
1

Different instruction methods for learning

programming concepts in Scratch

Testing the retention of programming misconceptions among primary school

children

Susanne Spek, Iris Yocarini and Felienne Hermans

Media Technology MSc program, Leiden University

Leiden, The Netherlands
s.spek.2@umail.leidenuniv.nl

July 2020

Abstract

Programming education is an important research topic but is mostly focused on students. Nowadays, there is more
interest in giving programming lessons to young children, but still less programming research is focused on this

sample group. Learning programming is a difficult process and it is almost unavoidable that misconceptions arise.

A misconception is an incorrect understanding of a concept. Because misconceptions negatively affect

performance it is important to avoid misconceptions while learning how to program. To avoid misconceptions,

someone must have a correct understanding of the concept, which may be influenced by the used instruction

method. In this study the effect of three different instruction methods, on the retention of programming

misconceptions among 10- to 12-year old children is tested. The used instruction methods are: worked examples,

given subgoal labelling and self-explaining subgoal labelling. Nineteen children of primary school took part in this

study. Each participant followed three online programming classes in Scratch where the basic programming

concepts, variables, loops, if/else statements, and input were learned. Misconceptions were measured twice, during

and after the intervention, by using a multiple-choice questionnaire with programming exercises in Scratch. No
significant differences were found between the number of misconceptions and used instruction method over

time. So, on average no difference in the effect of misconceptions over time for different instruction methods is

found. Analyzing the descriptive statistics suggests the subgoal labelling instruction methods to be more effective

for learning programming concepts. In those conditions there were fewer misconceptions, less wrong answers and

more correct answers compared to the worked example condition. This pilot study showed insights and directions

for further research. Further research must show whether a specific instruction method is more effective in learning

programming concepts.

1. INTRODUCTION

Programming is a hot topic and the importance of learning

programming from an early age is being recognized more and

more. If children start with learning the basic programming

concepts at a young age, they benefit from this during

programming classes in higher education. Children who

learned Scratch benefited from this in secondary

programming classes, they needed less time to learn a new

topic, had fewer difficulties with learning and they achieved

higher cognitive levels of understanding the concepts

(Armoni, Meerbaum-Salant, & Ben-Ari, 2015). Therefore,

learning programming at a young age can be beneficial for

programming classes in higher education where the high

drop-out rate is seen as a problem (Vihavainen, Airaksinen,

& Watson, 2014). Learning programming at a young age can

be stimulated by programming classes in primary schools. In

some countries, they already integrated it in the primary

school’s curriculum (Hermans & Aivaloglou, 2017).

However, programming education brings some difficulties

since programming is hard to learn and understand for

novices. Many people face difficulties at the beginning when

learning to program (Gomes & Mendes, 2007). Therefore, it

is important to give programming classes to young children

in a way that is beneficial for the learner. The way

programming classes are given, the instructional approach,

may influence the understanding of programming concepts

and plays a major role in the learning process. However, the

programming community lacks a collective memory of how

programming classes should be given (Hermans & Smit,

2018). That is why this research focussed on the effect of

different instructional approaches in programming education

with 10- to 12-year old primary school children.

An element increasing the difficulty to learn how to program

is the existence of many concepts in programming, such as

statements and loops. In the process of learning those

mailto:s.spek.2@umail.leidenuniv.nl

2

programming concepts, misconceptions may occur. A

misconception is an incorrect understanding of a concept,

while having confidence that it is correct. Misconceptions

affect performance (Simon, 2011) and can lead to making

mistakes in writing or reading computer programs (Sorva,

2008). They can remain for a long time (Simon, 2011).

Therefore, it is important to avoid misconceptions while

learning to program.

Having a misconception is not always about a lack of

knowledge (Du Boulay, 1986) but rather about having the

incorrect understanding of the knowledge. When people have

a misconception, they think they have the correct

understanding of the concept. Misconceptions can also be

caused by self-interpreted knowledge from other domains

(Du Boulay, 1986). To avoid misconceptions, someone must

have a correct understanding of the concept, in other words;

someone must have a correct conceptual knowledge. This

may be influenced by the used instruction method. In this

study the relation between instruction method and number of

misconceptions was explored.

Misconceptions remain for a long time and therefore, it is

important to test them over a longer period of time. In this

study, the one-week retention of programming

misconceptions about variables, loops, if/else statements and

input is tested among 10- to 12-year old children.

In this study, Scratch was used to teach 10- to 12-year old

primary school children programming concepts. The

programming misconceptions are measured with a

questionnaire with exercises in Scratch. Scratch is an

example of a visual programming language which is

primarily used by young people and primary schools to learn

the basics of programming. See Figure 1 for an example of a

Scratch program. It has been shown that it is possible to learn

programming concepts in Scratch (Meerbaum-Salant,

Armoni, & Ben-Ari, 2013).

Figure 1: An example of Scratch

Although a lot of research has been done concerning

instruction methods in primary schools, this is not done much

in programming education for children. In mathematics there

was found that problem-based learning is more effective in

improving mathematical literacy compared to direct

instruction (Firdaus, 2017) and in research about science

education in primary schools it was found that children

learned more from direct instruction (Klahr, D., & Nigam, M.

(2004). Programming education differs from regular subjects

in education because of the possibility of exploring concepts

and the relentless of the programming language (Hermans &

Smit, 2018). All concepts in a programming environment are

available to use from the start and no mistake is disregarded.

Therefore, researching programming education in depth can

be relevant. Whereas research has been conducted on

instruction methods of programming education, these studies

mainly used student samples and little work has focused on

primary school children. The studies that used children as

sample, mainly did not focus on the knowledge or retention

of programming concepts but rather on the performance of

children during class. The effectiveness of different

instruction methods among children during class is for

example measured with completed levels (Joentasuta &

Hellas, 2018) or task success during class (Ichinco, Harms &

Kelleher, 2017).

This study focused on the relation between the retention of

programming misconceptions among primary school

children and instruction method. The programming concepts

were learned with the use of Scratch. The aim of the study

was to answer the following research question.

RQ Is there a relation between the instruction method

used in programming education and the one-week retention

of programming misconceptions among primary school

children who learn Scratch?

2. BACKGROUND

2.1 Programming misconceptions

There is a broad variety of misconceptions and

misconceptions can occur for all programming concepts, also

the basic ones (Swidan, Hermans, & Smit, 2018) such as

variables and loops. Sorva (2012) classified the

misconceptions known from literature in a comprehensive list

of 162 misconceptions. It is impossible to take them all into

account and not each misconception occurs in all

programming languages. Also, misconceptions are based on

level of expertise. For example, a novice programmer who

only learned variables and loops so far cannot have any

misconception about objects because he or she has no

knowledge about the concepts of an object. This study

focused on misconceptions that are relevant while learning

Scratch. The most difficult concepts to learn are variables,

loops, and conditional statements (Du Boulay, 1986).

Research from Swidan, Hermans & Smit (2018) concluded

the three most common programming misconceptions in

Scratch. These top three misconceptions in Scratch are; the

difficulty of understanding the sequentially of statements, the

difficulty of understanding that a variable holds one value at

a time and the difficulty to understand the interactive nature

of a program when user input is required.

3

2.2 Instruction method

2.2.1 Worked examples

Education can be designed and given with many different

instructional approaches. Additionally, there are many

conflicting results on the effectiveness of different instruction

methods. Where some papers of research promote a certain

instruction method, others disagree with this. One of the

instruction methods with conflicting results on effectiveness

is the worked example. Worked examples provide people

with a step-by-step guideline to solve the problem (Atikinson,

Derry, Renkl & Wortham, 2000; Sweller & Cooper, 1985).

This method is a good way of learning for people without

experience (Cooper & Sweller, 1987; Kalyuga, Chandler,

Tuovinen & Sweller, 2001). It helps with learning cognitive

skills and develop knowledge structures, which can be

important at the beginning of learning problem-solving

processes (Atkinson, Derry, Renkl, & Wortham, 2000).

People learn more efficiently with the use of a worked

example (Mclaren et al, 2014). While some studies claim that

worked examples are effective, some study results show

problems with using this method. They would not help in

understanding conceptual knowledge (Catrambone, 1998)

and it can lead to ineffective recall and transfer (Bransford,

Brown, & Cocking, 2000). This might be because people

memorize the steps instead of learning how to distinguish the

key features from the worked example and learn how to solve

the problem by conceptual understanding (Catrambone,

1998).

Research has shown that worked examples may be effective

in programming education (Joentausta & Hellas 2018;

Rahman & Du Boulay, 2010). Students who had access to a

worked example to solve a programming task completed

more tasks within a fixed time, this suggests that worked

examples may improve the learning efficiency for students

when programming (Zhi, et al., 2019). Also, in programming

education some problems with using worked examples to

learn programming were found. For novices it can be difficult

to use the worked example effectively. It can be hard to

understand the examples and to find relevant blocks to finish

a programming task (Ichinco, Harms and Kelleher, 2017).

This study evaluates the worked example in programming

education for children.

2.2.2 Subgoal labelling

Subgoal labelling is a technique where the steps from the

worked example are grouped in subgoals and labelled with

meaningful names. Subgoal labelling can help children learn

how specific subgoals are solved. This technique ensures

learners to focus on higher-level features of the problem

(Atkinson, Derry, Renkl, & Wortham, 2000). During

programming, it is important to think in steps and subgoals

which is sometimes hard for children. Children may benefit

from subgoal labels while learning programming (Joentausta

& Hellas 2018), because it helps to understand the subgoals

of the problem-solving process (Catrambone, 1950).

Joentausta and Hellas (2018) found that children who

received worked examples with subgoal labels completed

more levels in Lightbot (a programming game) than children

who only received the worked example. However, this

research only tested the completed levels during one class and

did not focus on retention or conceptual knowledge. This is

important for this study since it has a focus on

misconceptions which are related to conceptual knowledge.

Research from Margulieux and Catrambone (2016) tested on

conceptual knowledge in programming education but

focused on students. They suggested that subgoal labelling

can promote retention and transfer in a programming task and

that it can improve problem-solving performances.

2.2.3 Constructive learning

Worked examples and subgoal labelling are both active

learning techniques. When using an active learning type, the

learners engage with the instructional materials with some

form of motoric action or physical manipulation (Chi &

Wylie, 2014). In both instruction methods children repeat and

follow the given instructions which are forms of action.

Research suggests that a constructive learning technique can

be more effective (Chi, 2009). In a constructive learning type,

the learner generates additional knowledge beyond the

provided instructions and given information (Chi & Wylie,

2014). That is why a third instruction method is compared

during this research. Subgoal labelling is not only used as an

active learning type where the subgoals are already given but,

is also used as a constructive learning type by letting the

participants give a name to each subgoal. With this method,

participants are asked to explain and be actively busy with the

material which may results in them being more involved and

aware of what they are doing. During the worked example

and subgoal labelling with given names, they can follow the

steps without thinking about the relevance of every step. On

the other hand, giving a name to a label can be too difficult

for children and can distract of the learning process. Subgoal

labelling where people must name the subgoals themselves

has so far only been tested with students. This method is

effective for students if they get some instructional support,

such as hints or feedback while constructing the labels

(Margulieux and Catrambone, 2016).

2.3 Scratch

To make programming more attractive and easier to learn for

children different programming languages such as LightBot,

LOGO and Scratch have been developed. Those

programming languages make use of visual blocks to make

programming user-friendly for children and to ensure they

focus on the programming concepts instead of syntax.

Consequently, children using Scratch can master

programming concepts more quickly (Armoni, Meerbaum-

Salant, & Ben-Ari, 2015; Price & Barnes, 2015) and no

syntax errors can be made. Research has also shown that

children have fewer misconceptions when using a visual

programming language compared to text-based programming

languages (Mladenovic, Boljat, & Zanko, 2018).

4

For programming, a high level of abstract thinking is

necessary, which not all children master. Children with an

average problem-solving skill perform better in Scratch,

compared to text-based programming languages. This is

because Scratch helps children to develop their problem-

solving skills (Meerbaum-Salant, Armoni, & Ben-Ari, 2013).

The use of Scratch is positive for decreasing the number of

misconceptions because Scratch highly motivates students

(Ouahbi et al, 2014). Children with a positive attitude about

the material are more motivated to learn and often show an

active learning attitude, which results in better learning

performance (Castejón, Gilar & Pérez, 2006; Schunk &

Zimmerman, 2012)

3. METHODOLOGY

The goal of the study was to measure programming

misconceptions among 10- to 12-year old primary school

children in Scratch using three different instruction methods.

A mixed design with both between- and within-subject

factors was used to analyse the data. The within-subject

factor is time, the participants were tested twice on their

holding of programming misconceptions. The between-

subject factors were the three instruction methods; worked

examples, given subgoal labelling and self-explaining

subgoal labelling. In the given subgoal labelling condition the

subgoal labels were named and in the self-explaining subgoal

labelling condition the participants must think about the

names themselves. This is an experimental study in which

data was collected using a multiple-choice questionnaire.

3.1 Participants

Participants were pre-selected if they were between 10- and

12-year old and were in 7th or 8th grade of a primary school in

the Netherlands. Participants were included if they had a

command of the Dutch language; this was measured by

asking about the reading level in the questionnaire. The

reading level must be at least E6, which is the average for 9-

to 10-year old children in the Netherlands. It was assumed

that children from 10- to 12-year old work well independently

on a school assignment. Participants did not get any financial

compensation, they only received three free classes in

Scratch. Because the participants were under 16 years old,

permission was obtained from the parents/guardians by using

a consent form before the study. Parents/guardians or

participants themselves could stop participating in the study

at any time.

Due to the COVID-19 outbreak and lockdown, it was hard to

find participants. Also, the reopening of the schools during

the research period resulted in several dropouts since children

suddenly had no time for the programming classes. In the

end, the sample consisted of 23 participants. Four participants

had to be excluded – since one of them did not perform the

tasks as requested and three children stopped after the first

class because of a lack of time – leaving a final sample size

of 19 participants (11 female; Mage = 10.74). The worked

example condition had five participants, the given subgoal

labelling condition had eight participants and the self-

explaining subgoal labelling condition had six participants

Because of the small sample size, it is more useful to see this

research as a pilot study which influenced the interpretation

of the results. Because pilot studies are generally

underpowered it is hard to achieve statistical difference at the

5% level (Lee, Whitehead, Jacques, et al, 2014). Therefore,

the P-values described in the results should be interpreted

with the knowledge that this study is not adequately powered

(Lee, Whitehead, Jacques, et al, 2014). However, analysing

effect sizes and descriptives can show the size and direction

of the effect from instruction methods (Lee, Whitehead,

Jacques, et al, 2014) which can be useful for further research.

3.2 Design

The study used an experimental design with a between-

subject factor (instruction methods) and a within-subject

factor (time). The study used two tests to measure the

misconceptions. The first test took place after the first class

and the second test took place before the third class. The first

test was performed after the first class because

misconceptions cannot be found without participants having

knowledge about the concepts. The second test was used to

test the retention of the programming concepts. This study

design allowed the study to explore the one-week retention of

programming misconceptions after three different instruction

methodologies. The third class was not relevant for the

research but helped to keep the children motivated to

complete the questionnaire. During the online classes, the

participants received the instructions based on the condition

they were randomly assigned to. The participants stayed in

the same condition during the whole research. See Figure 2

for a visual representation of the study design.

Figure 2: Research design

Note: WE = Worked example, GSL = Given subgoal labelling and SSL = Self-

explaining subgoal labelling

3.3 Procedure

Participants were selected by convenience sampling. Social

media posts were shared with the message that children could

sign up for three free programming classes in Scratch. The

message was shared via the newsletter from Programming

Education Research Lab (PERL) and the newsletter from

Wetenschapsknooppunt, an organization for education about

science and technology. One primary school in Amsterdam

shared this message with their students. The message

5

contained a link where people could leave contact details.

After filling in the contact details, they were contacted to

schedule the three classes. The participants were randomly

assigned to one of the three conditions. To ensure equal

sample sizes, block randomization in blocks of six was

chosen.

Participants followed three online programming classes in

Scratch. A day before the class they received a PDF file with

the assignment. The instruction method of the assignment

was based on their condition group. Ten minutes before the

class started the participants received an invitation link to a

video-call. The first class consisted of a fifteen-minute

explanation about Scratch and took around 70 minutes in

total. The first four steps were done together, to make sure all

participants knew what to do. After the first class, the

participants had to make a filler task and had to fill in the

questionnaire to test the misconceptions. They had

approximately five minutes for the filler task and fifteen

minutes for completing the questionnaire. The second class

took around 60 minutes, where in the beginning of the class,

all learned blocks were shortly explained. After the

explanation, the participants could work on the assignment

independently. Before the third class started, the participants

filled in the second questionnaire. Participants had access to

the internet while completing the questionnaire but were

instructed before not to use the internet. During all classes

there was the ability to ask questions if something was

unclear.

3.4 Materials

To measure misconceptions after different instruction

methods, several materials were used. First, the

misconceptions to be tested were chosen. The list of Sorva

(2012) has been taken as a starting point to explore existing

misconceptions. Misconceptions were included if they

occurred in the literature once, were applicable for beginners

and applied to Scratch. For example, misconceptions about

return values are not selected since this concept does not

occur in Scratch. To make the misconceptions applicable for

beginners there is chosen to select the misconceptions for the

topics: variables, loops, input, and if/else statements. In the

end, 15 misconceptions were selected. Seven questions were

about variables, five about if/else statements, two about loops

and one about the input. The misconceptions used in this

study are shown in Table 1.

Concept Misconception

Variable a variable can hold multiple values at a time

Variable Primitive assignment works in opposite
direction

Variable A variable is a pairing of a name to a

changeable value. It is not stored inside the
computer

Variable Primitive assignment stores equations or
unresolved expressions

Variable Assignment moves a value from a variable to
another

Variable the natural-language semantics of variable

names affects which value gets assigned to
which variable

Variable Difficulties in understanding the sequentially
of statements

If/Else Code after if statement is not executed if the
then clause is

If/Else If statement gets executed as soon as its
condition becomes true

If/Else A false condition ends program if no else
branch

If/Else Both then and else branches are executed

If/Else control goes back to start when condition is
false

Loops Adjacent code executes within loop

Loops while loops terminate as soon as condition
changes to false

Other Difficulties understanding the effect of input
calls on execution

Table 1: Tested misconceptions

3.4.1 Multiple-choice questionnaire

A multiple-choice questionnaire with exercises in Scratch

was used to measure the misconceptions. This questionnaire

was based on previous research (Swidan, Hermans, & Smit,

2018). A multiple-choice questionnaire is a widely used

method to measure misconceptions (Ma, 2007) which makes

it possible to quantitatively analyse the data. Although, the

disadvantage of this is that errors can depend on motivation,

reading errors or guessing (Tew, 2010). Therefore, questions

with open answers are often used (Ma, 2007). With open

questions more information can be retrieved about the

emergence of misconceptions and new misconceptions can

be explored. However, for this study the open questions are

only used to test whether children have guessed their answer.

Open questions have the disadvantage that they cannot be

processed quantitatively. Besides, it influences the

motivation of the children which can also influence the

answers. In this study a multiple-choice questionnaire was

chosen to make it possible to measure the misconceptions in

a test that did not take too long and did therefore not influence

the motivation of the participants. An open question has been

added to briefly explain their answer. This does not force

children to choose an answer which reduced the chance that

children will guess. Every question had four possible answer

options; a correct answer, a wrong answer, a misconception

answer, and an option to fill in an answer.

The questionnaire consisted of 15 items where each question

represented one misconception. The response for each

misconception question has been analysed and the answers

were labelled as ‘misconception’, ‘correct’ or ‘wrong’. If

someone filled in another answer, this answer was analysed

and then categorised in one of the three categories. All

materials during this study were in Dutch. The questionnaire

for the first and second test differed slightly to prevent a

learning effect from the test. The structure of the questions

was the same, only the used data was different. Figure 3

shows a question that is used in the questionnaire from

Swidan, Hermans, and Smit (2018)

6

Figure 3: Example of the question that tests the misconception: ‘a variable

can hold multiple values at a time’

3.4.2 Programming classes

Three programming lessons were required for this study.

Programming concepts, such as loops, variables, and if/else

statements are often used together in one programming class,

therefore participants only received one of the three

conditions for all programming concepts. The classes from

Felienne Hermans, obtained from https://scratchles.nl/ , were

used with some additions to make sure all tested concepts

were discussed in every class. Each lesson also had to be

adapted to each of the three conditions.

For the worked example condition, the programming

assignment was divided into steps. In the given subgoal

labelling condition, the programming assignment was

divided into steps, but the steps were also grouped and

divided in subgoals with names. In the self-explaining

subgoal labelling condition, the assignment was divided the

same as the given subgoal labelling condition, only the names

were left out. The participants were told to fill in the names

for the subgoals themselves. The content was the same for all

methods and was available for the children as a PDF

document they could use during the class.

The concept of input occurred in the first class, but not in the

second class. Because this could have influenced the number

of misconceptions for this question, the topics were also

analysed separately in the result section.

3.4.3 Filler task

A filler task between the class and the test was used to prevent

the children from making the test based on memorizing steps.

As an irrelevant filler task can prevent rehearsal of the

criterium task (Houston 2014), a word search was chosen.

Making a word search needs a high degree of concentration,

which reduces the rehearsal process (Dillon & Reid, 1969).

Also, a word search is different from programming which

was important to avoid interference effects (Houston, 2014).

3.5 Statistical analysis

The data has been analysed in IBM SPSS statistics 26 for

Windows. The data has been analysed by conducting a mixed

ANOVA with time as a within-subject factor and instruction

method as a between-subject factor. This test gave insight

into the difference in the between-subject factor (instruction

method), the within-subject factor (time) and the interaction

of the within- and between-subject factors.

A sample size calculation with G * Power for a repeated

measure ANOVA (two measure moments) with a between-

subject factor (three instruction methods) was conducted and

showed a desired sample of 120 participants for a power of

0.8 and an effect size of 0.25. The effect size is difficult to

determine because little research has been done into

programming misconceptions among children. For this

reason, the average effect size of 0.25 was chosen. Each

group of instruction method required 40 participants. This is

a minimum desired number, based on an optimal situation.

The study situation was not optimal during the research.

Schools were closed and lessons were cancelled due to

measures related to the COVID-19 virus. Due to the

pandemic and initiated lockdown children were not allowed

to go to school. The research design changed from physical

classes in schools to online classes at home. This made it

impossible to achieve the desired sample size. It is difficult

to reach children from this target group and, additionally, the

COVID-19 virus causes a lot of change for the children. Also,

because children could not be tested in a classroom setting

and were tested alone or in pairs, data collection took more

time.

4. RESULTS

4.1 Misconceptions

Figure 4 shows the distribution of answers over the three

answer categories in both tests.

Figure 4: Distribution of answers

Taking all conditions together it can be seen that there is no

difference in the number of misconceptions between the two

tests. Wrong answers seem to decrease because students give

more correct answers on the second test.

Nine participants (47%) had five or fewer misconceptions in

the first test. In the second test nine participants (47%) had

four or fewer misconceptions.

36% 36%

35%
24%

29%
40%

0%

20%

40%

60%

80%

100%

Total anwers

Misconceptions Wrong Correct

Test 1 Test 2

https://scratchles.nl/

7

41%
26% 33% 37%

30%
45% 39% 37%

29% 29% 28% 26%

0%

20%

40%

60%

80%

100%

Misconception Wrong Correct

Variables Loops If/else Input

4.1.2 Relation misconceptions and instruction method

Condition N Mean Std.

Deviation

Min Max

Test 1 WE
GSL
SSL

5
8
6

5.80
5.87
4.50

1.78
2.41
2.43

3
2
0

7
9
7

Test 2 WE
GSL
SSL

5
8
6

6.60
5.13
5.00

2.41
2.30
1.79

4
2
3

9
8
8

Table 2: Misconceptions

Table 2 shows the means of the number of misconceptions in

each condition and Figure 5 shows a visual representation of

the means of misconception in each condition in both tests.

Figure 5: Means for the number of misconceptions in the first and second

test

There is a small difference, of one and two misconceptions,

between the conditions. The given subgoal labelling appears

to be the highest in the first test (M=5.87, SD=2.41) closely

followed by the worked example (M=5.80, SD=1.78). The

self-explaining subgoal labelling condition had the lowest

mean in both tests (M1=4.50, SD=2.43; M2=5.00, SD=1.79).

The mean for the number of misconceptions in the given

subgoal labelling condition is the only one that decreased

over time. By comparing the means, the self-explaining

subgoal labelling condition seems to be the most effective

instruction method for avoiding, but not for decreasing

misconceptions.

Performing a mixed ANOVA with time as a within-subject

factor and instruction method as a between-subject factor,

shows no significant result in the main effect of

misconceptions over time F (1, 16) = 0.07, ηp
2 = 0.00,

P=0.797). So, on average the number of misconceptions did

not vary over time. Also, no significant effect in the main

effect of instruction method F (2, 16) = 1.06, ηp
2 = 0.12,

P=0.370) is found which means there is on average no

difference in the number of misconceptions per instruction

method. Although no significant difference is found, the

effect size may suggest there is a small effect of instruction

method on the number of misconceptions (ηp
2 = 0.12). The

self-explaining subgoal labelling seems to have the most

positive effect on the number of misconceptions and the

worked example condition had the highest number of

misconceptions. The interaction between instruction method

and time F (2, 16) = 0.51, ηp
2 =0.06, P=0.611) also did not

show a significant result. So, on average no difference in

effect of misconceptions over time for different instruction

methods is found. These results show no difference in the

number of misconceptions that retain after one week of using

different instruction methods among primary school children

is found.

Performing a one-sample T-test shows 95% CI [4.34, 6.50]

for the number of misconceptions in the first test and 95% CI

[4.43, 6.52] for the number of misconceptions in the second

test. Table 3 shows the 95% confidence intervals for each

instruction method. The interval was not very precise because

of the small sample size. However, looking separately at the

conditions, the confidence interval in the second test became

narrower which means there is less difference between the

number of misconceptions among the different participants.

It also shows that all means move to lower values over time.

 Condition Lower bound Upper bound

Test 1 WE

GSL

SSL

3.69

3.08

3.40

7.92

6.42

7.26

Test 2 WE

GSL

SSL

2.59

2.26

2.05

5.41

4.49

4.62

Table 3: 95% Confidence interval

4.2.2 Relation between misconceptions and topic

Figure 6 shows the labelled answers for the topics in the first

and second test. Taking all the conditions together it can be

seen that the instruction methods overall had the most

negative effect on decreasing the number of misconceptions

about loops and the most positive effect on decreasing the

number of misconceptions about variables. The input

question had an increase of 10% in the number of

misconceptions, although it cannot be proven that this is

because the concept did not occur in the second lesson. The

misconceptions about loops are also increased, and this

concept has been addressed in both lessons. Wrong answers

decrease in all topics, sometimes they decreased more than

the increase of the correct answers. This means that wrong

answers do not always turn into a correct answer but can also

turn into a misconception over time.

 Figure 6: Answers per question in the first and second test

0

2

4

6

8

1 2

Misconceptions

WE GSL SSL

32%
55%

33%
47%

20%

11%
32%

21%

47%
34% 36% 32%

8

4.2.3 Misconceptions per topic and condition

There might be a relation between the number of

misconceptions in a topic and instruction method and

therefore the data of misconceptions in a topic is analysed in

each condition. It may be that some instruction methods work

better or worse for topics. Table 4 shows the means and

maximum for the number of misconceptions in each

condition.

Table 4: Mean and maximum number of misconceptions in each condition
Note: Variables consisted of seven questions, if/else statements of five questions, loops

of two questions and input of one question.

In the worked example condition, the misconceptions in all

topics increased and was therefore not effective in avoiding

or reducing misconceptions about programming concepts.

However, the effect of the condition was a more consistent

line than the subgoal labelling conditions, which both showed

larger differences in increase or decrease between the

different topics. If people go from an incorrect understanding

of the concept to a correct understanding, or the other way

around, they have changed their knowledge about a concept.

These results suggest that participants in the subgoal labelling

conditions change their understanding of the concepts more.

A remarkable result is that the misconceptions about loops

are increased in all conditions, which suggest that all

instruction methods are equally ineffective for gaining

correct understanding about the concepts of loops. The

misconceptions about the input, also increased in each

condition but since this topic did not occur in the second class

the same conclusion cannot be drawn.

A mixed ANOVA with time as a within-subject factor and

instruction method as a between subject factor showed for the

main effect of instruction method on the number of

misconceptions within variables F (1, 16) = 0.72, ηp
2=0.08,

P=0.501), if/else statements F (2, 16) = 3.10, ηp
2=0.05,

P=0.073), loops F (2, 16) = 0.74, ηp
2 =0.08, P=0.495) and

input F (2, 16) = 0.22, ηp
2 = 0.08, P=0.978) no significant

differences. So, on average, there was no difference in the

number of misconceptions in each topic per instruction

method. The interaction between time and instruction method

for variables F (2, 16) = 0.47, ηp
2= 0.06, P=0.634), if/else

statements F (2, 16) = 0.58, ηp
2=0.28, P=0.640), loops F (2,

16) = 0.497, ηp
2 = 0.06, P=0.618) and input F (2, 16) = 0.06,

ηp
2 = 0.06, P=0.946) also did not show any significant

results. So, on average, there was no difference in effect of

instruction method on misconceptions over time in each

topic.

Due to the small sample size, it is not unexpected that there

were no significant differences. Looking at the effect sizes,

showed that most effect sizes were very small, between

ηp
2=0.05 and ηp

2=0.08. However, the partial eta squared

showed a bigger effect of instruction method on the

misconceptions about if/else statements (ηp
2=0.28). This

suggest that the instruction method had the highest effect on

the number of misconceptions about if/else statements.

4.3 Wrong and correct answers

Because no effect was found between instruction method and

the number of misconceptions, we take a closer look at

correct and wrong answers. This can be relevant as the

number of misconceptions can be affected by wrong (no

knowledge about the concept) or correct answers (correct

knowledge about the concept). The number of correct

answers is increased with 11%, the number of wrong answers

is decreased with 11% and the number of misconception

answers stayed the same. In 67% of the questions the number

of wrong answers was decreased over time. Probably most of

these wrong answers have been turned into correct answers

since there is a high increase of correct answers over time.

Also, in 67% of the questions the number of correct answers

is increased over time. Table 5 shows the means for the

number of wrong and correct answers in each condition.

 Condition Mean

Wrong
Std.

Deviation
Mean

Correct
Std.

Deviation
Test 1 WE

GSL
SSL

5.80
4.75
5.33

2.78
2.25
1.63

3.40
4.38
5.17

2.07
3.50
3.00

Test 2 WE

GSL
SSL

4.40

3.38
3.33

1.87

1.51
1.03

4.40

6.50
6.67

3.37

2.51
1.97

Table 5: Means for number of correct and wrong answers

The means for correct answers in every condition was

increased over time. The self-explaining subgoal labelling

condition had in the second test the lowest mean for wrong

answers (M=3.33, SD=1.03). In addition, the mean for

correct answers was the highest in this condition (M=6.67,

SD=1.97). The worked example condition had in the second

test the highest mean for the number of wrong answers

(M=4.40, SD=1.87) and the lowest mean for the number of

correct answers (M=4.40, SD=3.37).

4.3.1 Wrong answers

Performing a mixed ANOVA with time as a within-subject

factor and instruction method as a between-subject factor

showed a significant difference in the main effect of time on

wrong answers F (1, 16) = 7.22, ηp
2 = 0.31, P=0.016). This

suggests each method to be effective for decreasing the

wrong answers. There is no significant difference in the main

effect of instruction method on wrong answers F (2, 16) =

0.64, ηp
2 = 0.07, P=0.542) nor the interaction effect F (2, 16)

= 0.10, ηp
2 = 0.01, P=0.910). So, no difference in number of

wrong answers per instruction method is found and also the

effect of instruction methods on wrong answers over time did

not differ in each condition. The partial eta squares also

suggest that there is an effect of instruction method on the

number of wrong answers over time (ηp
2 = 0.31) but the main

Condit

ion

Varia

bles

Max

If/else Max Loops Max Input Max

Test
1

WE
GSL
SSL

2.60
3.38
2.89

5
5
4

2.00
1.63
1.63

3
3
2

0.80
0.50
0.53

2
1
1

0.40
0.38
0.33

1
1
1

Test

2

WE

GSL
SSL

2.80

2.38
2.26

4

5
3

2.20

1.38
1.63

3

2
2

1.20

0.88
1.11

2

2
2

0.40

0.50
0.50

1

1
1

9

effect of instruction method on the number of misconceptions

was very small (ηp
2 = 0.07). The mean for number of wrong

answers decreased in each condition over time and had the

highest decrease in the self-explaining subgoal labelling

condition. This suggest the self-explaining subgoal labelling

condition to be the most effective for decreasing wrong

answers about programming concepts over time.

4.3.2 Correct answers

Besides wrong answers, the number of misconceptions can

also be affected by the number of correct answers. A mixed

ANOVA with time as a within-subject factor and instruction

method as a between-subject factor showed no significant

difference on the main effect of time on correct answers F (1,

16) = 3.66, ηp
2 = 0.19, P=0.074) nor on the main effect of

instruction method F (2, 16) = 1.99, ηp
2 = 0.13, P=0.330).

Also, in the interaction of time and instruction method, no

significant difference is found F (2, 16) = 0.17, ηp
2 = 0.02,

P=0.845). No relation is found between the instruction

method and number of correct answers over time. The partial

eta squares for correct answers suggest there is a small effect

for correct answers over time (ηp
2 = 0.19). Which suggest all

instruction methods to be effective for increasing correct

answers. Also, a small effect size was found in the main effect

of instruction method (ηp
2 = 0.13). The self-explaining

subgoal labelling condition had the highest mean for correct

answers in both tests, the worked example condition had the

lowest mean for correct answers in both tests. These results

suggest the subgoal labelling conditions to be more effective

in gaining a correct understanding of programming concepts.

5. DISCUSSION

In this study, the effect of different types of instruction

methods in classes where 10- to 12-years old children were

learning to program in Scratch was assessed. The one-week

retention of misconceptions was measured using a multiple-

choice questionnaire with exercises in Scratch. The aim was

to study if there was a difference in the number of

misconceptions using different instruction methods. The

study used three different methods of instruction that have not

yet been explored in Scratch to test the retention of

misconception: worked example, given subgoal labelling and

self-explaining subgoal labelling.

No significant difference between the instruction method and

retention of programming misconceptions in Scratch was

found in this study. On average, the number of

misconceptions did not vary over time or per instruction

method. Also, no effect of misconceptions over time for

different instruction methods is found. However, due to the

COVID-19 virus, the schools were closed which resulted in a

small sample size. Since little research is done on these

instruction methods in programming education in Scratch

with children this research was relevant as a pilot study. This

affected the interpretation of the results, the P-value was not

the most important. So, looking at the descriptives and effect

sizes suggests there is a small effect of instruction method on

the number of misconceptions (ηp
2 = 0.12). This suggests

further research can be relevant.

5.1 Misconceptions and instruction method

Looking at the descriptives of all conditions together showed

no difference in the number of misconceptions between the

two tests. However, it showed a small difference, of one and

two misconceptions, between the three conditions. Also, a

small effect size is found between the number of

misconceptions and instruction method (ηp
2 = 0.12) which

suggest there is a difference between the number of

misconceptions between the conditions. The self-explaining

subgoal labelling condition had the least number of

misconceptions in both tests. The mean for misconceptions

in the given subgoal labelling condition in the first test was

higher than the worked example condition. However, the

mean was in the second test together with the self-explaining

subgoal labelling between one and two misconceptions lower

than the worked example condition. Only in the given

subgoal labelling condition there was a decrease of

misconceptions which suggest this instruction method to be

the most effective in reducing misconceptions over time. The

self-explaining subgoal labelling condition had in both tests

the lowest mean for the number of misconceptions which

suggest this instruction method to be effective for avoiding

misconceptions.

Both subgoal labelling conditions had fewer misconceptions

compared to the worked example condition. This is in line

with the literature that suggested subgoal labelling to be

beneficial while programming (Joentausta & Hellas 2018).

Children in the worked example may perform less because it

was hard to understand how to solve a problem without

having subgoals which help to distinguish the key features

from the worked example (Catrambone, 1998). The self-

explaining subgoal condition had the least misconceptions in

both tests, but the misconceptions increased over time. One

possibility could be that children in the self-explaining

subgoal labelling condition had to interpret the knowledge by

themselves, while the given subgoal labels sends the learning

in a direction of interpreting the knowledge. Existing

knowledge is important when learning new knowledge

(Stomp & Schoenmaker, 2002). When the existing

knowledge is incorrect or the given information is incomplete

the new information can be placed in the wrong context

(Hollingsworth & Ybarra, 2017) and a misconception can

occur. Because novices do not have much existing knowledge

it may be that more information such as the subgoal is needed

to place the new information in the right context. The high

space for interpretation in the self-explaining subgoal

labelling condition could have caused to misinterpret the

knowledge which can cause misconceptions. This could also

have resulted in different interpretations during different

classes.

10

5.2 Misconceptions in each topic

After finding small differences in the number of

misconceptions for all topics together, the misconceptions

were also analysed per topic. This ensures that all topics can

be analysed separately, also the question about the input

concept which did not occur in the second class. It may be

possible that each topic prefers to be explained with another

instruction method. Although, no significant results were

found, some small differences in the descriptives and effect

sizes could be noticed. The misconceptions for each topic

increased after using worked examples, and also the means

for number of misconceptions in each topic were the highest

in this condition. So, worked examples did not seem to be

effective in reducing programming misconceptions over

time. There was a medium effect (ηp
2 = 0.28) found between

instruction method and misconceptions in if/else statements.

This may suggest that the understanding of if/else statements

was affected by the used instruction method. Descriptives

showed that the misconceptions about loops were increased

in all conditions over time, which may suggest the concept of

loops needs less independently explaining.

There can be a preferred difference for instruction method

between the topics because some topics can be more difficult

to learn than others. Also, it may be that some topics, such as

loops, have a high change of misinterpreting the concept in

an independently learning method while for some topics, it is

clearer how to interpret the concept. This may explain the

different results between the topics.

Although the worked example condition did not seem

effective for reducing misconceptions, participants were

most consistent in the number of misconceptions for a

specific topic. In the subgoal labelling conditions there was

more change between the number of misconceptions in the

topics, which suggested children in these conditions changed

their understanding about the concepts more. This can be the

result of children being more aware of the steps they are

taking while working with subgoals. Changing knowledge is

important to overcome a misconception because

misconceptions occur by an incorrect understanding.

5.3 Wrong and correct answers

Wrong answers seem to decrease because students give more

correct answers in the second test. The subgoal labelling

conditions seems the most effective because there were fewer

wrong answers compared to the worked example condition.

The self-explaining subgoal labelling instruction method was

the most effective for learning programming concepts

because this condition had the least misconceptions and

wrong answers and the most correct answers. This may be

because children are more aware of the steps they were taking

which resulted in a correct understanding of the knowledge.

This is in line with literature suggesting that generating or

producing additional knowledge beyond the given

instructions is more effective for learning compared to only

following and repeating the given instructions (Chi, 2009).

Because no difference was found in misconceptions all

together over time and this difference was found for wrong

answers over time (P=0.016), it suggests that misconceptions

are more tenacious compared to wrong answers. When

having a misconception people think they have the correct

understanding of the concept, so they do not know from

themselves that they have a misconception which may cause

misconceptions to be more tenacious. Previous research

already suggested that misconceptions can remain for a long

time (Simon, 2011) and maybe a one-week time period was

not enough time to change misconceptions into correct

answers. It is possible that the children need more practice

with the concepts to realise their knowledge about a concept

is incorrect.

5.4 Challenges

Besides the lockdown during the research, which made

finding participants hard, the study faced some other

challenges. First, since the classes could not be given in

schools, due to the COVID-19 virus, the classes were given

online. Children experienced much change during the time

period of this research. In combination with following the

classes at home could have influenced their learning ability.

The children also followed the classes during different times

during the day, something on a free day and sometimes after

a school day which can have affected their performance. In

the online classes is was harder to explain things. Explaining

things took longer because some children first needed

explanation of how to share their screen. Also, sometimes

technological problems occurred and children had to reopen

the video-call. During the online classes there was no break

which may have resulted in tired and less motivated children

at the end of the class. Because motivation results in better

learning (Castejón, Gilar & Pérez, 2006; Schunk &

Zimmerman, 2012) this can have influenced the

questionnaire after the first class. However, this research is

done with children that participated with intrinsic motivation.

It can therefore be assumed that motivation did not negatively

influenced the results. Also, all conditions followed the same

classes which makes it unlikely that huge differences

between the conditions occurred.

Also, the use of a multiple-choice questionnaire had its

limitation. Although there was an open question to explain

their answer, not many children responded to this question. It

may be due to the many questions, which resulted in children

needing a long time to complete. Completing did not take

longer than expected, but the combination of no break and the

online lesson may have made the children less motivated to

answer all open questions. Also, in the first class many

children did not understand certain concepts and filled in ’I

don’t know’. This resulted in many wrong answers which

affected the number of misconceptions. The answers in the

misconception and wrong category were both wrong

answers, but the difference is that people with a wrong

answer mostly did not understand the concept and know that

they have the incorrect understanding and with a

misconception they think they understand the concept

11

correctly. This makes it harder to change a misconception

answer into a correct answer. Fewer misconceptions do not

always mean that children understand the programming

concepts better, it may be that children have few

misconceptions, but many incorrect answers. This means that

the number of misconceptions cannot be taken as a

measurement to see how well children perform on learning

programming concepts.

One programming concept occurred in the first lesson, but

not in the second lesson: the concept of the input in Scratch.

Analysing the data showed an increase in the number of

misconceptions about this concept, which may be influenced

by the fact that in the second class the children did not work

with it and forgot about it. However, the misconceptions

about loops were also increased and this concept did occur in

the second class. Also, the question about the input concept

decreased in wrong answers and increased in correct answers,

which is not different from the other topics. Based on these

results, no different difference is found between practice and

the retention of the programming concepts.

5.5 Further research

To make recommendations to the practice, a larger sample

size is needed. Also, a more consistent study environment

where children can be tested in schools is desirable. More

children can be tested simultaneously, children are less

distracted from their own home environment and it is easier

to supervise on how the children are doing with the

assignment.

Because this study suggest misconceptions are more

tenacious, testing misconceptions over a longer term, such as

one year, would be relevant. After a long time period,

children would have a fully (in)correct understanding of the

concepts which may result in more misconceptions. In the

current research, it could be possible that children had not

enough knowledge about some concepts to have a

misconception. For this study, long-term research was not

feasible. Programming is not integrated into the primary

school’s curriculum in such a way that programming is taught

throughout the year. That is why long-term research in

primary schools is difficult.

The effect sizes and descriptives suggest there may be small

effects of instruction method on misconceptions and correct

answers and therefore further research can be relevant. Since

children in the subgoal labelling conditions performed better,

it can be interesting to focus on these methods instead of the

worked example in further research. Because it seemed like

children in these two conditions changed their mind more

about concepts, more support such as feedback or hints may

be relevant. In the self-explaining subgoal labelling condition

children may benefit from feedback or a list of possible

subgoal names from which they can choose. Feedback allows

children to know whether they interpret a concept correctly.

This may prevent the number of misconceptions from

increasing in the self-explaining subgoal labelling condition.

Feedback can also help in how to interpret knowledge if they

do not understand a concept and may therefore also decrease

the number of wrong answers more. Also, it is interesting to

investigate if the given labels from children can be used to

detect misconceptions faster or can be used to give insight

into the interpretation of programming concepts. This could

both help in avoiding or reducing misconceptions.

Another interesting subject for further research with the self-

explaining subgoal labelling can be to discuss the labels with

each other. Previous research suggested that students change

their knowledge about concepts faster if they discuss them

with fellow students compared to a teacher telling them the

right knowledge about the concept (Stomp & Schoenmaker,

2002). For children it may be interesting to let them conduct

the subgoal labels and let them discuss their labels with each

other and compare this with them discussing with a teacher.

12

References

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning

from examples: Instructional principles from the worked examples

research. Review of educational research, 70(2), 181-214.

Armoni, Meerbaum-Salant, and Ben-Ari. 2015. From Scratch to “Real”

Programming. ACM Trans. Comput. Educ. 14, 4, Article 25 (February

2015), 15 pages.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (2000). How people

learn: Brain, mind, experience, and school: Expanded edition. Retrieved

from http://www.nap. edu/catalog.php?record_id=9853

Castejon, Juan-Luis & Gilar, Raquel & Perez-Sanchez, Antonio. (2006).

Complex learning: The role of knowledge, intelligence, motivation and

learning strategies. Psicothema. 18. 679-85.

Catrambone, R. (1998). The subgoal learning model: Creating better

examples so that students can solve novel problems. Journal of experimental

psychology: General, 127(4), 355.

Chi. M. T. H. (2009). Active-constructive-interactive: A conceptual

framework for differentiating learning activities. Topics in Cognitive

Science, 1(1), 73-105.

Chi, M. T., & Wylie, R. (2014). The ICAP framework: Linking cognitive

engagement to active learning outcomes. Educational psychologist, 49(4),

219-243.

Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rale

automation on mathematical problem-solving transfer. Journal of

Educational Psychology, 79, 347-362

Dillon, R. F., & Reid, L. S. (1969). Short-term memory as a function of

information processing during the retention interval. Journal of

Experimental Psychology, 81(2), 261–269.

Du Boulay, B. 1986. Some Difficulties of Learning to Program. Journal of

Educational Computing Research 2, 1 (1986), 57–73.

Firdaus, F. M. (2017). Improving Primary Students' Mathematical Literacy

through Problem Based Learning and Direct Instruction. Educational

Research and Reviews, 12(4), 212-219.

Gomes, Anabela & Mendes, Antonio. (2007). Learning to program -

difficulties and solutions. 283-287.

Hermans, F., & Aivaloglou, E. 2017. Teaching Software Engineering

Principles to K-12 Students: A MOOC on Scratch. In Proceedings of the 39th

International Conference on Software Engineering: Software Engineering

and Education Track. 13–22.

Hermans, F., & Smit, M. (2018). Explicit Direct Instruction in Programming

Education. In Proceedings of the 29th Annual Conference of the Psychology

of Programming Interest Group (PPIG 2018) (pp. 86-93).

Hollingsworth, J. R., & Ybarra, S. E. (2017). Explicit direct instruction

(EDI): The power of the well-crafted, well-taught lesson. Corwin Press.

Houston, J. P. (2014). Fundamentals of learning and memory.

AcademicPress.

Ichinco, M., Harms, K. J., & Kelleher, C. (2017). Towards understanding

successful novice example user in blocks-based programming. Journal of

Visual Languages and Sentient Systems, 3, 101-118.

Joentausta, J., & Hellas, A. (2018, February). Subgoal labeled worked

examples in K-3 education. In Proceedings of the 49th ACM Technical

Symposium on Computer Science Education (pp. 616-621).

Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem

solving is superior to studying worked examples. Journal of educational

psychology, 93(3), 579.

Klahr, D., & Nigam, M. (2004). The Equivalence of Learning Paths in Early

Science Instruction: Effects of Direct Instruction and Discovery

Learning. Psychological Science, 15(10), 661–667

Lee, E. C., Whitehead, A. L., Jacques, R. M., & Julious, S. A. (2014). The

statistical interpretation of pilot trials: should significance thresholds be

reconsidered?. BMC medical research methodology, 14(1), 41.

Ma, L. (2007). Investigating and Improving Novice Programmers’ Mental

Models of Programming. Concepts. University of Strathclyde

Margulieux, L. & Catrambone, R. (2016). Using Subgoal Learning and Self-

Explanation to Improve Programming Education.

McLaren B.M., van Gog T., Ganoe C., Yaron D., Karabinos M. (2014)

Exploring the Assistance Dilemma: Comparing Instructional Support in

Examples and Problems. In: Trausan-Matu S., Boyer K.E., Crosby M.,

Panourgia K. (eds) Intelligent Tutoring Systems. ITS 2014. Lecture Notes

in Computer Science, vol 8474. Springer, Cham

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning

computer science concepts with scratch. Computer Science

Education, 23(3), 239-264.

Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops

misconceptions in block-based and text-based programming languages at the

K-12 level. Education and Information Technologies, 23(4), 1483-1500.

Ouahbi, İ., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2014).

Serious Games for teaching combined basic programming and English

communication for non-science major students. International Journal on

Advances in Education Research, 1(1), 77-89.

Paas, F. G. (1992). Training strategies for attaining transfer of problem-

solving skill in statistics: A cognitive-load approach. Journal of educational

psychology, 84(4), 429.

Price, T. W., & Barnes, T. (2015, August). Comparing textual and block

interfaces in a novice programming environment. In Proceedings of the

eleventh annual international conference on international computing

education research (pp. 91-99).

Rahman, S. S. A., & du Boulay, B. (2010). Learning programming via

worked-examples. PPIG-WIP, Dundee 2010, 1-6.

Schunk, D. H., & Zimmerman, B. J. (Eds.). (2012). Motivation and self-

regulated learning: Theory, research, and applications. Routledge.

Simon. 2011. Assignment and sequence. Proceedings of the 11th

International Conference on Computing Education Research (2011).

Sorva, J. 2008. The same but different students’ understandings of primitive

and object variables. Proceedings of the 8th International Conference on

Computing Education Research (2008).

Sorva, J. 2012. Visual program simulation in introductory programming

education. PhD Thesis, Aalto University. (2012).

Stomp, Lex & Schoenmaker, Karel & valstar, johan. (2002). Van

vakdidactiek naar een gedeelde opleidingsdidactiek. Velon tijdschrift voor

lerarenopleiders. 2002. 14.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a

substitute for problem solving in learning algebra. Cognition and

instruction, 2(1), 59-89.

Swidan, A., Hermans, F., & Smit, M. (2018, August). Programming

misconceptions for school students. In Proceedings of the 2018 ACM

Conference on International Computing Education Research (pp. 151-159).

Tew, A. E. (2010). Assessing Fundamental Introductory Computing Concept

Knowdledge in a Language Independent Manner. Georgia Institute of

Technology, School of Interactive Computing

Vihavainen, A., Airaksinen, J., & Watson, C. (2014). A Systematic Review

of Approaches for Teaching Introductory Programming and Their Influence

on Success. In ICER '14 Proceedings of the tenth annual conference on

International computing education research (pp. 19-26). New York: ACM.

Zhi, R., Price, T. W., Marwan, S., Milliken, A., Barnes, T., & Chi, M. (2019,

February). Exploring the impact of worked examples in a novice

programming environment. In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education (pp. 98-104).

