
Opleiding Informatica

Setting up a FAIR Data Point

in LIACS

Hargurjit Singh (S1531727)

Supervisor:
Mirjam van Reisen
Special thanks to Kees Burger.

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 10/07/2020

www.liacs.leidenuniv.nl

Abstract

In this thesis we will see the difficulties of setting up a FAIR Data Point in LIACS within a
relative short period of time. First of all, we will set up two softwares both published by the
DTL FAIR Data team. The first one is called the FAIRifier, which is supposed to make raw
data FAIR and to measure the FAIRness of data. The second software, the one on which the
emphasis is in this article, is called the FAIR Data Point, abbreviated FDP. Secondly we will
try to gain insight into the demand and acceptance of an FDP within the potential group of
users. We will do so by conducting a survey among a select group of students.

2

Contents

1 Introduction 1
1.1 Involved organisations . 2
1.2 Thesis overview . 2

2 Background 3
2.1 FAIR Data Principles . 4
2.2 What is a FDP exactly? . 4

3 FAIR related software 6
3.1 FDP : First method . 6
3.2 FDP : Second method . 10
3.3 Editor . 12
3.4 FAIRifier . 13

4 Interest research 15

5 Conclusions and Further Research 18
5.1 Conclusion . 18
5.2 Future work . 18

References 19

A Appendix 21

1 Introduction

Academic research produces a lot of data. Especially in this digital era, we want to be sure that
the optimal flow of (re)usable data is achieved. Roughly all data is digital nowadays. However, as
simple as it seems, this data is often not findable, accessible, interoperable or reusable (FAIR) for
other consumers of the same type of data. In this thesis we will call this unstructured or raw data
and the main problem with this data is that it is not machine-readable.

Data can be of any type: geographical, scientific, financial, statistical, but also data about trans-
port, nature or cultural data. This unsorted data can not be (re)used effectively by both machines
and data consumers.

The currently implemented way of data stewardship in Europe and specifically in the Netherlands,
often consists of unconnected data centres where the data is stored. We can see this implementation
as a graph with unconnected nodes. The best case in this implementation is that every dataset
is stored on the corresponding centre, since not every dataset gets published, and is retrievable
from this centre, with its own GUI and access control/security layer. The user needs to get used
to the respective interface since every data centre has their own. Logically this procedure is a lot
of wasted time, inconvenient and costly.

This needed to be changed and so recently a data-movement arose to make this process more
efficient [?]. This movement is named FAIR which is the abbreviation for Findable, Accessible,
Interoperable and Reusable. These terms are further explained in the FAIR Data Principles.The
FAIR Data principles act as an international guideline for high quality data stewardship [Mon18].
These principles were established in 2014, coincidentally also in Leiden, at a meeting about FAIR
data [16]. We will elaborate on this in the next section of this thesis. FAIR Data - and the underly-
ing linked data techniques are an addition to machine-readable harmonization and standardization
of data. It makes information understandable for computing systems, and this is exactly the core
and purpose of FAIR. Also for the users it is more efficient, since the users are not required to
speak exactly the same language. The machine-readability is achieved through semantic modeling
and the convergence between the two is achieved by making these semantic models interoperable.

This movement led to converting scientific data from raw to open and findable, a process called
FAIRifing.There are tools that automatise the process to FAIRify, which have the obvious name
of FAIRifier. We will see in this thesis that these tools are falsely named FAIRifiers, since they do
not make data FAIR, but only function as a clean up/refine tool for the raw input data. However,
the second piece of software called FDP solves this problem, which is the abbreviation of FAIR
Data Point.

The name of this software gives it slightly away: the FDP is supposed to be a data entry point
where the FAIRified metadata of the data can be uploaded. Information about the data is called
metadata.We can see an FDP as a node on the data center-graph: the nodes are the FDPs, which
are actually the data centres that are connected to an open distributed datacloud with one gen-
eral Graphical User Interface [UH18], and the edges are generally speaking the open cloud itself
because all nodes are connected with each other via this cloud.

1

1.1 Involved organisations

There are a few organizations that are worth mentioning in this thesis. These organizations are
closely involved in the transition from the standard data processing method to a FAIR method.
Some for example have created tools that stimulate a FAIR data environment and others are en-
gaged in the formal part and legislation:

The EOSC (European Open Science Cloud) is an organisation funded by the European Commis-
sion to take care of this ”FAIR” data movement in Europe. The EC announced the EOSC in April
2016. This commission is the executive of the European Union and promotes its general interest.
The main aim of the EOSC is ”to create a trusted environment for hosting and processing research
data to support EU science in its global leading role” [MS16].

GO FAIR is a voluntary bottom-up initiative in Europe that was and still is closely involved in
implementing the FAIR data principles (next section) in . A GO FAIR Implementation Network
(INs) is ”a consortium committed to defining and creating materials and tools as elements of the
Internet of FAIR Data and Services (IFDS)” [GO-17], an organisation with similar goals as the
European Open Science Cloud and facilitating its realisation. Implementation Networks are the
core participating communities of the GO FAIR initiative.

DTLS (Dutch Techcentre for Life Sciences) actively promotes FAIR Data Stewardship of life sci-
ence information in close collaboration with its international partners who also have a share in the
FAIR data movement. DTLS has been (largely) responsible for the source code of the FDP and
other FAIR related software.

1.2 Thesis overview

At the time of writing this chapter, there has been no prior research about setting up an FDP.
This thesis will be the first publication about the process of putting on such a data point in Lei-
den Institute of Advanced Computer Science (LIACS). The aim of this study is therefore to set
up such a FAIR Data Point for LIACS. The benefits of setting up a FDP are obvious: creating
the possibility to make data FAIR. Researchers, students and teachers of LIACS will reap these
benefits.

The aim of this study is therefore to investigate to what extent it is possible to set up a FAIR
Data point in a given time period (March - June). Section 3 will contain the steps that need to
be followed to successfully set up an FDP and some other related software. It goes without saying
that setting up an FDP only makes sense if it will actually be put into use. Therefore we will also
research the interest among the potential users by conducting a survey in section 4. In section 5
we will see the outcome of these research questions and any future work that remains unexamined.

2

2 Background

In this section, the necessary background information to better understand the FAIR movement
and the principles of FAIR will be provided.

Good data management is essential in research. In this digital age search engines, online catalogs
of books and references to online articles (like the one at the end of this thesis) optimize the find-
ability of data. Formerly when academic data only was published on paper, these tools were not
available. it is unimaginable to us how research was conducted at that time.

As is known, the current way of data storage in data warehouses is an outdated technique. FAIR
defines working with a network of distributed nodes discoverable over the internet and operable
through data visisting. Another point of attention is that data ownership is kept retained with the
data producer and data subject. This conversion ensures an optimal and smooth flow of data. If
data is stored correctly on the right location (node), the accessibility of this data of course increases.
The researcher will comprehend where the desired data can be found, for exceptionally efficient
data retrieving. Data retrieving becomes exceptionally efficient. The emphasis in the research can
now be shifted from retrieving data to more beneficial tasks and this is an accomplishment by itself.

Furthermore, it can lead to the discovery of new elements in research. Not only finding desired
data, data that you are initially looking for, but disclosure of new applicable data brings research
to the next level.

Next to the benefits of making academic data more open, one should consider security as well.
It plays an essential role in data stewardship. To date accountable people (called data stewards)
were appointed to take the responsibility of properly managing data and everything about it. Even
though we have made huge steps in terms of data management, there are still bottlenecks that we
should investigate and resolve. In contrast to the manual way of working, we want to automate this
process now and in the future: machines should be appointed to take care of this data stewardship.
Thankfully we have invented tools that can find us all the information that we want, but these
tools often are not optimized to retrieve FAIR and academic data.

Keeping this in mind, a large group of stakeholders including academia, funding agencies and re-
searchers organised a workshop named Jointly Designing a Data Fairport [16]. This workshop was
held in 2014 in Leiden and the stated parties agreed that the reuse and discovery of data should
be examined.

This workshop was the first small step towards an immense change in the state of the art. Soon
after this meeting the European Commission agreed to fund and set up the European Open Sci-
ence Cloud (the EOSC). The name speaks for itself, but the so-called EOSC-vision makes things
clearer : To give Europe a global lead in scientific data infrastructures and to ensure that European
scientists reap the full benefits of data-driven science [MS16]. EOSC would later partner up with
GO-FAIR, a Leiden based non-profit organisation, which is closely related to the Dutch Techcentre
for Life Sciences (DTLS). The latter one is responsible for the available source code of the FAIR
datapoint [FAI], which will be used for setting up such datapoint.

3

2.1 FAIR Data Principles

The FAIR guiding principles were established during this meeting. This list contains the conditions
and properties of data to be called FAIR. These principles are listed below [JL18] [Mon18]:

To be Findable:
F1. (meta)data are assigned a globally unique and persistent identifier
F2. data are described with rich metadata (defined by R1 below)
F3. metadata clearly and explicitly include the identifier of the data it describe
F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:
A1. (meta)data are retrievable by their identifier using a standardized communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2. metadata are accessible, even when the data are no longer available

To be Interoperable:
I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge
representation.
I2. (meta)data use vocabularies that follow FAIR principles
I3. (meta)data include qualified references to other (meta)data

To be Reusable:
R1. meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1. (meta)data are released with a clear and accessible data usage license
R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain-relevant community standards

These principles define guidelines that the FAIR environment must adhere to. They relate to three
components within the mentioned environment: the data, the metadata and the infrastructure.
For those who have even a little superficial knowledge about data science, these principles speak
for themselves. Nevertheless, they are all extensively discussed on the GO-FAIR website [GO-17].

2.2 What is a FDP exactly?

As the product scope of the FDP software states,FDP is a software that, from one side, allows data
owners to expose datasets in a FAIR manner and, for another side, allows data users to discover
properties about offered datasets (metadata) and, if license conditions allow, the actual data can
be accessed. [FAI]. FAIR Data Points are hosted on a server, which can practically be anywhere,
and serves as an entrypoint for FAIR data: FAIR data can be stored to the backing storage. To
be precise, instead of data metadata will be stored on the FDPs. FDPs often do not contain the

4

actual data but instead they have references to where the data is stored.

The FDP naturally should meet the properties of being FAIR. One of the properties that partic-
ularly relates to the FDP, is that the metadata stored on an FDP should be interoperable: the
language and syntax used should be generic and the characteristics of the stored metadata should
correlate with those of previously published ones or, as I3 of the FAIR Guiding Principles states
(meta)data include qualified references to other (meta)data [16].

As we will see in the next chapter, the FDP software is initially created to be hosted (deployed) on
a web server called Apache Tomcat. Since we want to set up an FDP in LIACS, the FDP should
be hosted on a server situated in LIACS. Once the FDP is up and running (i.e. accessible), users
and data stewards should be able to upload metadata about their datasets and find the existing
and available data.

FAIR has broad support in the world and also in the Netherlands. The benefits of findability,
accessibility, interoperability and reusability are generally recognized.

Linking information for both research and operational situations can be simplified with this. FAIR
Data can thus provide a major incentive for data interoperability and big data-like solutions. ”Be-
coming a FAIR” is currently still a fairly technical operation in which the initial learning curve is
fairly steep and user-friendly tooling is missing. The expectation is that such a set of instruments
will become available. For example, Amazon will already offer linked data services in the short
term. Those who go through the learning curve and have access to data that is already available
in structured form can quickly make the switch to FAIR.

5

3 FAIR related software

In this chapter we will see the technical programming details of setting up an FDP and a FAIRifier.
This documentation includes instructions to locally deploy the FDP on your own personal machine
for example for demonstration or test purposes. However this same guide can be used to host a
FDP on a server for a production deployment.

There are two ways of setting up a local FDP. Both are based on deploying the executable file,
which gets generated by compiling the source code of the FDP. Until June 2020, the initial method
was the only way to set up an FDP. This is also the method we will discuss first. Because frame-
works have now been created to facilitate the deployment, several of the listed steps are conjugated
into one. This is the second method we will see.

3.1 FDP : First method

The open source FDP software of DTL is online available on the github repository [FAI]. We will
use a Ubuntu 16.04 system. Firstly we will set up a web-server called Tomcat, which will require
Java to be installed. After that we will build and install the FDP software. This will generate a
.war file which can be deployed on the running web-server. The FDP will be set up and hosted
from the Ubuntu system that we installed the web-server on. Since we want to set up the FDP
in LIACS, the same steps will be executed on a system linked to a server both located in LIACS.
Note that it is possible that some links/software may be outdated by the time the readers get to
read this thesis. Replacing these software with the updated ones will simply solve the problem.

Apache Tomcat (commonly called Tomcat), is an open source web-server developed by Apache
Software Foundation. It is written primarily in Java and it is released on the Apache license 2.0.
It is a cross platform application. The initial release of Apache Tomcat was done in 1999, and the
latest version is Tomcat 9.0.20 released on 13-05-2019 [Fou].

Tomcat has it’s dependencies on the Java Repository, so the first step to install Tomcat would
be installing Java. Firstly, updating the ‘apt‘ package in the terminal is necessary. Open the
terminal window and type sudo apt update. It will probably take a few minutes. Once the
package index is updated, the installation of the default Java OpenJDK package can begin:
sudo apt install default-jdk. Also this step will take a few minutes. Verification of the in-
stallation can be done by checking the installed version, typing java -version. This command
should return a statement like:

openJDK version "1.8.0_212"

openJDK Runtime Environment (build 1.8.0_212-8u212-b03-0ubuntu1.16.04.1-b03)

OpenJDK 64-Bit Server VM (build 25.212-b03, mixed mode)

The second step is to install Tomcat itself. First the zip file from the website https://tomcat.apache.org/download-
90.cgi should be downloaded. The latest version is, as said above, 9.0.20. Navigating to the Down-
loads folder will show the zip file. The following step is to make a ’tomcat’ directory in the /opt

6

folder, such that the zip file can be extracted. This should be done by typing mkdir /opt/tomcat.
Now the downloaded zip file should be extracted and moved into the made directory, by entering
the command mv WidgetList.zip apache-tomcat-9.0.20.zip /opt/tomcat/. The zip should
be extracted in the directory. Since the directory is saved in a restricted part of the system, it
requires to be logged in as ”super user” to make changes in the directory. To become a super user,
the command sudo -i, followed by the password of the user should be executed. The terminal
allows now to navigate through and to make changes in the directories.

The next step is to unzip the zip file. This is done by executing unzip apache-tomcat-9.0.20.zip. Now, to make sure that the user does not have to login as superuser everytime to use Tomcat, we modify the file system permissions: \verbchmod
700 /opt/tomcat/apache-tomcat-9.0.20/bin/*sh. The next steps are to create symbolic links for
the startup and shutdown scripts:

ln -s /opt/tomcat/apache-tomcat-9.0.20/bin/startup.sh /usr/bin/tomcatup

ln -s /opt/tomcat/apache-tomcat-9.0.20/bin/shutdown.sh /usr/bin/tomcatdown

After running these commands it became possible to startup and shutdown tomcat from anywhere.
So the user does not have to go to the tomcat directory in the /opt folder anymore. To make sure
the link is made correctly, the tomcatup command can be executed. To end the hosting, we sim-
ply execute the tomcatdown command. The response of the first mentioned command should be
something like Figure 1.

Figure 1: Response after executing the ’up’ command

The User Interface of the Tomcat Server can be viewed by opening the local host in a web browser.
The site http://127.0.0.1:8080/ will open the GUI of Tomcat, that should look like Figure 2

The Tomcat Server is installed. Now the FDP source code needs to be compiled. First the directory
needs to be downloaded/cloned from the github repository and entered in the terminal:

\verb|git clone https://github.com/FAIRDataTeam/FAIRDataPoint

\verb|cd FAIRDataPoint

7

http://127.0.0.1:8080/

Figure 2: GUI of the Tomcat server

Now the directory is downloaded, the next step is to install the FAIRDataPoint. This will give
a .war file which can be deployed in the Manager App of the Tomcat Webserver. A WAR (Web
Application Resource) is a file type in which resources for a web application can be stored. In this
case, the resources to create an FDP will be stored in fdp.war

The same software company (Apache Software Foundation) that released the webserver (Tomcat)
where the FDP software is based on, also has brought out a software project management and com-
prehension tool named Maven. The FDP software needs to be installed by using this tool as follows:

mvn install

This will take a few minutes to install. The installation process now has created a target map.
One of the files in this map is the file named fdp.war—.

Now the next step is to deploy this file in the Manager app of the Tomcat Server. First we
need to create a user for the GUI of Tomcat, such that the Manager app is accessible. We
have to add a username and password to the tomcat-users.xml file located in the /conf folder:
gedit conf/tomcat-users.xml

we now see a block of commented text at the bottom of the file where users are created. We need
to add / uncomment the following lines (like Figure 3):

<role rolename = "manager-gui" />

<user username = "tomcat" password = "tomcat" roles = "manager-gui" />

By clicking on the Manager App-button as showed in figure... , the GUI will ask to fill in the
username (tomcat) and password (also tomcat), which we just created. This will lead to the Ap-
plication Manager. fdp.war file can be deployed at the Deploy section as seen in Figure 4.

It is obvious that we now have to click Choose File and upload and deploy it. After deploying the
file, the /fdp path should be visible in the application section of the Application Manager. The

8

Figure 3: Creating a user for the FDP

Figure 4: Deploying the fdp.war file

9

FDP is now up and running. To view the GUI of the FDP, we go to the link http://127.0.0.1:

8080/fdp/swagger-ui.html#/. The result should look like Figure 5. We see a few buttons with
the text post. We will need this to post our metadata. The other options help us retrieving data
from the FDP. The FDP requires us to upload the metadata in RTF format. To do so, we will need
the editor tool which we will discuss later in this chapter 3.3. The result should look like Figure 5.

Figure 5: GUI of the FDP

3.2 FDP : Second method

Taking users from other operating systems into account, we will perform these steps on a Win-
dows machine. With this second (less complex) method we do not use Tomcat. To facilitate
the deployment of our reference implementation of the FDP we distribute it as a Docker im-
age [Doc20]. This requires us to install the Docker runtime environment on our machine first.
We can download and install this from https://download.docker.com/win/stable/Docker%

20Desktop%20Installer.exe [Doc20]. To check whether Docker has been installed, we open a
terminal window and execute the command docker. We should see the user manual of Docker like
Figure 6:

An example of a docker compose configuration is given on the deployment manual website of the
FDP [Doc20]. This configuration contains the commands to deploy the FDP server, the FDP
client and also a command relating to MongoDB, a document database that we use as underlying
storage [12]. These three parts of the commands will ensure that the correct files are downloaded
and built for setting up the FDP. The commands are listed in Figure 7.

10

http://127.0.0.1:8080/fdp/swagger-ui.html#/
http://127.0.0.1:8080/fdp/swagger-ui.html#/
https://download.docker.com/win/stable/Docker%20Desktop%20Installer.exe
https://download.docker.com/win/stable/Docker%20Desktop%20Installer.exe

Figure 6: Status of Docker

Figure 7: Docker Compose Configuration. This code needs to be saved as an ’yml’ file into the
folder we want install the FDP in.

11

We copy and paste the code into an file and save it as docker-compose.yml on our machine. The
location of the file must be determined by the user himself. We navigate to that chosen folder
using the command interpreter and execute docker-compose up -d. The given aforementioned
three images will be downloaded from the Docker Hub repository. Once the script is finished down-
loading and deploying the fdp, we can check whether the installation is successful and the images
are indeed executing. We do so by starting the Docker Desktop Dashboard, and check if the FDP
images are running.

Figure 8: Docker Desktop, the GUI of Docker. Check whether the fdp source code is downloaded
and intalled correctly from the repository.

Once we have checked this, we want to know if our webclient is working. This is easily done by
navigating to the url localhost in any web browser. If everything is working fine, we will see a
webpage with the default metadata of the FDP, just like in the previous section of this chapter. As
given on the GitHub repository, the combination of username albert.einstein@example.com and
password password will grant you access to the FDP.

3.3 Editor

To upload metadata to our newly deployed FDP we can either use the built-in editor of the FDP-
API deployed with the second method (called the Metadata Provider) or use the online editor
if we set up the FDP using Tomcat. The editor can be found on https://editor.fair-dtls.

surf-hosted.nl/#!/ [LOBdSS20]. The editor has an documentation [DTL16] that we will use
to generate the code to insert metadata in the FDP.

There are four possible layers of metadata that can be added to the FDP : Catalogs, datasets,
distributions and repositories. All of these layers contain pointers to the level beneath. This means
that every FDP has at least one entry of a catalog, a catalog has at least one pointer to a dataset
and so on. The first thing that comes to mind of an attentive reader who has some knowledge of
graphs is that this will form a tree structure. This is actually not true as it is possible that the
same repository may exist in multiple datasets.

12

https://editor.fair-dtls.surf-hosted.nl/#!/
https://editor.fair-dtls.surf-hosted.nl/#!/

The repositories contain the actual resources of the data, which is why resources sometimes are
referred to as the fifth layer of metadata. Generally we do not want to upload the actual data to
the FDP. The location of the data must be known, which is exactly the purpose of the fifth layer.
The editor offers the possibility to add an extensive number of types of metadata in all four layers,
including title, description, language and much more. The figure below shows us how the editor
looks like Figure 9.

Figure 9: FDP Metadata editor

The syntax in which the editor outputs the generated code is of DCAT format, which is an RDF
(Resource Description Framework) data model defined by W3C [Bro20] [Gra14]. This data model
is broadly similar to other modeling approaches such as class diagrams which follow a given set
of rules like the UML syntax. As we can see in figure the RDF preview on the right is in DCAT
format. Fortunately we can use the built-in editor of the FDP to upload the metadata. In that
case we do not even get to see the RTF code.

3.4 FAIRifier

The last software that we will look into in this thesis is the so-called FAIRifier. Just like the FDP,
this software has also been developed by the FAIRDataTeam. The name gives the functionality
slightly away. As the description on the Github repository of the FAIRifier states: The FAIRifier
is a tool to make messy data FAIR. [FAI]. It was built as an extension of the free open source
data tool called OpenRefine, formerly known as Google Refine [Dav].

What this extension initially added to the refine tool is that it offered the possibility to download
the refined (FAIRified) (meta)data in RDF format so that it could be directly uploaded to an FDP.
This reminds us of the online editor that we saw previously. Later the FAIRifier was updated such
that the FAIR data could be uploaded directly from the FAIRifier to an FDP, without the RDF

13

intermediate step [FAI].

Figure 10: Every thesis should have figures. Source: www.marxbrothers.org.

As we can see in Figure 10, the FAIRifier is a tool that is primarily intended as a manual cleaning
tool, to FAIRify data of different types. But because FAIR’s main purpose is to make data machine
readable, the name of this software is not entirely correct. The FAIRifier does not bring us any
steps closer to automating the extraction, cleaning or machine-readability of data.

To install the FAIRifier, the OpenRefine tool must therefore be installed first. Instructions for this
can be found on its Github repository, which is simply cloning the repository to the computer
and then executing the command ./refine [FAI]. Now to install the FAIRifier, or the OpenRefine-
metadata-extension as it is now called, we download the zip file from the repository of the extension
[FAI]. Now we need to unzip this in the extensions folder of the refine directory using the following
command :

unzip metadata-X.Y.Z-OpenRefine-3.3.zip path/to/openrefine-3.3/webapp/extensions

The use of the tool is almost self-explanatory. We upload data, and the tool gives us suggestions
for making adjustments.

14

www.marxbrothers.org

4 Interest research

In the previous chapter we have seen how to set up an FDP. Setting up the FDP is of course only
useful if it is of added value; if noone is going to make use of the FDP, than it has no added value
to the faculty. We would like to map this demand. After all, setting up an FDP only really makes
sense if there is sufficient acceptance, and the degree of potential participation is also high. We
will do this by trying to measure the acceptance of the FDP by the potential users. This gives us
insight into the demand for an FDP.

The conducted survey will both follow characteristics of a qualitative and quantitative research.
Since we want to examine the will and ability of the potential users to adapt the new concept of
FAIR, it is therefore a emergent design type of a qualitative research. On the other hand, we want
to by applying statistics This corresponds to descriptive research design type; we do not have any
assumption in mind but we are curious about the outcome.

We let a select group of university students fill in a survey about the FDP. We consider this group
as representatives and sample of the potential future users of the FDP in LIACS. We chose a
well educated group of readers; thirty-eight bachelor or master students, all of them studying in
the Netherlands. This was exactly the inclusion and exclusion criteria. The surveyed students are
between 19 and 30 years old and were contacted through email. By opting for this specific and
small group, we try to reduce the chance of the miscommunication mentioned below. We did not
hold a pilot for this research.

A short brief summary of what FAIR and FDPs are and do is given at the beginning of the survey
[Sin] A. Based on this introduction the surveyed students will form an opinion about FAIR and
setting up an FDP. We will capture this first glance through the four questions below :

1. Would an FDP be useful e.g. in LIACS? Yes/no, Please explain why.
2. Which characteristic of FAIR appeals the most to you? Please explain why.
3. Would you share your (meta)data on an FDP?
4. Would you look for and extract data from an FDP?

On the one hand, this gives the opportunity to get to know different opinions and interests from
the potential user side. And, as previously stated, this is exactly the purpose of this survey. On
the other hand however it is possible that this short summary for some readers may provide some
distorted views of what FAIR and FDPs actually are, we should keep in mind that answers to the
survey are based on the image that the questioned readers get from the summary.

The survey was held online using Google Forms [Sin], and was available for a period of approxi-
mately two weeks. The four questions that are asked ensure that an impression of the acceptance
and participation level of the students is exposed. In terms of statistics we assume that this sample
will represent the students of LIACS. This is ultimately the target group we want to reach, and we
want to estimate their usage in the future. As earlier stated, the majority of the students is from
the Netherlands. However, most of them do not study at LIACS. In order to get useful opinions
from this large group, the survey is based on the situation that an FDP will be set up in their

15

faculty. As we have seen in the previous chapter, the only difference would be the location of the
server where the FDP is hosted.

Figure 11:

Pie charts of the last three questions are shown in Figures 11 and 12 and we will discuss the first
question later. About half of the respondents state that they would share their data on a FDP.
About a third of the students said that they need more information about the FDP to form a
statement. The rest, about one-sixth, is concerned with security and privacy, and wants to get
more information about FDPs. None of the respondents said that they definitely would not use
the FDP. We also see roughly the same result when asked if the students would retrieve data from
the FDP.

Based on these results, we can cautiously conclude that chances are high that an FDP will indeed
be accepted by the user audience, despite the fact that a large part indicates that it does not
want to make a decision before getting more information. Also a significant number of students is
concerned about the security and the related quality of the data. This indicates that users will be
aware of the fact that there should be a sense of responsibility with regard to data.

Figure 12:

16

The last question, unlike the rest of the questions, was answered very differently compared to the
first two. This question was only intended to investigate interest in the various aspects of FAIR.
The majority of the surveyed students indicate that the reusability of data appeals to them the
most. So the fact that the users will be able to use already generated data and also will be able to
upload their own data such that it can be reused, is appealing to them.

The first question was answered positively by almost everyone. except for an exception who an-
swered: No, I believe working with raw data and adjusting it for your own goals is the optimal way
of understanding a dataset thoroughly.. The rest of the students indicate that they would use an
FDP.

These results imply that an FDP would be well received by the users. Based on these answers, we
may conclude that an FDP will be accepted.

17

5 Conclusions and Further Research

5.1 Conclusion

The main goal of this thesis, to set up an FDP in a relatively short period, has been achieved. The
last step that needs to be taken is performing these exact steps on a computer in LIACS computer
connected to a server. Unfortunately we did not get to this due to the lockdown. We have even
seen several other software that matter too. We have seen two ways of hosting an FDP. The first
one requires some programming experience and knowledge, and retains the ability to keep different
components of the FDP separated; the FAIRifier, the editor and the FDP itself to be precisely.
However, the second method is more plain and delivers a far more compact product. This method
keeps the frontend and the backend completely separated. As we have seen, it has a built-in editor,
such that we do not need to work with any RTF format. It also requires less prior knowledge
about programming. Our second research question also has a positive outcome. We have seen that
the potential future users are positive about the ideas and pursuit of FAIR. This implies that the
FAIR Data Principles will be respected and we conclude that the use of an FDP would be accepted.

5.2 Future work

Although this thesis covers and solves the stated research questions and problems, there still are
many possibilities that remain unexplored. Due to time constraints it was impossible to inspect,
test or implement the following thoughts and additions :

• As several times mentioned in this thesis, FAIR strives to make data machine-readable. In
this thesis the vast majority of the research was done manually. As a matter of fact it is
understandable that the FDP has to be set up by hand. But it would be practical and logical
if the FDP could automatically upload metadata, instead of having to specify what type of
data we are dealing with. This holds for both the methods that we used.

• The same goes for the FAIRifier. As the same says, we expect that we input raw data, and it
gives us the FAIRified data back. But instead it now still is an manual tool to clean up data
by hand. This could be improved to a software based on Artificial Intelligence that exactly
does what the name says, FAIRify data automatically.

• Just like improvement in the second method, which implemented the editor in the FDP itself,
it would be convenient if the FAIRifier could be combined as well.

• Last but not least, we were not able to host the FDP phisically in LIACS. This point can be
neglected, since this thesis is the exact recipe to fulfill this addition.

18

References

[12] What is MongoDB? , https://www.mongodb.com/what-is-mongodb.

[Bro20] David Browning. DCAT 2 vocabulary. 2020. , https://www.w3.org/ns/dcat.

[Dav] David Huynh . OpenRefine Documentation. , https://openrefine.org/

documentation.html.

[Doc20] Docker. Desktop engine overview. 2020. , https://www.docker.com/products/
docker-desktop.

[DTL16] DTLS. FDP / metadata editor / search engine walkthrough. 2016. , https://docs.
google.com/document/d/1eBJKSg1u5gep6-2cbjGpWNulMvC7F9BSmnKYq7FFSGA/

edit#heading=h.ah8yn51oup91.

[16] Wilkinson et al. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data, 3, 2016. , https://doi.org/10.1038/sdata.2016.18.

[FAI] FAIRDataTeam. FAIR Data Point design specification. GitHub Repository. , https:
//github.com/FAIRDataTeam/.

[Fou] The Apache Tomcat Foundation. Tomcat 8 software downloads. , https://tomcat.
apache.org/download-80.cgi.

[GO-17] GO-FAIR. FAIR Principles (detailed). 2017. , https://www.go-fair.org/

fair-principles/.

[Gra14] Graham Klyne, Jeremy J. Carroll,Brian McBride. RDF 1.1 Concepts and Abstract
Syntax. 2014. , https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[JL18] Ying Zhang Wenjuan Cui Zhihui Du Jianhui Li, Xiafeng Meng. Big scientific data
management (FAIR Data Principles). pages 296–303, 2018. ISBN 978-3-030-28060-4.

[LOBdSS20] FAIR Data Team Luiz Olavo Bonino da Silva Santos, Kees Burger. FAIR Metadata
Editor. 2020. , https://editor.fair-dtls.surf-hosted.nl/#!/.

[Mon18] Barend Mons. Data stewardship for open science. 2018. ISBN 978-1-4897-5317-3.

[MS16] Jean-Claude Burgelman Michel Schouppe. Relevance of the eosc initiative and
fair principles in the realm of open science and implementation phases of the
eosc. Scientific Data, 2016. , https://ec.europa.eu/research/openscience/pdf/
eosc-fair_paper_schouppe-burgelman_2018.pdf.

[Sin] Hargurjit Singh. FAIR Data survey. , https://docs.google.com/forms/d/e/

1FAIpQLScOsXtZOG-DFY5B5ZpTNpoQTvWdx4-Oi51jtuT_mgl78piHsg/viewform.

[UH18] et al. Ursula Hubner, Antonia Zapf. German medical data sciences: A learning health-
care system). pages 209–213, 2018. , ISBN 978-1-61499-895-2.

19

https://www.mongodb.com/what-is-mongodb
https://www.w3.org/ns/dcat
https://openrefine.org/documentation.html
https://openrefine.org/documentation.html
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://docs.google.com/document/d/1eBJKSg1u5gep6-2cbjGpWNulMvC7F9BSmnKYq7FFSGA/edit#heading=h.ah8yn51oup91
https://docs.google.com/document/d/1eBJKSg1u5gep6-2cbjGpWNulMvC7F9BSmnKYq7FFSGA/edit#heading=h.ah8yn51oup91
https://docs.google.com/document/d/1eBJKSg1u5gep6-2cbjGpWNulMvC7F9BSmnKYq7FFSGA/edit#heading=h.ah8yn51oup91
https://doi.org/10.1038/sdata.2016.18
https://github.com/FAIRDataTeam/
https://github.com/FAIRDataTeam/
https://tomcat.apache.org/download-80.cgi
https://tomcat.apache.org/download-80.cgi
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://editor.fair-dtls.surf-hosted.nl/#!/
https://ec.europa.eu/research/openscience/pdf/eosc-fair_paper_schouppe-burgelman_2018.pdf
https://ec.europa.eu/research/openscience/pdf/eosc-fair_paper_schouppe-burgelman_2018.pdf
https://docs.google.com/forms/d/e/1FAIpQLScOsXtZOG-DFY5B5ZpTNpoQTvWdx4-Oi51jtuT_mgl78piHsg/viewform
https://docs.google.com/forms/d/e/1FAIpQLScOsXtZOG-DFY5B5ZpTNpoQTvWdx4-Oi51jtuT_mgl78piHsg/viewform

20

A Appendix

21

22

23

	Introduction
	Involved organisations
	Thesis overview

	Background
	FAIR Data Principles
	What is a FDP exactly?

	FAIR related software
	FDP : First method
	FDP : Second method
	Editor
	FAIRifier

	Interest research
	Conclusions and Further Research
	Conclusion
	Future work

	References
	Appendix

