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Abstract

DiminishingBridge, or better known as “Boerenbridge” in the Netherlands, is a somewhat
uncommon card game, known as the American card game “Oh Hell” as well. The goal of the
game is for each player to earn as many or lose as few points as possible. At the end of the
game, the player with the most points emerges as the victor.

DiminishingBridge is a trick-taking card game with the element of trump cards as well.
The game is split in two separate phases, a bidding phase and a playing phase. In this paper
we will focus on exploring various agents with different strategies to test their applicability
within a game of incomplete information, their performance under various parameters and
finally see if they are a worthy competitor against human players. The agents we will discuss
are the “Random Agent”, “Trumping Agent”, “Rule Based Agent”, “Monte Carlo Agent”
and “Monte Carlo Tree Search Agent”. The agents based on the Monte Carlo algorithms have
specifically developed evaluation methods to allow the algorithms to work within this card
game. Experimental results are presented; they show that the Monte Carlo Agent performs
better than the other agents.
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1 Introduction

DiminishingBridge is a trick card game in which players have to estimate the number of tricks
they will make. Unlike many similar card games, such as “Rubber Bridge”, DiminshingBridge
requires the player to achieve the exact number of tricks which they have bid in order to earn any
points. In this thesis, this card game will be studied, which is a specific version of the card game
“Oh Hell”. Although this game version’s name contains “Bridge”, as well as in the Dutch translation
(“Farmer’s Bridge”), it has less in common with “Contract Bridge” or just “Bridge” than the name
would suggest. The game was first described in 1930 by B.C. Westall [Par08].

Figure 1: Example hand in the First Round of DiminishingBridge.

The Dutch version of the game, “Boeren Bridge”, is traditionally played with four players and
a single deck of (French) cards, starting off by dealing all the cards evenly to the players. Thus
each player has thirteen cards at the starting round, see Figure 1. Each new round the players
are allocated one card less than the previous round. In the final round of the game all players are
given just one card. Each player’s aim is to earn as many points each round as possible, by exactly
winning as many tricks each round as they have bid. The player with the most points at the end of
the last round, wins [BJS13].

By using strategic algorithms, such as Monte Carlo, this game will be analysed, as well as certain
other variations, by altering the number of cards, players and other parameters. The agents playing
the game will either use one of the strategic algorithms or randomly decide which move to make.

For this thesis, code was developed in C++ and the source code is available at the Github Repository.

This thesis will describe the rules of the game and the parameters allowing for alterations in
Section 2, related research in Section 3, strategies and algorithms on DiminishingBridge in
Section 4, discussion of results and statistics in Section 5 and lastly, the conclusion of this paper
with a discussion for further work can be found in Section 6.

This bachelor thesis was written for the Leiden Institute of Advanced Computer Science at the
University of Leiden and was supervised by dr. W.A. Kosters and dr. J.N. van Rijn.
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2 Rules of the Game

This chapter will describe the set of rules regarding the game, using several parameters to allow
for certain variations, both hypothetical and existing, some of which are described later in this
chapter, see Section 2.5

2.1 Set Up

The game is originally played with four players. However, it is possible to play this game with
more or fewer players, the minimum requirement being two players. Usually the number of players
varies between three and eight. If this game would be played with only two players, one could easily
calculate the first round, as any card that one does not have must be in possession of the other
player, because the entire deck is dealt in the first round. A third contestant in the game forces
it to be unclear which player has what card in the first round, making it impossible to calculate
which exact player has which card. At the start of the game, a random player is selected to be the
dealer, which will be explained later on.

2.2 Cards

Because all cards are dealt in the first round, the number of cards C(p, r) in the game depends on
how many players are present and how many rounds are played:

C(p, r) = p · r (1)

Here p is the number of players and r the number of rounds to be played.

Order and suit Using a French deck of cards, the cards are ordered, cards showing the number
2 as the lowest in order and cards showing the ace the highest, giving the following linearly ordered
set:

{2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A}

Here J , Q, K and A represent the Jack, Queen, King and Ace, respectively. This can be represented
as the set of natural numbers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} correspondingly. The number of
different card suits s is in the French deck 4, however this may vary in different (hypothetical)
variations, as well as the number of cards within a suit, the order o. The number of suits s can be
calculated by:

s =
C

o

or alternatively, the order o can be calculated by:

o =
C

s

Here C is the number of cards in the game as above, o the size of the order as a set of natural
numbers. In the original game the values are C = 52, s = 4 and o = 13.
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Trumps Trump cards are cards of the suit that will trump any card of any other suit in the game.
At the start of each round (excluding the first round, which has no trump suit) the suit of trump
cards is decided by picking a random card from the set of cards that is not included this round (i.e.,
a card that was not distributed to any player but is in the full deck). The selected card is shown to
the players, yielding thus more information than just the trump suit of the round, as the set of
cards that was not dealt is completely unknown except for the card announcing the trump suit.

2.3 Rounds

Each round contains a number of tricks t, depending on which round is being played. The number of
tricks is equal to the number of cards in the hand of any player, as the cards are equally distributed,
at the start of the round. So in the first round of the original game, t = 13, as all 52 cards are
distributed among p = 4 players.

2.3.1 Dealer

At the start of the game, the order of players is determined, clockwise around the table. The first
player in the order is left of the dealer. The dealer is determined randomly in the first round,
afterwards the dealer shifts each round to the next player in the order. In the original game, each
player is named the dealer three times, except for the player that is named the dealer in the first
round. The player that is named the player in the first round is named the dealer in the last round
as well, since four players play thirteen rounds.

At each trick, each player plays one card clockwise, starting with the player who won the last trick.
In the first trick of each round, the player first in order, that is the player clockwise after the dealer,
will start the trick.

2.3.2 Bidding

Bidding is a crucial activity at the start of each round. Each player states, starting at the player
first in order, how many tricks they expect or want to make this round. It is the objective of the
round for each player to get the exact amount of tricks as they bid at the start of the round. Any
player that reaches the objective will be awarded a certain number of points, whereas any player
that fails to do so will be deducted a certain number of points.

Bidding may technically vary between zero and infinite, although bidding above the number of
available tricks in the round would be pointless as one will never be able to achieve this bid in this
round of the game. Therefore this option will be excluded and from here on we will continue with
0 ≤ b ≤ t, where t is the number of tricks to be made and b the bid to be chosen.

Screw the dealer In DiminishingBridge it is a matter of custom to screw the dealer. The
dealer is always the last in the order of players, and therefore the last to bid on how many tricks
there are to be made. This rule forbids that the sum of bids is equal to the number of tricks to be
made, i.e., the dealer is the only player that is sometimes not allowed to state one certain value of
b in the interval described above. For example, four players play a round of 6 tricks (t = 6), with
bids so far being 2, 0, 3. This means that the fourth player (dealer) is not allowed to state bid 1, as
2 + 0 + 3 + 1 = 6, but is allowed to state any other bid that is between 0 ≤ b ≤ 6 in this example.
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2.3.3 Following Suit

Every trick of every round forces players to “follow suit”: The first player to play a card each trick
determines the suit of the trick. Any player must play a card from that exact suit, unless the player
is not able to do so. If that is the case, the player is allowed to play any card, including trump
cards. The player is not obliged to play trump cards when possible in this situation.

Winning a Trick The winner of a trick is decided by firstly applying following suit: Any player
that did not follow suit and did not play a trump card instead is ineligible to win the trick. If none
were able to follow suit nor played a trump card, it means that the player that started the trick
wins. If any cards were played of the trump suit, the player that played the highest order in the
trump suit wins the trick. If no trump cards were played the player that played the highest order
card that followed suit wins. The player that wins the trick, is the player that will start the next
trick as well, allowing them to decide the suit of the trick.

2.4 Awarding and Deducting Points

The award and deduction system differs between variations of “Oh Hell”. In the Dutch version,
each player that reaches the goal earns a constant factor K, equal to ten points, plus the number
of tricks made. Any player that does not reach the goal is deducted |b− t|, with b being the tricks
bid and t the tricks made; each player is deducted the number of tricks too few or too many made
that round. In other versions, more or fewer points may be awarded as starting value, other factors
and/or constants are introduced for calculating the score.

2.4.1 Breaking the Rules

In (almost) every version, a certain number of points is deducted from a player when any of the
rules are broken (e.g., not following suit, playing a card when it is not one’s turn, peeking, . . . ). We
will assume that each player is “perfect”: no fouls or forms of cheating are considered, to reduce
the possible number of games that are to be calculated by the agents.

2.4.2 Absolute Victory

We define the point system as follows: R is the number of rounds to be played; the number of tricks
to be made each round is equal to the round number r, c is the constant point addition for any
player that makes the number of tricks that was bid and lastly we define tf as the “trick factor”,
which is commonly equal to one. The number of points that can be awarded in a round to a single
player is K + r · tf . As the number of rounds in a game is known, we can define the number of
points Gp a player can earn in the game as:

Gp =
R∑
i=1

(K + r · tf )

Note that this number may decrease, for instance when the bid of a player is lower than the number
of tricks in round i. Secondly we define the maximum of points any player can lose in the game Np

by `f , the “losing factor”, as follows:
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Np =
R∑
i=1

i · `f

Note that these formulas can be used at any moment in the game, if one is to replace R, the total
number of rounds in the game, with the number of rounds that have yet not been played in the game.

Now that we know the number of points that can be maximally earned and lost by any player at
any moment in the game, we can define the “Absolute Victor”. This is a situation that a player
has earned a certain number of points which makes it impossible to lose for this player before the
game is over. Commonly, in many games this would be defined as Av = bGp/2c+ 1, where Gp is
calculated with the total number of rounds R. However, earning more than half of the points does
not mean one has won, as players may also lose points each round. In order to decide whether the
leading player in the game is an “Absolute Victor” we need to compare the leading player’s score
p1 with the second best player’s score p2. Then we consider the score difference:

Sd = |(p1 −Np)− (p2 +Gp)|
The calculated score difference Sd can now be interpreted with the following set of rules:

• If Sd < 0 the leading player cannot be declared an “Absolute Victor” as he can still be
surpassed.

• If Sd = 0 the leading player cannot be declared an “Absolute Victor” as the game can still
result in a tie.

• If Sd > 0, the leading player can be declared an “Absolute Victor” as no player can exceed
his number of points in the optimal situation.

To summarize, the concept of an “Absolute Victory” is simply trying to determine whether the
leading player has won the game before it even ends. In the original card game, the game is always
played until the last round. However, in this thesis a game will be stopped if a player achieves
“Absolute Victory” and this will be noted, as “winning the game before it is even over”, which is
considered to be better than winning in the last round.

2.5 Known Variations

A certain interesting variation of the game is the “Devil’s Bridge” variation, where each player is
not allowed to look at one’s own card in the last round, but only at all the other cards to decide
their bid.

A common variation of this game in the Netherlands, the Dutch “Boeren Bridge”, is to play from
thirteen cards to one, back to thirteen cards. This is basically DiminishingBridge played twice
in one game with a continuous scoreboard: once regularly and once inverted (so just “Oh Hell”).
This version includes the version of “Devil’s Bridge” as well. Although this might be very exciting
for human agents, for an algorithmic agent it is just a larger game.

A less common variation is “Luciferen” (“Safety Match”), where players count down and drop a
certain number of matches to let the others know how many tricks they are bidding to make. This

5



does not allow a player to use the information of former bids but does not check for the “screw the
dealer” rule.

In Germany the game is known as “Stiche-Raten” (“Trick Guessing”) where it can be played with
a 64-card deck as well.
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3 Related Work

Although the game DiminishingBridge is not a very frequent subject for research, trick-taking
card games have been extensively researched for years now by many as “. . . is a popular research
topic, even more so when the problem has been open for some time and the game is actually
of interest to players and researchers.” [BJS13]. Although DiminishingBridge differs from the
regular whist [Wäs05], as it requires an exact number of tricks, not a minimum number of tricks;
any trick scored above the bidding is negative for the player.
However, there are some trick-taking card game papers that are interesting for discussion as many
other trick-taking games have very similar methods on incomplete information [FB97].

3.1 Search in Games with Incomplete Information

The article [FB97] by Frank and Basin from 1997 approaches the greatest similarity that “Contract
Bridge” and DiminishingBridge have, aside from the fact that they are both referred to as
“Bridge”. As noted before in Section 1, the two trick-taking card games have less in common than
one might think, but as both are trick-taking card games they do have common ground when it
comes to having incomplete information. Frank and Basin point out correctly that strategy fusion
is simply not possible due to the unknown current state of the world which is “. . . a constraint
typically broken when combining strategies designed for individual worlds.” Another observation
that we can take from this paper is that the issue of non-locality may occur: due to the incomplete
information some game states may never be reached and therefore the partial evaluation of the
decision tree (the evaluation of the sub-tree) is “considering payoffs in world states that are in fact
of no consequence at that position in the tree.”

Aside from the manner to treat incomplete information and therefore the game, these two trick-
taking card games have very little in common, mainly due to the two-player team system, instead
of a “free-for-all”, which gives a whole different approach to the game (and therefore game-tree).
Similar differences are found quite often with other trick-taking games [Par08].

3.2 The Trick-Taking Game of Klaverjas

In the article by Van Rijn, Takes and Vis the Dutch trick-taking card game “Klaverjas” is
discussed [vRTV18]. Although “Klaverjas” is different from DiminishingBridge due to the two-
player team concept, the different manner of earning points through certain trick combinations and
the card deck containing only 32 cards, they “. . . consider the task of determining and predicting
whether an instance of the game of Klaverjas is winning for a variant of the game” where perfect
information is available to the algorithm.

The similarity in “Klaverjas” and DiminishingBridge in this article can be found in the calculation
of different configurations (in the initial round), which in our case would be the possible distributions
of 52 cards over 4 players (called hands in the article) we get a slightly different Combinatorial
Number System. In our case this would result in:

(
52
13

)(
39
13

)(
26
13

)
. However, this may vary due to the

number of players (and suit/order size).

In order to evaluate a certain game state, the authors have used classical minimax search with
α-β pruning [RN16], without any additional heuristics. However, they also state that this method
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is not a practical method, as they are simply searching for game-state evaluations with perfect
information, due to the impractical size of the state-space. As the number of configurations of the
game in this thesis is even larger, due to the card deck size, this is applicable to the situation in
this thesis as well.

3.3 Monte Carlo on Skat

“Skat”, Germany’s national card game, is quite similar to DiminishingBridge as well as “Klaverjas”.
This game is played with 3 players, 4 suits and 32 cards. The number of cards and extensive point
calculation system has quite a lot in common with the one for “Klaverjas”, however this game is not
played in determined teams: during the bidding phase it is decided how for each hand (or round) the
teams are formed. Furthermore, instead of randomly selecting the trump, the player that won the
bidding phase decides the trump suit, which is also quite different from the DiminishingBridge
trump selection method.

In the paper by Kupferschmid and Helmert [KH06] the authors mainly place the focus on the
difficulty of the “unknown” or “random” factor in the game, which is similar to DiminishingBridge,
due to incomplete information, as discussed before. This is very relevant to this thesis as well, as
they correctly address the issue of “statistical error and the inaccuracies” in which an algorithm,
in this case Monte Carlo, might prefer a choice in which victory is not guaranteed to a choice in
which it is guaranteed, because of the number of points that is to be gained. This translates into
our situation only in the bidding part of the game, afterwards the algorithm only needs to worry
to try and make as many tricks as was bid, where the number of points to be earned is already
determined. Another noteworthy point in this article is the differentiation of the card-playing engine
and the bidding engine as this effects DiminishingBridge as well in a different manner.

3.4 On Random Forest and AlphaZero

Two related concepts to this thesis are Random Forest [Bre01] and AlphaZero [SHS+18]. For
starters, Random Forest is applicable as a possible algorithm for an agent, due to its characteristic
that counters overfitting, for instance. This is a useful trait as the game is within incomplete
information. Likewise, AlphaZero, could be used as well as it ”. . . can achieve, tabula rasa,
superhuman performance in many challenging domains.” [SHS+18]. They are very potent and
intelligent constructs. However, neither of these are used to create an agent for DiminishingBridge
in this thesis as they require a great consumption of time for not only their application to this
specific situation, but for their calculations for simulating and training as well, not to mention the
highly diverse numbers of approaches that could be used to construct any such agent that they
could perhaps be a thesis subject on DiminishingBridge on their own.
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4 Strategies and Algorithms

This section will discuss the outline of different agents on DiminishingBridge. Most importantly
certain decisions will be made clear and will be explained in this section. Note that each agent is
split into two parts: the bidding engine and the playing engine.

4.1 Strategic Bidding Engine

The Strategic Bidding Engine is inspired by the “Milton Work Point Count System”[DL01] from
bridge and is based on the hand evaluation at the start of each round. In order to decide which bid
to make, a pointing system is used to approximate the value of a hand, a high value meaning the
hand will probably win many tricks and a low value meaning the opposite. The value of a hand is
defined as the sum of the values of all its cards. The value V of a card c is determined using the
number of cards in the game C, the card suit s, the order size o, the card rank of the card cr, the
order and the current trump suit of this round s0. In case that s 6= s0 the formula is:

V (c) = 1.0− |cr − o|/C

In case that s = s0 the formula is:

V (c) = max(0, 1.0− ((cr − o)2 + o)/C)

The general idea for this pointing system is based on the fact that the highest card in the original
game, the ace of the trump suit, is always winning. Any player that is dealt this card will never
bid lower than one because the ace guarantees that at least one trick will be won, since it can
participate in any trick. This explains the 1.0: This card is the base case. However, any trick card
after that still has a very good chance of winning; It beats all the other cards of the other suits and
not all the other cards of the trump suit have to be dealt, hence its effective rank could be higher
than its technical rank. Therefore, the quality of cards in the trump suit is linear: |cr − o| reverts
the order and divides it by the number of cards in the game, i.e., it deducts the number of cards
that can (technically) beat itself.

In case of cards where their suit is not equal to s0, the calculation is done quadratic: The order
is reversed and then squared so any card further from the ace will become worth less and less.
Secondly, we always add the order size o to this value, since any trump will always beat this card.
Note that this formula is also used in the first round, when there is no trump suit as it is still a
good estimation: The addition of o then works as a correction that owning a card does not mean
that a player will be able to play it when desired, e.g., owning the ace of spades when diamonds is
trump is useless in the last round if the trick starts with spades (or any suit that is not spades for
that matter).

4.2 Monte Carlo Bidding Engine

The Monte Carlo Bidding Engine is a simplified Monte Carlo simulation [RN16], which uses the
same budget as the Monte Carlo Agent below, using as input the agent’s cards, the starting player
order, the round number, the illegal bid if available, and the trump suit, if available. The engine
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runs as much simulations as the budget allows and counts each time how many tricks the player
has won in the simulation. Afterwards the number of tricks made in total is divided by the number
of simulations, selecting the integer closest to the floating point value. If this integer is equal to the
illegal bid, the floating point value is rounded off the other way around.

4.3 Random Agent

The Random Agent is not a truly pure random player. In the bidding phase its bidding engine uses
the bidding engine as specified in Section 4.1. In the playing phase, however, each trick the playing
engine is told which of the cards in its possession are legal moves, from which a card is selected
uniformly random. This decision was made due to the fact that a pure random player simply strays
too far from any sensible results.

4.3.1 Trumping Agent

In contrast to the random agent, the Trumping Agent is not very pure in its playing phase as it
always prefers playing trump cards when possible. They do share the same bidding engine but in
the playing phase, the playing engine of the trumping agent is told which moves are legal but then
it first tries to find all possible trump cards within the set. If any are possible, a random trump
card is selected, otherwise it plays a random card within the set of playable cards.

4.4 Rule Based Agent

The Rule Based Agent is a simple agent using a set of rules to determine which card to play. The
idea of the Rule Based Agent is to mimic a human agent with perfect memory. The Rule Based
Agent uses the bidding engine from Section 4.1.

After the bidding has been done, the Rule Based Agent will have to decide which card to play each
trick. The rule set is split into two parts, based on the number of tricks made t by the agent so far
and the agent’s bid b; The first set applies if t < b, the second applies if b ≥ t. First the legal moves
are calculated at the given point. Secondly, for each card c its current card value V (c) is calculated
using the perfect memory of the agent.

The card value is calculated using the following formula, with OP the number of cards higher in
order played within the suit, Tr(c) that determines as a Boolean whether the card c is a trump
card. It is equal to zero if the card is a trump card, or if there is no trump suit present like in the
first round, one otherwise. PT is the number of trump cards played so far. Lastly, cr represents the
rank of the card and o represents the number of cards in a suit as discussed in Section 2. We put:

V (c) = 1.0− (o− cr −OP ) + Tr(c) · (o− PT )

(o−OP ) + Tr(c) · (o− PT )

Note that division by zero cannot happen, as we only evaluate cards that have not been played yet.
Secondly, note that it is possible for cards to have the same evaluation. Thirdly, in case that a card
has been played in the current trick that beats the current card, its value V (c) is multiplied with
−1 because this card is definitely not able to win this trick. Fourthly, note that a card valued at
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zero could still win a trick when the card is the first card to be played in a trick. For example, if
a player is the first to play in the trick and plays the lowest card of a non trump suit, this card
is evaluated at zero (“This card cannot win from any other relevant card”). But if none of the
other players plays this suit or the trump suit, this card still wins. Only cards with a negative value
are “guaranteed” to lose. Lastly, note that all the other cards in the possession of the player are
considered “played” whilst evaluating V (c), as they are not able to influence the outcome of trick
because the player can only play one card. In later rounds, many cards do not partake in the game,
influencing the accuracy of this method.

After these calculations, using perfect memory, the agent checks if any of the players that still have
to play a card this trick are not able to play this suit and are not able to play a trump card, i.e.,
these players are certainly not able to win this trick.

The card values represent an estimation within incomplete information of the probability that the
card wins the current trick. Using these estimations, we apply the following rule sets to decide
which card to play. If the rule set determines that two or more cards are eligible, one is selected
randomly.

The first rule set is as follows:

1. If all card values are equal to zero or less than zero, a lowest valued card is played.

2. If none of the other players that have not played yet are able to play a winning card or the
agent is the last player in the trick, the card with the lowest value, higher than zero is played.

3. Otherwise, a highest valued card is played.

The second rule set is as follows:

1. If there are any cards valued at zero or less, the highest valued card of this set is played.

2. Otherwise, the lowest valued card is played.

4.5 Monte Carlo

The Monte Carlo method [RN16] is a very well-known and popular set of algorithms based on
casino statistics. The method is very useful for the research environment due to its vast size: the
upper limit of possible rounds is C!, which is 52! in the classical variation, approaching 8.07 · 1067

just for the first round. Note that this number is not a tight upper bound, as some variations may
be illegal (or even isomorphic).

There are two separate agents that can be produced with this method: A regular version that gives
each option the same number of evaluations, and the Tree Search version which uses a weighting
scheme to decide which option should be investigated further at the current situation.
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4.5.1 Monte Carlo Agent

The Monte Carlo Agent bids using the Monte Carlo Bidding Engine, described in Section 4.2. First
it is important to consider that the agent will start over each round, as each round new cards are
dealt: the agent will not search beyond the current round. Secondly, the agent will not consider
achieving the number that was bid as “winning” and not achieving it at the end of the round
“losing”. Although this may seem very logical, there is much discrepancy between the two, so we
will estimate the quality of a leaf with an evaluation function. The agent will simulate per option a
number of games k, the so-called play-outs, to evaluate each move. The game will be continued
using only the Random Agents with the input of the current game state. When a leaf has been
reached, the round must be evaluated.

This can be done, for instance, by evaluating the scoreboard of the game at the end of the round.
We calculate the scoreboard value SV using the score of all players p1, p2, . . . , pn, where p1 has
the highest score and pn the lowest. First we normalize the scores around the agent’s score pi. This
method results in any player pj that has the exact same score as our player pi to be set to zero as well.
This, however, this is losing as well as the game results in a loss for all of the players in case of a tie.
Therefore we add one point to any pj = 0 where pj 6= pi to represent the fact that this “losing” as well.

Now we must adjust the player or players that are in the first place to have a bigger impact, as
these are currently winning, so we replace the highest score p1 with p1 = p

1+(p1/2·i+K−1)
1 . Here i is

the current round and K the winning constant as described in Section 2.4. This replacement of
the highest score is based on the fact that if the score distance between the winning player and
the agent increases, the impact of this distance on the scoreboard value SV will start to increase
exponentially. This impact has been gauged to the maximum distance between the two: if the
distance is equal to this number of points, the impact of p1 will be squared. If the player is in first
place, the value of p1 is equal to zero and therefore nothing happens. Then we calculate SV as
follows:

SV (s) = −
p∑

P=1

pi/i

Here the value of player pi is divided by its rank i and the sum’s resulting value is made negative
as we are evaluating the scoreboard for a specific player: positive values mean another player has
more points than this player and negative points vice versa. However, Monte Carlo is based around
“winning” and “losing” results from evaluations, so the SV must be slightly adjusted to estimate
whether it is winning or losing. Consider W as the lower limit, i.e., “the worst possible” scoreboard,
and B as the upper limit, i.e., “the best possible” scoreboard for the evaluating player. Then we
can calculate their scoreboard values SV and adjust the scores accordingly. Considering SV (W ) to
approach “losing” a game and SV (B) “winning” a game, we can calculate the game value GV of
scoreboard s as follows:

GV (s) =
SV (s)− SV (W )

SV (B)− SV (W )

Here 0 ≤ GV (s) ≤ 1. Note that scoreboard W is constructed by taking the scoreboard from the
root node and adding the maximum achievable points for any player that round to each player that
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is not the agent and subtracting the most points that can be lost from the player that is the agent,
and B is constructed vice versa. Secondly, note that W is not reachable, as it is impossible for each
player to win all the tricks of a round, whereas B is only possible if each player bids the maximum
number of tricks in a round, which is very unlikely. Lastly, there is an exemption in which the
formula above is not applicable: if in any scoreboard an “Absolute Victor” can be declared, i.e., a
player has won the game before it is over, as stated in Section 2.4.2, either GV is equal to one if
this victor is the player or zero otherwise.

4.5.2 Monte Carlo Tree Search Agent

Similar to the Monte Carlo Agent, the Monte Carlo Tree Search Agent will bid using the Monte
Carlo Bidding Engine, described in Section 4.2.
The Tree Search variant of the Monte Carlo Agent will start out as usual using the options of
Selection, to decide which move to investigate further, Expansion, to expand a node with a new
child, Simulation, playing k random play-outs and Back propagation, updating the nodes value from
the simulation node all the way back to the root. The Monte Carlo Tree Search Agent uses the same
evaluation function for leaves as Monte Carlo, however it evaluates nodes differently by conducting
the tree search. The node evaluation function is adapted from Kocsis and Szepesvári [KS06]. The
original formula, which calculates the probability of each node to be selected, is stated below:

wi

ni

+ c0 ·

√
ln(Ni)

ni

Here wi is the number of wins for this node after the move i, ni is the number of simulations
considered for the i-th move, c0 is the exploration parameter, set to

√
2, and Ni is the total number

of simulations in this node as considered from the parent node. However, in our situation it is not
only impossible to decide after each round whether a player has won or not, since the game does
not end after each round, but the evaluation function returns an evaluation of the scoreboard. In
order to decide if a node should be explored, we need a slightly adjusted formula: we replace wi

simply with the sums of the game values GV from the previous section.

4.6 Human Agent

In order to properly estimate the performance of these agents will be illustrated through mass
testing against each other. However, the most noteworthy opponent to test these algorithms and
strategies on is the Human Agent. To truly illustrate the quality of the Human Agents versus the
Computing Agents, these Human Agents will be hand picked from different faculties of Leiden
University with some experience in card games. The most interesting of these human agents is Tim
van de Paverd, second year student in Economics and Business Economics at the University of
Amsterdam, whose skills in card games are a true match for the computer. Although these matches
will not be as legendary as Kasparov vs. Deep Blue 1997 [Pan97], van de Paverd does hold several
titles in “Contract Bridge” to his name, such as the European Championship in Stokke, Norway in
U21 in 2019 [Bon19a] and second place in the World Championship in Opatija, Croatia U21 in
2019 [Bon19b].
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5 Results

This section will illustrate the outcome of the various agents described in Section 4, with various
parameters where possible. All of the results are focused on a game with four players, as this is the
regular playing style of the game where performance of the agents should be optimal.

5.1 Analysis

The various agents are all very different, but a quick selection can be made which agent will
outperform another agent through some small analyisis. The results shall suggest the following
properties, where x < y means y performs better than x, as follows:

RA < TA < RBA < MCTS < MC

Here RA is the Random Agent, TA the Trumping Agent, RBA the Rule Based Agent, MCTS the
Monte Carlo Tree Search Agent and MC the Monte Carlo Agent. The Random Agent is placed the
lowest and each other agent that does its moves strategically should at least perform as well as the
Random Agent. The Trumping Agent is a special form of the Random Agent and performs better
than the Random Agent, as it has some form of strategy, but very slightly. The Rule Based Agent
performs better than either of those as it is an extensive strategic agent. Both the Monte Carlo
and Monte Carlo Tree Search Agent should, in general, out perform all the other agents due to
their extensive analysis of game states. However, the Monte Carlo Agent performs better than the
Monte Carlo Tree Search Agent, due to the fact that the latter treats the game as deterministic
even though the game takes places in an environment of incomplete information. Lastly, the Human
Agent is not placed anywhere, as the data set is insufficient to make any proper conclusions, which
is elucidated in Section 5.7.
Each section below, excluding Section 5.2, is concluded with a significance tests, for which we make
a two assumptions [AA18]. The most important assumption is that the population is distributed
normally. Secondly, we assume that the obtained data is collected using randomization. We will
test the significance using a one sided significance test, where each agent is expected so exceed its
regular number of victories, giving the research hypothesis Ha : π > π0. As the number of players is
equal to four, it should properly exceed its fair share against the other three agents, thus π0 = 0.25.
Furthermore, this agent must have the highest percentage of victories within the data set. Although
this method is not perfect, it does give some argument for an agents quality of performance. We
assume an α-level of 0.01, which is rather strict but has been chosen because of the great sample
sizes. Afterwards a confidence interval is calculated with a z-value of z = 2.576 [AA18].

5.2 Random Agent

The Random Agent is the most simplistic agent of all. In Table 1 are the results of 1,000,000 games
of four Random Agents.
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1,000,000 games Points Earned Wins Absolute Victories

Random Agent 1 29,662,799 244,497 52,776
Random Agent 2 29,652,884 243,968 52,837
Random Agent 3 29,637,495 243,690 52,969
Random Agent 4 29,704,806 244,801 52,768

Total 118,657,984 976,956 211,350

Table 1: Four Random Agents against in one million simulations.

Note that the total number of wins and the total number of games do not necessarily match: Ties
are counted as a no win situation for every player. Therefore each agent performs slightly under
the 25% mark, with an average proportion over all four agents of 0.24.

5.3 Trumping Agent

The Trumping Agent is slightly different and has been tested by playing it against three Random
Agents. The results of 1,000,000 games are in Table 2.

1,000,000 games Points Earned Wins Absolute Victories

Trumping Agent 1 29,924,240 258,732 57,052
Random Agent 2 28,496,628 239,057 50,870
Random Agent 3 28,528,229 239,354 51,152
Random Agent 4 28,572,223 239,658 50,853

Total 115,521,320 976,801 209,927

Table 2: Trumping Agent vs. Random Agents in one million simulations.

If we apply the significance test from Section 5.1 on the number of games won, we get a p-value of
p < 0.00001, thus p < α. The confidence interval for this sample is 0.258732± 0.0011, which does
not include H0 = 0.25. Thus we can conclude that the Trumping Agent does indeed play better
than the Random Agent for this sample with a confidence of 99%. Another interesting note is that
the Trumping Agent’s Absolute Victories strongly exceeds any of the Random Agent which also
shows its superior quality compared to the Random Agent.

5.4 Rule Based Agent

The Rule Based Agent is a far more tactical agent than those described before. Therefore we test it
against both the Random Agent and the Trumping Agent. The results of the Rule Based Agent
against three Random Agents in 1,000,000 games are in Table 3.
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1,000,000 games Points Earned Wins Absolute Victories

Rule Based Agent 1 39,835,140 406,419 128,619
Random Agent 2 27,463,603 190,353 35,658
Random Agent 3 27,460,410 190,137 35,737
Random Agent 4 27,554,878 191,524 35,569

Total 122,314,031 978,433 235,583

Table 3: Rule Based Agent vs. Random Agents in one million simulations.

By applying the significance test from Section 5.1, we find that the p-value in this sample has a
value of p < 0, 00001 and the confidence interval is equal to 0.406419± 0.0012 and can therefore
conclude with a 99% confidence level that the hypothesis Ha is true, thus the Rule Based Agent
exceeds the Random Agent for this sample. Another note of its overall quality compared to the
Random Agent is that the Rule Based agent is achieving approximately 31.65% of its wins as
absolute victories, compared to the three Random Agents average of 18.70%. Lastly, the Rule
Based Agent definitely performs well enough to receive its fair share of points in the game, earning
32.57% of all points. This is considered a good quality in an agent, as this suggests that this agent
was able to either reach its bid many times, let others fail theirs or a combination of the two.

Secondly, the Rule Based Agent has been simulated against three Trumping Agents in 1,000,000
games. The results are in Table 4.

1,000,000 games Points Earned Wins Absolute Victories

Rule Based Agent 1 29,084,138 281,947 66,328
Trumping Agent 2 26,392,286 231,117 46,944
Trumping Agent 3 26,448,052 232,556 47,528
Trumping Agent 4 26,445,237 231,620 46,869

Total 108,369,713 977,240 207,669

Table 4: Rule Based Agent vs. Trumping Agents in one million simulations.

As before, we apply the significance test from Section 5.1, giving us a p-value of p < 0, 00001 and a
confidence interval of 0, 281947± 0.0012 which does not include H0, concluding that for this sample
Ha holds as p < α and thus with a confidence of 99% that the Rule Based Agent is better than the
Trumping Agent.

The results of these matches have been illustrated in Figure 2, orientated on the Rule Based Agent.
Note that the bar on absolute victories is based on how many of the agent’s wins were absolute
victories.
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Figure 2: Illustration of the Rule Based Agent’s performance.

In Figure 2 it becomes quite clear that the Rule Based Agent had more issues with defeating the
Trumping Agent than the Random Agent, which corresponds with the conclusion from the previous
section. Overall we can conclude that the Rule Based Agent is a quite capable of winning against
either of these agents, and the percentage of points earned suggests that even in losing matches the
agent is still able to earn its fair share of points to be gained.

5.5 Monte Carlo Tree Search

The Monte Carlo Tree Search Agent has been tested against three Random Agents. In Table 5 are
the results for the agent with various budgets, the number of simulations the algorithm is allowed
to do before it is forced to make a decision on which move to make. For every budget we have
simulated 10,000 games each. Note that the sample size is significantly smaller than in the previous
sections, due to a great increase of consumption time where some calculations took over 48 hours.

MCTS 10,000 games Points Earned Total Points Wins Absolute Victories

10 Budget 584,626 1,398,648 6,780 3,131
100 Budget 686,886 1,382,381 8,302 5,297

1,000 Budget 747,774 1,377,556 9,077 6,625
10,000 Budget 748,633 1,367,814 9,141 6,686

Table 5: Monte Carlo Tree Search vs. Random Agents over different budgets.

The first thing to be noted is that each column’s value, except for total points, increases significantly
between the budgets of 10, 100 and 1,000. The increase between 1,000 and 10,000 is only very slight.
The significance test is applied to each of the various budget settings, giving each budget the p-value
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of p < 0, 00001. Looking into the confidence interval on each of these budgets, we get 0.678± 0.0120,
0.8302± 0.0097, 0.9077± 0.0075 and 0, 9141± 0.0072. Each of these confidence intervals excludes
H0, and thus we can conclude with 99% confidence that for this sample the Monte Carlo Tree
Search Agent is better than the Random Agent for each of these budgets. In Figure 3 the quality
of the agent is illustrated with the different budgets. The percentage of absolute victories denotes
the percentage of how many wins were absolute victories, the same as before as in Figure 2.
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Figure 3: Monte Carlo Tree Search Agent versus three Random Agents.

In the graph the increase of quality of the agent becomes quite clear, with a somewhat visible
approach of a pinnacle between the results of the 1,000 budget and the 10,000 budget.

Now we shift the focus for the quality of the Monte Carlo Tree Search Agent to how well it performs
against the Rule Based Agent. In Table 6 are the results of 10,000 simulations each on the Monte
Carlo Tree Search Agent with various budgets against three Rule Based Agents.
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MCTS 10,000 games Points Earned Total Points Wins Absolute Victories

10 Budget 572,202 1,540,295 5,805 2,253
100 Budget 667,535 1,530,373 7,458 4,036

1,000 Budget 713,269 1,514,534 8,290 5,105
10,000 Budget 710,539 1,511,250 8,304 4,997

Table 6: Monte Carlo Tree Search vs. Rule Based Agents with various budgets.

Like in the previous sample we can denote that the increase between 1,000 budget and 10,000 budget
is so slight, and even a minor decrease in the percentage of points and the absolute victories, that the
results suggest the agent is approaching an apex. We apply the the significance test of Section 5.1 to
each of the budgets. This gives for each of the budgets a p-value of p < 0.00001 and a corresponding
confidence interval of 0.5805± 0.013, 0.7458± 0.011, 0.8290± 0.010 and 0.8304± 0.010, none of
which includes H0, thus concluding that for this sample holds that p < α with a confidence level of
99%. The Monte Carlo Tree Search Algorithm is therefore a better agent than the Rule Based Agent.

In Figure 4 the results of the different budgets are illustrated. As before, the percentage of the
absolute victories denotes how many of the wins of the agent were an absolute victory.
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Figure 4: Monte Carlo Tree Search Agent versus three Rule Based Agents.

Overall we can conclude that the Monte Carlo Tree Search Agent is an agent that exceeds all
previously tested agents and that the budget approaches somewhat of an apex when increasing it
further, suggesting that improvement is not to be found per se in higher budgets.
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5.6 Monte Carlo

The final agent we investigate is the Monte Carlo Agent, hypothesised to be the best agent of all.
In Table 5 are the results of the Monte Carlo Agent with various budgets against three Random
Agents.

Monte Carlo 10,000 games Points Earned Total Points Wins Absolute Victories

10 Budget 651,161 1,396,151 7,831 4,463
100 Budget 742,923 1,355,448 9,110 6,737

1,000 Budget 782,501 1,338,886 9,481 7,644
10,000 Budget 793,910 1,325,708 9,570 7,858

Table 7: Monte Carlo Agent vs. Random Agents with various budgets.

From these results we calculate the significance test, giving us a p-value of p < 0.00001 for each
budget. This gives us a confidence interval of 0.7831± 0.012, 0.9110± 0.007, 0.9481± 0.006 and
0.9570± 0.005, none of which include H0, thus concluding that the Monte Carlo Agent is, for this
sample, a better agent than the Random Agent.
The information in Table 8 is visualised in Figure 5, comparing the qualities of the different budgets
for the agent.
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Figure 5: Monte Carlo Agent versus three Random Agents.

Now we have seen in Section 5.5 that the Monte Carlo Tree Search Agent heavily outperforms the
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Random Agent, but in Table 8 we can see that the Monte Carlo Agent does as well, and seemingly
even slightly better. If we compare the two proportions [AA18] on their best results, thus placing
the focus solely on the 10,000 budget samples, we get an estimated standard error se of se = 0.0035
for which a confidence interval can be calculated, that is equal to (0.9570− 0.9141)± 2.576 · (se),
giving 0.429± 0.0089 as a 99% confidence interval. As this contains only positive values, we can
conclude that the Monte Carlo Agent’s proportion in winning games against the Random Agents is
indeed larger than the Monte Carlo Tree Search Agent, suggesting that the first agent is better.

It has become quite clear that the Monte Carlo Agent and Monte Carlo Tree Search Agent
outperform any other agent discussed so far. The results from these agents against the three
Random Agents point out that the Monte Carlo Agent is objectively better at defeating Random
Agents than the Monte Carlo Tree Search Agent. However, it is also important to test these agents
against one another. Since it is hypothesised that the Monte Carlo Agent will be a significantly
better agent, the results in Table 8 are on one Monte Carlo Agent versus three Monte Carlo Tree
Search Agents. Note that all of the agents have the same budget in each simulation of 10,000 games.
Furthermore note that only the results of the Monte Carlo Agent are recorded, as it is hypothesised
that this agent should be better than the other three and therefore we keep the focus on these
results.

MC v MCTS 10,000 games Points Earned Total Points Wins Absolute Victories

10 Budget 680,293 2,407,151 3,798 1,046
100 Budget 770,891 2,828,870 3,459 775

1,000 Budget 820,787 3,111,627 3,208 491
10,000 Budget 834,771 3,119,666 3,558 504

Table 8: Monte Carlo Agent vs. Monte Carlo Tree Search Agents with various budgets.

The first note to make on this data is the surge between the different budgets, as the Monte Carlo
Agent seems to have a harder time to compete with the Monte Carlo Tree Search Agents as the
budget increases, but has a slight resurge at 10,000 budget. If we apply the significance test from
Section 5.1 we get the p-value of p < 0.00001 for each of the budgets and the confidence intervals
of 0.3798± 0.013, 0.3459± 0.012, 0.3208± 0.012 and 0.3558± 0.012 respectively. As none of these
contain H0, we can say with 99% confidence that Ha holds and therefore can conclude that for this
sample, for each of the budgets the Monte Carlo Agent is a better agent than the Monte Carlo
Tree Search Agents.

In Figure 6 the results of the Monte Carlo Agent versus the three Monte Carlo Tree Search Agents
is illustrated. As before, the absolute victory is the percentage of games won by the Monte Carlo
Agent that were an absolute victory.
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Figure 6: Monte Carlo Agent versus three MCTS Agents.

The surge of wins through the different budgets is quite clear in Figure 6, especially in the percentage
of games won but also slightly in the percentage of points. In the absolute victory the reduction in
shrinkage seems to come to a halt.

Overall we can conclude that the Monte Carlo Agent is the best agent of all, with a highly superior
benchmark against the Random Agent, and defeating three Monte Carlo Tree Search Agents with
a proper distance.

5.7 Human vs. Monte Carlo

Finally, the Monte Carlo Agent, nicknamed “Tessa” during the matches by the other players, has
been tested against three human players in four matches with a budget of 10,000. Even though is is
a rather small size for a number of tests, especially in comparison with the number of simulations
ran in the previous sections, it should be noted that playing a match of DiminishingBridge is
rather exhausting and each match takes quite a long time, each match taking about one hour to
an hour and a half. The results of these matches can be found in Table 9. Note that the column
“Earnable Points” refers to how many points the individual could achieve and “Rounds” refers to
the number of rounds this player succeeded in achieving their bid. Lastly, there is no column on
Absolute Victories as none occurred in any of the matches.

22



Four games Points Earnable Points Rounds Games Won

Monte Carlo Agent (“Tessa”) 362 589 35/52 2
Paverd 293 602 24/52 0

Student 1 292 622 28/52 1
Student 2 300 608 29/52 1

Table 9: Monte Carlo Agent “Tessa” vs. Human Agents.

Although the population size of the data is far too small to make any good statistical infer-
ences [AA18], it is proper to point out that “Tessa” has achieved more points, 61.4%, than any
other player has, achieved the most rounds, 67.3%, and won two of the four games. It would be too
eager to hypothesise that the agent is better than the human player, but these results definitely
suggest that it can hold its own against a human. Finally, the performance of Paverd is not a
very expected result as every other player has a better results than Paverd. This, however, can
be explained by the fact that the other two human players at the start realised that they were
at a disadvantage against the other two players, resulting in, as far as this is possible within
DiminishingBridge, team play, preferring to see either of them not achieving their bid more than
the third player.
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6 Conclusions and Future Work

In this thesis we analysed various agents for DiminishingBridge. The agents that were developed
had very different tactics and play styles. Overall it can be concluded that each agent has their own
qualities but these samples suggest that certain agents perform better than others when simulated
to play against other agents. Furthermore, the Monte Carlo Agent, the best agent, has achieved
victory against humans twice out of four games and has a victory percentage against other agents
of 32.08% to 37.98% against the Monte Carlo Tree Search Agents and 78.31% to 95.7% against the
Random Agents.

In future work some simple exploration could be done in empirically inferring different possible
exploration constants for the Monte Carlo Tree Search Agent. Another possible options is to develop
a new Monte Carlo Tree Search Agent using Information Set Monte Carlo Tree Search [CPW12],
as this version of the Monte Carlo Tree Search Algorithm is dedicated for environments within
incomplete information.
Another possible approach would be to search for a different evaluation function, as described in
Section 4.5.1. This evaluation function is highly biased to achieve more points than the player
in first place, where it might be more interesting to introduce a stronger favor to not allowing
other players to achieve their bid as well, which could possibly correspond more to the playing
style of human players. Whether the latter is favorable or not is unclear. Another option would be
to try and deduce even more information from cards that have been played by other players, to
predict what cards are logical that they will play next using the information on whether or not
they have achieved their bid currently, which is an even more humane play style. Lastly, in any
future work the effect of humans playing against a computer could be analysed, as humans may
have a conscious or subconscious bias against a computer player .

For further research, the source code is available in C++ at the Github Repository, https://
github.com/thijssnelleman/DiminishingBridge.
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[BJS13] Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. On the complexity of trick-
taking card games. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 482–488, 2013.

[Bon19a] Nederlandse Bridge Bond. Nederlandse aspiranten Europees Kampioen. https://www.
bridge.nl/nieuws/nederlandse-aspiranten-europees-kampioen/, 2019. [Online;
accessed 2-December-2019].

[Bon19b] Nederlandse Bridge Bond. Twee keer zilver, een keer brons bij WK jeugd 2019. https:
//www.bridge.nl/nieuws/wk-jeugd-2019/, 2019. [Online; accessed 2-December-2019].

[Bre01] Leo Breiman. Random Forests. Machine Learning, 45:5–32, 2001.

[CPW12] Peter I. Cowling, Edward J. Powley, and Daniel Whitehouse. Information set Monte
Carlo tree search. Transactions on Computational Intelligence and AI in Games, pages
120–143, 2012.

[DL01] N. Kantar, D. Dimitrescu and M. Lundqvist. Bridge Classic and Modern Conventions,
Volume I. Example Product Manufacturer, 2001.

[FB97] Ian Frank and David Basin. Search in games with incomplete information: A case study
using bridge card play. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 87–123, 1997.

[KH06] Sebastian Kupferschmid and Malte Helmert. A Skat player based on Monte Carlo
simulation. In Proceedings of the International Conference on Computers and Games,
pages 135–147. Springer, 2006.
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