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Abstract. Petri nets are a well-established framework for the modeling of
distributed systems. Nowadays, there is an increasing demand for formal
models for systems consisting of thousands of semi-independent parts, par-
ticularly in economics and biology. A natural way to create such models is
by designing relatively small Petri nets for each part, and then composing
them based on how the parts interact with each other. However, previous
work on Petri net composition has mostly focused on �xed binary composi-
tion. In practice, this is insu�cient for modeling the various complex ways a
large number of components can interact. In this thesis we propose protocol
link nets as a �exible method for combining Petri nets in di�erent manners.
We show that protocol link nets encompass existing methods of composi-
tion. We discuss a number of useful properties of the method, and present
case studies where protocol link nets are useful for building a large model
composed of many smaller models.
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1 Introduction

Concurrent systems are all around us, from companies and �nancial institutions,
to biological systems like ecology and gene expression, to theoretical applications
in mathematics and computer science. To further our understanding of how these
systems work, and how we can in�uence them, we must create models of them. A
common and well-established method of modeling concurrent systems is through
Petri nets [9] [12], which we will be using in this thesis.
Concurrent systems, almost by de�nition, rarely exist in isolation. In industries
each company has its own internal processes, but the company also interacts with
other companies. In computing and networking there may be clusters and internal
networks that communicate over a shared bus. In biology we can create a model
for a single cell, but that cell is but one in billions in a body. It interacts with its
neighbors, with bloodstreams and nerves, and with pathogens and immune systems.
And on a larger scale each organism interacts with other organisms.
Therefore it is natural to seek for methods that allow us to compose Petri nets into
one big Petri net as part of our modeling e�ort. Petri net composition has been
widely researched and written on [6] [5] [2] [11], but this research is overwhelmingly
focused on simple, binary composition. Their cases involve just two nets being com-
posed in limited ways. In practice this is insu�cient for practical complex models.
As an example, Figure 1 shows a biological network model for the metabolic system
of Mycoplasma pneumoniae [16].

Fig. 1. The interactions in the metabolic system of a bacteria, from [16].

This is a system with many subsystems, dependencies, complicated di�erent in-
teractions. Simple uniform binary composition is not su�cient to model this. In
addition to this complexity, in biology it is very common for us to learn more about
the organisms we are modeling, changing our understanding and forcing us to change
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or update the model to re�ect this. There is currently no established method of Petri
net composition which is suited for modeling such biological systems.

1.1 Our Proposal

In this thesis we present a method with a very di�erent philosophy from those cur-
rently in use. One focused on versatility and allowing the user to easily implement,
combine, and modify all kinds of composition strategies.
As mentioned before, we will be using Petri nets in this thesis. A Petri net is a
graph where nodes are active or passive elements. Our proposal is as follows: Each
element of a net receives a label called a protocol label. In addition, the user de�nes
a set of protocol nets. Then, the user can repeatedly choose any set of elements from
any number of nets to create a link between.
If one wishes to compose a group of Petri nets, the protocol net associated with the
descriptions of selected elements is inserted 'between' them. Protocol nets can have
any shape. For example, they can simply fuse the elements into one single element
to create a synchronization, they can add an algorithm such as a semaphore between
program nets, or describe interactions between biological pathways. Because users
can de�ne as many protocol nets as needed for the problem they're working on, and
there are no limits to the form of any net involved, this is a versatile method that
can easily implement and combine nearly any other composition algorithm.

We �rst recall some basic Petri net de�nitions in Chapter 2. In Chapter 3 we
introduce our new variants of Petri nets: Descriptive Interface Nets, or DINs, and
a special type of DIN, a protocol net. Chapter 4 shows how we use protocol nets to
compose DINs. Next, we show that protocols can be used to create any net struc-
ture. Chapter 6 explores common Petri net composition methods from the literature,
and shows how protocol nets can be used to simulate these methods. Chapter 7 has
some case studies to show how protocol nets can be used in practical cases. Finally
we compare our method with some other, non-Petri net methods of composition in
Chapter 8.

We show that protocol nets are a new promising method of composition, and
prove several properties they have. We explore how they relate to other methods
of composition, and show that protocol nets are more �exible and practical than
many other methods.

2 Preliminaries

The set N is the set of nonnegative integers {0, 1, 2, . . .}. The set of positive integers
is N+ = N \ {0}.

For a function f : A→ B, we call A the domain of f , denoted as DOM(f).

For two functions f1 : A1 → B1 and f2 : A2 → B2, with A1 ∩ A2 = ∅, their union
is f1 ∪ f2 : (A1 ∪ A2) → (B1 ∪ B2), where (f1 ∪ f2)(a) = f1(a) if a ∈ A1, and
(f1 ∪ f2)(a) = f2(a) if a ∈ A2.

For a function f : A → B, and a subset C ⊆ A, the restriction of f to C is the
function f|C : C → B, de�ned by f|C(a) = f(a), for all a ∈ C.
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For two sets A and B, we denote their disjoint union with A
⊎
B, i.e. the union of

A and B under the assumption that they are disjoint.

Given a �nite set A, we use |A| to denote its cardinality.

Given a set A, the set A∗ =
∞⋃
n=0
{(a1, . . . , an)|a1, . . . , an ∈ A}.

It consists of all �nite sequences of elements ofA. We write () for the empty sequence.

Given a sequence X = (x1, . . . , xn), we denote the elements of X as elts(X) =
{x1, . . . , xn}. Given two sequences X = (x1, . . . , xn), Y = (y1, . . . , ym) ∈ A∗, the
concatenation ofX and Y , denoted asX◦Y , is the sequence (x1, . . . , xn, y1, . . . , ym).

2.1 Petri Nets

De�nition 1. A Petri net is a tuple N = (P, T, F ) where P and T are �nite dis-
joint sets and F : (P × T ) ∪ (T × P ) → N a function. The elements of P are the
places of N ; the elements of T are the transitions of N , and F is the �ow function
of N . �

Given a Petri net N = (P, T, F ), we refer to the the places and transitions of N
collectively as the elements of N . Two elements x and y of N are of the same type if
x, y ∈ P or x, y ∈ T , i.e. if both are places or both are transitions. Given an element
x of N , •x = {y|F (y, x) ≥ 1} is the preset of x, and x• = {y|F (x, y) ≥ 1} is the
postset of x.

Two Petri nets N1 = (P1, T1, F1), and N2 = (P2, T2, F2) are said to be disjoint if
(P1 ∪ T1) ∩ (P2 ∪ T2) = ∅, i.e. if they have no elements in common.

De�nition 2. Let N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be two disjoint Petri
nets. The union of N1 and N2, denoted by N1 ∪ N2, is the net N1 ∪ N2 = (P1 ∪
P2, T1 ∪ T2, F1 ∪ F2). �

Note that N1∪N2 is well-de�ned: F1∪F2 exists because N1 and N2 are disjoint.

In general we are not interested in concrete elements but rather the structure of
the nets. This is why we use isomorphisms to change the identity of underlying
identities of elements without changing the structure.

De�nition 3. Let N = (P, T, F ), N ′ = (P ′, T ′, F ′) be two Petri nets, and let
ϕ : (P ∪ T ) → (P ′ ∪ T ′) be a bijective function such that P ′ = ϕ(P ), T ′ = ϕ(T ),
F ′(ϕ(x), ϕ(y)) = F (x, y) for all x, y ∈ P ∪ T . Then N ′ is a ϕ-renaming of N ,
denoted by N ≡ϕ N ′. �

If N and N ′ are two Petri nets for which there exists a bijection ϕ such that
N ′ is a ϕ-renaming of N , then N and N ′ are said to be isomorphic, denoted by
N ≡ N ′. We refer to ϕ as an isomorphism of N . We may also write N ′ = ϕ(N).

Lemma 1. The relation ≡ is re�exive, symmetric, and transitive.
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Proof. Let N be an arbitrary Petri net. Then:
N = ϕ(N) where ϕ is the identity function. Hence ≡ is re�exive.
Let ϕ be an isomorphism such that N ′ = ϕ(N). The inverse function ϕ−1 is a bi-
jection because ϕ is bijective. Now, let for all elements z ofN , z′ be the element ofN ′

such that ϕ(z)= z′. Then F (x, y) = F (ϕ−1(x′), ϕ−1(y′)) = F ′(ϕ(ϕ−1(x′), ϕ(ϕ−1(y′)) =
F ′(x′, y′). Hence ≡ is symmetric.
Let N1, N2, N3 be three Petri nets and ϕ1, ϕ2 be two isomorphisms such that
N2 = ϕ1(N1) and N3 = ϕ2(N2). Then F1(x, y) = F2(ϕ1(x), ϕ1(y)) =
F3(ϕ2(ϕ1(x)), ϕ2(ϕ1(y))) and ϕ2 ◦ϕ1 is a bijection. Hence N3 = ϕ2(ϕ1(N1)) and so
≡ is transitive. �

Thus ≡ forms an equivalence relation, partitioning the class of all Petri nets into
isomorphism classes of nets that are renamings of each other.

De�nition 4. Let N = (P, T, F ) be a Petri net. A marking M of N is a function
M : P → N. �

A marking assigns to each place a number. This number M(p) indicates the
local distributed state of a place p.

De�nition 5. A Place/Transition system, or P/T system for short, is a tuple
P = (P, T, F,Min) where (P, T, F ) is a Petri net, called its underlying net, and
Min is a marking of (P, T, F ). �

The behavior of a P/T system depends on what �ring rule it uses. A �ring
rule indicates in which markings a transition can occur, and how the transition's
occurrence changes the states of the places around it. We now present the typical
�ring rule.

De�nition 6. Let N = (P, T, F ) be a Petri net, and M a marking of N , and let t
be a transition of N . Then t is enabled in M if for all p ∈ P , M(p) ≥ F (p, t).
If t is enabled, then it may occur in M , leading to the marking M ′, de�ned by
M ′(p) = (M(p)− F (p, t)) + F (t, p). �

Given a marking M and a transition t, we write M
t−→ to denote that t is enabled

inM . Similarly we writeM
t−→M ′ to denote that the occurrence t inM leads toM ′.

2.2 Graphical notation

For the graphical representation of Petri nets, we use the following conventions:
Places are drawn as circles, transitions as rectangles, and the �ow function is
depicted as arcs between elements. An arc from element x to y indicates that
F (x, y) ≥ 1. If F (x, y) = 0 no arc is drawn between x and y. A number next
to an arc from x to y indicates F (x, y). If no number is given, F (x, y) = 1. Mark-
ings are represented by drawing black dots (tokens): if M(p) = k for a place p and
marking M , place p contains k tokens.

Example 1. Figure 2 shows a P/T system P = (P, T, F,Min). In this example,
F (p5, t3) = F (t4, p5) = 2. F (x, y) = 1 for all other drawn arcs, and F (x, y) = 0
for all unconnected pairs of places and transitions or transitions and places. In this
case, Min(p1) = 1,Min(p5) = 2, and Min(p) = 0 for all other p ∈ P .
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p5

t2 t1 t3 t4

2 2

Fig. 2. (P, T, F ) with marking Min.

In the initial marking Min, only the transition t1 is enabled. Firing it leads to a
new marking M1 depicted in Figure 3. In this marking both t2 and t3 are enabled.

•

•

• •

p1

p2

p3

p4

p5

t2 t1 t3 t4

2 2

Fig. 3. (P, T, F ) with the marking M1

The P/T System in Figure 2 is a variation of the well-known Producer-Consumer
system. The left half of the system is a producer. Transitions t1 and t2 can occur
alternatingly, with each loop producing a token that is deposited in the bu�er place
p3. The right half of the system is a consumer. where transitions t3 and t4 can occur
alternatingly as long as there are tokens in the bu�er.

3 Protocols

In this section we present our new Petri net variations: Descriptive Interface Nets.
In these nets, each element gets a protocol label, which will be used in the next
sections.

3.1 Descriptive Interface Nets

Throughout this thesis, Π is a �xed, possibly in�nite set of protocol labels. More-
over, Π = ΠP

⊎
ΠT , with ΠP a set of place labels and ΠT a set of transition labels.

De�nition 7. A descriptive interface net, DIN for short, is a tuple D = (P, T, F, π)
where (P, T, F ) is the underlying net of D, and π : (P ∪ T ) → Π, the protocol
labeling function of D, is a function such that, for all places p ∈ P , π(p) ∈ ΠP ,
and for all transitions t ∈ T, π(t) ∈ ΠT . �
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In graphical representations, the protocol label of an element is written inside the
element, and its name is on the outside.

Two DINs are said to be disjoint if their underlying nets are disjoint.

De�nition 8. Let D1 = (P1, T1, F1, π1) and D2 = (P2, T2, F2, π2) be two disjoint
DINs. Then their union, denoted by D1 ∪D2, is the DIN D1 ∪D2 = (P1 ∪ P2, T1 ∪
T2, F1 ∪ F2, π1 ∪ π2). �

π1 ∪ π2 is well-de�ned since D1 and D2 are disjoint.

Using the basic properties of sets it follows immediately that the union of DINs as
de�ned in De�nition 8 is commutative and associative. Formally:

Lemma 2. Let D1, D2, D3 be pairwise disjoint DINs where Di = (Pi, Ti, Fi, πi) for
i ∈ {1, 2, 3}. Then the following statements hold:
1) D1 ∪D2 = D2 ∪D1

2) (D1 ∪D2) ∪D3 = D1 ∪ (D2 ∪D3).

Example 2. Consider the DIN in Figure 4. It is the union of three disjoint DINs.
Places p1 and p2 have protocol label α, while transition t1 is given protocol label β.
The labels of all other elements are not depicted.

α

α

β

p1

p2

t1

Fig. 4. A descriptive interface net.

De�nition 9. Let D = (P, T, F, π), D′ = (P ′, T ′, F ′, π′) be two DINs, and let
ϕ : (P ∪ T ) → (P ′ ∪ T ′) be a bijective function such that (P, T, F ) ≡ϕ (P ′, T ′, F ′),
and π′(ϕ(x)) = π(x) for all x ∈ (P ∪ T ). Then D′ is a ϕ-renaming of D, denoted
by D ≡ϕ D′. �

If D and D′ are two DINs for which there exists a bijection ϕ such that D′ is
a ϕ-renaming of D, then D and D′ are said to be isomorphic, denoted by D ≡ D′.
We refer to ϕ as an isomorphism of D. We may also write D′ = ϕ(D).

Lemma 3. The relation ≡ between DINs is re�exive, symmetric, and transitive.



9

Proof. We refer to the proof of Lemma 1, which we only have to extend to in-
clude the protocol labeling functions. So, let D,D′, D1, D2, D3 be DINs with un-
derlying Petri nets N,N ′, N1, N2, N3 respectively, and protocol labeling functions
π, π′, π1, π2, π3 respectively. Assume that ϕ,ϕ1, and ϕ2 are isomorphisms such that
D′ = ϕ(D), D2 = ϕ1(D1), and D3 = ϕ2(D2).
For re�exivity with ϕ̂ the identity mapping, we have π ◦ ϕ̂ = π, as required.
For symmetry, we use that π′ ◦ ϕ = π and so π ◦ ϕ−1 = (π′ ◦ ϕ) ◦ ϕ−1 = π′ as
required.
Finally, transitivity follows from the observation that π3◦(ϕ2◦ϕ1) = (π3◦ϕ2)◦ϕ1 =
π2 ◦ ϕ1 = π1. �

3.2 Protocol Nets

We now de�ne protocol link nets, variations of DINs with a subset of elements
selected as anchors. These protocol link nets will be `added' to the overall DIN
when composing through the anchor elements, as shown in section 4.

De�nition 10. Let D = (P, T, F, π) be a DIN, and n ∈ N+. An anchor function
(of length n) of D is a function A : {1, 2, . . . , n} → P ∪ T .

De�nition 11. Let n ∈ N+. A n-sided protocol link net, or simply protocol net, is
a tuple L = (P, T, F, π,A) where (P, T, F, π) is a descriptive interface net, called the
underlying DIN of L, and A : {1, 2, . . . , n} → P ∪ T an anchor function of length n
of (P, T, F, π). �

We use PROT to denote the class of protocol link nets.

An anchor function A of length n of a protocol link net L de�nes a sequence
(A(1), . . . , A(n)) of elements of L. Each A(i) is called an anchor. Given an an-
chor x of L, we de�ne its anchor numbers as the set A−1(x). In graphical notation,
anchors are drawn shaded grey, and the anchor numbers of an element are written
in square brackets below its name. See Figure 5 for an example.

We extend the de�nitions of renaming and isomorphism to protocol nets:

De�nition 12. Let n ∈ N+. Let L = (P, T, F, π,A) and L′ = (P ′, T ′, F ′, π′, A′) be
n-sided protocol link nets, and let ϕ be an isomorphism such that (P ′, T ′, F ′, π′) is
a ϕ-renaming of (P, T, F, π), and A′(i) = ϕ(A(i)) for all i ∈ {1, . . . , n}. Then L′ is
a ϕ-renaming of L, denoted by L ≡ϕ L′. �

If L and L′ are two protocol nets for which there exists a bijection ϕ such that L′
is a ϕ-renaming of L, then L and L′ are said to be isomorphic, denoted by L ≡ L′.
We refer to ϕ as an isomorphism of L. We may also write L′ = ϕ(L).

Lemma 4. The relation ≡ between protocol nets is re�exive, symmetric, and tran-
sitive.

Proof. We refer to the proof of Lemma 3, which we only have to extend to include
the anchor functions.
For re�exivity with ϕ the identity mapping, we have ϕ ◦A = A, as required.
For symmetry, we use that ϕ ◦ A′ = A and so ϕ−1 ◦ A = (ϕ ◦ A′) ◦ ϕ−1 = A′ as
required.
Finally, transitivity follows from the observation that A3 = ϕ2◦A2 = ϕ2◦(ϕ1◦A1) =
(ϕ2 ◦ ϕ1) ◦A1. �
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Example 3. In Figure 5 we see a protocol net L. Its anchors are, in order, p1, p2,
and t2.

ε

δ

αγ β

p1

p2

t2t1 p3

[1]

[2]

[3]

Fig. 5. A 3-sided protocol net. The gray elements are its anchors.

�

De�nition 13. Let Π be an alphabet of protocol labels. Then a protocol assignment
function is a function L : Π∗ → PROT .
Let n ∈ N+ and let σ = (α1, . . . , αn) ∈ Π∗ be a sequence of length n for some n ≥ 1.
Then L((α1, . . . , αn)) is the n-sided protocol net associated with σ. �

Throughout this thesis we assume that L is a �xed protocol assignment function.
We use a function like this (rather than just letting the user pick any protocol net
they want for the given elements) to add some structure and allow the process to
be automated and streamlined in the future. Both the protocol assignment function
L and the set of labels Π will be de�ned according to the user's needs. In this
thesis we provide a framework in which users can easily de�ne, add, combine, and
modify their own sets of protocols to use. For example, a biologist may want to cre-
ate protocol nets modeling biological pathways or biochemical reactions, while an
economist could create protocols for businesses and other organizations interacting
in various ways.

It should be made clear that the protocol assignment function will not always be
completely speci�ed, i.e. for all sequences in Π∗. In practice, only a few protocols
may be used, and then only speci�c tuples of labels will be selected for composition.
In the examples in the rest of this thesis we will only de�ne the protocol nets that
are relevant for the speci�c case discussed.

4 Protocol Composition

In this section we show how protocol nets are used to connect DINs. We �rst de�ne
the fusing operation, which enabled us to merge speci�c elements: If an element x
is fused to an element y of the same type, then all �ow connected to x is transferred
to y, and x is deleted.

De�nition 14. Let D = (P, T, F, π) be a DIN. Let n ∈ N+. Let ρ = (x1, . . . , xn),
and σ = (y1, . . . , yn) be distinct elements of P ∪T such that all x1, . . . xn are distinct
and xk and yk are of the same type for all k ∈ {1, . . . , n}, and elts(ρ)∪ elts(σ) = ∅.
The fusing of ρ into σ in D, denoted by D[ρ . σ], is the DIN (P ′, T ′, F ′, π′) where
P ′ = P \X, T ′ = T \X, π′ = π|(P ′∪T ′), and for all (a, b) ∈ (P ′ × T ′) ∪ (T ′ × P ′):
F ′(a, b) = F (a, b) + (

∑
{i∈{1,...,n|yi=b}} F (a, xi)) + (

∑
{j∈{1,...,n|yj=a}} F (xj , b)) +

(
∑
{i,j∈{1,...,n|yi=a∧yj=b}} F (xi, xj)).
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It is important to note that the yi do not have to be distinct. If yi = yj , then xi
and xj are both fused to yi. The fused element will have the protocol label of yi.

Fig. 6. A DIN before (a) and after (b) fusing (x1) onto (y1).

Example 4. Let D be the DIN in Figure 6(a). The DIN D[(x1) . (y1)] is depicted in
Figure 6(b). The arcs that were connected to x1 before are now connected to y1.

Fig. 7. A DIN before (a) and after (b) fusing (x1, x2) onto (y, y).

Let D′ be the DIN in Figure 7(a), with y1 = y2. The DIN D′[(x1, x2) . (y, y)] is
depicted in Figure 7(b). As x1 and x2 are mapped to the same element, they are
merged together. �
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x1

x2x3

x4

y1

y2

y1

y2
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p

(a) (b)

4

2 125

Fig. 8. A DIN before (a) and after (b) fusing (x1, x2, x3, x4) onto (y1, y2, y2, y2).

Example 5. Let D be the DIN depicted in Figure 8(a). Figure 8(b) shows the DIN
D′ = D[(x1, x2, x3, x4) . (y1, y2, y2, y2)] (three of the xi are fused with the same
element y2). The �ow from merged elements is added together:
F ′(y1, t) = F (y1, t) + F (x1, t),
F ′(y2, p) = F (y2, p) + F (x2, p) + F (x3, p) + F (x4, p) (where F (x3, p) = 0),
F ′(y1, y2) = F (y1, y2) + F (y1, x2) + F (x1, x2) + F (x1, x3). �

We now de�ne how to link elements of a descriptive interface net using fusing
and protocol nets. Note that this operations works on one DIN, not multiple distinct
components. So when composing di�erent DINs, we must consider them as a single
DIN (using the DIN union from De�nition 9). This approach allows us to combine
any number of nets instead of a strict binary operation. It and also allows for adding
links within a connected net, so if two nets have multiple distinct interactions (such
as passing various data to each other) those connections can be represented with
multiple protocol nets.

In what follows, a DIN D = (P, T, F, π) and a protocol net L = (P ′, T ′, F ′, π′, A) are
said to be disjoint if (P, T, F ) and (P ′, T ′, F ′) are disjoint Petri nets. Furthermore,
if D and L are disjoint, then their union is the DIN D ∪ L = (P ∪ P ′, T ∪ T ′, F ∪
F ′, π ∪ π′).

De�nition 15. Let D = (P, T, F, π) be a DIN. Let n ∈ N+. Let (x1, . . . , xn) ∈
(P ∪ T )∗ be a sequence of distinct elements of D. Let L = (PL, TL, FL, πL, A) =
L(π(x1), . . . , π(xn)) be the designated protocol net for the protocol labels of the xi.
Let ϕ be an isomorphism of L such that D and ϕ(L) are disjoint.
Then the link in D for (x1, . . . , xn) and ϕ (w.r.t. L), λ(D, (x1, . . . , xn), ϕ), is the
DIN (D ∪ ϕ(L))[(x1, . . . , xn) . (A(1), . . . , A(n))]. �

In short, we link n elements x1, . . . , xn using a protocol net L chosen based on
their protocol labels and the protocol assignment function. Each xi is fused onto
the corresponding anchor element A(i) of L. One important aspect to note here is
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the role of the renaming function ϕ. If L and D are not disjoint, there will be a
shared element z that will have all incidences that it had in D and in L. Thus we
use a disjoint isomorphic copy of L to link the net assembled in D.

Note that the elements P ′ ∪ T ′ of λ(D, (x1, . . . , xn), ϕ) can be partitioned into
two disjoint sets: (P ∪ T ) \ {x1, . . . , xn} and ϕ(PL) ∪ ϕ(TL).

Because the elements (and thus the sets of arcs de�ned by the �ows F and FL)
are disjoint, the �ow of (P ′, T ′, F ′, π′) = λ(D, (x1, . . . , xn), ϕ) can be partitioned as
follows:
First, the internal �ow of D: all pairs (a, b) where a, b ∈ (P ∪ T ) \ {x1, . . . , xn} and
a, b not the same type. For these, F ′(a, b) = F (a, b).
Second, the internal �ow of L: all pairs (a, b) where ϕ−1(a), ϕ−1(b) ∈ (PL∪TL) and
a, b not both anchors and not of the same type. For these, F ′(a, b) = FL(ϕ

−1(a), ϕ−1(b)).
Third, the �ow connecting D and L: all pairs (a, b), (b, a) where a, b not the same
type, b ∈ D and ϕ−1(a) = A(i) for some i. This is the �ow between xi and b. For
these F ′(a, b) =

∑
{i∈{1,...,n|A(i)=ϕ−1(a)} F (xi, b). and

F ′(b, a) =
∑
{i∈{1,...,n|A(i)=ϕ−1(a)} F (b, xi).

Finally, there is the �ow between anchors: all pairs (a, b) where a, b not of the same
type, ϕ−1(a) = A(i), and ϕ−1(b) = A(j) for some i, j. For these,
F ′(a, b) = FL(ϕ

−1(a), ϕ−1(b)) + (
∑
{i,j∈{1,...,n|A(i)=ϕ−1(a)∧A(j)=ϕ−1(b)}} F (xi, xj)).

Note that, because D and L are disjoint, there was no �ow between any xi and
A(j).

Example 6. We link the three components from Example 2 using the protocol net
from Example 3. Let D be the DIN in Figure 4, and let L from Figure 5 be L(α, α, β).
Let σ = (p1, p2, t1). We now create the DIN λ(D, σ, ϕ). Because L is the protocol net
associated with the labels of σ, it is added to the DIN by fusing its anchors to p1, p2,
and t1. The protocol labels are overwritten by the labels of L's anchors because of
the fusing. However, it changes nothing for t1, as the protocol net also had β as la-
bel for A(3). Elements t1 and p3 in L are renamed with ϕ to keep it disjoint from D.

The combined net is now a modi�ed producer-consumer, with two producers that
both have to produce output for the consumer to receive a token.

Fig. 9. The composed system.
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4.1 Properties of Protocol Composition

In this section we will show some algebraic properties of protocol composition. First
we show that which isomorphism for L we use does not matter for the structure
of the linked net. Secondly, we show that when adding multiple links to distinct
elements, we can add them in any order. Finally, we show that we can, under
certain conditions, do multiple links at once with one protocol net.

Lemma 5. Let D = (P, T, F, π) be a DIN, Let n ∈ N+. Let (x1, . . . , xn) ∈ (P ∪T )∗
be a sequence of distinct elements of D. Let L = L(π(x1), . . . , π(xn)). Let ϕ1 and
ϕ2 be two isomorphisms of L such that D is disjoint with ϕ1(L) and ϕ2(L). Then:

λ(D, (x1, . . . , xn), ϕ1) ≡ λ(D, (x1, . . . , xn), ϕ2).

Proof. LetD1 = (P1, T1, F1, π1) = λ(D, (x1, . . . , xn), ϕ1) andD2 = (P2, T2, F2, π2) =
λ(D, (x1, . . . , xn), ϕ2). Let L = (PL, TL, FL, πL, A). Let ϕ be the isomorphism of
ϕ1(L) such that ϕ(ϕ1(L)) = ϕ2(L). Let ψ : (P1 ∪ T1) 7→ (P2 ∪ T2) be a function
such that ψ(q) = q for q ∈ (P ∪ T ), and ψ(q) = ϕ(q) for q ∈ (PL ∪ TL).

We �rst show that ψ is a bijection. Recall that linked nets can be partitioned into
two sets of elements: elements from D (with X removed) and elements from L. ψ
maps the elements from D to themselves, and the elements from L are mapped
bijectively because ϕ is an isomorphism and thus a bijection over the elements of
L. We also note that because elements are mapped to themselves or their renamed
counterparts, for all q, π2(q) = π1(q) or π2(ϕ(q)) = π1(q) depending on whether
q ∈ P ∪ T or q ∈ PL ∪ TL respectively.

Finally we show that F1(q, r) = F2(ψ(q), ψ(r)) for all q, r ∈ P1 ∪T1. We discuss the
di�erent cases as outlined in the note after De�nition 16:
q, r ∈ (P ∪ T ) \X. Then, ψ(q) = q and ψ(r) = r, so F (q, r) = F1(q, r) = F2(q, r).
q, r ∈ (ϕ1(PL)∪ϕ1(TL). Then, ψ(q) = ϕ2(q) and ψ(r) = ϕ2(r), so FL(ϕ

−1
1 (q), ϕ−11 (r)) =

F1(q, r) = F2(ψ(q), ψ(r)).
q ∈ (P ∪ T ), r /∈ (P ∪ T ). This is an arc between the D part and the L part.
As D and L were disjoint, this must be a result of fusing an element of D with
L: r was an anchor A(i) of L that was fused with one or more of the xi. So
F1(q, r) =

∑
{i∈{1,...,n|ϕ1(A(i))=r} F (q, xi) =∑

{i∈{1,...,n|ϕ(ϕ1(A(i)))=ϕ(r)} F (ϕ(q), xi) = F2(ϕ(q), ϕ(r)).

q = ϕ1(A(i)), r = ϕ1(A(j)) for at least one i, j. This is �ow between two (former)
anchors, so
F1(q, r) = FL(ϕ

−1
1 (q), ϕ−11 (r) + (

∑
{i,j∈{1,...,n|ϕ−1

1 (A(i))=q∧ϕ−1
1 (A(j))=r}} F (xi, xj)) =

FL(ϕ
−1
2 (ϕ(q)), ϕ−12 (ϕ(r)) + (

∑
{i,j∈{1,...,n|ϕ−1

2 (A(i))=q∧ϕ−1
2 (A(j))=r}} F (xi, xj)) =

F2(ϕ(q), ϕ(r)). Thus, ψ is an isomorphism such that D1 ≡ψ D2. �

We will now show that when adding multiple links to distinct elements, the or-
der in which we add links does not matter.

Lemma 6. Let D = (P, T, F, π) be a DIN. Let σ, ρ ∈ (P ∪ T )∗ be such that
elts(σ) ∩ elts(ρ) = ∅. Let L1 = L(π(σ)), let L2 = L(π(ρ)). Let ϕ1, ϕ2 be two
isomorphisms of L1 and L2 respectively, such that D, ϕ1(L1), and ϕ2(L2) are mu-
tually disjoint. Then:

λ(λ(D, (x1, . . . , xn), ϕ1), (z1, . . . , zk), ϕ2) = λ(λ(D, (z1, . . . , zk), ϕ2), (x1, . . . , xn), ϕ1)
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Proof. LetD1 = λ(λ(D, ρ, ϕ2), σ, ϕ1), D2 = λ(λ(D,σ, ϕ1), ρ, ϕ2), Di = (Pi, Ti, Fi, πi),
and Li = (PLi

, TLi
, FLi

, πLi
, ALi

) for i ∈ {1, 2}. We compare D1 and D2.

P1 = (P \ elts(ρ)) ∪ ϕ2(PL2) = ((P \ elts(ρ)) ∪ ϕ1(PL1) \ σ) ∪ ϕ2(PL2) = ((P \
elts(ρ))\elts(σ))∪ϕ1(PL1)∪ϕ2(PL2) = ((P \elts(σ))∪ϕ2(PL2)\elts(ρ))∪ϕ1(PL1) =
(P \ elts(σ)) ∪ ϕ1(PL1

) = P2.

The reasoning for T1 = T2 is identical.

The labeling functions π1 and π2 have the same domain. Moreover, P1 ∪ T1 =
P2 ∪ T2 = (P ∪ T ) \ (elts(ρ) ∪ elts(σ))

⊎
ϕ1(P1 ∪ T1)

⊎
ϕ2(P2 ∪ T2),

and π1(z) = π2(z) = π(z) if z ∈ (P ∪ T ) \ (elts(ρ) ∪ elts(σ)),
π1(z) = π2(z) = πL(ϕ

−1
1 (z) if z ∈ ϕ1(PL1

∪ TL1
), and

π2(z) = π1(z) = πL(ϕ
−1
2 (z) if z ∈ ϕ2(PL2

∪ TL2
).

Hence π1 = π2.

Finally we compare F1 and F2. Let (a, b) ∈ (P1 × T1) ∪ (T1 × P1). If a, b ∈
((P ∪ T ) \ elts(σ)) \ elts(ρ), then F1(a, b) = F2(a, b) = F (a, b).
If a, b ∈ ϕi(Li), then F1(a, b) = F2(a, b) = FLi

(ϕ−1i (a)), ϕ−1i (b)).
If a ∈ ((P ∪ T ) \ elts(σ)) \ elts(ρ) and b = ϕ1(A1(j)) for some j ∈ {1, . . . , n}, then
F1(a, b) = F (a, xj) = F2(a, b).
And similarly for the three remaining cases with
a ∈ ((P ∪ T ) \ elts(σ)) \ elts(ρ) and b = ϕ2(A2(j)) for some j ∈ {1, . . . , n},
a = ϕ1(A1(j)) for some j ∈ {1, . . . , n} or a = ϕ2(A2(j)) for some j ∈ {1, . . . , n}
and b ∈ ((P ∪ T ) \ elts(σ)) \ elts(ρ). Thus D1 = D2. �

Finally we show that multiple linking operations can be done at the same time.

Lemma 7. Let D = (P, T, F, π) be a DIN. Let σ, ρ ∈ (P ∪T )∗ be such that elts(σ)∩
elts(ρ) = ∅. Let L1 = L(π(σ)), L2 = L(π(ρ)). Let ϕ1, ϕ2 be isomorphisms of L1,
and L2 respectively, such that D, ϕ1(L1), and ϕ1(L2) are mutually disjoint. Let
L3 = L(π(σ◦ρ)) ≡ψ ϕ1(L1)∪ϕ2(L2). Let ϕ3 be an isomorphism for L3 such that for
all elements z of L3, ϕ3(z) = ϕ1(z) if ψ

−1(z) an element of L1, and ϕ3(z) = ϕ2(z)
if ψ−1(z) an element of L2. Then λ(λ(D, σ, ϕ1), ρ, ϕ2) = λ(D, σ ◦ ρ, ϕ3)

Proof. LetD1 = λ(λ(D, ρ, ϕ2), σ, ϕ1), D2 = λ(λ(D,σ, ϕ1), ρ, ϕ2), Di = (Pi, Ti, Fi, πi)
for i ∈ {1, 2}. We use a similar proof as for Lemma 6.

P1 = ((P \ elts(σ)) \ elts(ρ))∪ϕ1(PL1)∪ϕ2(PL2) = (P \ elts(σ ◦ ρ))∪ϕ3(PL1)∪
ϕ3(PL2) = (P \ elts(σ ◦ ρ)) ∪ ϕ3(PL1 ∪ PL2) = (P \ elts(σ ◦ ρ)) ∪ ϕ3(PL3 = P2

The reasoning for T1 = T2 is identical.

The labeling functions π1 and π2 have the same domain. Moreover, P1 ∪ T1 =
P2 ∪ T2 = (P ∪ T ) \ (elts(ρ) ∪ elts(σ))

⊎
ϕ1(P1 ∪ T1)

⊎
ϕ2(P2 ∪ T2).

π1(z) = π2(z) = π(z) if z ∈ (P ∪ T ) \ (elts(ρ) ∪ elts(σ)),
π1(z) = πL1

(ϕ−11 (z) = πL3
(ψ(ϕ−11 (z))) = π2(z) if z ∈ ϕ1(PL1

∪ TL1
), and

π1(z) = πL2
(ϕ−12 (z) = πL3

(ψ(ϕ−12 (z))) = π2(z) if z ∈ ϕ1(PL2
∪TL2

). Hence π1 = π2.

Finally we compare F1 and F2. Let (a, b) ∈ (P1 × T1) ∪ (T1 × P1). If a, b ∈
((P ∪ T ) \ elts(σ)) \ elts(ρ), then F1(a, b) = F2(a, b) = F (a, b).
If a, b ∈ ϕi(Li), then F1(a, b) = FLi

(ϕ−1i (a)), ϕ−1i (b)) = F3(ψ(ϕ
−1
i (a), ψ(ϕ−1i (b)) =

F2(a, b)
If a ∈ ((P ∪ T ) \ elts(σ)) \ elts(ρ) and b = ϕ1(A1(j)) for some j ∈ {1, . . . , n}, then
F1(a, b) = FL1(a, xj) = FL3(ψ(a), ψ(b)).
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And similarly for the three remaining cases with
a ∈ ((P ∪ T ) \ elts(σ)) \ elts(ρ) and b = ϕ2(A2(j)) for some j ∈ {1, . . . , n},
a = ϕ1(A1(j)) for some j ∈ {1, . . . , n} or a = ϕ2(A2(j)) for some j ∈ {1, . . . , n}
and b ∈ ((P ∪ T ) \ elts(σ)) \ elts(ρ). Thus D1 = D2. �

Example 7. In this example we will add two links to the net D in Figure 10, and
show how, per Lemma 7, we can also do it with one link.

α β

γδ

p1 p2

p3t1

Fig. 10. A net D consisting of two components that will be linked with channels.

We would like to end with a net that looks like the net in Figure 11:

p1 p2

p3t1

Fig. 11. The net structure we want.

We have the following three protocol nets:
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L(α, β)

L(γ, δ)

[1]

[1]

[2]

[2]

L(α, β, γ, δ)
[1]

[3]

[2]

[4]

Fig. 12. Three protocol nets

We note that L(α, β, γ, δ) = L(α, β) ∪ L(γ, δ).

Now we can either link λ(λ(D, (p1, p2)), (p3, t1)) or we can link λ(D, (p1, p2, p3, t1))
for the same result.

5 Generating Petri nets

To demonstrate the versatility of protocol nets, we will now show how to create any
given Petri net from a DIN with a single place and a single transition using protocol
nets.

Let α, β be protocol labels such that α ∈ ΠP and β ∈ ΠT . Let Lu be a protocol
assignment function with Lu(α),Lu(β),Lu(α, β),Lu(β, α) as given in Figure 13.
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α α β

α αβ β

p t

v vw w

Lu(α) Lu(β)

Lu(α, β) Lu(β, α)

β[1] [1]

[1] [1][2] [2]

sq

Fig. 13. The protocol function Lu.

The protocol nets Lu(α) and Lu(β) will be used to generate places and transi-
tions, respectively. Lu(α, β), and Lu(β, α) will be used to generate �ow. Let D be
the following DIN:

α

p1

D

β

t1

Fig. 14. The initial DIN D.

Theorem 1. Let N = (P, T, F ) where P 6= ∅ and T 6= ∅ be a Petri net. There
exists a DIN D̂ with underlying net isomorphic to N , such that D̂ is the result of
adding |P |+ |T |+ (

∑
(a,b)∈DOM(F ) F (a, b))− 2 links to D.

Proof. Let N = (P, T, F ) be the net structure we wish to create. We �rst add places
to D using the Lu(α) protocol net. For all i ∈ {2, 3, ..., |P |} we de�ne ψi as an iso-
morphism of Lu(α) such that ψ(p) = pi and the ψi(Lu(α)) are mutually disjoint
and disjoint with D. For all i ∈ {3, ..., |P |} we de�ne Di = λ(Di−1, (pi−1)), ψi),
with D2 = λ(D, (p1), ψ2). Each DIN Di has one more place than Di−1. Because in
each Di, place pi is labeled by α, it is guaranteed that in each step the protocol net
Lu(α) will be used. Thus D|P | is a DIN with |P | places and 1 transition.

Now we add the transitions. For all j ∈ {2, 3, ..., |T |} we de�ne τj as an isomorphism
of Lu(β) such that τj(t) = tj and the τj(Lu(β)) are mutually disjoint and disjoint
withD. For all j ≥ 3 we de�neD′j = λ(D′j−1, (tj−1), τj), withD

′
2 = λ(D|P |, (t1), τ2).

Just like with the places, each DIN D′j has one more transition than D′j−1. Thus
D′|T | is a DIN with |P | places and |T | transitions.
To add the arcs with their weights, we assume given a bijection ϕ0 from P ∪ T ,
the elements of N , to the elements of D′|T |, such that places map to places and
transitions map to transitions. As both nets have the same number of places and
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transitions, such a bijection exists.
Let NDOM(F ) = {(x, y) ∈DOM(F )|F (x, y) > 0} be the non-trivial domain of
F . Let #F = |NDOM(F )|. Let (x1, y1), . . . , (x#F , y#F ) be an enumeration of all
elements of NDOM(F ). For all (xi, yi) ∈ NDOM(F ), we introduce distinct new
places/transitions as follows:
xji of the same type as xi, 1 ≤ j ≤ F (xi, yi),
yji of the same type as yi, 1 ≤ j ≤ F (xi, yi),
For all i ∈ {1, . . . ,#F} and all j ∈ {1, . . . , F (xi, yi)}, let ψi,j be an isomorphism for
L(π(ϕ0(xi), π(ϕ0(yi)) such that for the elements v, w in (Lu(α, β) and (Lu(β, α),
ψi,j(v) = xji and ψi,j(w) = yji .

For each i ∈ {1, . . . ,#F}, each D̂i,j has �ow j between ϕi(xi) and ϕi(yi). In par-

ticular, for all i and for all k ∈ {1, . . . , i} D̂i,F (xi,yi) has the �ow F (xk, yk) between
ϕ(xk) and ϕ(yk). We use ψi,j and ϕi to keep track of the xi and yi, as they are re-

named in each link. When we reach D̂i,F (xi,yi), we update the ϕi bijection to re�ect
the new names of xi and yi, so the next iteration can address the correct elements:
Let D̂1,0 = D′|T |. For all i ∈ {1, . . . ,#F} and all j ∈ {2, . . . , F (xi, yi)}, D̂i,j =

λ(D̂i,j−1, (x
j−1
i , yj−1i ), ψi,j).

For all i ∈ {1, . . . ,#F}, we de�ne ϕi : (P ∪ T ) → (PD̂i,F (xi,yi)
∪ TD̂i,F (xi,yi)

) as

follows:
ϕi(xi) = x

F (xi,yi)
i , ϕi(yi) = y

F (xi,yi)
i , and ϕi(z) = ϕi−1(z) for all z ∈ (P ∪ T ) \

{xi, yi}.
For all i ∈ {1, . . . ,#F}, D̂i,1 = λ(D̂i,0, (ϕi−1(xi), ϕi−1(yi)), ψi,1). For i ≥ 2, D̂i,0 =

ϕi(D̂i−1,F (xi,yi)).

Let D̂ = D̂#F,F (x#F ,y#F ). Then ϕ#F is an isomorphism from the elements of N

to the underlying net of D̂. We know it is bijective because we did not add more
elements since D̂1,0, and we have added every arc and their weight correctly. �

Example 8. Consider the Petri net N depicted in Figure 15.

2

3

a

b

c

Fig. 15. The Petri net N .

To construct N as described in the proof of Theorem 1, we �rst create succes-
sively λ(Di−1, (pi−1), ψi) for i = 2, . . . , 5, resulting in the net D5 with 5 places and
one transition.
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α α

α

α α

p5

β

t1

Fig. 16. D|P | has 5 places, just like N .

Next we obtain λ(D′j−1, (t), τj) for j = 2, 3 to add the transitions. Once we have
all elements, we assume a bijection ϕ0 to match each element in N to one in D|T |:

α α

α

α α

ϕ0(a)

ϕ0(b)

β

β

β

ϕ0(c)

Fig. 17. D|T | has 5 places and 3 transitions, just like N .

Finally we add the arcs. Let's start with the arc with weight 2 between a and b,
so x1 = a, y1 = b. Then we create D̂1,1 = λ(D̂i,0, (ϕ0(a), ϕ0(b)), ψ1,1). The elements
ϕ0(a) and ϕ0(b) are overwritten by the elements x, y ∈ Lu(α, β), which are renamed
by ψ1

1 to a11 and b11.

α α

α

α α

a11

b11

β

β

β

ϕ0(c)

Fig. 18. D̂1,1 has an arc with weight 1 between the nodes corresponding to a and b.
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Now we apply the same protocol net to a11 and b11, adding their weights so the
resulting weight is 2:

α α

α

α α

a21

b21

β

β

β

ϕ0(c)

2

Fig. 19. D̂1,2 has an arc with weight 2 between the nodes corresponding to a and b.

Now we move on to the next arc. To keep correctly addressing elements, we use
the mapping ϕ1 which maps a to a21 and b to b21.

α α

α

α α

ϕ1(a)

ϕ1(b)

β

β

β

ϕ1(c)

2

Fig. 20. D̂2,0 has a completed �rst arc.

Next we add the arc with weight 3 between c and b:
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α α

α

α α

ϕ1(a)

b32

β

β

β

c32

2

3

Fig. 21. D̂2,3 has an arc with weight 3 between the equivalent of c and b.

And continuing in this way, we add all arcs:

α α

α

α α

ϕ#F (a)

ϕ#F (b)

β

β

β

ϕ#F (c)

2

3

Fig. 22. D̂ is isomorphic to N .

�

6 Composition by Merging and Channels

Many papers have been written on composition of Petri nets, using various di�erent
methods of composing. These papers often use variants of Petri nets with additional
information or behavior to the elements. However, on a net-structural level we
can simulate these di�erent methods using protocol nets to create DINs that are
isomorphic to their results.

There is more to these papers than just their choice of net structure for composi-
tion. Their main focus tends to be on deciding which elements are connected in the
�rst place. This is most often done using one of two methods: First, by giving ele-
ments of di�erent nets the same name, so they are merged when taking the union of
the two nets. Secondly, putting labels on elements, such as input and output labels
on di�erent ends of a channel. Our protocol linking framework does not prescribe
a speci�c method for selection of elements to be linked, so any method can easily
be adopted.
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We can create DINs with underlying nets that are isomorphic to the component
nets used in these papers. Then, using speci�c protocol nets, we can create linked
nets that are isomorphic to the composed system in the original paper.

6.1 Composition by Identi�cation

In [6], Petri nets are composed by connecting `input' and `output' places in order
to study the behavior of the composed system. This is done with a composition
method based on so-called components. A component is a Petri net with two sep-
arate disjoint subsets of places: I and O, the component's input and output places
respectively. Places which are neither input nor output are referred to as internal
places. Two components are composed by taking the union of their elements and
arcs. The input places of one component may be the same as the output places of
the other, and these places are merged into one place.

Fig. 23. Image taken from [6], showing three components. Places with an arrow point-
ing into the component are input places, places with an arrow pointing outside of the
component are output places.

We now brie�y summarize the de�nitions from [6] for components and compo-
sition:

De�nition 16. 1) A component is a tuple Γ = (P, T, F, I, O) where (P, T, F ) is a
Petri net, I,O ⊆ P , I ∩O = ∅, •T ∩O = ∅, and T • ∩ I = ∅.
2) For i ∈ {1, 2}, let Γi = (Pi, Ti, Fi, Ii, Oi) be a component. Then Γ1 and Γ2 are
composable if P1 ∩ P2 = (I1 ∩O2) ∪ (I2 ∩O1) and T1 ∩ T2 = ∅.
3) For two composable components Γ1 and Γ2, the composed system is Γ1�Γ2 =
(P1 ∪ P2, T1 ∪ T2, F1 ∪ F2, (I1 \O2) ∪ (I2 \O1), (O1 \ I2) ∪ (O2 \ I1)). �
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Fig. 24. The three components composed into one net with no more input or output places
remaining.

Many other papers use place identi�cation/merging as their method of compo-
sition. [10] uses shared bu�er places between its components. Place merging is used
in [17] and [15]. One notable example is [13] for its more complicated method, using
indices and labels, for deciding which places are merged in what order. In this paper
we simulate the composition method from [6] as illustration for how protocol nets
can be used in general for simulating composition by identi�cation.

The components used in [6] have places with the same name, in order for them to
be merged in the composition. On the other hand, linking Petri nets (DINs) using
protocol nets assumes that the nets involved are disjoint. However, we can easily
rename the shared input and output places and then link compatible pairs of input
places and output places. We �rst present the protocol nets we will be using. It
should be noted that these protocol nets can be used for any method of composi-
tion by identi�cation, not just Kindler's method:

α βp t

Ls((γ, γ)) Ls((δ, δ))

[1, 2] [1, 2]

Fig. 25. Two protocol nets: The left for merging two places, the right for merging two
transitions.

Ls((γ, γ)) and Ls((δ, δ)) are 2-sided protocol nets where both anchors are the same
element. We now show how to use these protocols to simulate the composition
method of [6]:

Theorem 2. For i ∈ {1, 2} let Γi = (Pi, Ti, Fi, Ii, Oi) be two composable compo-
nents. Let D1,D2 be two DINs where the underlying net of D1 is isomorphic with
Γ1 and the underlying net of D2 is isomorphic with Γ2. Then a series of protocol
links on D1∪D2 will create a DIN whose underlying net is isomorphic with Γ1�Γ2.
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Proof. For i ∈ {1, 2} let Di = (P ′i , T
′
i , F

′
i , πi) be two disjoint DINs isomorphic via

ϕi to Γi. Let D′0 = (P, T, F, π) = D1 ∪D2. For all places p ∈ P , π(p) = γ. Ls((γ, γ))
is place-identi�cation protocol net from Figure 25. Let x1, . . . , xk be an ordering for
all elements xj ∈ ((I1 ∩ O2) ∪ (I2 ∩ O1)). For each j ∈ {1, . . . , k}, let ij , oj ∈ P be
ϕ1(xj) and ϕ2(xj) respectively. We create a new DIN D′j := λ(D′j−1, (ij , oj), ϕxj ).
Because each D′j merges one pair of places in the same way � does, D′k is isomorphic
with Γ1�Γ2 as it has paired up all applicable inputs and outputs. �

Note that per Lemma 6, the order in which we pick the (ij , oj) does not matter,
and per Lemma 7 we could do all links in one go with a big enough protocol net.

6.2 Asynchronous Composition via Channels

Another very common composition method is to use channels. Instead of merging
elements, a channel adds a new element `between' them, with one-directional �ow.
This allows for a more indirect connection between subsystems.

An example of a paper using channels is [7], which composes `enterprise nets'
into an `industry net' using di�erent labels representing various types of messages
between enterprises in an industry.

In [4], the composition of modal Petri nets is discussed. In modal Petri nets
transitions are either may or must, which determines which of the transitions may
or must �re at a given marking. As this thesis is focused on net structures, not �ring
sequences, this may-must distinction is not relevant for our thesis. We are simply
interested in the method they use to compose these nets: transition-to-transition
channels with a bu�er place. It is a good example of a method of composition that
our protocol nets can easily emulate on the net-structural level while additional
information such as modality can be added without disrupting the protocol link
framework. As in the previous section, we will use the method in [4] as an illustra-
tion for how to simulate channel composition in general.

We introduce a simpli�ed version of the nets and composition in [4], cutting out
the modality and �ring rule parts:

De�nition 17. 1) An I/O Alphabet Σ is an alphabet partitioned into disjoint sets
in, out and int of input, output, and internal labels respectively. Two I/O alphabets
Σ1, Σ2 are composable if in1 ∩ in2 = out1 ∩ out2 = Σ1 ∩ int2 = Σ2 ∩ int1 = ∅.

2) A labeled Petri net over an I/O alphabet Σ is a tuple N = (P, T, F, λ) where
(P, T, F ) is a Petri net, and λ : T → Σ∪{()} is a transition labeling function where
() denotes the empty sequence.

3) Let N1 = (P1, T1, F1, λ1) and N2 = (P2, T2, F2, λ2) be labeled Petri nets over
Σ1, Σ2 respectively. Let Σ1 and Σ2 be composable, and (P1, T1, F1) and (P2, T2, F2)
be disjoint. Let for each a ∈ Σ1 ∩ Σ2, pa be a new place. Then the asynchronous
composition N = N1

⊗
N2 = (P, T, F, λ) is the labeled Petri net de�ned as follows:

P = P1∪P2∪{pa|a ∈ Σ1∩Σ2}, T = T1∩T2, for all x, y ∈ P1∪P2∪T2∪T2, F (x, y) =
F1(x, y) if x, y ∈ P1 ∪ T1 and F2(x, y) otherwise; for all {i, j} = {1, 2} and for each
t ∈ Ti and pa ∈ P with a ∈ Σ1 ∩ Σ2, F (t, pa) = 1 if a = λi(t) ∈ inj ∩ outi, and 0
otherwise. F (pa, t) = 1 if a = λi(t) ∈ ini ∩ outj, and 0 otherwise.
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Fig. 26. Two labeled Petri nets and their composition.

Just like in the previous section, we can also emulate asynchronous compositions
with protocol nets. We �rst de�ne channel protocol nets in Figure 27. To emulate
modal nets we only use the transition-to-transition channel, but the other channel
types are also useful for other methods.

Ls((κP , κP ))

Ls((κT , κT ))

Ls((κT , κP ))

Ls((κP , κT ))

p1 p2t

t1 t2p

p t

t p

[1] [2]

[1] [2]

[1] [2]

[1] [2]

Fig. 27. Four di�erent protocol nets for connecting two transitions, two places, or transi-
tions and places.
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We use two labels for these protocols: κP and κT , representing a place and a tran-
sition wanting to form a channel respectively. Note that the ordering of the anchors
matters as well: tokens �ow from the �rst anchor to the second anchor.

Theorem 3. For i ∈ {1, 2} let Ni = (Pi, Ti, Fi, λi) be two labeled Petri nets over
composable I/O alphabets Σi such that (P1, T1, F1) is disjoint with (P2, T2, F2).
There exists a DIN D = (P, T, F, π) whose underlying net is isomorphic with N1∪N2

such that a series of protocol links on D will create a DIN whose underlying net is
isomorphic with N1

⊗
N2.

Proof. Let D = (P, T, F, π) be a DIN whose underlying net is isomorphic via ϕ
to N1 ∪ N2. For all transitions t ∈ T , π(t) = κT . Let x1, . . . , xk be an ordering
for all elements xi ∈ Σ1 ∩ Σ2. For each i ∈ {1, . . . , k}, let ui, ti ∈ T be such that
λ1(ϕ

−1(ui)) = λ2(ϕ
−1(ti)) = xi. We create a new DIN D′i := λ(D′i−1, (ui, ti), ϕxi

).
D′i has i channels added just like the asynchronous composition method. Thus

the last DIN D′k is isomorphic with N1

⊗
N2. �

7 Case Studies

In the previous section we presented ways of simulating other methods of compo-
sition. But protocol nets can be used in more creative and practical ways. In this
section we will explore some of these uses.

7.1 Complex Protocols

Many interaction between di�erent components and subsystems are more complex
than can be solved with identi�cation or a channel. Examples are semaphores for
mutual exclusion problems, ordering based on priority of tasks and components, or
creating queues for many di�erent nets to take advantage of one net's services. This
section showcases some more complex protocols that are common in practical net
interaction.

[1] [2]

[3]

[4]

p p′

Fig. 28. An e�ector protocol.

Our �rst complex protocol is in Figure 28: The E�ector. Tokens can only �ow from
A(1) to A(2) if there is a token in p. By �ring the transitions A(3) and A(4) the
data �ow is blocked or allowed respectively. As the transitions are anchors, they can
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be combined with transitions in components to make more complex conditions for
when data �ow is stopped or restarted.

•

[1]

[2]

[n]

...

Fig. 29. A sequencer protocol.

Our next example is a Sequencer in Figure 29: outputs A(1), A(2), . . . , A(n) each
receive a token in sequence, looping back to A(1) when the last anchor has received
a token. It is useful for ensuring di�erent components get an equal amount of to-
kens, or ensuring that certain components are activated before others. Obviously
sequencers can also be adapted to take input in sequence, or a mix of input and
output.

•

[1] [2]

[3]

Fig. 30. An input selector.

Finally we present the Input Selector: It has two input places A(1) and A(2), and an
output place A(3). Once one of A(1) or A(2) has had a token �ow to the output A(3),
that input is locked in as the only input allowed to keep pushing tokens through the
protocol net. This can be used to model a �rst-come-�rst-serve situation, for example
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a business signing a contract with the �rst responder, who then gets exclusive rights
to keep interacting.

7.2 Webservice Nets

When designing a system composed of di�erent components, it is common to ex-
press the system's behavior in terms of formal logic or algebra: "Either A or B
should be executed." "If C is executed, D must also be executed." "E must always
be executed before F ."

In [5] web service nets are proposed. These nets are used to represent online
services such as querying databases, purchasing items, digital payment, etc. An ex-
ample would be a process of wanting to buy an item online. Di�erent stores must
be queried whether they sell the item. If there are multiple sellers, they may be
compared in some way, and a choice made for which one we buy the item from.
Once the store is selected, payment must be made via an online banking service
and delivery must be scheduled via a delivery service. Each component in this pro-
cess would be its own net, and they are linked via various logical operations such as
AND, OR, and `leads to' that are more complicated than the simple channels and
identi�cation we have seen before.

We �rst give a simpli�ed de�nition of the nets in [5].

De�nition 18. A web service net is a tuple S = (P, T, F, i, o) where (P, T, F ) is
a Petri net and i ∈ P its unique input place and o ∈ P its unique output place
respectively. When i is marked with a single token and all other places are empty,
the net is said to start executing. It is done executing when there is a single token
in o and all other places are empty.

Web service nets are composed through several service algebra operators. Each
operator takes nets and expands them with extra elements and �ow. For example,
Figure 31 shows the OR and AND operations when applied to (abstracted) web ser-
vice nets. The results are again web service nets with new input and output places.

There are a number of other operations de�ned in [5], such as sequential opera-
tion (S1 must be executed fully before S2 can start), and iteration (S1 executes
one or more times). In this case study we will only look at AND, OR, sequence,
and iteration. It is easy to verify that the operations work correctly, through basic
analysis of the �ring sequences of the nets. We can easily make protocol nets that
emulate the operations, as seen in Figure 32. The protocol assignment function is of
the following form: L(α, β,⊥,⊥), where α indicates what operation is being applied
(AND, OR, IT, SEQ), and β becomes the label of the input place of the composed
net. A special case is the iteration operator, which only acts on one net, so there
we use o as the second element.
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i1

o1

i2

o2

i3

o3

i4

o4

i5

o5

i6

o6

S1 S2 S3 S4

S1|S2 S3&S4

Fig. 31. Web service algebra operations for OR and AND.

Fig. 32. Protocol nets for the operations AND, & (a), OR, | (b), sequence, ; (c), and
iteration, ∗ (d)
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Given a set of web service nets and the intended compositional formula, we
can make DINs that work with these protocol nets to produce the same composed
system. For each web service net Sk, we create a DIN Dk whose underlying net is
isomorphic with Sk. Then we assign the protocol labels as follows: Only the labels
of ik and ok are relevant, as these are the only elements involved in linking. For
most operations, we do not need the labels on the ok either, so πk(ok) = ⊥.

Example 9. Let S1, . . . S4 be webservice nets, and let the composed system we want
be (S1|S2)&(S3 ; (S4∗)). Then we de�ne the 4 DINs as shown in Figure 33:

| & ; ∗

ω

i1 i2 i3 i4

o1 o2 o3 o4

D1 D2 D3 D4

Fig. 33. The initial DINs representing the four service nets.

The DIN D5 = λ(D1 ∪ D2, (i1, i2, o1, o2)) is shown in Figure 34. Note how its
input place i5 now has the label &, which was on i2 before. Through this method
of storing the label for an operation on one of its children we can create arbitrarily
large combinations of the atomic web service nets, because when combining n web
service nets, there can only be maximum n − 1 operations (apart from iteration,
which is pointless to do repeatedly), so each net (except for the very last) stores
one operation as a label.

i1 i2

o1 o2

S1 S2

&

o5

i5

Fig. 34. D5 is created by linking the D1 and D2 with the OR protocol.
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Creating the link D6 = λ(D4, (i4, o4)) creates the DIN in Figure 35. Because ∗
is an operation on a single web service net, i6 gets its label from o4.

D4

ω

i6

o6

Fig. 35. The initial DINs representing the four service nets.

The DIN D7 = λ(D4, (i4, o4)) is shown in Figure 36.

Finally, we create the link D8 = λ(D5 ∪ D7, (i5, i7, o5, o7)) to make the fully
composed system seen in Figure 37.

7.3 Biology Pathways

Petri net models of biological systems are often di�cult to construct and compose.
Many systems consist of hundreds of subsystems that have thousands of interac-
tions with each other. On top of that, many interactions are more complicated than
can be modeled by the identi�cation or channels we have seen in previous work. A
system can have dozens of di�erent types of interactions as well.

A common example of a biological interaction is an e�ector, as explained in
Section 6.3. An e�ector is a subsystem that must be in a certain state in order for a
di�erent subsystem to work. Examples are the presence of a catalyst, the environ-
ment having a property such as a certain pressure level or temperature.

The reverse of an e�ector is an inhibitor. Inhibitors stop another process from
functioning if the inhibitor is in a given state. E�ector models can easily be turned
into inhibitors. To take the example of the e�ector in Figure 28, assuming that a
token in p (and p′ empty) signals the presence of a catalyst, simply moving the
bidirectional arc on p to p′ would make the presence of the catalyst be an inhibitor
of the process, rather than an e�ector.
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D4

o7

ω

D3

D6

i7

Fig. 36. The initial DINs representing the four service nets.

Other common biological interactions are DNA transcription, protein genera-
tion, and consumption of energy in the form of ATP, transforming it into ADP.

Fig. 38. A biological interaction (left) and the Petri net modeling it (right). [3]

There have been attempts by various biologists to list all interactions in a cell
[8]. In practice the only viable way to create a realistic Petri net model of such large
systems is by creating Petri nets for each subsystem and composing them through
their (varied) interactions. For this we can use protocol link nets very �exibly. We
already showed the e�ector, and just with channels and identi�cation can we create
an ATP reaction like the one in Figure 38.

We would like to work with biologists to create the best protocol nets and DINs
as possible. Biology expertise is crucial for understanding what should be modeled.
As we are not biology experts, we would need to work with experts to develop pro-
tocol nets based on the latest empirical observations.
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i1 i2

o1 o2

D1 D2

&

o5

i5

D4

ω

o7

D3

D6

i7

ω

i8

o8

Fig. 37. The initial DINs representing the four service nets.
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8 Related Work

Not all concurrent modeling or composition of systems is done through identi�ca-
tion and adding channels, or even with Petri nets. There are other techniques that
do similar things to what we present with protocol nets. In this section we mention
several of these.

Reo [1] is a coordination language primarily designed for combining concurrent
programs and processes into full systems. The design philosophy is very similar to
protocol nets: A Reo program (called a circuit) is a labeled directed hypergraph
through which data and signals �ow. The circuit is places `between' programs or
processes, allowing them to interact indirectly in a complex manner. Where our
protocol nets are bound by the well-established rules of Petri nets, in Reo the user
can design any formal speci�cations for edges they want. Because everything is for-
malized, Reo circuits may be formally veri�ed for correctness. Reo is also designed
to be convertible to programming code such as a Java program. It is possible pro-
tocol nets may be veri�ed for correctness in a similar manner to Reo, and future
work should explore this.

Fig. 39. A Reo circuit [1] linking two producers (writers) and a consumer (reader). The
consumer receives input from the writers alternatingly.

Graph grammars [14] are a method of generating and combining graphs in a
formal, algebraic manner. They work by modifying graphs by applying rewriting
rules. Graph grammars are grounded in formal language theory, so there has been
much research into them, and there are many variants and types of graph grammars.
There are grammars which rewrite single elements into graphs, similar to using a
protocol net with one anchor. Other grammars use `hyperedges', edges connect-
ing more than two nodes, as a basis for rewriting. This is comparable to protocol
nets with multiple anchors. Similar to our DINs, graph grammars often use labels
on nodes to indicate what kind of operation should be applied. As Petri nets are
bipartite graphs, linking with protocol nets can also be seen as a rewriting rule,
replacing selected elements with an entire new net. Because of this similarity, it
is possible that known results and theorems on graph grammars may also apply
to DINs. Although regular graphs lack the �ring sequences and other behavioral
aspects of Petri nets, there is still a lot of overlap on a structural level. It would be
interesting to investigate what graph grammars correspond most to protocols, but
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it is beyond the scope of this thesis.

Petri Box calculus [2] is a framework for combining Petri nets in such a way that
it doesn't violate algebraic properties. It is focused on Petri `boxes', subsystems that
have their own behavior and properties. It can be compared to the Webservice nets
from Section 7.2, with the way nets and their behavior are combined in a formally
logical, algebraic fashion. As Petri Box calculus has a lot of results on the behavior
of combined nets, it would be a good idea to investigate whether these results can
be applied to protocol nets.

9 Conclusion and Future Work

In this paper we have introduced a new idea to the discussion on composition of
Petri nets: connecting nets by inserting a protocol net between them. Unlike many
other contributions to composition, our method is not trying to solve one speci�c
problem or tries to describe one type of interaction between components. Instead,
it tries to give the user as much freedom as possible to create various types of in-
teractions and links, and makes it easy to combine these di�erent interactions into
one framework. We have shown our method can simulate and combine nearly every
other method of composition. It should be noted however that protocol nets are
strictly constructive: They can only add elements and places, it is not possible to
remove parts of a net with them.

The more generalized and �uid nature of protocol nets means it is harder to
prove algebraic properties over them. Protocol nets should be seen as a practical
tool for designing systems with varied and plentiful interactions between numerous
components, not as a way of proving mathematical truths over theoretical problems
such as the Dining Philosophers. As we showed in the case study above, protocols
are best used for `black box' components that interact in all kinds of ways, where it
might not be obvious from the start which component might be linked with what
other component(s), and what type of interactions they will use.

The original inspiration for this project, and an application I still think pro-
tocol nets can be very useful for, is the modeling of biological systems. Biological
systems tend to be hundreds or thousands of independent processes and pathways.
Each process takes certain inputs, which can be various things: Molecules, strands
of DNA to be transcribed, nerve signals, etc, and creates output, such as energy,
other molecules and proteins, signals to di�erent nerves, etc. Individual processes
tend to be fairly simple and can be described using a Petri net. These processes
often interact through these inputs and outputs, or by enabling or inhibiting other
processes. We have shown that protocol nets can be used for to model this.

A similar case exists in economics: Modeling the interactions of thousands of
di�erent companies and other entities within an economic system that interact in
all kinds of ways, such as by signing contracts, buying goods, or o�ering loans.

Given a set of protocol labels and nets, and an input of model nets that want to
interact, the process of linking those nets and thus creating an overarching model
could be done algorithmically, especially when involving hundreds or thousands of
nets. Software could be written to facilitate this and easily allow people to create
libraries of protocol nets.
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In conclusion, we have created a tool that we hope is useful, especially to
non-computer scientists who use Petri nets for modeling, such as biologists and
economists.
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