
Opleiding Informatica

Fusion approaches for

Monocular Depth Estimation

David Schep

Supervisor:
Michael Lew

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 28/07/2020

www.liacs.leidenuniv.nl


Abstract

Estimating depth using a single image is a very useful research field with applications in
augmented reality, self-driving cars and computational photography. Recently significant
progress has been made due to the innovative Deep Convolutional Neural Networks. In this
thesis we will not innovate by producing a new DCNN architecture but instead we fuse
different existing DCNN models using multiple fusion methods; the average, weighted average
and median. The performance of these fusions is compared using two datasets; NYU Depth-v2
and KITTI. We show that fusing models will always give better performance but choosing
the right models to fuse is very important. Models that have significant difference in the
architecture are more likely to fuse well. We also show that fusing more models yield better
results but will quickly give diminishing returns. Fusing only two well chosen models will give
performance close to the performance of a three model fusion. 1
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Image BTS VNL Fusion-avg (ours) Ground Truth

Figure 1: Monocular Depth Estimation on the NYU Depth-v2 dataset. Fusion-avg (ours) averages
BTS and VNL.

1 Introduction

In this thesis we will take a different look at the problem of monocular depth estimation. Monocular
depth estimation is the process of taking an RGB image as input and predicting the distance to
the camera for every pixel in the scene. Figure 1 shows examples of monocular depth estimation on
the NYU Depth-v2 dataset.

We as humans perceive depth using two eyes. There exist techniques that use two cameras to give
a computer depth perception. The field of monocular depth estimation focuses on the subset of
the depth perception problem where only a single camera is used. This makes predicting depth
significantly more difficult. When we close one eye we still have an idea of how far away objects are
because of the experience we have with seeing depth. But when you can not use both eyes it is
possible to misjudge the distance to an object. Maybe an object is suddenly smaller and closer
than usual. For example, a very detailed model of a tree placed right outside your window might
give you the impression of a large tree being further away. This illustrates a key property of the
monocular depth estimation problem. A single image could map to an infinite amount of correct
depth maps. We could take three identical images of the window with the tree. In every image we
scale up the tree and move it further away. The image would not change but the correct depth map
would change. This means the problem is not solvable. Humans can only estimate the depth of
objects in a scene using our experience. A tree is usually not closer than a few meters and a phone
is often closer than a meter. By recognising objects we can estimate the distance. This makes the
problem very difficult for a computer to solve. As a computer usually does not understand a scene
and thus cannot infer whether an object is close or far away.

The first attempt to solve this problem using a machine learning based method was done by A.
Saxena et al. [1]. They applied a linear regression model combined with a Markov random field
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(MRF) to the problem. Machine learning quickly evolved and deep learning was introduced. Soon
after, state-of-the-art Deep Convolutional Neural Networks were applied to Monocular Depth
Estimation and achieved impressive results. DCNNs were often trained with very large datasets
like DITW [2], KITTI [3] and NYU Depth-v2 [4]. The DCNNs are very well researched and every
few months a new architecture is designed which advances the field even more. This paper will not
focus on designing a new architecture but instead will show whether fusing the output of known
models will lead to improved performance.

Combining models into a single model is a common practice in the machine learning field. The
combined models are often called ensembles. It has been shown that an ensemble model will often
lead to better accuracy [5]. However most often the models are combined before training and are
trained all at the same time. Instead we will focus on models that have been pre-trained on the
same dataset and for the same problem. In this paper we will combine three state-of-the-art DCNNs
designed and trained for monocular depth estimation. The models will be combined using different
fusion methods; The normal average, weighted average and median.

This chapter contains the introduction. In Section 2 related work will be discussed. Section 3
introduces the three models that have been chosen to be fused. We will go over the architectures
and differences between these models. Section 4 explains the fusion methods used to combine
the models and how the weighted mean weights were optimized. In Section 5 the datasets used
for the experiments are introduced. Section 5.3 discusses the evaluation method and the metrics
that have been used. Section 5.4 shows the results of the fused models on the NYU Depth-v2
dataset and compares them to the base models. The performance of the different fusion methods
are also compared. The results of the fused models evaluated using the KITTI dataset are shown
in Section 5.5. And finally Section 6 concludes.
This bachelor thesis has been written at the Leiden University LIACS faculty with supervision
from Michael Lew.
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2 Related Work

In the field of monocular depth estimation approaches differ in whether the model is supervised or
unsupervised. When a model is supervised it is trained using RGB images annotated with depth
information for each pixel. Unsupervised models fall in two categories, stereo-based and video-based.
Stereo-based unsupervised models train on a dataset of stereo RGB images without annotated
depth. Video-based unsupervised models train on images sequences from videos. Unsupervised
models are useful as they do not need vast amounts of unlabelled data. They are also not susceptible
to noise in depth sensors like LIDAR that are used to create the annotated depth maps.

2.1 Supervised monocular depth estimation

Using annotated RGBD images A. Saxena et al. [1] were the first to apply a machine learning model
to supervised monocular depth estimation. They used a Markov random field to get a functional
mapping from visual clues to depth. Later they extended this to a patch based model that assumes
the image is made up of small patches. An MRF learns the 3D orientation and 3D location of
these patches. Eigen et al. [6] applied a new multi-scale convolutional network architecture to the
problem. By progressively refining predictions using a sequence of scalars, they captured many
image details without the use of any superpixels or low-level segmentation. A new architecture
called ResNet [7] created significant progress in convolutional networks by giving the network a
good understanding of contextual and structural information in a scene. This architecture is built
upon by many following works. The main hurdle that followed is decreased spatial resolution caused
by repeated pooling in the deep feature extractors. Xie et al. [8] applied skip connections from
deeper layers with lower spatial resolution to higher spatial resolution layers. A recent approach by
Fu et al. [9] changed the problem from regression to ordinal regression. By training the network
using ordinary regression loss they achieved much higher accuracy and faster convergence. Lee et
al. [10] used novel local planar guidance layers located at multiple stages of the decoding phase
for more effective guidance of densely encoded features to desired depth prediction. Most previous
methods only use pixel-wise depth supervision to train a network. Liu et al. [11] does this differently.
By combining a deep convolutional network with a continuous conditional random field (CRF) they
exploit consistent information of neighbouring pixels. CRF establishes a pair-wise constraint for
local regions instead of only a pixel-wise constraint. Yin et al. [12] show the importance of using
higher-order 3D geometric constraints by using a loss term that enforced virtual normal directions
determined my 3 randomly sampled points in 3D space. This made the 3D geometry much more
consistent.

2.2 Stereo-based unsupervised monocular depth estimation

Recently, unsupervised methods using stereo images have been introduced. They attempt to recover
a right view using a left view and then define the error between both as the reconstruction loss for
the main training objective. Godard et al. [13] show that using only this error does not produce
accurate depth maps and introduce a novel training loss that enforces consistency between the
disparities produced relative to both the left and right image. This improves performance and
robustness. Zhan et al. [14] show deep feature-based warping loss improves upon simple photometric
warp loss.
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2.3 Video based unsupervised monocular depth estimation

Previous works used separate pose and depth convolutional neural networks by minimizing the
photometric consistency across monocular video datasets during training [15]. Wang et al. [16]
showed that separate depth and camera pose estimators are not necessary. Inspired by recent
advances in Direct Visual Odometry (DVO), they incorporated a differentiable implementation of
DVO along with a novel depth normalization strategy to substantially improve performance over
previous methods. Bian et al. [17] analyzed the effects of camera motion on current video based
unsupervised frameworks, and revealed that the camera rotation behaves as noise for training depth
CNNs, while the translation has a positive contribution. This lead to unsupervised state-of-the-art
performance getting closer to the supervised state-of-the-art performance.

2.4 Ensemble models

Ensemble learning is a technique where multiple different models combine their output to increase
performance. This technique has been shown to be very successful with deep CNNs as these models
often have high variance and low bias [18]. Most often this technique is used with classifiers where
the models vote on which class they think is correct. The diversity between the models is most
important to improve performance when ensembled. [5]. Ensemble learning is widely used to create
state-of-the-art models. In 2012, 5 structurally identical but differently trained versions of AlexNet
won the image classification challenge ILSVRC [19]. An ensemble of six ResNet [7] models won
ILSVRC in 2015. These ensemble methods rely on the sheer number of models in the ensemble
and none of these methods have yet to try search for the best models to complement each other.
Aakenberg et al. [20] researched the best models to form different ensembles of DCNNs for RGB-D
object recognition classification. They found that the recognition performance of an existing RGB-D
object recognition model can be significantly increased by forming an ensemble of two generalist
models and an expert model.
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3 Combined Models

3.1 Model Selection

To be able to evaluate the performance of fused models we first need to decide which models to
combine. The selection process has three deciding factors. First the performance of the model
and second whether the model had the code of an implementation available. The last deciding
factor is the degree of difference in methods between the models. The more different the models are
the higher the chance that combing them will lead to improved performance. Two of the chosen
models are the highest performing of the papers with available code. The number one highest
performing model is Big To Small (BTS) [10]. The second is Virtual Normal Loss (VNL) [12].
The third highest performing method according to the paper is SharpNet [21]. This paper does
have an implementation available but is only trained using NYU Depth-v2 and not KITTI. The
different datasets the models are evaluated on are further explained in section 5.1 and 5.2. VNL
and SharpNet have quite similar architectures while BTS is very different. VNL and SharpNet use
a geometric constraint to improve performance while BTS uses improved network architecture. A
large difference in techniques will likely improve the chance of the two methods combining well.

Figure 2: The BTS Architecture.

3.2 BTS

The BTS architecture consists of an encoder decoder convolutional network. The encoder uses
a dense feature extractor (DFE) and a contextual feature extractor (ASPP). These extractors
attempt to learn how different features in a scene correspond to different depths using repeated
convolutions and pooling operations. The decoder takes these features and performs repeated
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upconvolutions on them. This then leads to predicting the desired depth. However, during decoding
a lot of resolution and sharpness from the input is lost. Many techniques like skip connections and
multi-layer deconvolutional networks have attempted to solve this.

BTS uses a new technique called local planar guidance layers to address this problem. These are
layers that store information from earlier decoding stages, which are used when decoding to define
a more direct and implicit relation between internal features and the final output. BTS combines
this new technique with well researched skip connections to lose as little resolution as possible.
Figure 2 shows the BTS architecture and the placement of the local planar guidance layers and
skip connections.

Figure 3: The VNL Architecture.

3.3 VNL

The VNL architecture starts with an encoder decoder network. This network is a state-of-the-art
architecture called ResNeXt-101 [22]. It was pretrained on the ImageNet dataset [23]. This network
predicts the depth. From the depth a point cloud is reconstructed. This point cloud is used to
predict virtual normals which are then constrained in 3D space. VNL uses ground truth depth and
ground truth virtual normals to train the network. The ground truth virtual normals are generated
using differentiable transformation from the ground truth depth map. The ground truth depth
is used to train the ResNeXt network and the ground truth virtual normals are used for virtual
normal constraints. These constraints are used to make the point cloud more accurate. This is then
used to force the depth prediction to follow the realisitic 3D geometry which is used to improve the
depth prediction. Figure 3 shows the VNL architecture. By using 3D constraints VNL manages to
significantly boost the base networks performance.
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Figure 4: The SharpNet Architecture.

3.4 SharpNet

The SharpNet architecture is also based on an encoder decoder network. However, SharpNet
uses the ResNet50 encoder [7]. Their architecture is called U-shaped as the encoded intermediate
representation is used by three different decoders, each decoding for a different task; occluding
contours, depth and surface normals. As seen in Figure 4, the network utilizes skip connections
from the decoder to the encoders. The network was designed to create a depth map with very
sharp corners and thus accurate occluding contours. This is why the network is split up into three
different decoders. These decoders need a way to influence the other decoders. Otherwise they
could never increase the accuracy of the depth prediction. This is done by using a loss function that
when training forces the network to estimate very accurate depth using the occluding contours and
surface normals. These loss functions are shown in Figure 4 as Ldc and Ldn.

3.5 Differences

VNL and SharpNet have very similar approaches to improving depth estimation performance.
SharpNet trains additional decoders to create more output data. This is used to improve the
performance of the depth estimation by enforcing a loss function while training. VNL does not train
multiple decoders but does create more data in the form of normal vectors, which are constrained
to improve the consistency of geometry. This is then enforced on the depth estimation with a loss
function in the same way SharpNet does. BTS is significantly different and only improves the
architecture of the encoder decoder network by adding local planar guidance layers. Since BTS has
the highest performance and is the most different from the other models it is expected to be the
best performer when fused with another model.
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Figure 5: The steps needed to process an input image.

4 Method

Combining models takes several steps. The first is to take an instance from the dataset and hand it
to all the used models. Each model will then process the instance and output the depth for each
pixel. These depths will be combined into a new set of data. After which this new dataset will be
fused using different fusion methods. Figure 4 shows these steps.
We will cover the three most common fusion methods. The most common method being the average.
[18]. Second an third are the weighted average and median. These are the formulas for each of the
methods:

Average :
1

|M |
∑
k∈M

k

M is a collection of models. k is the output for a single model.

Weighted Average :
1∑|M |

i=0 αi

|M |∑
i=0

αiki

αi is the weight of the i-th model, ki is the output of the i-th model.

Median :
1

2
(pb(n+1)/2c + pd(n+1)/2e)

Where n = |M |. p is a pixel from the model outputs. The pixel pi denotes the same pixel from the
output of model i. b c and d e are the floor and ceiling functions, respectively.
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4.1 Finding the weighted average weights

To be able to calculate the weighted average we first need to find the optimal weights for each
model. For classification tasks it is possible to calculate these weights by using the accuracy of each
model [24]. This is used to estimate how useful each model is and thus how much it would add to
the weighted average. This method does not work for the pixel based weighted averaging. This is
why a simple optimization algorithm was used.

When optimizing the weights it is important to not use the same data to optimize the weights
and to evaluated the performance of the weighted average. Both datasets already have been split
into a train and test set. The train set was used to train the base models and the test set was
used to evaluate their performance. To optimize the weights we cannot use the train set as the
models have already seen the data. This is why the test set is split randomly into two equally sized
portions. The first half will be used to optimize the weights and the second half to evaluate the
performance of the optimized weights. The dataset specific splits will be discussed in Section 5.1
for NYU Depth-v2 and Section 5.2 for KITTI.

Now that we know what data to use for the optimization we need to decide what metric to optimize.
The evaluation metrics are explained in section 5.3. Any of these metrics can be optimized but for
this paper the RMSE was chosen as this metric is most used to compare different models. To start
the optimization, all the weights for the base models are first initialized to 1.0. The RMSE is then
minimized using the Nelder-Mead simplex algorithm [25] implemented by Sci-Py. The resulting
weights are used in the Section 5.
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5 Experiments

This section will show how effective different fusion methods are. This will be done by evaluating
the fusion of these models on two datasets. We will first go over these datasets. Then the evaluation
metrics will be discussed, after which the fused models will be evaluated using these metrics. And
different combinations of models will be compared.

5.1 NYU Depth-v2 Dataset

The NYU Depth-v2 dataset [4] contains RGB images with annotated depth. These images are of size
480 X 640 captured using a Microsoft Kinect. The dataset captured 464 diverse indoor scenes of the
New York University. NYU Depth-v2 provides 120K image-depth pairs. But not all pairs are useful
due to asynchronous capture rates between the RGB and Depth camera. VNL randomly sampled
29K pairs to use for training. While BTS use a regular time-step between the samples to retrieve
24K image-depth pairs. Other works have pre-processed the dataset to be able to use it in its entirety
to train their network [9]. SharpNet does not explicitly state what part of the dataset they use for
their depth estimation training. Their occluding contour decoder uses a new dataset created by
the SharpNet authors by hand-annotating the NYU Depth-v2 dataset which they called NYUv2-OC.

The NYU Depth-v2 dataset also contains 1449 selected RGBD images for training and testing.
These images have the highest quality RGB and Depth information. 795 are split of for training
and 654 are split for testing. Both BTS and VNL used the 654 testing images to evaluate their
performance. SharpNet does not specify which images are used. In this paper testing images will
be randomly split in two as specified in Section 4.1. The first half will be used to optimizing the
weights for the weighted average and the second half will be used for the evaluations.

When evaluating the NYU Depth-v2 dataset BTS uses a center crop as specified in Eigen et al. [6].
This is in accordance with previous works [9]. VNL and SharpNet do not apply the Eigen crop
before evaluation. We will use the Eigen crop to use as close an evaluation method to previous
works as possible. This is the reason that our evaluation of VNL and SharpNet will not be identical
to the values provided in their paper.

5.2 KITTI dataset

The KITTI dataset [3] is captured using LIDAR placed on top of a VW station wagon. This LIDAR
data is combined with RGB images taken at the same time to provide a dataset of 61 different
outdoor scenes. Eigen et al. [6] proposed a split across these different scenes. Many previous works
use this split. The test split is made up of 697 images spanning 29 scenes. The train split contains
the other 32 scenes containing 32488 images. Both BTS and VNL used the train images to train
their model. The test images will be randomly split into two as specified in Section 4.1.

Garg et al. [26] proposed a center crop for the KITTI dataset. BTS uses this crop in accordance
with previous works. VNL does not use this crop. In this paper we will use the Garg crop to keep
our evaluation as close to other works as possible.
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Image BTS VNL Fusion-avg (ours)

Figure 6: The estimated depth from two base models and our fused model using the average fusion
method. On four images from the KITTI dataset.

5.3 Evaluation

The exact same evaluation method used by [10] will be used in this paper. This is consistent with
previous monocular depth estimation works. Both datasets will be evaluated using the following
metrics.

Threshold : % of yi s.t. max

(
yi
y∗i
,
y∗i
yi

)
= δ < thr

Abs Rel :
1

|T |
∑
y∈T

|y − y∗| /y∗

Sq Rel :
1

|T |
∑
y∈T

‖y − y∗‖2 /y∗

RMSE :

√
1

|T |
∑
y∈T

‖y − y∗‖2

RMSElog :

√
1

|T |
∑
y∈T

‖log y − log y∗‖2

log10 :
1

|T |
∑
y∈T

|log10 y − log10 y
∗|2

T denotes a collection of pixels for which the ground truth values are available. y is the estimation
value and y∗ the ground truth value.
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Method
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSElog log10

VNL [12] 0.867 0.973 0.994 0.116 0.070 0.406 0.152 0.050
SharpNet [21] 0.868 0.977 0.995 0.125 0.072 0.402 0.154 0.050

BTS [10] 0.885 0.978 0.994 0.110 0.066 0.392 0.142 0.047

Fusion-median (ours) 0.904 0.984 0.997 0.101 0.053 0.353 0.131 0.043
Fusion-avg (ours) 0.910 0.987 0.997 0.098 0.048 0.334 0.126 0.041

Fusion-w-avg (ours) 0.911 0.987 0.997 0.098 0.048 0.332 0.126 0.041

Table 1: NYU Depth-v2 comparison. The fused methods consist of all three models: BTS, VNL and
SharpNet. The weights for the weighted average are 0.96, 0.83 and 1.20 respectively. The weights
were calculated using the first test split specified in Section 4.1

5.4 NYU Depth-v2 compared

Table 1 shows how much the ensemble models improved on both base models. All metrics clearly
show that an ensemble will improve the performance of the base models. The δ thresholds show
that the accuracy significantly increased for the ensembles. This tells us that the base models
are significantly different and produce a different collection of inliers. Combining these collections
creates a larger collection of inliers leading to higher δ values. It might also be that the prediction
of the models are often on the other side of the GT. For example VNL might often overshoot depth
and BTS might often undershoot. The correct depth is then the average of the models. This is also
visible in the second row of Figure 1. BTS undershoots the depth of the back wall while VNL is
closer but overshoots the depth. The depths averaged out are then closer to the actual GT depth.

The weighted average compared to the normal average did not show a significant difference on the
NYU Depth-v2 dataset. Weighted average performed slightly better on all metrics but not by a large
margin. This is likely due to the fact that the performance of the three models is already close. If
the models used are more different in performance then weighing the average will be more important.

The weights of the base models in the Fusion-w-avg ensemble model are 0.96 for BTS, 0.83 for
VNL and 1.20 for SharpNet. Even though BTS clearly has the best single model performance
the optimizer still decided on higher weight for SharpNet than BTS. This can be caused by the
models having slightly different performance on the first half of the test split than the second half.
SharpNet may be better performing on the first while BTS performs better on the second half.
Another reason could be that the performance of a model does not say how well a model will fuse
with other models. This is why optimization of the weights is a better idea than choosing weights
only based on the evaluation metrics.

5.4.1 Two model fusions

Table 2 shows how different two model fusions affect the average and weighted average performance.
The performance of the weighted average is clearly not always better for these fusions. When
looking at the weights assigned to the base models they are very close to 1.0. The Fusion of VNL
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Method
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSElog log10

BTS x VNL avg 0.892 0.981 0.995 0.106 0.057 0.368 0.137 0.046
(1.08, 0.90) w-avg 0.893 0.981 0.995 0.105 0.057 0.367 0.137 0.046

VNL x SN avg 0.907 0.985 0.996 0.102 0.051 0.344 0.132 0.042
(0.99, 1.01) w-avg 0.907 0.985 0.996 0.103 0.051 0.344 0.132 0.042

BTS x SN avg 0.906 0.984 0.997 0.102 0.052 0.340 0.129 0.042
(1.05, 0.95) w-avg 0.906 0.984 0.997 0.101 0.052 0.340 0.129 0.042

Table 2: NYU Depth-v2 weighted average of various model combinations. The first column shows
the fused models and in parentheses their respective weight (αi). SN stands for SharpNet

and SharpNet have the weights that are the closest to 1.0. Telling us that the fusion of these models
does not benefit from a weighted average. The performance of the average for this model is also
better than its weighted average which means the optimized weights on the first test split did not
correctly model the weights needed for increased performance on the second half of the test split.
The fusion of BTS and VNL did see slight improvement for the weighted average. The weights are
also further away from 1.0 with 1.08 for BTS and 0.90 for VNL.

Fusing BTS and SharpNet gave the overall best performance for the two model fusions, with the
best performance in almost every metric. The performance of this two model fusion comes close to
the performance of the weighted average fusion of all three models, with an RMSE of 0.340 and
0.332 respectively. This shows that using a well chosen two model fusion might suit certain use
cases more than using a three model fusion. If the goal is the absolute best performance it will be
better to fuse all three models. Theoretically using more than three model fusions will give even
better performance. But when looking at the results in Table 1 and 2, these fusions will quickly
give diminishing returns when more models are added and will likely not be worth the processing
power requirements.

Figure 7: A comparison of the three base models and two fusion methods; the median and average.
Two images from the NYU Depthv2 dataset have been cropped on an interesting region.
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5.4.2 Median vs. Average

Figure 7 shows the difference between the average and median. The median takes the pixel values
of one model if the value falls in between the value of the other two models. This causes it to
sometimes copy artifacts from one model. This is shown in the first row of Figure 7. The BTS
model shows significant difference in depth at the top of the image while the other two models
output more uniform depth. The median shows clearly the BTS artifact on the top left of the image.
While the average smooths out the artifact by averaging it with VNL and SharpNet.

Because the average uses all of the models to influence one pixel this often creates a less defined
edge. This is visible in the second row of Figure 7. Here the edges of the furniture are clearly sharper
in the median depth image. The edges of the average depth image are much more feathered. The
edges in the VNL model are clearly the best defined. If the median chooses the VNL depth values
the edges will be well defined. If certain SharpNet pixels happen to be the median the edges will
be less well defined. This is the reason that the edges are not always perfectly sharp using the median.

The performance if the median is significantly worse than the average. With a RMSE of 0.353 and
0.336 respectively. In all of the metrics the median performs worse except the δ < 1.253. Here the
median produces the same portion of inliers as the average. The median should only be used if the
sharpness of the edges is important. When all of the models combine already produce sharp edges
the average will always perform better.

Method
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE log log10

VNL [12] 0.937 0.989 0.997 0.075 0.328 3.237 0.115 0.033
BTS [10] 0.955 0.993 0.998 0.060 0.249 2.798 0.096 0.027

Fusion-avg (ours) 0.953 0.993 0.999 0.061 0.248 2.872 0.098 0.027
Fusion-w-avg (ours) 0.956 0.993 0.999 0.058 0.238 2.804 0.095 0.026

Table 3: KITTI comparison. The fused methods consist of all both models: BTS and VNL. The
weights for the weighted average are 1.55 and 0.42. The weights were calculated using the first test
split specified in Section 4.1

5.5 KITTI compared

Only two of the three models were trained on the KITTI dataset. This is why not every fusion
method could be used. As shown in Table 3, on this dataset BTS performs significantly better
than VNL on every metric. When fusing the methods using a simple average not every metric
performs better. Only Sq Rel and δ < 1.253 have better performance. This is due to the fact
that BTS performs better than VNL on the KITTI dataset. This is shown in the weights for the
weighted average. With 1.55 for BTS and 0.42 for VNL the weighted average gives BTS significantly
more weight than VNL. This gives the weighted average better performance than BTS on every
metric except the RMSE. Here the BTS base model has better performance than the weighted
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average. Figure 8 shows two example images of the KITTI dataset and the results of BTS, VNL
and both fusion methods. As expected the resulting outputs from BTS are much sharper. Especially
around the cars in the first column. The edges from VNL look less defined. VNL also seems to
underestimate depth in the first column image. BTS shows the distance to be quite far, shown by
the image being more red. The weighted average weights also seem to reflect this distinction. The
weighted average uses mostly the BTS depth and shows more red in the center. Looking at the
fusion metrics this is much closer to the correct depth than the underestimation of VNL.

BTS shows more artifacts in the depth predictions, this is visible in Figure 8. The VNL images are
much more consistent. This is likely caused by VNL using geometric constraints. These kinds of
inconsistent artifacts will be filtered out by VNLs constraints.

Figure 8: The estimated depth of the two base models and two fusion methods; the average and
weighted average on two example images from the KITTI dataset.
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6 Conclusions and Further Research

In this thesis we first introduced monocular depth estimation and provided an overview of previous
work in this field. Then we decided on the different base networks to combine. We showed how
they work and what differences there are in their architectures, after which the base models were
combined using various different fusion methods. The fused models were evaluated using the
same evaluation methods and datasets as previous works. We showed that when fusing models
for monocular depth estimation it is important that the models are diverse. More diverse models
yield better performance when fused. We also showed that using as many models as available for
ensembles will increase performance but will quickly lead to diminishing returns. If low computation
time and lower complexity are important it will often be better to find only a few models that fuse
well together.

We used a few different fusion methods. Of these methods the weighted average is clearly superior
but might not be necessary if the performance of the base models is already quite similar. The
median consistently under performs compared to the weighted average. However it is sometimes
possible for the median to produce sharper edges. The weighted average can produce less sharp
feathered edges if one of it’s base models does not output clear edges. The fused models performed
better on the NYU Depth-v2 dataset than on the KITTI dataset. This is likely due to all available
base models having similar performance on NYU Depth-v2 but one of the two available models
for KITTI performing significantly worse than the other model. If the models had more similar
performance on KITTI the fused performance would likely have improved significantly more.

Further research could look deeper into different fusion methods. This thesis focused on the most
important methods but some more advanced methods could certainly increase performance. For
example stacking: With stacking a new network is trained which takes as input the output from the
base networks. This network would then learn the best way to fuse the base networks. A different fu-
sion method could be a decision matrix. For each pixel in the input image a value will be stored in an
matrix that would say which network will decide its depth. The values could either be integers choos-
ing a certain network so that each pixel has only a single network influencing it or the values could
be floats. This would work the same as the weighted average but with different weights for each pixel.

This thesis put more focus on finding a few well combining networks to increase performance. But
if the goal was to find the absolute best performance, further research could look into whether
inputting slightly changed images into the same network and fusing the outputs could increase
performance. For example by changing the image’s color balance, crop, rotation or sharpness.
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