problem: find the pixel location y of the bottom point
of the closest obstacle in the center column of the current image being pro-
cessed.

Stixel

The network received a single RGB image stripe of size (w,h,3), I,. A ”closest-obstacle-
position” (y) must then be output to this stripe. y = 0 corresponds to the top of —#h min-

the image, and y = h to the bottom of the image. This point must lie in the ver- -
tical domain [hyin, h], where Ay, corresponds to y-location of the horizon. A Stixel Yactum
can then be drawn from y = 0 to point y, to indicate that all space above point y is
blocked. .
8 h
Figure 4:
Single

Stripe



The original network was trained by coupling image stripes (I5) to closest-obstacle pos-
itions (g). The most obvious choice for the output of the model would therefore be a single
neuron that outputs a an expected obstacle position y. This idea was abandoned because of
its possible data ambiguities, for instance in cases where multiple objects appear in the same
image stripe, in which case multiple obstacle y-positions would be recognized.

Instead, the output is represented using a combination of a sigmoid probability function
Pfree(y) and a binning-problem solution. At each column, the y-range is divided according
to bins of size (h_h#) A probability function is then defined over the full height by linearly
interpolating between bin centers. The vertical-probability functions are then analyzed to produce
a probability map for where obstacles could be. Figure 5 illustrates this analysis on a small part
of an image.
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Figure 5: Sample output of a small part of an image

The image obstacle position probabilities resulting from the analysis of the image can then be
interpreted using a Conditional Random Field (CRF), which resulted in a marginal better overall
estimation. Discontinuities are penalized while small changes are not, this results in a more smooth
obstacle position estimation and thus a more consistent image-wide prediction.

On a larger scale this results in an output which can be interpreted as seen in figure 6:

|| CNN
LN oeo obstacle position

Stixel input probability Final prediction

Figure 6: Sample output in a real world application



4.2 Baseline: StixelNetV2

The idea of StixelNet was later expanded upon in Real-Time Category-Based and General Obstacle
Detection for Autonomous Driving (Garnett et al., 2017 [9]) This new obstacle detection method
employs, just as StixelNet did, a singular camera to interpret road scenes.

This new network architecture is based around the obstacle classification problem. In everyday
situations, one might be able to classify most of the objects in view. A disadvantage of a purely
classification-based obstacle detection method, however, is that it is relatively resource-intensive,
as well as difficult to accurately pull off. In practice, a significant amount of obstacles are difficult
to accurately classify. This problem can be solved by using a general obstacle detection method.

To this end, the authors introduce a unified network that combine both classification and gen-
eral obstacle detection. This network consists of two sections: a classification section and a general
column-wise obstacle detection, both sharing computation with each other, as seen in figure 7. We
will refer to this combined architecture as Combi-StixelNet.

SSD + Pose Layers
GoogleLeNet A 4

Input image through inception_4 layer
T R I T N Conv: 3X3 *(4(priors)*(3(Class confidences)+4(Box)+8(pose)))

I

2
Conv: 3X3 *(6*15) 2 <
g o
: | a8 Conv: 3X3 *(6*15) = g
370 | o) S N SR N N z s
i Conv: 3X3 *(6*15) g 2
i inception_3 12 - TEH

: - 3x3 *(6*

i 6 Conv: 3X3 *(6*15) § H
300 100 g £
5 13 z 5
9‘ z

512 256 2

Conv: 1X1*256 / s1  Conv: 1X1*128 /s1 Conv: 1X1*128 / s1
Conv: 3X3*512 /52 Conv: 3X3*256 / s2 Conv: 3X3*256 / 52

StixelNet Layers
A

Conv: 1X1*77=

Conv: 3X3 /51 Vertical Pool: 1X2 /s:1X2  Vertical Pool: 1X2 /s:1X2  Vertical Pool: 1X2 / s:1X2 -
Conv: 3X3 ; s1 Conv: 3X3 /51 Conv: 3X3 /51 Conv:3X3/s1 (74 (position) +
Conv: 3X3/s1 Conv: 3X3/s1 Conv:3X3 /sl 3 (type))

Figure 7: Architecture combining both classification and general obstacle avoindance, using a
variant of the original stixelnet [9] (Combi-StixelNet)

The Combi-Stixelnet architecture uses a Single-Shot Multi-Box Detector (SSD) for classific-
ation and Pose detection, while an improved StixelNet architecture is used to general obstacle
detection.

Computation in the earlier layers is shared as to decrease the computational load of this archi-
tecture, which made it possible to run the network in real-time at 30 frames per second.

For our application, we implement an embedded general-purpose obstacle detection method.
We only use the StixelNet-part of the Combi-StixelNet in figure 7 as a baseline and starting point.
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The base-architecture we use, based on the StixelNet portion of Combi-StixelNet 7 is shown in

figure 8. We will be referring to this base-architecture as StixelNetV2.

Input Image VGG convd_3

370 46

800 -
I 100 100 100 100
512
256 56 258 pse fse

Output{1x100x50:

100 stixels, 50 bins

Conv:3x3 fs:1 MaxPool:2x1/s:2x1 MaxPool-2x1/5:2x1 MaxPool:2x1/s:2x1 MaxPool:2x1/s:2x1 2048 2048 2048 50

Conv:3x3 fsx Conv:3x3 /s: Conv:3x3 /s:1 Conv:axd fs:1
Conv:axa /s: Conv:axa /s:1 Conv:axa /s

Figure 8: The isolated StixelNet architecture and baseline model[12] (StixelNetV2)

4.3 Our Stixel5x5

Our Stixel5x5 architecture, based on the StixelNetV2 architecture, is created by first downscaling
the StixelNetV2 architecture, after which we introduce an architecture change in the final block

and convert the resulting trained model to an optimized FP16 TRT model.

The downscaling operation works by reducing the amount of filters evenly in all layers in the
StixelNetV2 architecture. When this factor is 0.5, for example, the amount of filters per layer is
reduced by half. With 70.15 model” , we refer to a downscaled model or architecture with factor
0.15 filters remaining, this would mean that only 15% of all filters from the original StixelNetV2
architecture remain (and 85% are removed). Further information on network downscaling can be

found in Section 8.5. Our resulting Stixel5x5 model was first downscaled to factor 0.15.

The final block change we introduce in the architecture is hypothesized to improve prediction
performance by operating on a 200x100 shape before it reaches the final 100x50 output, and then,
for every stixel position, interpret nearby stixel positions to solidify the prediction. This structure
differs from the original StixelNetV2 model in that it only considers nearby locations instead of
functioning like a fully-connected-like layer (see Section 8.7 for more information on Stixel5x5).

Both the original and improved final block of the StixelNetV2 architecture and Stixelbx5 ar-

chitecture are shown in figures 9 and 10 respectively.

Output{1x100x50:
100 stixels, 50 bins

1

100

I I
MaxPool:2x1/s:2x1 2048 2048 2048 50
Conv:3x1 fs:1x1
Conv:1x3 fs:1x1

Comv:1x1 f5:1x1

Figure 9: The last block of the StixelNetV2 architecture
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Conv:3x1 fs:1x1
1
. > 100~ 100 —> 100 .
101 200 200 50
Output 1x100x50
10 10

MaxPool:2x1/s:2x1 2048
Conv 5x5 Conv 5x5

MaxPool 2x2

Figure 10: Restructured block used in the Stixel5x5 architecture

The resulting 0.15 downscaled Stixel5x5 model was converted using TF-TRT (see Section 3.3
and 8.8), to optimize prediction times, while maintaining the same accuracy.

Whereas the baseline StixelNetV2 network reaches an average prediction time of about 1.2
seconds, our resulting Stixel5x5 network predicted up to 27 times faster, down to about 0.04
seconds. This was achieved while keeping predication accuracy more accurate than the original
StixelNet, and within 16% range of the original baseline model. The amount of trainable para-
meters was furthermore reduced from 31.404.402 to 523.537 compared to StixelNetV2, which is a
reduction of more than 98%.

4.4 PL-Loss

Both for the original StixelNet and the general obstacle detection part of Combi-StixelNet, piece-
wise Linear probability (PL) loss is used during training.

As mentioned before in Section 4, each ”stripe” in the image is divided into multiple y-bins.
The StixelNet architecture will predict the probability at the center of each bin at the output
nodes. Given a height y between two bin centers ¢; < y < ¢;41, the probability P(y) is given by:

Cit1 — — ¢
P(y):az X Ly‘i’ai_i_l X L
Ci+1 — G Ci+1 — G

a; and a; + 1 denote the output of neurons ¢ and ¢ + 1 respectively ([25]). This method in-
terpolates the value between the two closest bins to find the predicted probability of the obstacle
being at the right location.

The loss function is then defined as the log-probability-difference between the predicted and
expected value: —logP()

12



5 Database creator

In order to efficiently create a custom dataset, we produced a simple database creation tool. The
tool consists of an editor and a creator. The creator enables the user to use the webcam to take a
picture, which is then opened using the editor. In editor-mode, we can use the mouse to draw the
stixel positions, which are displayed overlayed over the image. The user can add new stixel and
edit existing positions by browsing the database using the browse tool.

Dataset editor ()

Figure 11: The dataset editor tool, stixel positions can be drawn and saved to the database

The resulting images are saved in a folder, the image path and stixel positions are saved in
a MySql database. This database can be used during training and testing to retrieve training
batches. _

Name Filter Filter
I 00021.png 1|21 [37.972972...
M 00023.png | 5|23 [34.0, 34.45...
B 00024.pngy | |5/, [25, 21, 19, ...
B 00025.png

4|25 [39, 37, 36, ...
B 00026.png

5(26 [-1.0, 43.64...

Figure 12: The images and stixel positions are saved
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6 Automatic Dataset generation

For our application, not many datasets are available. In Section 5, we introduced a database
creator which can be used to take pictures and add stixel positions to each image which can then
be added to a custom dataset. An alternative to this method is to automatically generate a dataset.

We produced a generic obstacle-scene genera-
tion program in the 3D creation suite Blender
which can be used to create a random scene
with multiple types of objects with a simple
click of a button. The result of such a ran-
domly generated setting can be seen in figure
13.

Every time a button is pressed, the scene is reset.
Then, multiple generic shaped objects are added to
the scene at random locations, each one with random
dimension settings. A random texture is chosen for
each object, a simple light is then placed in the scene,
at which point the camera view can be rendered. A
custom rendering scheme was introduced that pro-
duces an image of the scene as well as a (precise) Figure 13: Example of a generated scene in
depth map, each of arbitrary resolution. A side-by- Blender
side comparison of the render and depth map render
of the scene in figure 13 can be seen in figure 14a and 14b.

(a) Render of the scene in figure 13 (b) Depth Render of the scene in figure 13

The source code for this method can also be found in the repository [33]. Additional shapes
and textures can be added to the generation methods. The generation and render process can be
automated to generate various datasets of considerable size without much effort. Depending on
the system and image resolution, rendering each image could take only a few seconds. The depth
map can be utilized using the methods described by Garnett et al., 2017[9] and Levi, Garnett and
Fetaya, 2015[25] to generate stixel positions.
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7 Experiments: Tools and Metrics

In this section, the general testing setup and method is described, any deviation from this setup
is explicitly mentioned in the experiments. We describe the hardware, datasets, libraries, software
and settings used during training and testing.

7.1 Device

All performance and resource usage tests are done on an Nvid Jetson Nano (see Section 3.1 for a
short introduction). The specifications of the Jetson Nano are listed below [21]:

e GPU: 128-core NVIDIA Maxwell

e CPU: Quad-core ARM ®A57

e Video: 4K @ 30 fps (H.264/H.265) / 4K @ 60 fps (H.264/H.265) encode and decode
e Memory: 4 GB 64-bit LPDDR4; 25.6 gigabytes/second

e Connectivity: Gigabit Ethernet

e OS Support: Linux for Tegra®

e Module Size: 70mm x 45mm

e Developer Kit Size: 100mm x 80mm

e Camera: Logitech C270 720p HD webcam

The Jetson Nano was flashed using JetPack version 4.4, the main libraries and APIs include:

e Cuda 10.2

e TensorRT 7.1.3
e cuDNN 8.0.0

e VPI 0.3.0

Tensorflow 2.2.0 is used, Keras is included in this version of Tensorflow.

During testing, a 1024MB memory-limit is allocated to Keras models, unless specified otherwise.
This is necessary because the Keras models have a tendency to crash the system if no appropriate
limit is set. Originally, the Jetson Nano came pre-installed with Ubuntu and desktop-manager
Gnome. After the first memory experiment (Section 9.2), we used a Jetson Nano with LXDE
running in headless mode during further experimentation. Before each test, all other user-specific
processes are stopped and de cache is cleared. The Jetson is powered by a wall adapter to keep
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the power supply consistent over the different runs.

Tensorflow, TRT FP16 and INT8 models don’t get assigned a memory limit during testing.

A seperately powered CPU fan was used to make sure the CPU/GPU temperatures of the
Jetson Nano stayed well out of thermal throttling-range (sub 40 degrees at all times), as can be
seen in the test-setup in figure 15.

Figure 15: The Jetson Nano test setup

7.2 Resource metrics

For resource metrics, tegrastats is used. Every second, memory usage, cpu usage and other
information is logged to file. In Python, the time package is used to keep track of prediction-time
metrics. Unless specifically stated otherwise, the wall-clock time is used to measure the average
prediction time.

7.3 Performance metrics

Performance metrics are collected by running predictions on the Kitti-dataset test subset that was
also used in the original StixelNet paper [25]. This is a collection of about 800 images, with 27.771
stixel positions. Predicted bin positions are compared with bin-labels, and a bin error is calculated
for every Stixel label and prediction.

By default, the prediction time for is measured using the Python time.time () method. This
time is always measured as the time from when an input is given, to when a prediction is received.
The average prediction time is the result of the total prediction time divided by the amount of
predictions. Unless specified otherwise, the Keras models are used for evaluation.

The output of our model is of size 100x50 (columns x rows) and represent the obstacle-
probabilities in each column, where each column should, in each column we will use the position
with the highest obstacle-probablity in our evaluation, and then compare it to the labeled position
to calculate the average bin error (see figure 16 for an example input and output of size 4x5). The
matrix is the prediction output, the red circles represent the labels and de red cross represents a
false positive in the prediction.
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Figure 16: Bin error calculation

AUC denotes the area-under-curve for the ”fraction of results within range”-curve. This curve
describes what fraction of predicted stixel-points (y-axis) lie within x pixels or bins from the labeled
position (x-axis). The AUC lies in range [0,1] and increases as bin error decreases. The AUC-
performance can be measured at various intervals, for testing purpose we will frequently use the
AUC over bins 0-3.
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Figure 17: Example of a graph with its AUC

7.4 Datasets

Training is done on a subset of the KittiStixel dataset (see [11]), also used in the original StixelNet
paper [25]. Keras and Tensorflow are used to train the network. The code-base used for training
and dataset management has been written by xmbal5 and can be found on github [12], this base
also contained the base implementation for the database used during testing.

Images in the Kitti Stixel dataset are augmented using the Albumentations[22] library, the
(p=...) denotes the probability for an image to undergo this transformation during training, all
operations are listed below:

e GaussNoise: Gaussian noise is added to the image (p=1).

e RandomShadow: Simulates shadows for the image (p=0.5)
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RandomRain: Adds rain effect to the image (p=0.5)

RandomContrast: Randomly changes contrast of the image (p=0.5)

RandomGamma: Randomly changes gamma of the image (p=0.5)

RandomBrightness: Changes image brightness(p=0.5)

HueSaturationValue: Increases saturation (p=0.5)

CLAHE: Applies contrast limited adaptive histogram equalization to the image (p=0.5)

Normalize: Keeps pixels in range [0,1] instead of [0,255] (p=1)

A custom mirroring operation is also used in 50% of all cases, this method mirrors an image
and its labels, it is included in the codebase [12]. PL-loss (Section 4.4) was used for all training
purposes. All models are trained for 50 epochs on the full training set.
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8 Experiments

8.1 Baseline Model Performance

The baseline model, StixelNetV2, is trained using the method described in Section 7.4 and evalu-
ated using the evaluation methods described in Section 7.3.

8.2 Memory Usage

In order to judge the memory usage of the Jetson Nano, we run various tests. We use the default
Keras model described in figure 8 and load 50 images from the training dataset after which we
make a prediction, the process time (using Python’s time.time_process_time () function) of each
prediction is tracked. We repeatedly test the model with different memory allocation limits at
regular intervals, starting at a minimum of 500MB (any lower than this will cause stability issues)
and stopping at 2000MB (any higher will crash the system).

Resource metrics are collected using the method described in Section 7.2.

Memory on the JetsonNano is shared between the GPU as well as the CPU. This eliminates a
lot of the overhead used for synchronization but also results in some problems in our application.
When Tensorflow is given full access over memory allocation, it will immediately allocate as much
(GPU) memory as possible if the model is of a large size. This results in an immediate OOM-error
on the Jetson Nano as RAM-allocations are also no longer possible.

This problem has not been documented very well, but a memory allocation limit can be set to
counter this problem. The goal of this experiment is to allocate as much memory to Tensorflow
as possible, without bothering background processes and while also keeping enough RAM-memory
for image processing tasks during real-time operation, while also giving insight on model size when
it is loaded into memory.

8.3 Memory Usage LXDE

As memory is a precious resource on embedded systems, we attempt to save as much as possible
for the prediction process. Online sources claimed to be able to save up 1GB when installing a
different desktop-manager. We install a lightweight desktop environment called LXDE on top of
Ubuntu, replacing gnome, in an attempt to save memory. The same tests used in Section 8.2 are
then ran again to observe the impact on performance.

The prediction time tests were executed consecutively, starting at 500MB and stopping at
2200MB, any higher and the process would freeze. The memory usage of the prediction process
was monitored using tegrastats, asccording to Section 7.2 the results are shown in figure 28.

8.4 Factorization

Factorization is an architecture tweak that has been introduced in some successful convolutional
neural networks. In inception-v3, asymmetric factorization is used to reduce a 3x3 filter into a 3x1
filter and a 1x3 filter. The reasoning behind it is as follows:

e One 3x3 filter results in 3 x 3 = 9 parameters

e Consecutive 1x3 and 3x1 filters result in 1 x 3 + 3 x 1 = 6 parameters
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This method thus reduces the amount of parameters by 33%. Results from the inception architec-
ture suggested comparable results [35] when applying this on a larger scale.

Filter Concat

1x7 and 7x1
replacing 7x7

replacing two 7x7

f—ﬂj'*
Two 1x7 and 7x1

n=7in
implementation l 1xn I ’ 1x1 I
% T

Inception Module B
I 1x1 l I 1x1 I ’Pooll ’ 1x1 I

| Base |

Figure 18: An example of factorization in an inception module in Inception-v3[35]

The factorization approach from figure 9.4 is originally only used in the final layer of the original
StixelNetV2. This makes a much larger final-layer size possible without impacting the amount of
parameters. In theory, this also applies to earlier layers, but at a somewhat smaller scale.

We leave the final block of our baseline architecture, StixelNetV2, untouched while introducing
factorization (8.4) in all other blocks by replacing every conv2D layer with a 3x3 filter by one
Conv2D layer with a 3x1 filter and one Conv2D layer with a 1x3 filter according to figure 19.

Conv2D 3x1
Conv2D 3x3 ) '
\L Conv2D 1x3

i

Figure 19: Factorization of a single Conv2D layer with filter size 3x3
This change is hypothesized to reduce the amount of trainable parameters, while maintaining
a similar prediction accuracy.

The model is trained using the method described in Section 7.4, after which its performance is
evaluated using the methods described in section7.3.

8.5 Architecture Downscaling

The Jetson Nano has a limited amount of memory available, as we establish in Section 9.2. One of
the main steps in getting acceptable prediction times the use of a smaller model. We achieve this
is by using the following approach: we reduce the amount of filters per layer. When less filters are
used, the amount of (trainable) parameters is also reduced.

As the amount of operations for a prediction is dependent on the amount of filters, this reduc-

tion in filter count is hypothesized to have a direct effect on the average prediction times. The
model itself is also reduced in size, which should result in less memory usage.
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We start with the baseline model (with 31,404,402 parameters), reducing the amount of filters
evenly by decreasing the amount of filters per layer by a constant factor.

Downscaling the model works as follows: we reduce the amount of filters in all layers evenly.
When this factor is 0.5, for example, the amount of filters per layer is reduced by half. Each
network is trained for 50 epochs, the resource and performance of each model is then measured
using the methods described in Section 7. We will refer to the resulting models as ”downscaled
models” and to the architecture as ”StixelDownscaled”, with 0.05 being a downscaled model or
architecture with factor 0.05 filters remaining, this would mean that only 5% of all filters from the
original StixelV2 architecture remain (and 95% are removed).

The model is trained using the method described in Section 7.4, its performance is then eval-
uated using the methods described in section?.3.

8.6 Residual Layers

ResNet (Residual network) layers have been researched extensively in the last years. Residual
networks were first introduced in 2015 [15], achieving depths 8x that of VGG nets by introducing
skip layers, while maintaining a relatively low level of complexity. The original resulting network
won the first place in the ILSVRC 2015 classification task, immediately gathering a large audience
in the research community.

Increasing the depth of a neural network can increase its ability to learn a difficult task, but
this often makes the vanishing-gradient-problem an issue due to the increased depth of the model.
Residual networks function by using identity connections, as shown in figure 20a, to directly con-
nect earlier layers with later layers. This enables the original input to ”skip” through te model,
which helps against the vanishing gradient problem.

Because identity shortcuts consist of a simple addition, they add no parameter and computa-
tional complexity to the model, making it an interesting addition to the architecture, especially if
they can improve the downscaled model performance.

« 3x3 conv
¥ *
weight layer
3x3 conv
F(X] i relu % Y
weight layer identity Maxpool

(a) A residual block from the original ResNet (b) Introduced resnet layers in new archi-
tecture

We introduce a ResNet layer in each block in our base-architecture as seen in figure 20b. Our
model uses ELU activation functions instead of the RELU functions used in the original ResNet. This
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has, in previous research, resulted in faster training times ([32]) and overall better performance,
so we decided not to switch to RELU units. The maxpooling layers are also kept in their original
places.

This architecture change is also performed on the 0.2 and 0.4 downscaled architectures.

We will refer to the resulting models as ResNet-StixelNet models. These models are trained on
the Kitti dataset using the default method described in section 7.4. The models are then evaluated
using the method described in section 7.3.

8.7 Final Block Change (Stixel5x5)

In the base StixelNetV2 architecture, the last block consists of a 1x3 Conv2D layer with 2048
filters, as seen in figure 21. The last layers are very similar to each other and seem to function sim-
ilar to fully connected layers. Especially the last layer, which is a 1x1 conv2D layer with 2048 filters.

In the original paper ([25]), a CRF was introduced to smoothen the output of the model.
Obstacles will often span over multiple columns, which should result in the bins of neighboring
columns being close to each other. This pattern was used by a CRF to get a better accuracy. The
filter change we introduce in the architecture is hypothesized to improve prediction performance
similarly by operating on a 200x100 shape before it reaches the 100x50 output, and then, for every
stixel position, interpret nearby stixel positions to solidify the prediction. This structure differs
from the original model in that it only considers nearby locations instead of a fully-connected-like
layer.

Output{1x100x50:
100 stixels, 50 bins

1

100

MaxPool:2x1/s:2x1 <2048 2048 2048 50
Conwv:3x1 fs:1x1
Conv:1x3 fs:1x1

Conv:1x1 /s:1x1

Figure 21: The last block of the StixelNetV2 architecture
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101 200 200 50
Output 1x100x50
10

10
T 2048
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Figure 22: Restructured block used in Stixel5x5 networks
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We will refer to this change in architecture as Stixel5x5 networks, downscaled Stixel5x5 models
refer to downscaled models that underwent this change.

We perform this architecture change on multiple downscaled models, after which they will be
trained and evaluated using standard methods described in Section 7.4 and 7.3 respectively.

8.8 TF-TRT conversion

In this section, we will dive into the Tensorflow-TensorRT process (also see Section 3.3). We will
be referring to the original Tensorflow models as ” Tensorflow models” and to TensorRT optimized
models as ”TRT Models” Subsection 8.8.1 describes the tests regarding the calibration run aspect
of the TF-TRT conversion (Tensorflow model to TensorRT model conversion) process. Section
8.8.2 describes the optimization process of the two most promising novel architectures we created
in the previous experiments (StixelDownscaled and Stixel5x5).

8.8.1 Calibration runs

A number of parameters are available for TF-TRT conversion (see Section 3.3). In order to optim-
ize the model performance we first perform two experiments on the calibration runs settings. This
parameter specifies how many calibration iterations are done after converting the model. NVIDIA
documentation mentions no specific effect of the number of runs on prediction performance or
prediction times.

We perform FP16 conversion as well as INT8 conversion of the 0.05 downscaled model (see
Section 8.5) with various amounts of calibration runs. The models are trained on the Kitti dataset
using the standard method described in section 7.4. They are converted using the standard TF-
TRT conversion parameters, while using a varying amount of calibration runs. Conversions are
done at 1, 5, 10, 50, 100, 200, 300, 400, 500 and 1000 calibration iterations. The resulting models
are then evaluated using the methods described in Section 7.3.

8.8.2 Stixel5x5 and Downscaled TF-TRT

As TF-TRT conversion seems to improve the model prediction times at no accuracy cost, we try to
observe te effect of this conversion on our two most promising architecture types. We will be using
various types of downscaled versions to observe the difference in effect at different model sizes.
FP16-conversion is used, as INT8-conversion displays no additional benefit in prediction times or
accuracy.

Both Downscaled and Stixel5x5-Downscaled models from Section 8.5 and 9.7 at downscale

factors 0.05, 0.10, 0.15, 0.20, 0.40 and 0.50 are TF-TRT FP16 converted using 1000 calibration
runs. The resulting models are evaluated using the methods described in Section 7.
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9 Results

In this section, the results of the experiments from section 8 are described. The raw CSV files can
be found in the Appendix(12).

9.1 Baseline Model Performance

StixelNetV2 is trained on the Kitti dataset using the method described in Section 7 for 50 epochs.
The model is then evaluated on the Kitti test dataset, and compared to the original StixelNet.

The original StixelNet 50px AUC performance is shown in figure 23.
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Figure 23: Original StixelNet model performance [25]

The performance of our baseline, the new StixelNetV2 model, is shown in figure 24a.
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(a) Evaluation of StixelNetV2
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A 50pixel area-under-curve (AUC) of 0.91 is measured. The best 50px AUC of the original
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StixelNet was 0.88, when making use of a CRF [25].
The improved StixelNetV2 architecture evidently performs considerably better than the original
StixelNet model.

9.2 Memory Usage

The memory usage experiment is done using the methods described in Section 8.2. The resulting
prediction times are plotted against the amount of allocated memory in figure 25.
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Figure 25: Prediction times when different amounts of memory are allocated to tensorflow

Tensorflow would at all times report that the memory allocator ran out of memory. This does
not indicate an error but it does imply that the performance would be better if more memory
were allocated. Figure 25 indicates that the opposite seems to hold true. When more memory is
allocated, the prediction time seems to increase (the performance drops) by a small percentage.
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Figure 26: Results of allocating 500MB and 2000MB of memory to Tensorflow

Figure 26 suggests that memory usage stabilizes at around 1.1GB. This is the idle memory
usage of the OS on which the Jetson Nano runs.

We can see that even when just 500MB of memory is allocated to Tensorflow, a significant por-
tion of the 4000MB total memory is already being used. As soon as the upper limit (about 4GB)
is reached, swapfiles are utilized to manage the larger amount of used memory. These swapfiles
are many times more inefficient than normal memory, as disk access is much slower than memory
access. This indicates that the model is too large to be managed efficiently by the Jetson Nano.

In figure 26 we can observe that the max amount of memory usage is not reached when alloc-
ating 500MB to the Tensorflow process, instead, around 3 of 4GB is used. It is curious to see that
prediction times did not seem to go down when allocating up to 1GB more memory to Tensorflow,
since this was empty memory and should have been able to speed up the model write — load loop
from disk.

The unexpected positive relationship between the prediction time and allocated memory is also
visible in figure 25. This could be explained by the abnormally high memory-usage of Tensorflow,
which seems to impede other processes (and the non-tensorflow part of the prediction process, such
as image resizing) from doing their job efficiently. We hypothesize this to be caused by the low
memory availability for both the GPU and CPU at the same time, due to the shared memory of
the Jetson Nano. Another theory is presented in the next section.

Although the prediction times might not reflect this, loading images from the dataset became
many times more slow as more memory was being allocated to Tensorflow while approaching the
memory limit. This, at one point, increased the total time for an image to be loaded and predicted
from less about 1 second to more than 10 seconds. The system slowly became less responsive as
more memory was allocated, this evidently also had an influence on the prediction times itself.

Running the tests again resulted in the same pattern, also when only considering the time.time ()
method.

If our hypothesis about approaching the memory limit and prediction times is correct, it would
mean that the prediction performance would benefit from more available memory.
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9.3 Memory Usage LXDE

LXDE desktop environment was installed, the same memory tests used in Section 9.2 are then ran
again according to Section 8.2.

The new environment resulted in an idle memory usage of around 500MB instead of the 1100MB
at idle when using the out-of-the-box os installed with JetPack, as can be seen in figure 27.
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Figure 27: Prediction times at various memory allocations using Tensorflow and LXDE

Figure 27 suggests no significant prediction time decrease when allocating less than 2000MB
of memory. We can see that the significant prediction-time-increase that was present at 2000MB
during the original tests is now visible at the 2200 mark. Although performance gains are minimal
at this point, it does suggest that we are able to use more memory without impacting the overall
performance of the system.

Memory Usage

fﬂ“

4000 -

T

T

Q
= 2000 1 ' | |
1000 u‘r[
0 -
Time (s)
—— Mem Usage —— Mem Size —— Swap usage —— Swap size ‘

Figure 28: Memory usage when running the prediction time tests consecutively
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Each peak in this graph represents a row of tests at an allocation level. The first peak being the
resource usage during the 500MB allocation test. The last peak represents the point at which
2200MB was allocated to Tensorflow, at which point the terminal froze and the testing process
had to be terminated.

As seen in this graph, the idle memory usage of the system has dropped to about 500MB, indic-
ating about 600MB of extra available memory at idle.

A relation between swap usage and prediction time is visible when comparing figure 28 to 27.
As more swap memory is utilized, the prediction times seem to go up. We introduced one theory to
explain this phenomenon in the previous section. The performance decrease could also be caused
by a shared memory allocator bottleneck. As swap memory is much slower than memory access,
the virtual memory might cause the allocator to take more time when performing swap memory
allocations.

Although the model still does not seem to fit into memory completely, the installation of LXDE

does seem to give some more space in the memory-allocation aspect. In order to fit the model into
memory, other methods are used, described in future sections.
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9.4 Factorization

We factorize the model according to the method described in Section 8.4.

The resulting model 50px AUC performance is shown in figure 29.
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Figure 29: Performance of factorized StixelNetV2

The performance of the model is far worse than expected, at an AUC of 0.40 it performs very
poor compared to the original model. Somehow the factorization caused a large loss of information.
Although previous work did suggest that factorization does not work optimally in earlier layers
in a model, here it seems to have a very negative impact on the overall performance. This result
might be due to the fact that 3x1 and 1x3 filters might be worse worse at finding diagonal patterns

than the original 3x3 filters.
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Figure 30: Loss during training of the factorized model

As shown in figure 30, learning rate during training very quickly deteriorated. After only 14
epochs the learning rate is so low that the training was automatically shut down.




9.5 Architecture Downscaling

We downscale the baseline model StixelNetV2 according to Section 8.5. The original StixelNetV2
baseline model parameter count (31.404.402) and average bin error (0.62) is displayed alongside the
downscaled model in figure 31, which is the rightmost datapoint at 100% of the original parameter
count (factor 1.00).
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Figure 31: Keras model prediction time and performance at different parameter counts
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Figure 32: Model performance at different parameter counts

Results show the expected reduction in prediction time, a linear relationship between the num-
ber of parameters and the average prediction time is visible in figure 31. The prediction accuracy
of the model does not seem to degrade greatly, even when reducing the parameters by half. It is
at the é reduction mark that we observe a relatively strong regression in the accuracy. In figure
32 we can see that the model with a 90% filter count reduction (0.10) predicts 80% of the stixel
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positions within 1 bin of error (this translates to about 7 pixels).

The relatively high performance of the low-parameter-count models indicate that quite a high
degree of filter reduction is possible, which would result in an improvement of prediction time,
while maintaining a solid prediction accuracy.

9.6 Resnet Layers

We change the StixelNetV2 architecture using the method described in Section 8.6, and do the
same for the factor 0.4 and factor 0.2 architectures introduced in Section 9.5.

The resulting models are evaluated using the methods described in Section 7, the average bin
error and average prediction times plotted against the parameter count of the resulting models can
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Figure 33: Prediction time and accuracy of models
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Figure 34: Performance of ResNet Stixelnets compared to base and downscaled version (the archi-
tecture with factor 1.0 refers the baseline StixelNetV2 architecture)

As expected, the ResNet layers had no reported effect on the average prediction times. Within
the 2-bin-range, AUC performance of all models are very similar to their downscaled counterpart,
with the ResNet-layered variant generally being marginally worse than the downsized models. At
the 0.20 downsized model, performance of the ResNet model seems to be slightly more accurate
than the original version.
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9.7 Final Block Change (Stixel5X5)

The architectures for multiple downscaled-models from Section 9.5 were changed using the method
described in Section 8.7. We evaluate the models using the tests from Section 7. We compare
the results of the resulting ("new”) models, the downscaled Stixel5x5 models, to their original
counterpart, resulting in figure 35.
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Figure 35: AUC performance of the downscaled architecture (StixelDownscaled) models and new
(Stixel5X5) architecture models

Model | Original | New | Improvement || Model | Original | New | Change
0.05 1.004 0.936 | 6.74% 0.05 0.158 0.177 | 12.00%
0.10 0.860 0.804 | 6.52% 0.10 0.173 0.198 | 14.69%
0.15 0.755 0.715 | 5.29% 0.15 0.201 0.224 | 11.62%
0.20 0.770 0.702 | 8.80% 0.20 0.225 0.246 | 9.44%
0.40 0.659 0.658 | 0.13% 0.40 0.365 0.375 | 2.84%
0.50 0.725 0.649 | 10.47% 0.50 0.418 0.417 | -0.26%
Avg: | 6.33% Avg: | 8.39%
(a) Average bin error improvements (b) Prediction time change

The results show a reduction in bin error across the board, with an average bin error reduction
of about 6.33% compared to the downscaled models. Even though parameter counts of the new
architecture were lower, the average prediction time increased by (on average) about 8.39%. This
is probably due to the more compute-intensive nature of the 5x5 filter operation. The reduction in
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parameters results in better training times and less prediction error, as well as a more consistent
accuracy after training, at the cost of some prediction time.

Even the smallest model, 0.05, has a 0.50px 0.87 AUC, suggesting on-par prediction accuracy
with the original StixelNet architecture.
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9.8 TF-TRT conversion

In this subsection, several experiments regarding TF-TRT conversion are conducted. The two most
promising model architecture types from the previous sections are then converted and compared to
their Tensorflow and Keras counterparts, after which the TRT models are compared to eachother.

9.8.1 Calibration runs FP16

We convert the 0.05 downscaled model using TF-TRT FP16 conversion according to Section 8.8.1.

The evaluated model is shown in figure 37.

0.030

0.024

0.018 A

0.012 A

0.006 -

Avg. prediction time (s)

0 200 400 600 800 1000
Calibration Runs

Figure 37: TRT model with different amounts of calibration runs

The number of calibration runs does not seem to impact the prediction performance of the
model, the precision of the model also stays the same at 1.00 average bin error. This is the same
bin-error as the original Tensorflow and Keras models of StixelDownscaled 0.05.

9.8.2 Calibration runs INTS8

We convert the 0.05 downscaled model using TF-TRT INT8 conversion according to Section 8.8.1.
The results are shown in figure 38, together with FP16 performance and the original factor
0.05 downscaled Tensorflow model performance.
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—— INT8 —— FP16 —— Original
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Figure 38: Trt conversion performance at various calibration iterations

As we can see, prediction accuracy, for INT8 as well as FP16 is not impacted as the models are
converted using TF-TRT conversion, even when doing only a single calibration run. The average
difference in bin error is about 0.007%.

Similar to the FP16 conversion, we observed no further improvement of prediction times and/or
average bin error when conversion is done using more calibration runs.

The prediction time, is greatly reduced: both INT8 and FP16 TF-TRT conversion result in a
reduction of prediction time of about 40%.
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9.8.3 StixelDownscaled TF-TRT

We convert 5 StixelDownscaled models with downscale factor < 0.5 from Section 9.5 using FP16
and INT8 TF-TRT conversion according to the experiment description in Section 8.8.2, they
are evaluated using the methods described in Section 7. The results are shown alongside the
performance of the original Keras model and Tensorflow model in figure 39.
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Figure 39: TRT model performance of various StixelDownscaled models with factor < 0.50

We can see a significant prediction speedup when transitioning from Keras models to Tensor-
flow models and from Tensorflow models to TRT models. The prediction speed improvement for
the Keras — Tensorflow model transition shows more percentage variance in this speedup, which
seems to be the result of the prediction time reduction being a flat amount (about 0.1s). This is
to be expected as the Keras model is just a higher-level Tensorflow model. The difference between
these two seems to be how data is used as input. For Keras the predict() method is used, this
seems to add a higher latency to each prediction than the Tensorflow model which directly uses a
tensor-converted numpy array.

The conversion of Tensorflow— TRT reduces average prediction times by, on average, 56%.

This percentage does not seem to differ at different model sizes. Converting to INT8 does not
seem to improve prediction times and even results in marginally worse results.
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9.8.4 Stixel5x5 TF-TRT

Five Stixel5x5 model types (with downscale < 0.5) from Section 9.7 are converted using FP16
TF-TRT conversion, using the method described in Section 8.8.2. Performance is measured using
the method described in Section 7. Prediction times and average bin errors are plotted against the
amount of parameters for the downscaled Stixel5x5 models, resulting in figure 40.
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Figure 40: TRT model performance of various Stixel5x5 models with downscale factor < 0.50

The results in figure 40 show a similar speedup pattern as shown in figure 39. Again, no
significant difference between the FP16 and INT8 converted model is shown.
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9.9 Best models

The FP16 TRT StixelDownscaled models from section 9.8.3 and FP16 TRT Stixel5x5 models from
section 9.8.4 are our most promising architectural designs. We compare the resulting architecture
performances with regards to their prediction times in figure 41.
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Figure 41: TRT model performance of best architecture types with downscale factor 0.50
In figure 41, we refer to the TRT Stixel5x5 architecture type with the term “Restructured”.

The prediction accuracy of the TRT Stixel5x5 models are slightly better than the TRT Stixel-
Downscaled models, also when considering prediction time change. From figure 41, it also seems
that model training is more consistent for Stixel5x5. This is probably due to the reduction in filter
size described in Section 9.7. The Stixel5x5 architecture type has a trainable parameter reduction
of about 50% (from 7.879.890 to 4.015.709) compared to its StixelDownscaled-type counterpart,
both at factor 0.50.

The TRT Stixel5x5 results show a small prediction accuracy gain and a more consistent training
performance, TRT Stixel5x5 is a better alternative to the TRT StixelDownscaled architecture.

With a prediction time of about 0.04-0.12, we achieve about 8 - 25 frames per second with
TRT Stixel5x5 while staying within 8-15% range of the prediction accuracy of the baseline model,
depending on the downscale factor choice.

At around 0.04 seconds prediction time, we believe the trade-off between accuracy and prediction
times of TRT Stixel5x5 to be optimal for our use-case.With an average bin error of about 0.71
and a prediction time of 0.0447s, we achieved a speedup of almost 27 times compared to the base
StixelNetV2 model. This came at the loss of only 0.1 bin accuracy compared to the baseline model,
which translates an accuracy loss of about 0.74 pixels, or 16%. The TRT 0.15 Stixel5x5 model
reduced the amount of trainable parameters from 31.404.402 to 523.537, which is a reduction of
more than 98% compared to the StixelNetV2 model.
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10 Conclusion

We introduced a novel approach to the obstacle detection problem on embedded systems, based
on StixelNet. Various model optimization methods were introduced for both models specific to the
Jetson platform as well as the general network architecture.

Whereas the baseline StixelNet network reaches an average prediction time of about 1.2 seconds,
our Stixelbx5 network predicted up to 27 times faster, down to about 0.04 seconds. This was
achieved while keeping predication accuracy (average bin error) more accurate than the original
StixelNet, and within 16% range of the original baseline model. The amount of trainable para-
meters was furthermore reduced from 31.404.402 to 523.537, which is a reduction of more than 98%.

Our lightweight implementation makes real-time obstacle avoidance possible on our embedded
system, the Jetson Nano.

11 Future work

In our tests,INT8 TRT conversion did not result in additional prediction time improvements over
FP16 conversion. We believe it to be worth it if this is caused by the NVIDIA framework or is a
Jetson platform-dependent error.

The Kitti dataset contains images that were taken mainly in normal traffic-situation. As this
was the only dataset available for our application, this was also the only input used to train and
evaluate our models. We believe future work should focus on evaluating and improving the gen-
eralization capabilities of our networks. The training and test dataset could be expanded using
the database creator introduced in Section 5. Additionally, in order to create larger datasets,
automatic dataset generation could be done using the method described in Section 6.
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1 Introduction

In this appendix, we will explain assumed knowledge for the original document. This appendix
also contains (troubleshooting) guides on the Jetson Nano and getting started sections, as well as
the raw model results in CSV form. A list of all items can be found in the table of contents.

2 Computer Learning

Computer learning techniques have been and are being used in many applications; facial recog-
nition, photo processing, but also, more recently, in problems that are considered more difficult
and less conventional. Problems previously thought to be impossible for computers to solve. An
example of such a feat is the defeat of the world champion in the board game GO [5]. Some
experts believed this game to be too complex for computers to analyze, resulting in estimations of
more than 20 years for when computing power would be up to this task. Now, many years earlier,
significant results have been achieved thanks to Google Deepmind [3], a deep learning platform
created by Google.

The main appeal of these neural networks lies in its versatility and self-learning capacity. Per-
forming complex task with a computer previously meant that experts in the field would have to
analyze many desired outputs, given some input, then creating a (very complex) mapping function
in the form of a computer program. Deep neural networks (DNNs) function differently in that they
only need an input and output, they then ”learn” this mapping function. This eliminates the need
of a significant part of the human factor in the development process, opening up the possibility to
a significant reduction in development costs. These resources can then be used to further develop
the DNN to achieve even better results.

Deep neural networks have also redeemed themselves while executing tasks which have been
deemed very difficult for normal algorithms to solve.

Another source of applications of the Deep neural networks is found in the field of engineer-
ing; notably in the field robotics, where neural networks can aid enormously in problems that are
difficult for an average algorithm to solve. An example would be a balancing problem: preventing
upright standing robots from falling down.

Parallel to this field we find the autonomous vehicles: rescue robots, surveillance drones and
vehicles aimed at autonomous transport. Autonomous cars are perhaps the most main-stream ap-
plication of the Deep Neural Networks. Embedded computers enable cars like the Tesla Model X
to autonomously drive or inform the driver of potentially dangerous situations. While full-fledged
driving without human interference, supervision and intervention, might not be there quite yet,
enormous leaps have been made in the past decade.

On a much smaller scale, embedded mini-vehicles have also become increasingly popular. Small,
autonomously operating rescue robots would enable rescue workers to quickly locate survivors in
collapsed buildings in earthquake areas. While tiny drones enable large scale surveillance of secure
areas.

Autonomous vehicles superficially operate on one problem: detecting obstacles, and avoiding
them. We will be using an existing, state-of-the-art object detection neural network and attempt
to improve upon it with respect to the performance-and-resources tradeoff.



2.1 Deep Learning

The artificial intelligence (AI) landscape has shifted dramatically over the last decades due to the
large increase in global computing power in combination with the development of deep learning
techniques. Deep learning can be described as an algorithm that starts with a certain set of rules.
Through experience, this AT will improve. This ”experience” can be thought of as mapping some
input to some output using this machine-learning model, after which the result is evaluated and
used to further improve the function of this model.

Deep learning is called deep learning because of its structure: each model functions by rep-
resenting the input mapping to some output, using layers. Each layer will map output of the
previous layer to some new representation. The amount of layers denotes the depth of the model.
These models almost always function using some form of an Artificial Neural Network (ANN).

2.1.1 Artifical Neural Network

An ANN consists of layers of neurons, its architecture is inspired by how a brain works in biology.
Each layer consists of a set amount of neurons, each one connected with some input (the output
of the previous layer) and with some output (a connection to the next layer). The final layer can
be considered the output of the neural network.

The input and output of these neurons are represented using some number, comparable the the
excitation (e.g. +1) or inhibition (e.g. -1) of a neuron in biology. We might consider the following

(simple) example:
A—»@—»B

Figure 1: A neuron

Some input A is mapped to some Output B. Let us say that neuron 1 outputs either 0 or 1,
based on whether the input is 0 or 1. We could simply link the input to the output, of course,
this example is not very interesting. We can make the example more interesting by introducing a
second input for some neuron:

Il Wl
f(...)
—— > Output

W,

P!
Figure 2: A neuron
We can describe how a neuron (generally) works by the following properties displayed in the
image above:
e Inputs
o Weights

e An activation function f(...)



I, and I, denote the output of the neurons that are the input of the current neuron. For simplicity’s
sake we can consider these inputs either +1 or —1. Each of these inputs have some weight attached
to them, this weight specifies the amount of influence that connection has on the final outcome of
the neuron. The first step in calculating the output of the neuron is summing the inputs together
using the weights using:

a:Zwixier
i

Here, w; and x; describe the weight of input i and the activation of input i, respectively. As
noted before, a higher weight of a certain input will increase its influence of the final outcome of
this sum (and thus the output of the neuron). b denotes the bias, this bias may differ from layer
to layer and is introduced in order to be able to shift the output upwards or downwards. Without
the bias, we would only be able to multiply inputs using the weights,

The output of the neuron is then denoted by:

fla)

For some activation function f(z). This activation functions maps the sum of inputs (with
weights) to some output. Different kind of activation functions exists, each with its own pros and
cons and applications.



The identity activation function:

flz) ==

The sigmoid activation function, which can be

described using a function similar to:

The binary step function:
0 ifr<O0
f(x)_{1 ifz > 0

The RELU activation function:

flz) = {2

fo <0_ max(0, x)
ifr >0

(4)
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Figure 3: Identity activation

-10

Figure 4: Sigmoid activation
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-1

Figure 5: Binary step activation

-1

1

Figure 6: Rectified linear unit (RELU) activation
function



2.1.2 Convolutional Neural Networks

Although the standard Densely Connected Deep Neural Networks are quite useful in many applica-
tions, it is due to the fully connected property that the number of parameters increases dramatically
as more layers and nodes are added. When the number of inputs of such a DNN is relatively large,
this problem becomes apparent: this would often result in networks that are very hard to train
and run efficiently.

An example of such an input is an image: simple 720p images consists of 1280x720 pixels, each
one with some rgh value. The final input shape is therefore (1280, 720, 3). This is where convo-
lutional neural networks (covnets) come in. The main difference between CNN’s and these other
networks is the fact that densely connected neural networks learn global patterns, whereas covnets
learn local patterns. When a covnet has learned a certain pattern in an image, for example, it will
be able to locate it everywhere in the input image, not just in its original location. This strong
generalization makes covnets much more powerful in image analysis applications.

Convolutional neural networks can then learn the spatial hierarchies of these previously learned
patterns. An example can be seen in figure 7
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Figure 7: A visualization of a CNN identifying a cat [1]

The first layers learn the fundamental properties: edges, shapes, contrasts etc. These low-level-
properties are combined in later layers to identify higher level properties of the image. In the final
layer, an output is generated. In the case of the mentioned example, as we move closes to this final
layer, we move further away of the input (an image of a cat) and closer to the final representation
(the word ”cat”, or in most cases a number that classifies the image as a cat instead of the word
cat”).

We can visualize the activations in layers in a neural network, as seen in figure 8.
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Figure 8: Activations of layers in a CNN

These activations seem to show the same properties as the cat CNN from figure 7, layers in
later blocks contain more abstract versions of the original image.

3 Jetson Nano

This section contains additional information on the Jetson Nano.

3.1 SSH
The following code can be used to ssh into the Jetson Nano and open a shell in the workfolder:
ssh —t =Y jetson@$ip 'ed “/$path_to_work_folder; bash'

Where $ip denotes the ip of the Jetson Nano and $path_to_work_folder the path on the Jetson
Nano where the workfolder is located. To run python scripts using graphics on the Jetson Nano
itself, instead of on the current machine, we can issue the following command:

export DISPLAY=:0

3.2 SSHFS

We found that the easiest way to work with the Jetson Nano code was via sshfs, this can be done
using the bash script shown below:

#create folder to mount jetson to
mkdir —p JetsonFolder

#Mount Jetson workfolder
sudo sshfs —o allow_other jetson@192.168.2.14:/home/ JetsonFolder



192.168.2.14 should be interchanged with the appropriate Jetson IP on the (local) network.

3.3 Tensorflow installation

Custom version of Tensorflow have been released by NVIDIA, catering especially to the Jetson
platform (Jetson Nano, as well as Jetson TX2 and Jetson AGX Xavier). A step-by-step instal-
lation guide can be found using the following link: https://docs.nvidia.com/deeplearning/
frameworks/install-tf-jetson-platform/index.html

3.4 Including cuda in path

Some problems may arise when using CUDA, we can fix most of these by making sure CUDA can
be found in $PATH. We can do this by issuing the commands (or adding the following commands
to .bashre):

export PATH=$PATH:/usr/local/cuda/bin

export CUDADIR=/usr/local/cuda

3.5 Memory/Performance issues

The Jetson Nano seems to run out of memory relatively quickly, this results in an OOM-error
every so often. Restarting the device will often fix this problem but this is no long-term solution.
This section describes some methods used to counter OOM-errors that were used during testing
or model conversion.

o Testsettings
To save as much memory as possible, we can use a small amount of commands to get the
maximum performance from the Jetson Nano:

sudo nvpmodel —m 0 #max power usage (About 10W)
sudo jetson_clocks #set jetsom clock to mazx
sudo systemctl isolate multi—user.target #one time headless run

e Kill running processes
Crashed programs often take up a lot of memory, to clear all python3 processes of earlier
tests run the command:

pkill -9 python3

To kill all python3 processes.

e Clear cache
To free up some memory we can clear the cache using:

sudo sh —c 'echo 3 > /proc/sys/vm/drop_caches' #clear cache

¢ Increase Swap-Size
Although the default 2gb of swap should be enough for most tasks, more can be allocated
when using TF-TRT conversion, as this requires much more memory. This method is not
advisable for performance-dependent tasks (and was not used during test-benchmarking)
since the allocation of more swap memory is known to degrade performance (make sure the



allocation is only temporary).

We can use the same method that is used on Ubuntu to allocate more memory. While editing
the Jetson specific allocation file is also possible, this solution is more permanent and requires
a restart.

1. Create a swapfile (replace 4G with amount of gb needed):
sudo fallocate -1 4G /swapfile

2. Set permissions for swapfile
sudo chmod 600 /swapfile

3. Make file a swapfile
sudo mkswap /swapfile
4. Turn swap on (not permanently)

sudo swapon /swapfile

5. When done, deactivate swap
sudo swapoff /swapfile

More information can be found (e.g. for permanent activation) using the following link:
https://linuxize.com/post/how-to-add-swap-space-on-ubuntu-18-04/

3.6 CUDNN version

It became apparent that just calling the model load function takes several (about 10) minutes to
complete. Running the model and a GUI resulted in a RAM-usage of about 3400/3957mb. This
problem turned out to (partially) be an incompatible CUDNN version. Installing a new CUDNN
version on the Jetson is, if we are to believe NVIDIA, impossible. Further research on the internet
supported this conclusion. This means that a new version of Jetpack should used to flash a new
operating system on the Jetson Nano, also updating the CUDNN version. This fixed the issue in
our case.

3.7 JetPack 4.4

As of July 20202, Jetpack 4.4 is the most recent version of the JetPack package. This version was
used during testing/training of the models. Jetpack 4.4 has some new features compared to earlier
version, the main ones that are of interest for this project are:

e cuDNN 8.0
e CUDA 10.2
e TensorRT 7.1.3

By consulting the Tensorflow comptibility table ([2]) we might conclude that these versions support
all Tensorflow and Keras versions up to date as of July 2020.



3.8 Python Package List

The following list contains all packages installed on our Jetson Nano during testing, obtained via
pip3 --freeze

absl—py==0.7.1
Adafruit—-GPIO==1.0.3
Adafruit—MotorHAT==1.4.0
Adafruit—Purel0==0.2.3
Adafruit—SSD1306==1.6.2
apt—clone==0.2.1
apturl==0.5.2
asnlcrypto==0.24.0
astor==0.7.1
astunparse==1.6.3
attrs==19.1.0
backcall==0.1.0
beautifulsoup4==4.6.0
bleach==3.1.0
blinker==1.4
Brlapi==0.6.6
cachetools==4.1.1
certifi==2019.3.9
chardet==3.0.4
cryptography==2.1.4
cupshelpers==1.0
cycler==0.10.0
decorator==4.4.0
defer==1.0.6
defusedxml==0.5.0
distro—info===0.18ubuntu0.18.04.1
entrypoints==0.3
feedparser==>5.2.1
future==0.17.1
futures==3.1.1
gast==0.2.2
google—auth==1.18.0
google—auth—oauthlib==0.4.1
google—pasta==0.2.0
graphsurgeon==0.3.2
grpcio==1.19.0
h5py==2.10.0
html51ib==0.999999999
httplib2==0.9.2
idna==2.8
ipykernel==5.1.0
ipython==7.4.0
ipython—genutils==0.2.0
ipywidgets==7.4.2
jedi==0.13.3
jetbot==0.3.0
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Jinja2==2.10
jsonschema==3.0.1
jupyter==1.0.0
jupyter—client ==5.2.4
jupyter—console==6.0.0
jupyter—core==4.4.0
jupyterlab==0.35.4
jupyterlab—server==0.2.0
keract==4.2.2

Keras==2.3.0
Keras—Applications==1.0.8
Keras—Preprocessing==1.1.2
keyring==10.6.0

keyrings. alt==3.0
kiwisolver==1.2.0
language—selector==0.1
launchpadlib==1.10.6

lazr . restfulclient==0.13.5
lazr . uri==1.0.3

louis==3.5.0
lxml==4.2.1
macaroonbakery==1.1.3
Mako==1.0.7

Markdown==3.0.1
MarkupSafe==1.0
mistune==0.8.4
mock==3.0.5
nbconvert==5.4.1
nbformat==4.4.0
notebook==5.7.6
numpy==1.16.1
oauth==1.0.1
oauthlib==3.1.0
olefile==0.45.1
opt—einsum==3.2.1
PAM==0.4.2
pandocfilters==1.4.2
parso==0.3.4
pbr==5.4.5
pexpect==4.6.0
pickleshare==0.7.5
Pillow==5.1.0
portpicker==1.3.1
prometheus—client ==0.6.0
prompt—toolkit==2.0.9
protobuf==3.12.2
psutil==5.6.1
ptyprocess==0.6.0
py—cpuinfo==5.0.0
pyasnl==0.4.8
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pyasnl—modules==0.2.8
pybind11==2.5.0
pycairo==1.16.2
pycrypto==2.6.1
pycups==1.9.73
Pygments==2.3.1
pygobject==3.26.1
PyICU==1.9.8

PyJWI==1.5.3
pymacaroons==0.13.0
PyNaCl==1.1.2
pyRFC3339==1.0
pyrsistent==0.14.11
python—apt==1.6.5+ubuntu0 .2
python—dateutil==2.8.0
python—debian==0.1.32
pytz==2018.3

pyxdg==0.25

PyYAML==3.12

pyzmq==18.0.1
qtconsole==4.4.3
requests==2.21.0
requests—oauthlib==1.3.0
requests —unixsocket ==0.1.5
rsa==4.6

scipy==1.4.1
SecretStorage==2.3.1
Send2Trash==1.5.0
simplejson==3.13.2
six==1.15.0

spidev==3.4
ssh—import—id==5.7
system—service==0.3
systemd—python==234
tensorboard ==2.0.2
tensorboard—plugin—wit==1.7.0
tensorflow —estimator==2.0.1
tensorflow —gpu==2.0.0+nv19.11. tf2
tensorrt ==5.0.6.3
termcolor==1.1.0
terminado==0.8.1
testpath==0.4.2
testresources ==2.0.1
torch==1.0.0a0+18eefld
torchvision==0.2.2.post3
tornado==6.0.2
tqdm==4.47.0

traitlets ==>5.0.0.dev0
ubuntu—drivers —common==0.0.0
uff==0.5.5

12



unattended—upgrades==0.1
unity—scope—calculator==0.1

unity —scope—chromiumbookmarks==0.1
unity—scope—colourlovers==0.1
unity —scope—devhelp==0.1

unity —scope—firefoxbookmarks==0.1
unity —scope—manpages==0.1
unity—scope—openclipart==0.1
unity —scope—texdoc==0.1

unity —scope—tomboy==0.1
unity—scope—virtualbox==0.1

unity —scope—yelp==0.1

unity —scope—zotero==0.1
urllib3==1.24.1
virtualenv==15.1.0

wadllib==1.3.2

wewidth==0.1.7

webencodings==0.5
Werkzeug==0.15.1

widgetsnbextension==3.4.2
wrapt==1.12.1

xkit==0.0.0
zope.interface==4.3.2

3.9 Implementation

Real-world implementation of the model can be done by using a Jetson Nano in combination with
a Yeti Borg. The output obstacle prediction probabilities can interpreted by a simple controlling
algorithm that drives the Yeti Borg towards the location with the most space.

The implemented models, already show some promising results regarding real-world perfor-

mance in our small-scale application. This is especially impressive considering that the training
dataset uses very different areas than the current application (as can be seen in figure 9).
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Figure 9: Ad-Hoc sample output of a small real-life situation, with some simple obstacles

3.10 Prediction and label format

The model output is a prediction array of dimensions [Xpins, Ypins] and a label array of dimensen-
sions [Xpins, 2]. The structure of the prediction array is as follows:

input = [[0.1,0.1, ..., Py, ins], [column2], ..., ]

Where the array [0.1...] denotes the output of each row-bin in the first column. A higher num-
ber at a certain row-bin indicates a higher predicted chance for an obstacle to be at that row in the
current column. Py,, . denotes the predicted probability that the last Y-bin contains the obstacle.
This array is specified for all columns.

The structure of the label array is as follows:

label = [[1,15.2],[0,15], ...,]

[1,15.2] Indicates that the first column contains a labeled obstacle at bin 15.2. [0, 15] indicates
that the second column contains no prediction.

0.5 is subtracted from the labels in the base training code, to point to the middle of each bin.
This 0.5 should be taken into account while comparing the dataset figures to the prediction values.
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4 Errors and fixes Jetson Nano
Some common errors with fixes are listed here:

e ImportError: /usr/lib/aarch64-linux-gnu/libgomp.so.l: cannot allocate memory
in static TLS block
This error is causes by importing tensorflow before CV2, this can be solved by changing
the order of imports https://github.com/opencv/opencv/issues/14884, this can also be
fixed by using:

e Wrong cuDNN version errors
while it is normally possible to freely install cuDNN versions as needed, cuDNN versions are
often dependent on the version of Jetpack used to flash the Jetson Nano. The version of
LAT can be retrieved, at which point this information can be used to get the original Jetpack
version (as these installation versions are linked 1:1 as of July 2020). The best advice in this
case is to reflash using the Jetpack version with the appropriate software version.

5 General Information

e Jetpack version 4.2 does not seem to support CUDA versions over 10.0. This results in some
problems when using tensorflow 2.2.0.

o Tensorflow version 1.15.0 does seem to support cuda 10.0 https://www.tensorflow.org/
install/source#tested_build_configurations. Installing both tensorflow 2.2.0 and tensorflow-
gpu seems to default to the tensorflow 2.2.0 version, which is incompatible with the installed
CUDA/CUDNN versions.

e Checking the L4T version running on the jetson nano using:
cat /etc/nv_tegra_release on board

In our case, this resulted in:

R32 (release), REVISION: 1.0, GCID: 14531094, BOARD: t210ref, EABI: aarch64, DATE:
Wed Mar 13 07:46:13 UTC 2019

This seems to suggest the installation of JetPack 4.2 The L4T version are directly linked to
versions of Jetpack, we can use to our advantage to get compatibility information.

o Tensoflow does not handle list-inputs very well. Conversion to tensor format (using tf.to_tensor ()
or tf.constant()) should only be done on NUMPY arrays. List conversions are up to 40x
slower.
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