
Master Computer Science

Exhaust Gas Temperature modelling, a symbolic

regression approach.

Name: Juan Enrique de Santiago Rojo
Student ID: s2302470

Date: 29th of June 2020

1st supervisor: Prof.Dr. T.H.W. Baeck
2nd supervisor: Dr. Bas van Stein

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands





Abstract

In this master’s thesis research, a modelling technique of the exhaust gas temperature

(EGT) of an aircraft, by means of symbolic regression is proposed. As an indicator

of a turbofan engine’s health, the clear understanding and possible behaviour of this

parameter can help with reducing costs and maintenance, for engine manufactures and

airlines. After analyzing the latest developments in the field of symbolic regression, a

set of experiments are performed on real life continuous engine operating data (CEOD),

using the free open source Matlab toolbox, GPTIPS. It is proven to be an accurate

technique not only for retrieving an algebraic expression for the selected variable, but

also, for extracting important parameters that are measured during an engine’s operation

and relate to the EGT.
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1 Introduction

Characterization, modelling and prediction of data, are three fundamental problems

in different fields of study such as economics, engineering or social sciences. Characterization

aims to find the fundamental properties of the data. By modelling the data, an underlying

mathematical description is to be found, in order to use it as the model that will fulfil some

basic assumptions. Finally, the prediction’s objective is to develop predictive models that help

determine, with the highest accuracy, future values or other feasible solutions [41].

In order to tackle such problems, the modelling process has fundamentally been

based on linear modelling such as ARIMA [5], in addition to non linear statistical models. On

the other hand, other computational intelligent algorithms are based on non parametric and

heuristic systems. An example are those based on neural networks or hybrid modelling systems,

which provide good handling of missing data. But in many cases, these are considered “black

box” models.

As a feasible alternative, symbolic regression by means of genetic programming, will

be studied and analysed in this project. Symbolic regression searches in the space of mathe-

matical equations the one which best fits the corresponding data, as a binary tree structure. In

each of these trees, the mathematical operators correspond to the interior nodes and variables

and parameters correspond to the leaves. The algorithmic process, is an exploration of the

possible equations, by using genetic operators, such as crossover, mutation and elitism, to

name a few [23].

Even though symbolic regression was originally proposed as a technique for empir-

ically finding or determining the existing, and unknown, nonlinear relationships between the

input and the output data [23]; it has been recently used for linear analysis with great success
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[40].

Some of the reasons why symbolic regression had such a success are:

• Ability to discover non-linear relationships from the data, which could not be properly

represented by conventional parametric techniques. The latter would be done without

a-priory mathematical expressions which described the non-linearity.

• The ability to point out irrelevant variables through the execution of the algorithm.

• The ability to control the complexity of the functions found, due to the availability to

set up a maximum depth of the syntactic trees that represent these functions.

A disadvantage that symbolic regression has is that the genetic algorithm might

not guaranty the findings of better functions, that might have already been found by the

traditional models which are commonly used e.g. for time series analysis, ARIMA models.

Even though there might be a nonlinear dynamic. This can happen because the well known

mathematical models which are commonly used in statistics and econometrics [24] are not

taken into consideration in the search space. Also, because representing such complex models

on a tree structure form derives a very complex functional structure, making it impossible for

the algorithm to produce it.

Nowadays, with the growing generation of large amounts of data in the aviation

industry, many applications have been developed and improved, lots of which are focused on

engine health monitoring (EHM), as it is important for engine manufacturers and airlines.

With the purpose of improving the availability and operation of the engines, EHM monitors

the state of an engine or a wider set of engines by using past events and operational data.

By optimizing maintenance operations, not only the safety is improved but also costs can be
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reduced, for both the manufacturers and airline companies. The aim of these data-driven

solutions is to first avoid failures by preventing the possible faults on the engine, and secondly,

to extend the life span of systems, making engines safer to use.

Exhaust gas temperatures has been proven to be a good indicator of the health of an

aircraft engine [39]. We propose using symbolic regression in order to retrieve the physical law,

or algebraic expression, that describes this parameter in an engine, from the other measured

parameters present in the operation of the engine. With this, one could build a feasible model

that can help with the prevention of faults in the engine.

The rest of this thesis is organized as follows. A literature study on the latest

developments on symbolic regressions by means of genetic programming and an analysis of

the available tools for performing it is done in Section 2. Section 3, describes the methodology

used for developing the real world data experiments developed in this thesis. In section 4, we

present our experimental results. Section 5, provides some concluding remarks of the research.

Finally, in Section 6, a future approach for continuing this research is proposed.
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2 Literature Study

Symbolic regression is a method for finding a suitable algebraic expression that de-

scribes the observed data [23]. In symbolic regression, no a-priory assumptions on a possible

form of the expression is made. Meanwhile, conventional regression models, like linear regres-

sion, are based on the assumption that the relationship between the dependent variables and

the independent variables is linear. Therefore, the parameters are optimized by providing a

starting point to the algorithm. Nevertheless, there is a mathematical expression space pro-

vided in symbolic regression. Which contains candidate function, e.g., mathematical operators,

analytic functions, state variables, constants. In order to find the most appropriate solution,

symbolic regression then searches through this space of functions. One can say that not only

the model structures are optimized in symbolic regression, but also, the model parameters

[23].

A further assumption is made in symbolic regression. Which is that the relationship

between the input and the output data can be described by an algebraic expression [23]. As the

aim of finding an algebraic expression that describes these relationships is sophisticated enough,

there is a need for the use of a powerful search method. Genetic programming can provide the

tools for doing so. With a fast evolution on the field of genetic programming [23], new ideas

and methodologies have made it a tool that could out-perform other traditional techniques

when solving modelling and identification problems, such us autoregressive moving-average

(ARMA) models [40].
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2.1 Genetic Programming

There have been many developments for different methods based on what is called

Evolutionary Computation. Throughout these methodologies, it is possible to find an analytical

expression that describes the exact form of the solution to the problem.

Evolutionary computation corresponds to a stochastic optimization method in which

searching rules are based on the principle of natural selection. This biologically inspired ap-

proach, was first introduced by Holland [18]. Therefore, evolutionary computation consists

of a process based on the evolution of a number of possible solutions to the problem, which

are modified, or evolved, through what are called genetic operators. These include crossover,

mutation and replication [23].

Among some of the algorithms developed which are based on evolutionary computa-

tion theory, genetic programming was first introduced by Koza [23] as a specific implementation

of genetic algorithms (GAs) [15]. The idea is to evolve the solution of a given problem follow-

ing Darwin’s theory of evolution and to find the fittest solution after a number of generations.

Instead of using strings of binary digits to represent chromosomes as in GA, solutions in genetic

programming are represented as tree-structured chromosomes, form by nodes and terminals.

As an example, Figure 1 represents in a basic tree the simple expression:

(cos(x1) + (x2 ∗ 0.5)) (1)

5



Figure 1: Basic GP tree representation

Genetic programming, therefore has two main differences from a pure genetic al-

gorithm. The first one is that genetic programming codifies solutions with the use of tree

structures, rather than a string of integers. Secondly, genetic programming allows the best so-

lutions of a certain generation to move onward the next generation directly. This is commonly

known as elitism [3]. This sort of technique has been successfully used in given problems

of programming code automatic generation [30], trigonometric identities recovery [31], bots

control [13] and, for our purpose, symbolic regression [23].

As mentioned, the genetic programming algorithm defined by Koza, performs in a

similar way as the GA. In genetic programming, genetic operators (crossover and mutation) are

applied on tree structures (individuals) that, in case of symbolic regression, represent algebraic

expressions. This is in contrast to GA, where the genetic operators are applied on - usually -

binary strings of 0 and 1.

Let us describe the essential components of a genetic programming algorithm. Chro-

mosomes are represented by tree structure, and we must distinguish between terminals and

operators. Terminals are variables or values, that the operator can process. These include in-

put variables like xn or coefficients to be used. The operators correspond to all those functions
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that can be applied to terminal nodes. These could be the fundamental arithmetic operators,

f = { +, -, *, /, exp, log, sin, cos...}. An individual (tree), is the hierarchic combination

of operators and terminals, which is equivalent to an algebraic expression. When generating

these tree structures, their computational complexity will be dependent on the used method

for building them (hybrid, declarative, procedural, mathematical). A more detailed description

of these tree building methodologies can be found in [35].

A genetic programming process can be defined as follows:

Let n denote the number of individuals, g the generation of the evolution, Pg the

population in generation g, and f (Si)the fitness function, which evaluates an individual. The

following steps are to be followed in genetic programming algorithms:

• Initialization: a large number of trees will be generated, where each tree represents a

possible solution. In this initial generation (g=0), an initial population (P0) is created

randomly, these initial terminals (constants and variables) and functions form the n indi-

viduals represented by tree structures of different structures and sizes. The initialization

process ends once the number of user specified individuals is reached.

• Fitness Evaluation: for each individual Si, where i={1,...,n}, the fitness function is

evaluated, f (Si). This evaluation is done by comparing the true values from the data-

set with the function output. Some error metrics used are root mean square error

(RMSE) and mean squared error (MSE).

• Selection: given the fitness score of an individual, some are selected for reproduction. As

it is normally stated, the higher the fitness score, the larger the probability of selection.

In order to achieve the optimal solution, this selection criteria follows the “survival of
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the fittest” rule, which states that good features are more likely to be inherited by the

next generation.

• Reproduction: the current population (Pg) is evolved by applying the genetic operators,

here described, to the selected individuals. After this, a new population (P∗
g) is created.

1. Crossover: this genetic operator takes two selected individuals as parents in order

to breed their offsprings. Then, it randomly takes a sub-tree from parent (a) and

substitutes another random sub-tree in parent (b) with the one from (a).

2. Mutation: this operator just takes one parent structure and randomly substitutes

a sub-tree with a randomly generated tree structure.

3. Elitism: selects the best individuals from the population and copies them without

modification into the next generation. Finally, the new offspring population (P∗
g)

replaces actual population (Pg), until the population size reaches the specified

number.

• Termination: the process stops when an individual with the required fitness value is

found, when the maximum number of iterations (generations) is reached or when another

pre-defined criterion is met, such as wall-clock time.

We illustrate in Figure 2 the process by which a solution of the symbolic regression problem

is obtained by means of genetic programming.
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Figure 2: Genetic programming algorithm flowchart

2.2 Advances in Symbolic Regression

Evidently, since its introduction, there has been a great effort on improving the

performance of the original genetic programming algorithm for solving symbolic regression

problems. There were three major issues to be solved. First, as the performance of the next

generations of individuals created during the algorithm was not guaranteed to be better than

their parents, a non-deterministic optimization problem was raised. Second, it was difficult to

find the proper constants due to the fact that their creation, during the initial input set or

through mutations during the genetic programming algorithm, is done randomly; there was no

effective way to obtain the best fitting coefficients. The third issue was that, as the fitness of an

individual is evaluated based on its own complete structure, the fact of having a good feature

in a sub-branch does not mean that its performance as an individual will be better. Which
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could be translated into loosing the good equation components in the upcoming generations.

Thus, there is a limitation on preserving good components of the algebraic expression due to

this fitness evaluation methodology.

Here, we describe the advances in the genetic programming algorithm that have

helped solving the aforementioned issues. The evaluation of the syntax performance is con-

ventionally used in genetic programming for solving symbolic regression problems, but the

geometric semantic genetic programming approach [6], evaluates the semantic performance,

i.e., the program behaviour. It represents each program in a high dimensional semantic space,

so the fitness evaluation can be done by just measuring the distance between the target point

in the problem and the program. It will have a better performance the closer the program is

to the target point. It states that optimizing the program semantics instead of the syntax,

frees the symbolic regression solutions from specific forms, making it more efficient.

In order to properly find constants or parameters, the evolutionary polynomial regres-

sion [17] hybridizes the evolutionary optimization scheme used in genetic programming with

the parameter estimation technique that is being used in conventional numerical regression

methods. The way of doing this is by first exploring the function space with the help of a

genetic algorithm, and then performing a least squares linear regression to optimize the param-

eters that can be found in each mathematical building block. Even though the computational

cost for this hybrid method could be higher, it improves the stochastic symbolic regression by

means of genetic programming approach by making it a more deterministic approach.

As another example of a hybrid approach, genetic programming-based relevance

vector machine (RVM) [29] combines Kaizen programming [9] and an RVM algorithm to solve

symbolic regression problems. This method provides the advantages of both Bayesian kernel

methodologies and evolutionary computation, in where the former extracts basis functions to
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be built and solved within the space of the optimal solution. The latter explores the parameter

space. Fundamentally, Kaizen programming is a collaborative version of a genetic programming

algorithm. Here, individuals work together in order to solve the problem, so the solution for

this process is nothing but a linear combination of genetic programming individual. Which

means that, instead of evaluating an individual program as a complete solution, the fitness

evaluation process is based on a group of individual partial solutions. An RVM algorithm

extracts the important functions without prior knowledge from the given set.

With a more sophisticated design than the conventional genetic programming algo-

rithm Cartesian genetic programming [7] represents the computer program as a directed acyclic

graph. It can be visualized as a grid of nodes in two dimensions. In order to determine the

mathematical function that each node performs, they own a set of genes, which as a whole,

forms the program’s genotype. After decoding the genotype, it expresses the phenotype. This

genotype-phenotype mapping feature makes Cartesian genetic programming a closer algorithm

to the real natural evolutionary process. In addition, a new crossover technique for Cartesian

genetic programming is developed and introduced, which is based on directed graphs as a

representation to replace the tree structures originally introduced by Koza.

With regards to the theory that allows us to understand evolutionary algorithms

convergence, Schmitt et al. [32] proved asymptotic convergence to a global optima, for a

set of genetic programming systems, where the population was set as a fixed number of

individuals, each one of an random size. On the other hand, when it comes to the way genetic

programming performs the solution search on the search space, Daida and Hills [8] identify

how the tree structure has a mayor influence on how the algorithm performs this search.

The multiple regression genetic programming [2] approach helps in improving the pro-

gram evaluation process. In essence, it performs multiple regressions on the solution functions’
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sub-expressions. Here, the mathematical expression tree is decoupled into other sub-trees so

that the fitness of a possible solution is then evaluated based on the best linear combination

of the decoupled sub-trees structures. This is done instead of the individual fitness evaluation.

In order to solve the linear regression problem, a least angle regression algorithm is used.

While the standard representation of a genetic programming algorithm is based on

the evolution of one single tree structure, multigene genetic programming [34] builds each

individual by considering a number of genes, with a tree structure form, that are weighted

by linear combination. There is indeed a limitation on the number of genes an individual

can have, while it is not required for it to have the maximum. This limitation can be set

by the user. The changes performed on the original genetic programming algorithm include

the initialization process, where an individual is initially generated with a random number of

genes, between one and the maximum defined by the user. More over, in order to maximize

the diversity within the population at the beginning of each run, there is a supervision on the

duplicated genes, so that they do not appear in the new generated individuals. When applying

the genetic operators, crossover is based on the two-point high-level crossover operator [37].

Meanwhile mutation is performed in the same way as in the ordinary genetic programming

algorithm. The predicted output variable is a combination of the weighted output of the

multigene individual’s genes plus a bias term. These weights are determined automatically by

a least squares procedure, for each individual. Mathematically, a multigene regression model

can be expressed as:

ŷ = d0 + d1 ∗ Tree1 + ... + dn ∗ Tree1 (2)

where d0 represents the bias term, n is the number of genes which constitutes a
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certain individual and d1, ..., dn are the gene weights. Figure 3 represents an example of a

multigene genetic programming model that can be mathematically expressed by Equation 3

d0 + d1 ∗ (cos(x1) + (x2 ∗ 0.5)) + d2 ∗ (x1/x2 + 2) (3)

Figure 3: Multigene genetic programming model example

A different approach, not related to genetic programming is introduced in [21]. Based

on the artificial bee colony algorithm that simulates the foraging behaviour of honey bee

swarms, which was introduced by Karaboga in [20]. This new approach, to solving symbolic

regression problems, allows to evolve expressions and constants in order to form algebraic

expressions automatically. This was tested in a large set of symbolic regression benchmark

problems, the author concluded a significant performance [21] after comparing it with the

genetic programming approach.
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2.3 Genetic Programming and Symbolic Regression Applica-

tions

There have been many fields of study in where genetic programming and symbolic

regression have been used. Genetic programming was able to outperform other traditional

approaches in solving identification and modelling problems. Providing solutions to classifi-

cation problems [42], telecommunications problems [11] and manufacture process modelling

[12]. Furthermore, [40] compares different artificial intelligence (AI) techniques to the use of

genetic programming, noting that genetic programming could have a significant improvement

in terms of accuracy. Genetic programming has also been used for analysing and obtaining

volatility models, by means of forecasting index volatility such as S&P500 [1].

Many publications using symbolic regression based on genetic programming algo-

rithms have been publish since the introduction to the topic was made by Koza, as introduced

in section 1. One that must be mentioned, due to its industrial applications, is Bongard and

Lipson [4]. They generated symbolic equations for nonlinear coupled dynamical systems in

the fields of mechanics, systems biology and ecology. They also noted the differences between

symbolic models and numerical in terms of complexity, making the firsts easier to interpret.

Arkov et al.[25] applied symbolic regression by means of genetic programming algorithms to

identify nonlinear governing equations of wind turbines. Symbolic regression has also been

used when predicting economic time series [10], in multi-objective analysis [22] and in diverse

data analysis applications [27]. Furthermore, this technique has also been combined with oth-

ers to form hybrid approaches, in order to obtain better model. A remark is [26], in where

symbolic regression is combined with neural networks.
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2.4 Symbolic Regression Tools

Symbolic regression by means of genetic programming has been developed for many

years. Therefore, the amount of software running genetic programming has increased through

the necessity of solving not only research problems, but also business problems. We present

some of the most used tools, analysing their features and characteristics.

2.4.1 GPTIPS

We will first introduce the GPTIPS tool [34], which will be later used to experiment

on a real world data-set. This open-source tool is freely available for Matlab. It is based

on the previously explained multi-gene genetic programming algorithm and generates explicit

predictive models for symbolic regression equations, by means of analysing the relationship

between the input and output data-set. By using multi-gene symbolic regression, it improves

the functionality and the accuracy, and even reduces the complexity of the traditional genetic

programming algorithm. The initial population are multi-tree solutions constructed by a vector

of randomly generated trees. Each solution is evaluated and, based on this evaluation, part

of the population is selected to be the parents of the upcoming population. This selection

process is done by means of pareto tournament. Once the solutions are selected, they are

evolved by crossover and mutation repeatedly, until the termination criteria is satisfied. Some

of the criteria that can be used is the maximum number of generations, best model fitness or

a maximum run-time. Figure 4 shows a configuration setup. Refer to the User Guide Manual

[33] of the GPTIPS tool for a more detailed description of this tool.
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Figure 4: GPTIPS Configuration file (Matlab)

GPTIPS model solutions are built out of the populations solutions which contain the

randomly generated genes (trees). These are then combined linearly using different weights per

tree. These weights are calculated by minimizing the error of fitting the model to the training

data-set. In order to visualize the solutions, GPTIPS generates a model report containing

the properties and the configuration parameters. In this report, the input variables used for

building the best model, the model complexity and the number of trees are displayed for the

user to analyse. Moreover, a symbolic form of the model is displayed and can later be saved.
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Performance metrics of the best model (RMSE, MSE, MAE, R2) are given for both the training

and test data. This is one of the reasons for choosing this tool. It allows the user to explore

the results in a quick way, so that not only one can check if all the necessary settings where

properly arranged, but also, graphics, metrics and variables specifications of the built model

are shown. Making the post-run analysis simpler.

There are, indeed, some features and parameter that have to be configured by the

user before running GPTIPS, thus, it is important to be familiar not only with the tool itself,

but also the programming language of Matlab. Some of the features that can be configured

by the user are: population size, number of generations, depth of the tree structures and the

maximum number of trees. Furthermore, the selection procedure of the algorithm can be

based on solution complexity, Pareto front or goodness of fit. Complexity can be measured by

the expressional complexity, determined by the sum of the number of nodes in all sub-trees of

a given tree, or the total number of nodes per tree. It is important to note that by default,

this tool uses root mean squared error (RMSE) in order to measure the fitness of the model,

but the user can also define his own fitness function.

Some of the disadvantages that this tool shows are that Matlab is not a free soft-

ware, therefore the user must purchase a license. Also when it comes to defining the initial

population, the user can not set the initial seed and it might occur that the trees which form

a possible solution happen to be collinear. Which means, they are not independent and can

not be added up to each other.
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2.4.2 Karoo GP

This genetic programming suite is written in Python. It provides CPU and GPU

support by using the TensorFlow library. As a highly scalable tool, it can work with real world

vectorized data. Introduced by Staats [38], it enables the user, without deep programming

knowledge, to follow each of the steps of the algorithm until it gets a solution. This tool

includes a desktop application and a scriptable server application.

Karoo GP generates the first population of trees following the genetic programming

procedures, it then evaluates and selects the best fitting trees and evolves them into the

upcoming generation. This procedure continues until the maximum number of generations is

reached or, otherwise, a particular solution for the problem is obtained.

In the desktop Karoo GP solution, the user can define some of the running param-

eters such as tournament size, minimum number of nodes and the balance of the genetic

operators. The server application is also provided with this advantage. Some of the features

that characterize this tool are the user-defined minimum number of nodes, which essentially

defines the least number of functions and terminals allowed in a given tree. This distinguishing

feature was introduced in order to shape the evolutionary process, so it searches a particular

solution space by establishing lower bounds on the evolutionary landscape. Another relevant

feature is the availability of saving, modifying and reloading an evolved generation, which

means that the final population is automatically saved to disk so that the user can later access

it. These features allows launching the Karoo GP algorithm with a user specified seed for

the population rather than with a randomly generated one. Finally, this tool provides with

generic matching, regression and classification fitness functions, which are not tailored to any

particular problem. If for example the user will like to perform more advanced applications
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using this tool, he can always customize the fitness function in order to achieve the desired

outcome.

As the Karoo GP tool was specifically developed for the seek of the proposed research

in [38], it was tested and proven on symbolic regression problems, these being the Kepler’s

Third Law of Planetary Motion and the Iris data-set classification problem. Demonstrating to

having solved these real world problems efficiently and accurately, the tool provides a flexible

environment for symbolic regression problem solving through genetic programming algorithms.

As stated by [19], even though the many advantages that Karoo GP offers, the tool

is not equipped to introduce constants within the expression. Making it difficult to fit data

that has a peak that is not concentrated at the origin. Furthermore, it is easy for Karoo GP to

get stuck in a loop of never improving poorly fitting functions. Which is dependant on which

functions are chosen at the beginning, and since this is generated randomly, it is a difficult

problem to avoid.

2.4.3 GLYPH (DEAP based)

Glyph is a Python package for symbolic regression, based on genetic programming

[28]. It can be used for real world experiments with numerical solutions. It is a simple solution

for those without deep programming experience, due to its generic interface design. In an

effort to separate optimization methods from optimization tasks, the tool is implemented

in a client-server architecture, with a minimal communication protocol which simplifies its

use. Meant to be a lightweight frame work, it can build an application for finding an optimal

system representation out of given data. This tool implements symbolic constant optimization

and parallel execution, which can be used in complex applications. It is currently based on
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DEAP [16], so all the advantages and disadvantages that DEAP presents, have a direct effect

on Glyph. DEAP is a novel evolutionary computation framework for rapid prototyping and

testing of ideas. Which is written in Python. This Python library can be run on Linux, Mac

OS X and Microsoft Windows. It requires a Python version 2.6 or higher. By default, DEAP

supports the tree-based representation, that enables tree GP, and array-like representations.

The implementation of the evolutionary algorithm is done by using a pluggable genetic and

selection operators. It enables the user to create genetic programming by the combination of

different parts at the API level. One advantage is that many genetic operators have already

been implemented. This tool also provides with all the basic data structures and genetic

operators as well as some basic examples, which the user will find useful for implementing the

evolutionary process. It is important to note that the fitness function is a user-defined Python

function. Some drawbacks that the DEAP Python library might have are, the user must have a

basic knowledge of the programming language and that it does not support graphical plotting

for the experimental results. If for example the application that will use this tool has a high

computation requirement, Python language is much more slower than compiled languages,

such as C.
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3 Real World Data Experiments

In the remainder of this master’s thesis, we will show how symbolic regression is able

to uncover an underlying algebraic expression for the commonly used exhaust gas temperature

(EGT), measured in degrees centigrade in a turbofan engine. For this task, we have chosen

to use the GPTIPS software, which was described in the previous section 2.4.1. As GPTIPS

performs symbolic regression through multigene genetic programming, given a number of input

variables, the aim is to find a feasible model that predicts the actual EGT. It should be point

out that the models that are built out of the experiments, do not perform prediction but

actually, now-casting; both terms will be used interchangeably in the rest of the thesis. As

we will show, several experiments are performed in order to prove the viability of not only

the tool, but also the theory of symbolic regression for finding an algebraic expression for an

output variable out of measured input variables.

This section is organized as follows. We will first demonstrate the use of symbolic

regression to retrieve an algebraic expression from observations with preliminary experiments

in subsection 3.1. Secondly, a description of the real world data experiments developed in this

thesis is provided in subsection 3.2, as well as the data, the preprocessing and the methodology

used. The system setup description can be found in subsection 3.3. Finally, the measurement

error metric used for analysing the accuracy of the results are described in subsection 3.4.

3.1 Preliminary Experiments

In order to familiarize ourselves with the tool, its functions and other characteristics,

a set of simple experiments were performed with user generated data which followed well
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known physical laws, such as the Kelvin to Fahrenheit relation, the Kinetic Energy and the

Gravitational Law. Although these experiments are not the main focus of this thesis, we believe

that they prove the significance of the approach taken.

We will start with the most simple of the three preliminary experiments that were

used to prove the use of symbolic regression. A set of randomly generated values from 0 to

50 and the output variable were given to GPTIPS. The output variable, as the target variable,

resulted from manually applying the Kelvin to Fahrenheit conversion shown in equation 4. As

the reader can see from equation 5, the underlying relationship between the input variable

(temperature values in Kelvin), x1, and the target variable (temperature in Fahrenheit) is

successfully retrieved by GPTIPS.

T(F ) = (T(K) ∗ 9/5)− 459.67 (4)

(1.8 ∗ x1)− 460 (5)

A second preliminary experiment was performed to retrieve the kinetic energy of an

object, which can be defined by the work needed to accelerate an object of a given mass, from

the state of rest to a stated velocity. Formula 6 describes a non-rotating object with a mass

m travelling at a speed v. In this simple experiment, in which the aim was to retrieve this

physical formula, the mass and velocity were given to GPTIPS as input variables, along with

the target variable (kinetic energy). This target variable was user generated data which was

created by manually applying 6 on a set of data, which contained mass and velocity values.
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The mass and velocity were randomly generated values, between 0 and 1 for the mass, and

between 1 and 2 for velocity. The result of this experiment can be seen in equation 7, which

closely describes the same relationship between the input and the output data, in this case,

the kinetic energy. In equation 7, x1 is mass and x2 is velocity. The additional value stands

for the bias term that multigene genetic programming adds as an error value.

Ek =
1

2
mv2 (6)

0.5x1x2
2 + 2.6 ∗ 10−17 (7)

As a third preliminary experiment, and with the intention of retrieving the Newton’s

law of universal gravitation from observed data, another user generated set of values was

created. In this case, as gravitational law is described by formula 8 the different masses

and the distance were given to GPTIPS as input variables, along with the target variable

(gravitational law). This target variable was user generated data which was created by manually

applying 8 on a data-set that contained the masses and distance values. These values were

randomly generated between 0 and 1 for the masses, and between 1 and 2 for the distance.

As a result, the reader can see on equation 9, how the physical law is retrieved, as well

as the gravitational constant G, which is successfully approximated to its actual value of

6.67430 ∗ 10−11 (m3 ∗ kg−1 ∗ s−1). Note that x1 is mass1, x2 is mass2 and x3 is distance.

The additional value stands for the bias term that multigene genetic programming adds as an
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error value.

F = G
m1m2

d2
(8)

6.67 ∗ 10−11x1x2

x2
3

+ 6.6 ∗ 10−28 (9)

3.2 CEOD Data Experiments

This section is organized as follows. The CEOD data used is introduced in section

3.2.1. The preprocessing of these data is described in section 3.2.2. Finally, the methodology

followed for developing the experiments is described in section 3.2.3.

3.2.1 Data

The data used for these experiments is the continuous engine operational data

(CEOD) [14]. These is recorded on a recent aircraft, precisely a boeing 787−10 (Dreamliner),

the data are all from the same GEnx engine of this aircraft, and the data collection was carried

out in July 2019. CEOD are a data stream made out of several hundred parameters which are

measured along the entire flight duration. Due to computation limitations, the data we have

worked on, has been off-loaded post-flight. These data are recorded real-time.

After examining the CEOD data, we selected the most stable phase of the flight.
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This phase is assumed to be the cruising phase, due to the lack of official phase segmentation

in the data. This assumption was backed up by discussions with experts. The reason for

picking this phase is that it will allow for a better modelling of the underlying process, as the

EGT measurements follow the same distribution. Other phases, such as take-off or landing

were not investigated as they constitute a more intensive part of a flight. The possibility for

analysing the entire flight duration remains an option, however an expert and deeper knowledge

might be needed. Furthermore, the cruising phase allowed for a larger data size under the

same phase, which is needed in order to uncover the meaningful relationships.

Three flights were selected for training and validation purposes. Which will be called

flight 1, flight 2 and flight 3. A fourth flight was selected for testing purposes, this will be

called flight 4. It is important to note, that the selection of the flights in order to be used

as training, validation and test has been randomly done, not taking into consideration flight

details or characteristics, i.e. destination or duration of the flight. The four different flights

that were selected, were anonymized for confidentiality reasons. In these selected flights, a set

of 696 variables were present. In our case, the selected target variable, from the CEOD data,

that will be modelled is called Selected Exhaust Gas Temperature (DEG C).

3.2.2 Data Preprocessing

The preprocessing of the data is described as follows. Figure 5 shows a flowchart of

this process.

1. Firstly, and as already mentioned, the cruising phase is selected for all four flights in

CEOD.
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2. The cruising phase for flights 1, 2 and 3 are concatenated into a single data-frame.

3. Variables which do not provide extra information are dropped. These are:

(a) NaN and string type variables.

(b) Those which standard deviation was equal to zero.

After dropping these variables, 206 remained as the input variables, in addition to EGT,

the proposed output variable to be modeled.

4. A correlation analysis of the variables present on the data at this point is done. Each

experiment has a different variable selection procedure as we will show in section 3.2.3.

5. The following applies on all three experiments. Here, the training set is randomly splitted

into training and validation sets, with an 80− 20 rule. The number of data points per

set is shown in table 1. As for the testing set, once the selected input variables from the

training set are clear, selecting the same ones in flight 4 for the testing set is an easy

process. Three testing sets, one per experiment, are computed.

Data Points

Training Set 66585

Validation Set 16647

Testing Set 26671

Table 1: Data Points per Set

6. The last step of the data preprocessing method, is a data normalization procedure. By

which, the remaining input variables and the selected output variables are standardize

by removing the mean and scaling to the unit variance. This is done in all training,

validation and test sets.
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CEOD Data
Flights 1, 2, 3 & 4

Training Data
Concatenate Flights
1, 2 & 3 (Phase 7)

696 variables

Testing Data
Flight 4 Phase 7

696 Varibales

Phase 7 Selection
Column Drop:

1. NaN Values (648)
2. String type (592)
3. Std. Dev = 0 (207)

Experiment 1
   Correlation Analysis

Input variable Correlation
Column drop of > 0.9 correlation
Keeping first representative
114 Input variables

Experiment 3
  Correlation Analysis

Correlation between input and output (Selected
Exhaust Gas Temperature (DEG_C))
Column drop of > 0.9 correlation (186 Input var)
Correlation between input variables
Keeping first representative
112 Input variables

Testing Data
Select same columns

as Exp 1, 2 and 3
Training set

Training, Validation and Testing data scaling

Training and
Validation Random

Split (80/20)

Experiment 2 

Same configuration as Exp 1
Control model
Remove  Average Gas
Temperature at Station 25
(DEG_C)
113 Input variables

Figure 5: Data preprocessing flowchart

3.2.3 Methodology

In this subsection, the correlation analysis done in the data preprocessing step 4

described in 3.2.2, is introduced. Each experiment is different from the others in the way this

is done.

• Experiment 1. For this experiment, a correlation analysis is performed upon the input

variables, so that those which are highly correlated are discarded. The threshold used is

0.90. Those above this threshold have been dropped, only keeping the first representative

from a set of highly correlated variables. After these variables are deleted, 114 remain

to be used as final input variables in addition to the EGT.
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• Experiment 2. Once experiment 1 was completed and results were analyzed, the

need for developing a control model is satisfied by this experiment. Here, one highly

correlated variable, which is not above the proposed threshold, was dropped from the

input variables. This variables is the Average Temperature at Station 25 (DEG C).

Therefore, 113 input variables were used in GPTIPS in order to model the EGT.

• Experiment 3. A correlation analysis between the input variables and the output

variable, EGT, is performed, dropping those variables whose correlation with EGT is

higher than 0.90. After doing so, 186 input variables remained. Once this was done, and

following experiment’s 1 logic, a correlation analysis upon the remaining input variables

is done. Again, those above the proposed threshold are deleted, only keeping the first

representative from a set of highly correlated variables. Once this step was done, 112

input variables remained, plus the output variable, EGT. Table 2 shows the total number

of input variables used in each one of the experiments.

Number of Input Variables

Experiment 1 114

Experiment 2 113

Experiment 3 112

Table 2: Total number of input variables used per experiment

The reason for using a validation set is that by doing so, the chances of over-fitting

the model are mitigated. The tool evaluates the “best” individual in each generation against

the validation set and then keeps track of the results over each run. This can help the user to

identify the individuals that best performed on a data-set that is not used to build the output

model.
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After setting the data-sets, training, validation ans testing, for the model building,

one can configure the hyper-parameters that control each run. A more specific description

will be given in the upcoming Section 3.3. Refer to Figure 4 for a configuration file example

used for one of the experiments provided in the GPTIPS Guide document [33]. Then, the

symbolic regression by means of genetic programming process is executed. In the case of the

developed experiments, and after the predictions from GPTIPS where obtained, a last step

was done. Since the data used was normalized, the predictions for the output variables were

also normalized. Therefore, an original re-scale method was done in order to process the model

metrics accordingly. The error metrics described in section 3.4 are the most commonly used

for this type of modelling [36] .

3.3 System Setup

For each one of the experiments, ten final models were created using a ten indepen-

dent run process. Which means that the GPTIPS process was executed ten times per model,

and the results were combined into a one single model. The reader can refer to table 3 for

a parameter system setup detailed view. These values have been selected from preliminary

experiments. The population size was chosen to be of 250 individuals, while the number of

generations was at is maximum 150 generations. Tournament size = 20, Tournament Pareto

which encourages less complex models was set to 0.3. Elitism = 0.3 % of population. Maxi-

mum tree depth was set at 5 and the maximum number of genes was selected to be 10. Finally,

the function set contained these operators = {times, minus, plus, rdivide, square, exp, mult3,

sqrt, cube, power, negexp, neg, abs, log}. In essence these operators define our alphabet. See

table 3 for a quick reference of the hyperparameters used.
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Hyperparameter Value

Runs 10

Population size 250

Number of generations 150

Tournament size 20

Tournament Pareto 0.3

Elitism 0.3

Maximum tree depth 5

Maximum number of genes 10

Function set

times, minus, plus, rdivide,

square, exp, mult3, sqrt, cube,

power, negexp, neg, abs, log

Table 3: System setup parameters

By default GPTIPS, provides a multigene symbolic regression fitness function, which

was used in order to minimize the root mean squared prediction error on the training data.

For the genetic operators probabilities, the following configuration was used: mutation events

= 0.1, crossover events = 0.85.
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3.4 Error Metrics

In this section, the most common error metrics [36] used for measuring a model’s

accuracy are described.

1. RMSE. The root-mean-squared error, measures the differences between the predicted

values by the model and the actual or observed values. The deviations between these

two measures are called residuals. The RMSE measures the accuracy of the predictive

model. It represents the root of the average of the squared errors, which more precisely,

are defined as the square of the difference between the predicted value and the real value.

Equation 10 shows the formula for this error metric, with y being the actual values and

ŷ the predicted values. Using n measurements.

RMSE(y, ŷ) =

√
1

n
Σn

i=1(yi − ŷi)
2 (10)

2. MSE. The mean-squared error measures the average of the squares of the errors. Which

means, when talking about predictive models, the average squared difference between

the predicted values and the actual value. It measures the quality of the model, making

those with values closer to zero, better models. Equation 11 shows the formula for

this error metric, with y being the actual values and ŷ the predicted values. Using n

measurements.

MSE(y, ŷ) =
1

n
Σn

i=1(yi − ŷi)
2 (11)
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3. MAE. The mean absolute error measures the average magnitude of the errors in a set of

predictions, without considering their direction. It is the average over the test sample of

the absolute differences between prediction and actual observation where all individual

differences have equal weight. Equation 12 shows the formula for this error metric, with

y being the actual values and ŷ the predicted values. Using n measurements.

MAE(y, ŷ) =
1

m

n∑
i=1

|yi − ŷi| (12)

4. R2. As a last metric for the modelling analysis, the coefficient of determination was

also used. It is a key output of regression analysis. It assesses how strong the linear

relationship between two variables is, in the case of predicted values and actual values,

this is the squared of the correlation between them. This coefficient is commonly known

as R-squared (R2), and is sometimes referred to as the “goodness of fit”, and it ranges

from 0 to 1.
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4 Results

In order to clearly state the results of this master’s thesis, the three experiments’

results will be presented. The error metrics, model expressions and figures representing the

scaled values for actual EGT against the modeled, will be shown here. The correlated variables

stated in Section 3.2.3, will also be shown here, for the reader to see which of the present

variables on the CEOD data had a precise correlation with the exhaust gas temperature. Table

4 shows those input variables with a correlation above the 0.9 threshold used. Each model

took approximately one and a half hours on a PC with 8 GB of RAM and a CPU running at

1.8 GHz. The used Pandas package version was 1.0.3, the Python version was the 3.8.3. The

Matlab version used was the R2019b.

Input variable Correlation with EGT Input variable Correlation with EGT

UVL EGTSEL6 0.999760
Estimated Compressor Discharge

Total Temperature (DEG C)
0.982100

EGT Probe 4 (168 deg CW ALF) (DEG C) 0.998189
Selected Compressor Delay

Total Temperature (DEG C)
0.975469

EGT Probe 1 (41 deg CW ALF) (DEG C) 0.995394 Selected Core Speed (%) 0.938906

EGT Probe 2 (62 deg CW ALF) (DEG C) 0.995193 Core Speed from EMU (RPM) 0.938732

EGT Probe 8 (327 deg CW ALF) (DEG C) 0.995020 Calculated Fuel to Air Ratio 0.934373

EGT Probe 3 (147 deg CW ALF) (DEG C) 0.994973
PHI 60 Tip Temp Protection Before

Limits (PPH/PSIA)
0.920603

EGT Probe 5 (200 deg CW ALF) (DEG C) 0.994512 N1 Accel Trajectory Target Speed (%) 0.910759

EGT Probe 6 (232 deg CW ALF) (DEG C) 0.993013 N1 Decel Trajectory Target Speed (%) 0.910757

EGT Probe 7 (264 deg CW ALF) (DEG C) 0.990393 Fan Speed from EMU (RPM) 0.910709

Physical N1 Command (%) 0.907051 Selected Fan Speed (%) 0.910644

Table 4: Input variable correlation towards EGT (> 0.9)
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4.1 Experiment 1 Results

The testing error metrics results for experiment 1 are shown in table 5, this table

displays the already mentioned metrics in Section 3.4. Each columns refers to one error metric,

and every row, correspond to each one of the ten models run for the experiment. Equation 13

displays an algebraic expression for the first of the models. The reader can refer to Appendix

A for the training and validation error metrics in tables 11 and 12, and the rest of the models’

expressions.

Rˆ2 RMSE MAE MSE

0.981343 3.240743 1.357668 10.502417

0.947178 5.452943 2.940967 29.734585

0.808921 10.371179 3.410746 107.561345

0.984409 2.962510 1.224247 8.776463

0.754388 11.758352 3.642960 138.258840

0.805126 10.473665 3.333293 109.697659

0.812055 10.285767 3.238445 105.797008

0.809934 10.343668 3.325208 106.991471

0.855140 9.030162 4.563011 81.543823

0.805914 10.452461 3.109154 109.253937

Table 5: Experiment 1 testing error metrics

Y 1
1 = 0.141x4 + 0.123x5 + 0.8x6 + 0.0214x12 − 0.123x18 + 0.751x21 + 0.0261x60

+ 0.0405x74 − 0.0371|log(x39)|+ 1.32 ∗ 10−4e(2x21) − 0.0428|x4|

− 0.0261e(x21) + 0.00762x74
2 + 0.133

(13)
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A scaled plot of the testing predictions (displayed in orange) against the actual values

(displayed in blue) for the EGT is shown by Figure 6. The x axis represents the used data-

points. It is important to highlight that the y axis represents the scaled EGT measures. Refer

to Figures 9 and 10 for all EGT predictions against actual representations of each model.

Figure 6: Scaled EGT testing predictions vs actual (Model 1 - Experiment 1)

The involved input variables percentage of appearance for the ten models is shown

in table 6. Since each model provides with a different algebraic expression, the reader might

find useful to know on what rate the input variables were present for this experiment over

all computed models. Here, each variable is represented by an x with an index. The second

columns shows the percentage of the different variables appearance.
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Input variables (Index) % of appearance

X4, X6, X21 10,6 %

X43 8,5 %

X12, X74, X113 5,1 %

X5, X110 4,08 %

X11, X14, X39, X59 3,06 %

X18, X23, X24, X94 2,04 %

X1, X8, X13, X25, X46, X52,

X57, X60, X96, X111, X112
1,02 %

Table 6: Percentage of appearance per variable over all models (Experiment 1)

The reader might find interesting to know which of the variables have resulted from

this experiment. The following list names the ones with the highest percentage of appearance

and its corresponding index:

• Actual Calculated HPT Clearance (IN) – x4

• Average Gas Temperature at Station 25 (DEG C) – x6

• Corrected Fan Speed to Station 12 (%) – x21

• FSV minimum main fuel split regulator – x43

• BPCU 1 GCU Generator Load (%) – x12

• Selected Variable Bleed Valve (VBV) Position (%) – x74

• WF/(P3*RTH25) Base (PPH/PSIA) – x113

• Altitude based on P0 (FT) – x5

• UVL TEOSCVSEL – x110

36



4.2 Experiment 2 Results

After dropping the Average Temperature at Station 25 (DEG C) and as a control

experiment, these are the results. The testing error metrics results are shown in table 7, this

table displays the already mentioned metrics in Section 3.4. Each column refers to every

one of them, and every row, correspond to each one of the ten models run for this control

experiment. Equation 14 displays an algebraic expression for the first of the models. Refer to

Appendix B for the training and validation error metrics in tables 13 and 14 and the rest of

the models’ expressions.

Rˆ2 RMSE MAE MSE

0.760114 11.62049 3.508928 135.0357

0.796653 10.69894 3.228156 114.4673

0.781762 11.08375 3.578363 122.8495

0.879283 8.243387 3.037525 67.95342

0.805173 10.4724 3.198549 109.6712

0.794995 10.74246 3.204305 115.4005

0.78722 10.94429 3.307758 119.7775

0.809058 10.36747 3.247515 107.4844

0.79427 10.76145 3.539824 115.8089

0.891921 7.799965 2.70033 60.83946

Table 7: Experiment 2 testing error metrics

Y 1
2 = 0.0789x4 + 0.143x5 + 0.0207x10 + 0.799x17 − 0.524x19 + 0.575x20

− 0.0789e(−e(−x20)) − 0.441e(−e(−e(−x4))) − e(−e(−e(−x20)))

− ((0.0186|x38|)/|x98|) + ((0.0092x38)/x51) + 1.13

(14)
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A scaled plot of the testing predictions (displayed in orange) against the actual values

(displayed in blue) for the EGT is shown by Figure 7. The x axis represents the ordered data-

points and the y axis represents the scaled EGT measures. The reader can refer to Figures 11

and 12 for all EGT predictions against actual representations of each model.

Figure 7: Scaled EGT testing predictions vs actual (Model 1 - Experiment 2)

Once more, the percentage of appearance of each one of the involved variables has

been computed and displayed in table 8 for this control experiment. Here, each variable is

represented by an x with an index. The second columns shows the percentage of appearance

for the different variables.
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Input variables (Index) % of appearance

X4, X17, X19, X20 12,2 %

X58 8,5 %

X42 7,3 %

X112 6,1 %

X38 4,9 %

X5, X10 3,6 %

X7, X11, X22, X23, x24,

X48, X51, X73, X95
1,2 % - 2,4 %

Table 8: Percentage of appearance per variable over all models (Experiment 2)

The following list, names the variables with the highest percentage of appearance

and its corresponding index, resulting from this control experiment:

• Actual Calculated HPT Clearance (IN) – x4

• Center Tank Fuel Density from Aircraft (AIRPLANE UNITS) – x17

• Core Speed from EMU (RPM) – x19

• Core Speed Rate of Change (%N2/SEC) – x20

• No 1 Bearing Accel Broadband Amplitude (IPS) – x58

• FSV maximum main fuel split regulator – x42

• UVL TMWCDATA9 – x112

• FMV Null Shift Compensation (MA) – x38
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4.3 Experiment 3 Results

The last experiment, in where the correlation between the input variables with the

selected output variable, EGT, was performed, with the intention to drop those with a higher

correlation (refer to section 3.2.3 for a more detail description), shows these results. The

testing error metrics results for experiment 3 are shown in table 9, this table displays the

already mentioned metrics in Section 3.4. Each column refers to every one of the metrics, and

every row, correspond to each one of the ten models run for this experiment. Equation 15

displays an algebraic expression for the first of the models. Refer to Appendix C for the training

and validation table of error metrics (15 and 16) and the rest of the models’ expressions.

Rˆ2 RMSE MAE MSE

0.788536 10.91038 3.23724 119.03647

0.834811 9.64300 2.97148 92.98735

0.985225 2.88393 1.18922 8.31704

0.985034 2.90254 1.31293 8.42474

0.800509 10.59703 3.35942 112.29699

0.819613 10.07684 3.18990 101.54277

0.802258 10.55046 3.35021 111.31211

0.933994 6.09554 2.08652 37.15565

0.794766 10.74848 4.10824 115.52974

0.822608 9.99285 3.21731 99.85703

Table 9: Experiment 3 testing error metrics
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Y 1
3 = 0.114x5 + 0.771x6 + 0.0249x11 − 0.0763x13 + 0.395x19 + 1.62log(x4

+ e(−x23) + 8.9) + 0.233e(−x23) − 0.0534e(−x41) − 1.36 ∗ 10−5e(−x103)

− 1.14e(−e(−e(−x19))) − 3.11

(15)

An scaled plot of the testing predictions (displayed in orange) against the actual

values (displayed in blue) for the EGT is shown by Figure 8. For confidentiality reasons, the

scale of the y axis is not at the original value. The x axis represents the ordered data-points.

Refer to Figures 13 and 14 for all EGT predictions against actual representations of each

model.

Figure 8: Scaled EGT testing predictions vs actual (Model 1 - Experiment 3)

The percentage of appearance of each one of the involved variables have been com-

puted and displayed in table 10. Here, each variable is represented by an x with an index. The
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second columns shows the percentage of the different variables appearance.

Input variables (Index) % of appearance

X4, X6, X9 11,3 %

X5, X41 9 %

X11 6,8 %

X72 4,5 %

X21, X23, X26, X74, X108, X111 3,4 %

X14, X37 2,3 %

X1, X12, X13, X28, X38,

X40, X58, X67, X97, X103
1 %

Table 10: Percentage of appearance per variable over all models (Experiment 3)

The following list, names those variables with the highest percentage of appearance

and its corresponding index, resulting from this last experiment:

• Actual Calculated HPT Clearance (IN) – x4

• Average Gas Temperature at Station 25 (DEG C) – x6

• Corrected Fan Speed to Station 12 (%) – x19

• Altitude based on P0 (FT) – x5

• FSV minimum main fuel split regulator – x41

• BPCU 2 GCU Generator Load (%) – x11

• Selected Variable Bleed Valve (VBV) Position (%) – x72
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5 Conclusion and Discussion

In this master’s thesis research, a deep analysis of the latest developments and tools

on symbolic regression by means of genetic programming was done. With the intention of

solving the main problems present in symbolic regression, the reviewed developments show

great progress in solving them. Multigene genetic programming helps on improving the evo-

lution process. Geometric semantic genetic programming evaluates the semantic performance

rather than the conventionally used syntax performance. For finding the appropriate constants

or parameters, evolutionary polynomial regressions proposes a hybrid approach by adding the

parameter estimation technique used in numerical regression methods to the evolutionary op-

timization scheme. Genetic programming-based relevance vector machines provides with the

advantages of both the Bayesian kernel methodologies and evolutionary computation. The

Cartesian genetic programming approach represents a more sophisticated design than the

conventional genetic programming algorithm, introducing a new crossover technique. With

regards to an approach which is not based on genetic programming, an artificial bee colony al-

gorithm allows to evolve expressions and constants to form algebraic expressions automatically,

providing a fresh and different point of view on the symbolic regression problem.

Three different tools were analysed in order to determine which one could be used

for our purpose: funding an algebraic expression that could model exhaust gas temperature

in a turbofan engine. It is important to note why EGT was chosen. This parameter helps

on monitoring the health of an engine, as it transforms heat into thrust. Therefore, if this

transformation is not happening EGT will increase. As a result, high measures of EGT could

indicate an engine failure or damage. The GPTIPS free software toolbox for Matlab was

selected. As the reader can see from the previously presented results in section 4, three

different experiments were developed. The so called experiment 1 and experiment 3, show
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better results in terms of error of predictions and “goodness of fit”, than experiment 2. As

experiment 2 is a control experiment in which one highly correlated variable was dropped, it is

reasonable to say that the models built out of this experiment are worse than the ones built in

experiment 1 and 3. The variable that was dropped in experiment 2 was Average Temperature

in Station 25 (DEG C), and the reader might find interesting to know that after checking with

an expert, this dropped variable was a non-trivial and meaningful variable.

From the algebraic expressions derived from each of the models, it can be seen that

they are reasonably compact. They consist of linear terms and low order non-linear trans-

formations of the input variables. Symbolic regression not only helps on developing algebraic

expressions but also helps with variable selection. Proven by the fact that, a reasonable amount

- from 7 to 13 - of the available input variables (114, 113 and 112) in each experiment, were

used in generating each model, as shown in section 4.

When it comes to the modelling results for exhaust gas temperature, it can be seen

that the overall accuracy of the modelling has significantly good results for experiment 1 and

3. The reader can see how experiment 1 presents the best of the results, in terms of error

metrics. The first model in table 5 in experiment 1 has a 0.98 coefficient of determination and

just 3.28 RMSE score. Overall, and with the obtained metrics, any of the models (equations)

in experiment 1 and 3, with reasonable good error metrics, could be used along with the input

variables to now-cast the EGT.

As one of the purposes of this research was to find a tool that could be useful for

our application, it can be seen how GPTIPS has allowed it due to the features and capabilities

that provides.
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6 Future Work

As the results have shown, many different models that describe EGT have been

obtained, it is then open for future work to decide how such data-driven problems can be

handled. We propose two different approaches for this. First, the building of a meta-model

that combines all of those derived from the experiments, can be interesting to address. While

also, making the process real-time and automatic. The second proposition will be making

an ensemble model by, for example, taking the average or other aggregation function of the

outputs provided by each of the models. The characteristics and dynamics of both approaches

are open for the reader to work on. The approach that we have developed can also be applied

as a model to generate simulated data that can later be used in predictive maintenance studies.

Consequently, building any of these into a real-time analysis tool, will make the proposition

much more valuable for a possible industrial application.
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A Appendix. Experiment 1 Results

In this appendix, the training and validation error metrics results are displayed in

tables 11 and 12.

Rˆ2 RMSE MAE MSE

0.998102 1.239205 0.763866 1.535629

0.997968 1.281986 0.786991 1.643489

0.997507 1.420041 0.828125 2.016517

0.997964 1.283411 0.786591 1.647145

0.998020 1.265571 0.765595 1.601671

0.998023 1.264679 0.738129 1.599412

0.997745 1.350609 0.754343 1.824146

0.998036 1.260616 0.746105 1.589153

0.998123 1.232339 0.740111 1.518661

0.997676 1.371248 0.791502 1.880321

Table 11: Experiment 1 training error metrics

Rˆ2 RMSE MAE MSE

0.99822 1.20770 0.75207 1.45853

0.99803 1.27203 0.77908 1.61805

0.99767 1.38459 0.82148 1.91708

0.99808 1.25604 0.77368 1.57764

0.99810 1.24747 0.75516 1.55618

0.99813 1.24030 0.72427 1.53834

0.99788 1.32030 0.74576 1.74320

0.99817 1.22514 0.73863 1.50097

0.99814 1.23560 0.73759 1.52672

0.99783 1.33519 0.78411 1.78273

Table 12: Experiment 1 validation error metrics
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Next, each symbolic expression model is detailed here:

Y 1
1 = 0.141x4 + 0.123x5 + 0.8x6 + 0.0214x12− 0.123x18 + 0.751x21 + 0.0261x60 +

0.0405x74−0.0371|log(x39)|+1.32∗10−4e2x21−0.0428|x4|−0.0261ex21 +0.00762x74
2+0.133

Y 2
1 = 0.13x4+0.668x6+0.0264x12−0.0796x14+0.759x21+0.0484x43−0.00864x57+

0.0219x110−0.0219x113−0.0264|x4|+0.0219|x6|−0.00702|x43−2.0x46+0.2x21
3|−0.00579x21

3−

6.3 ∗ 10−4 ∗ |x14 − 1.0x21| ∗ |x21|3 ∗ |x43|+ 0.0119

Y 3
1 = 0.169x4−0.0168x1+0.125x5+0.712x6−0.0336x18+0.704x21+0.0376x43+

0.0156x110−0.00778e−x12−0.0808|x4|−0.0513|x8|−0.0156|x21|+0.0432|x4|1/2−0.00102|x21+

abs(x21)|3 + 0.0368(|x74|3)1/2 + 0.0736

Y 4
1 = 0.0758x4+0.885x6−0.2x13−0.156x14+0.43x21−0.0244x23−0.495e(−e(e

(x43)))+

0.2e(−e(−x4)) + 0.156e(−e(−x14)) + 0.00361e(x110) − 0.787e(−e(x21)) + 0.00719x14
2 + 0.214

Y 5
1 = 0.0887x4+0.111x5+0.69x6+0.0296x11+0.523x21−0.0442x39−0.121e(−x39)−

0.499e(−e(x21)) + 0.0559x4(e
(x5))

1/2 − 0.00493x74x113 + 0.353

Y 6
1 = 0.204x4+0.592x6+0.0242x11+0.485x21+0.0698x43+0.122x59−0.642e(−e(x21))−

(0.00133 ∗ |x43|)/|x94|2 − 0.0205x4
2 + 0.00106x4

3 + 0.365

Y 7
1 = 0.111x4+0.601x6+0.0264x11+0.448x21−0.0361x25+0.0459x43+0.111x59−

0.0346x113 − 0.0553e(−x4) + 0.02e(x113) − 0.774e(−e(x21)) + 0.326

Y 8
1 = 0.133x4+0.649x6+0.00805x12−0.101x14+0.749x21−0.0178x23+0.0268x24+

0.0463x43 + 0.00805x52 + 0.0155x74 + 0.0268x110 − 0.0115x111 − 0.0178x113 − 0.0178|x4| −

0.0178|x74|+ 0.00455x4x6− 0.0176x21x74 + 0.0176x23x74− 0.0176x52x74 + 0.0176x74|x21|−

0.00228x4
2 − 0.00228x6

2 − 0.0311x21
2 + 0.0271
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Y 9
1 = 0.136x4+0.592x6+0.701x21+0.0567x43+0.127x59+0.0291x96−0.0263x113−

0.00304|(x8 − 5.11)||x21|2 + 0.00248x4x59 − 0.0307x21|x21| − 4.08 ∗ 10−4x113
3 + 0.0092

Y 10
1 = 0.17x4−0.00532x3 +0.121x5 +0.685x6 +0.0105x12 +0.65x21 +0.0375x24−

0.00532x39+0.075x74−0.0079x112−0.00532x43/x94−0.0108x4
2+4.7∗10−4x4

3−0.0202x21
2−

0.00258x21
3 − 0.00258x39

2 + 0.0246

The next figures display the model predictions against the actual values of the EGT:

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 9: Scaled EGT testing predictions vs actual
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(a) Model 5 (b) Model 6

(c) Model 7 (d) Model 8

(e) Model 9 (f) Model 10

Figure 10: Scaled EGT testing predictions vs actual

54



B Appendix. Experiment 2 Results

In this appendix, the training and validation error metrics results are displayed in

tables 13 and 14.

Rˆ2 RMSE MAE MSE

0.99768 1.36893 0.85751 1.87396

0.99756 1.40389 0.88441 1.97090

0.99751 1.41842 0.87606 2.01192

0.99696 1.56913 0.95831 2.46217

0.99743 1.44187 0.87915 2.07899

0.99765 1.37774 0.85544 1.89818

0.99741 1.44669 0.86240 2.09291

0.99756 1.40450 0.87028 1.97263

0.99746 1.43365 0.86886 2.05535

0.99762 1.38674 0.85581 1.92304

Table 13: Experiment 2 training error metrics

Rˆ2 RMSE MAE MSE

0.99781 1.34160 0.84267 1.79988

0.99766 1.38506 0.87861 1.91840

0.99766 1.38600 0.86851 1.92098

0.99701 1.56784 0.95604 2.45812

0.99751 1.42995 0.87120 2.04477

0.99784 1.33301 0.84164 1.77691

0.99748 1.43730 0.85617 2.06582

0.99767 1.38220 0.86608 1.91047

0.99755 1.41698 0.86252 2.00783

0.99777 1.35305 0.84415 1.83074

Table 14: Experiment 2 validation error metrics
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Next, each symbolic expression model is detailed here:

Y 1
2 = 0.0789x4+0.143x5+0.0207x10+0.799x17−0.524x19+0.575x20−0.0789e(−e(−x20))−

0.441e(−e(−e(−x4))) − e(−e(−e(−x20))) − ((0.0186|x38|)/|x98|) + ((0.0092x38)/x51) + 1.13

Y 2
2 = 0.13x4+0.0229x11+0.694x17−0.394x19+0.723x20+0.0604x42+0.107x58−

0.0261|x19||x20|+ 0.0168x42x112 − 0.033x20|x20| − 0.0162x42|x20| − 0.013x112|x19|+ 0.0126

Y 3
2 = 0.123x4+0.0305x10+0.713x17−0.327x19+0.628x20+0.0582x42+0.0949x58+

0.0263x73 − 0.0303x112 − 0.0119x20
2x42 + 0.00167

Y 4
2 = 0.1x4+0.671x17−0.389x19+0.506x20−0.0408x38+0.138x58−0.108e(−x38)+

0.929e(−e(−e(−e(−x4)))) − 0.0472|x7| − 0.633e(−e(x20)) − 0.0392

Y 5
2 = 0.11x4 +0.662x17−0.39x19 +0.526x20 +0.0537x42 +0.141x58 +0.0269x95−

0.0609e(−x4)− 0.00223e(x20)− 0.587e(−1.1e(x20))− 0.00143x23x112
2− 0.00143x23

2x112− 4.76 ∗

104x23
3 − 4.76 ∗ 104x112

3 + 0.276

Y 6
2 = 0.647x17−0.412x19+0.549x20+0.0505x42+0.157x58+0.0243x95−0.826e(−e(−e(−x20)))−

1.59e(−e(−e(−x4)
1/2

)) + 0.00578x4
2 − 7.58 ∗ 105x51

4 + 1.69

Y 7
2 = 0.0925x4+0.113x5+0.0195x11+0.797x17−0.427x19+0.518x20−0.0181x112−

0.452e(−x38) − 1.13e(−e(−x38)) − 0.45e(−e(−e(−x4))) − 0.847e(−e(−e(−x20))) + 1.89

Y 8
2 = 0.158x4 + 0.131x5 + 0.8x17− 0.46x19 + 0.53x20− 0.0231x22− 0.0231e(−x4)−

0.0826e(−x38) − 0.0826e(−2e(−x20)) − 0.928e(−e(−e(−x20))) − 0.00491x4
2 − 0.00827x38

2 + 0.811

Y 9
2 = 0.172x4+0.0239x10+0.667x17−0.403x19+0.593x20+0.0475x42+0.133x58+

0.0481x73 − 0.0481e(0.567x20) − 0.623e(−e0.73x20 ) − 0.0647|x4|+ 0.316
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Y 10
2 = 0.129x4+0.69x17−0.373x19+0.455x20−0.0382x24+0.121x58−0.0303x112+

0.509e(−e(−e(−e(−x42)))) + 0.0771e(−2x7
2) − 0.707e(−ex20 ) − 0.0137

The figures in where the model predictions against the actual values of the EGT per

model are displayed below:

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 11: Scaled EGT testing predictions vs actual
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(a) Model 5 (b) Model 6

(c) Model 7 (d) Model 8

(e) Model 9 (f) Model 10

Figure 12: Scaled EGT testing predictions vs actual
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C Appendix. Experiment 3 Results

In this appendix, the training and validation error metrics results are displayed in

tables 15 and 16.

Rˆ2 RMSE MAE MSE

0.99800 1.27580 0.74480 1.62768

0.99812 1.23542 0.75659 1.52627

0.99807 1.25291 0.76230 1.56978

0.99822 1.20218 0.75237 1.44524

0.99809 1.24816 0.73935 1.55789

0.99832 1.16893 0.75271 1.36640

0.99801 1.27283 0.78877 1.62009

0.99818 1.21660 0.73428 1.48011

0.99820 1.21099 0.72872 1.46649

0.99835 1.16035 0.71518 1.34641

Table 15: Experiment 3 training error metrics

Rˆ2 RMSE MAE MSE

0.99792 1.29194 0.74879 1.66910

0.99799 1.26866 0.76180 1.60950

0.99801 1.26294 0.75916 1.59503

0.99810 1.23463 0.75536 1.52432

0.99802 1.26004 0.74229 1.58769

0.99823 1.19080 0.75385 1.41801

0.99793 1.28963 0.78988 1.66315

0.99812 1.22731 0.73710 1.50629

0.99813 1.22366 0.73682 1.49735

0.998197 1.202644 0.720882 1.446352

Table 16: Experiment 3 validation error metrics
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Next, each symbolic expression model is detailed here:

Y 1
3 = 0.114x5+0.771x6+0.0249x11−0.0763x13+0.395x19+1.62log(x4+e(−x23)+

8.9) + 0.233e(−x23) − 0.0534e(−x41) − 1.36 ∗ 10−5e(−x103) − 1.14e(−e(−e(−x19))) − 3.11

Y 2
3 = 0.0789x4+0.123x5+0.696x6+0.0219x11+0.68x19+0.156x72+0.357e(−e(−x4))+

0.29e(−e(−x37)) + 0.54e(−x19
4∗x72

2) + 0.393e(−x37
2) − 0.996

Y 3
3 = 0.0765x4+0.683x6−0.114x14+0.683x19−0.0189x21−0.0228x40+0.0371x41+

0.159x72−0.585e(−e(−e(−x4)))+0.0371e(−e(−e(−x26)))−0.136|x19−1.23|+0.114e(−real(e(−x26)))−

0.699e(−real(e(−x72))) + 0.766

Y 4
3 = 0.139x4+0.107x5+0.698x6+0.438x19−0.039x23+0.0508x41−0.0265x111−

0.145e(−e(−e(−x11))) − 0.825e(−e(x19)) − 2.66 ∗ 10−4x4
3 + 0.411

Y 5
3 = 0.0906x4+0.642x6+0.028x11+0.562x19+0.0752x37+0.0171x67+0.0338x74−

0.791e(−real(e(−e(−x19)))) − 0.115|x37|+ (0.208 ∗ 0.657x14 ∗ 0.657x74)/0.657x108 + 0.417

Y 6
3 = 0.101x4+0.136x5+0.654x6+0.448x19−0.0226x21+0.0426x26+0.0484x41−

0.0602x74 + 0.082x108 − 0.605e(−e(x19)) + 0.224

Y 7
3 = 0.0831x4+0.117x5+0.695x6+0.0233x11+0.461x19−0.0436x23+0.0436x41+

0.0544x72 − 0.729e(e
(−e(x19))) + 0.81e(−e(e

(x19))) + 0.368e(−e(−x4)) + 0.883

Y 8
3 = 0.0596x4+0.118x5+0.671x6+0.474x19+0.0446x41+0.0298x108−0.014x111−

0.735e−e(x19) + 0.753e(−e(−x4)
1/2

)
1/2

− 3.52 ∗ 10−6x111
3x4 + x5 + x21

3 − 0.175e(−e(−x21))
1/2

−

0.0498

Y 9
3 = 0.106x4+0.125x5+0.689x6+0.0261x11+0.45x19+0.0515x41+0.00826x58−
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0.744e(−e(x19)) + 2.08 ∗ 10−7e(2x97)|x111|2 + 0.00826x5x6 − 0.00826x5x28 − 0.00511x4x74 +

0.00826x38x74 + 0.00511x4
2e(−x4) − 0.176e(−x4)

1/2

+ 0.467

Y 10
3 = 0.0825x4+0.134x5+0.688x6+0.0174x12+0.47x19+0.0304x26+0.0409x41−

0.523e(−e(−e(−x4))) − 0.703e(−e(x19)) + 2.93 ∗ 10−4x72
3e(−x1) + 0.635

The figures in where the model predictions against the actual values of the EGT per

model are displayed below:

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 13: Scaled EGT testing predictions vs actual
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(a) Model 5 (b) Model 6

(c) Model 7 (d) Model 8

(e) Model 9 (f) Model 10

Figure 14: Scaled EGT testing predictions vs actual
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