
Opleiding Informatica

ECG Anomaly Detection

Using Long Short-Term Memory

based Recurrent Neural Networks

Ruduan B.F. Plug

Supervisors:

Dr. W. A. Kosters

Dr. W. J. Kowalczyk

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 1, 2019

Abstract

Neural networks are a novel group of systems that can be used to model and
encompass data sets that are nonlinear dynamic in structure, by augmenting
neural networks with recurrent capability we can also model continuous
dynamic processes.

One of those nonlinear dynamic processes is the measured electrical
activity of the heart by ELECTROCARDIOGRAM, of which the voltage time series
data may have a high variance between measures and different patients. Such
variances can be explained due to the heart’s condition, which may provide
vital information about the patient’s condition to a cardiologist.

By using state of the art LONG SHORT-TERM MEMORY neural clusters
instead of the standardized perceptrons in a RECURRENT NEURAL NETWORK

we can extract such information from an ECG data stream and automatically
classify heart impulse sequences to detect anomalies in the heart condition.

Research Question

To which degree of accuracy can Long-Short Term Memory based Recurrent
Neural Networks be utilized to detect amplitude and phase anomalies in electro-
cardiogram time series data?

i

Contents

1 Introduction 1
1.1 Cardiac Physiology . 1
1.2 Cardiac Electrical System . 3

2 The Electrocardiogram 5
2.1 The History . 5
2.2 Clinical Measurement . 6
2.3 Cardiac Waveform . 9

3 Learning Model 13
3.1 Linear Classification . 13
3.2 Gradient Descent . 15
3.3 Non-Linear Classification . 17
3.4 Recurrent Learning . 18

4 Data Analysis 22
4.1 Data Set . 22
4.2 Model Architecture . 27
4.3 Preliminary Model . 30
4.4 Signal Processing . 32
4.5 Deep Learning Models . 36

5 Conclusion 41

6 Future Work 43

A Appendix 45

B References 55

C Index 59

ii

1Introduction

„"The soul is the same in all living creatures,
although the body of each is different."

— Hippocrates

Since the beginning of the 20th century the field of medicine has seen many
revolutionary advancements that would change the way we look at clinical
treatment and the human physiology. The perspective broadened from
exclusively rehabilitation to preventive and supportive medicine, as such
within the UK life expectancy increased from 48.5 years for men and 52.4
years for women to 76.0 and 80.6 years respectively at the start of the 21st

century [1].

Cardiovascular diseases are one of the primary causes of death in first world
countries. According to European Heart Network (EHN), a joint cardiological
research bureau, cardiovascular diseases accounted for 3.7 million deaths
within Europe in 2017. This accounts for 45% of all 2017 mortalities within
Europe [2]. Currently over 85 million people, more than ten percent of the
European population, are suffering from a cardiovascular condition. Early
diagnosis and treatment is critical in opposing this phenomena.

1.1 Cardiac Physiology

To understand data structures pertaining to the activity of the heart and their
interconnection to underlying cardiac conditions, one must first understand
the physiology of the heart. The heart is a muscular organ that is at the
center of the cardiovascular system and is responsible for pumping blood
through the circulatory system.

A constant flow of blood is crucial in supplying organs, muscles and other
tissues with oxygen and nutrients while carrying away metabolic waste. The
circulatory system can be divided into two parts: the pulmonary circuit and
the systemic circuit.

1

The pulmonary circuit is responsible for oxygenating red blood cells. Blood
flows into the heart from the superior vena cava and inferior vena cava and
collects into the heart’s right atrium as shown in Figure 1.1. When the heart
relaxes blood flows into the right ventricle and when the heart compresses
the tricuspid valve closes and blood is pushed into the pulmonary artery
towards the lungs where the blood gets oxygenated [3].

Fig. 1.1.: Circulatory structure of the heart [4].

The systematic circuit carries oxygen-rich blood from the heart towards
organs and tissues throughout the body, to achieve this the left side of the
heart is more muscular and is able to generate a higher blood pressure. Blood
flows from the pulmonary veins back to the heart into the left atrium. During
decompression of the heart blood flows from the left atrium into the left
ventricle. When it compresses the mitral valve closes and blood from the left
ventricle is pushed into the aorta, which is connected to the main arteries in
the body.

Typically during compression the blood pressure within the aorta and left
ventricle is 120 mmHg [5]. To withstand such pressure the aorta is up to
2 mm thick, which makes it the thickest artery in the human body. The
immense pressure generated can easily be observed by means of touch or by
listening with a stethoscope directly on the chest. However, there are more
advanced and informative ways to monitor the heart.

2 Chapter 1 Introduction

1.2 Cardiac Electrical System

Blood flows through the circulatory system at a steady rate due to the heart
muscle contracting and relaxing rhythmically. The contractions are triggered
by a complex electrical system. The complete routine from the generation of
an electrical signal and the resulting motion is named the cardiac cycle [6].

The cardiac cycle starts at sinoatrial (SA) node located in the right atrium as
illustrated in Figure 1.2. This cluster of cells called the cardiac myocytes can
generate an electrical action potential across the membrane of the node by
means of rapid depolarization from−90 mV to +10 mV using Ca2+ pumps [7].
Between each cycle the myocytes repolarize by opening potassium channels
resulting in exchange of K+ over a refractory period of approximately 300 ms.
The rate at which the cardiac action occurs within the SA node is influenced
by the autonomic nervous system.

Fig. 1.2.: The heart’s electrical system [8].

After an electrical potential has been generated it travels down to the atrio-
ventricular (AV) node located near the center of the heart. Whereas the SA
node generates the electrical impulse, the AV node coordinates the flow of
the electrical signal within the heart.

Chapter 1 Introduction 3

As discussed in the previous section, to maintain proper blood flow it is essen-
tial that the atria has ejected all blood into the ventricles before they contract.
As such, the atria and the ventricles should not contract simultaneously. To
achieve this the AV node induces a delay of approximately 90 ms before the
signal is propagated through the bundle of his towards the lower ventricles,
while the atria is stimulated without additional delay. The His bundle divides
into left and right bundle branches that simultaneously carry the signal to
their respective ventricles. The full electrical cycle ends when the Purkinje
fibers located in the lower ventricles propagate the signal throughout the
ventrical myocardium [7, 9].

Fig. 1.3.: The difference in cardiac conductivity patterns [10].

In this research in particular we will be looking at a specific case of an
anomaly named atrial fibrillation (Afib). Atrial refers to the upper heart
chambers and fibrillation indicates the irregular contraction of muscle fibers
without proper coordination [11]. In this case the atria contract irregularly
and out of synch with the ventricles due to a complication within the heart’s
electrical system which is illustrated in Figure 1.3. Afib may lead to more
serious complications such as blood clotting and is an early symptom or
precursor for many life threatening cardiovascular diseases such as stroke,
heart failure and myocardial infarction [12, 13].

4 Chapter 1 Introduction

2The Electrocardiogram

„"The typical heart anomaly has remained
unchanged all this long time, but what was
then a puzzle is now explained."

— Willem Einthoven

The electrocardiogram (ECG) is a composite measurement of the heart’s
electrical activity. This observational procedure is generally performed in a
clinical environment by placing 12 electrode leads on the subject at specific
positions, which measure minute changes in electrical potential of the dermal
membrane [14]. The resulting data is used to monitor the status of the heart
and contains information about structures in the heart due to the temporal
and spatial dependency of the electrical impulse propagating step-by-step
from the SA node through the cardiac nerve pathways.

The complete periodic pattern within the cardiogram is called the cardiac
complex or cardiac waveform. This consists of multiple wave components,
each providing information of activity in different stages of the heart’s depo-
larization action leading to compression. Proper segmentation and analysis
of these individual waveforms is required to be able to extract accurate
information from the complete ECG [15].

2.1 The History

The foundation of the cardiogram starts with the discovery of the existence
of bioelectricity by Luigi Galvani in 1791. Since then countless experiments
have been performed to uncover the electrical propagation properties of
muscle and nerve fibers [16]. A few decades later, in 1856, the periodic
electrical activity was observed in the heart by Köllicker and Müller at the
University of Würzburg. This experiment was performed by connecting wires
from the surface of a frog’s heart to it’s sciatic nerve, after which a periodic
current could be observed proportional to the heart activity, causing the
connected leg muscle to contract synchronistically.

5

But it was not until 1887 that the first heart activity in a human has been
recorded by Augustus D. Waller in what we now call an electrocardiogram
using Gabriel Lippmann’s capillary electrometer. The results however had
proven to be erratic and as such the measurements were not usable to any
clinical degree.

This inspired Willem Einthoven at the University of Leiden to invent the
string galvanometer in 1901, which he would eventually develop together
with a theoretical framework into the first accurate and clinically usable
electrocardiogram device shown in Figure 2.1. For this discovery he has been
awarded the Nobel Prize in 1924 [17].

Fig. 2.1.: The String Galvanometer [18].

2.2 Clinical Measurement

The modern electrocardiogram device, also named the ECG monitor, uses
the same principle as originally named Einthoven’s Triangle. It consists of a
baseline measurement comprised of three bipolar lead electrodes (I, II, III)
attached to the arms and left leg, creating a baseline dynamic membrane
potential with the heart as the center of the triangle as shown in Figure 2.2. In
addition three positive unipolar electrical leads (aVR, aVL, aVF) are extracted
from the same electrodes, which form the perpendicular augmented vector
measurements for each limb in relation to the other leads [19].

This results in six baseline angles of measurement around the coronal plane
orthogonal to the chest, 0°, 60° and 120° for leads I, II and III and 30°, −30°
and 90° for leads aVR, aVL and aVF respectively for the electrical charge
using the hexaxial reference system [20].

6 Chapter 2 The Electrocardiogram

Fig. 2.2.: Limb Lead Placement.

According to Kirchhoff’s law the voltages within a loop must equate to zero.
Given the electrode potential Φ and voltage V we find for the Einthoven
leads Vi:

VI = ΦL − ΦR

VII = ΦF − ΦR

VIII = ΦF − ΦL

From this the augmented leads can be derived using an equilateral triangle
construction, shown in Figure 2.3, as such:

Fig. 2.3.: Electrically Equilateral Triangle Circuit.

αVF = ΦF −
ΦR + ΦL

2

αVR = ΦR −
ΦF + ΦL

2

αVL = ΦL −
ΦF + ΦR

2

Chapter 2 The Electrocardiogram 7

Finally, the cardiac baseline potential Φα, based on point measurement of
Wilson’s central terminal ΦCT , within the triangle is given by the potential
over the area of the equilateral triangle:

ΦCT = ΦF + ΦR + ΦL

3 , Φα =
√

3
4 Φ2

CT

Now the baseline potential has been established six more electrodes Cn, as
illustrated in Figure 2.4, are used to measure the heart’s electrical output in
the transverse plane. These are the precordial unipolar leads V1, V2, V3, V4, V5

and V6 that are located around the heart on the upper chest. These measure
the heart’s electrical output passing through the skin in detail, which can
then be normalized by using Einthoven’s triangle construction [21].

Fig. 2.4.: Precordial Electrode Placement.

The twelve transverse and coronally oriented leads measure the potential
passing through the dermal membrane from different angles. The voltages
generated by these leads are mapped onto a graph to display the electrical
actuation over time. The standard scale is an amplitude equivalent to 1 mV
and period equal to one fifth of a second relative to the reference pulse. The
complex of all twelve signals, see Figure 2.5, forms the full ECG waveform.

Fig. 2.5.: A standardized 12-lead ECG Recording [22].

8 Chapter 2 The Electrocardiogram

2.3 Cardiac Waveform

As discussed in the previous section, the cardiac waveform is a composite
function of the twelve leads measured from the ten electrodes attached to
the subject. The main area of interest, the cardiac complex, are the three
main waves we will be looking at through the process of feature extraction.
These three waves contain novel informative features about the condition
of the heart. In cardiology this process is called segmentation of the cardiac
complex.

Fig. 2.6.: Segmented Cardiac Wave [23].

The cardiac complex can be segmented into distinct features P , Q, R, S and
T . The resulting wave segments for the cardiac wave are the P wave, QRS
complex and the T wave in order of occurrence with local refractory intervals
PR and QT after the first two main waves [24]. Each of these segments
corresponds to a physiological section of the heart during depolarization
through the progress of time.

Chapter 2 The Electrocardiogram 9

· P Wave
The P wave is the first electrical impulse at the start of the cardiac action.
It has has a typical amplitude of 0.05 mV to 0.25 mV and an interval of
approximately 80 ms in healthy individuals. This wave indicates the cycling
of the SA node and the resulting depolarization of the atria [14].

An abnormally high or low P wave may indicate an abnormal level of K+ ions
in the blood serum, which are normally between a concentration of 3.5 · 10−3

and 5.0·10−3 mol/L. A An amplitude over 0.25 mV might suggest enlargement
in the right atrium while a split P wave might indicate an irregularity in the
left atrium [7].

Most notably an irregular propagation of the wave can be indicative of atrial
fibrillation, as the electrical current propagates irregularly throughout the
myocardium of the atrium. This is illustrated in Figure 2.7.

Fig. 2.7.: Healthy pattern compared to the Afib type pattern [22].

· PR Segment
The PR segment is the isoelectric period between the P wave and the QRS
complex. It typically lasts 40 to 120 ms at a zero potential, indicating the
delay between the contraction of the atria and the transfer of the electric
signal from the AV node through the bundle of His [7].

A PR segment longer than 120 ms might indicate a first-degree atrioventricu-
lar blockage, in which the signal through the AV node is delayed for too long,
which is a risk factor for Afib and other complications [12]. An abnormally
short PR segment indicates that the signal has bypassed the AV node guard,
also called the WPW pattern, which may pose a faiting and sudden cardiac
arrest risk.

· QRS Complex
The QRS complex is the main cardiac action performed by the ventricles,
a large rapid depolarization occurs in the myocardium connected to the
purkinje fibers. [9] The period of this action is typically 60 ms to 100 ms with
a peak potential of 3.5 mV.

10 Chapter 2 The Electrocardiogram

The QRS complex is an essential part of the heartbeat and small differences
in the complex may have serious consequences to the general health of a
person. One of such abnormalities is a delayed or widened QRS wave which
may be caused by blockages in the bundle of His or the Tawara branches.

Abnormalities within the QRS complex may be a precursor to fatal conditions
such as a cardiac arrest or a myocardial infarction. [19] But QRS anomalies
are difficult to observe because it requires high frequency data analysis and
may present itself in minute differences due to the high baseline derivatives
within the segment.

· ST Segment
Just like the PR segment, the ST segment is an isoelectric period between
the rapid depolarization of the ventricles before the repolarization occurs.
A typical ST segment lasts between 80 ms and 120 ms of baseline zero
potential measured across the electrodes. Clinically the ST segment is the
most important indicator within an ECG and will generally be the first point
of data a cardiologist will analyze [19].

A consistent significant net positive or negative baseline current of 0.1 mV
or more for over 80 ms within the the ST segment may be an indicator of a
myocardial infarction and is an medical emergency. A down-sloped poten-
tial is indicative of a blockage within the coronary arteries called coronary
ischemia which can cause heart failure if left untreated.

It is essential for the heart to complete its cardiac action before repolarization
occurs and it requires proper blood flow within the heart to consistently and
completely perform this procedure. As such the ST pattern gives critical
information about the health of the heart itself.

· T Wave
The final part of the cardiac complex is the T wave. This is the segment
in which the ventricles repolarize themselves for the next cardiac action to
occur, it is considered to be the refractory period of the heart [3].

The T wave sees the highest variance in its duration, with a range of 100 ms
to 250 ms in healthy individuals. Typically the T wave reaches no more than
1.0 mV but averages much lower than that with approximately 0.4 to 0.6
mV [14].

Chapter 2 The Electrocardiogram 11

Despite the T wave indicating repolarization, of which the vector is opposite
to the depolarization action, the measured potential is positive. This is due
to the fact that the repolarization process occurs in the reverse direction
of polarization, the last cardiomyocytes to depolarize will be the first to
repolarize during the refractory. This process starts with the endocardium
and ends with the epicardium. Since now a negative current is going away
from the electrode it is registered as a positive potential because there are
two negative vectors being multiplied.

Despite this a negative T wave may still occur, and if frequent this can be a
symptom of an pulmonary embolism, myocardial ischemia or coronary artery
disease. T waves that exceed a potential of 1.0 mV can be linked to angina
or may be an early symptom of a myocardial infarction in combination with
other markers [19].

Fig. 2.8.: The complete waveform model of the heart [25].

The resulting waveform is the amalgamation of stochastic processes, shown
simplified in Figure 2.8. As such it is non-trivial to derive a functional notation
of the waveform. A singular waveform complex may be approximated using
Fourier series, but a more sophisticated model is required to be able to make
inferences about hypotheses regarding the cardiac status.

12 Chapter 2 The Electrocardiogram

3Learning Model

„"For the things we have to learn before we
can do them, we learn by doing them."

— Aristotle

In the previous chapters we have discussed the physiological structures of
the heart and the resulting data that can be measured from the electrical
activity. From this data we want to be able to detect anomalies and classify
the data stream, in particular the myriad group of anomalies related to atrial
fibrillation.

The data we retrieve from the 12-lead measurement is stochastic in nature
due to the many dependencies [19]: the local electrical conductivity through
the tissue, the autonomic nervous system affecting cardiomyocyte activity,
epinephrine and norepinephrine hormonal levels influencing heart rate and
the many biological and environmental processes related to the generation
of electrical current by the myocardial fibers [7, 24]. To account for all these
factors while only measuring the electrical potential we need to make use
of statistical and computational methods to model and classify the cardiac
waveform.

3.1 Linear Classification

To create our statistical model we first need to define the basic unit that we
will use, which is the linear classifier. The linear classifier is a linear relation
between two variables that splits a data set into two distinctly classified
sets.

For this project in particular we will consider the perceptron, also called
a neuron in respect to neural network architectures. This is a discrete or
continuous connective unit that takes an input vector x where each element
xi has its own weight wi derived from the weight vector w and a bias b [26].

13

A special property of the perceptron is the activation function, which is a
function σ that maps the weighted continuous input with respective domain
xiwi ∈ (−∞,∞) to an activation value in the codomain of the activation
function, which is typically [0, 1] or [−1, 1]. The activation y is the output of
the perceptron in regards to the mapping of the input, given by y = σ(xw+ b)
for a single input perceptron. For the general case with n inputs the output
of the perceptron unit is given by the activation function of the summed
weighted input plus the bias:

fŷ(x,w) = σ

 n∑
i=1

xiwi + b



Fig. 3.1.: Perceptron Model.

There are many different kinds of activation units that can be used, and the
most common ones are given in the table below. Each activation function
has its own characteristics and performance levels for different kinds of
classification problems [27]. A special case is the step-function activation
unit, which is a discrete binary classifier.

Function Plot Equation Derivative Range

Step

0 if x < 0
1 if x ≥ 0

0 if x 6= 0
undef. if x = 0

[0, 1]

ReLU

0 if x < 0
x if x ≥ 0

0 if x < 0
1 if x > 0

[0,∞)

Sigmoid σ(x) = 1
1 + e−x

σ(x)(1− σ(x)) (0, 1)

Tanh τ(x) = ex − e−x

ex + e−x
1− τ(x)2 (−1, 1)

Table 3.1.: Common Activation Functions.

14 Chapter 3 Learning Model

The weights are the main factor that determine the classification performance.
The weights need to be set such that the most possible data is correctly
classified, as such determining the weights is an optimization problem. In
the next section we will focus on the technique that is used to optimize the
weights.

The main challenge of linear classifiers is that they can only segment data
through data set division with linear boundaries, creating two new subsets of
data. This poses a problem when trying to classify data that is not linearly
separable, such as XOR-type data. In addition, linear classification doesn’t
allow us to model complex polynomial or periodic functions.

3.2 Gradient Descent

To optimize the weight parameters for a perceptron we need to use an
optimization technique. One of such optimization algorithms is gradient
descent, which is based on random initialization and local error minimization
through iterative weight adjustment with training samples.

Gradient descent is a first-order optimization technique, therefor the objective
function must be differentiable on the optimization domain to find the
gradient vector for the target variable. In this case we will be looking
at the vector w with input x in the multi-variable perceptron function fy, for
which we can optimize the weight vector towards a function minimum of the
error function in the convex plane for randomized parametric starting vector
p initialized to w [28].

Fig. 3.2.: Stochastic Gradient Descent along a Convex Plane [29].

Chapter 3 Learning Model 15

The process that gradient descent follows from the initial points is to find the
gradient and proceed along the curve derived from the weight vector that
shows the steepest possible decline in the error function output with step size
η, as such we can define the update function for weight w [30]:

wt+1 ← wt − η∇E(yt, ŷt)

The error function is derived from the mean squared error in the regression
technique, which is proportional to the deviation of the estimate ŷ to the
expected target value y:

E(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2

Each iteration we move η steps against the gradient until the gradient beco-
mes zero, at which point the process converges at the local minimum. This
process always converges as long as the plane for the error function is convex
such that ∇E becomes zero along the path of the negative gradient such
that E(y, ŷ) ⊇ { ∃ y, ŷ | ∇E(y, ŷ) = 0 }. To apply this technique we need to
define the multivariate gradient of the error function as the partial derivative
in respect to the weight on the contour to get the weighted loss function. For
a general case we use a linear hypothesis hθ(x) = θ0 + θ1x for the best fit to
the training data where θ0 is the bias and θ1 the linear weight.

θt+1 = θt − η
∂

∂θt
L(θt)

L(θ) = 1
2n

n∑
i=1

(hθ(xi)− ŷi)2

∂

∂θj
L(θ) = 1

2n

n∑
i=1

2(∂

∂θj
hθ(xi)− ŷi)2−1 = 1

n

n∑
i=1

(hθ(xi)− ŷi)xj

To get the complete gradient descent equation for a function with j variables
and n training data for hypothesis hθ the update complete equation is as
follows:

wt+1 = wt − η
1
n

n∑
i=1

(yi − ŷi)x`t

A drawback of gradient descent is that it can very easily get stuck in compact
local minima if the gradient becomes small enough. A solution to this is to
use stochastic gradient descent as pictured earlier. Instead of optimizing over
the complete set for every epoch, only a small random subset of the training
set is used to find the lowest gradient within the set, which makes it less
computationally expensive and gives it probabilistic properties which may
help with global optimization through regression to the mean.

16 Chapter 3 Learning Model

3.3 Non-Linear Classification

The linear classification given by the perceptron unit is limited in accuracy
for complex data sets, as it can only accurately optimize weights for a linear
functional relationship between the inputs and the output. To introduce non-
linearity we build a network of perceptrons called the multi-layer perceptron
(MLP), which is a basic class of the feedforward neural network (FFNN)
architecture [31].

To make the non-linear data linearly separable input x1, . . . , xp is projected by
a non-linear transformation Φ, which is learned by a cluster of perceptrons
linked together. Within Φ-space the data becomes linearly separable by the
final linear output regressor. This transformation Φ is formed by intermediate
layers of interconnected perceptrons called the hidden layers which take
data from the input layer and pass it forward towards the output layer
y1, . . . , yk. For each perceptron from the input to the output, the activation of
the neurons from the previous layers forms the input of the perceptrons in
the next layer, see Figure 3.3.

Fig. 3.3.: Multilayer Perceptron Architecture.

A single hidden layer with finite neurons is sufficient for a neural network to
become a universal approximator of n-dimensional continuous functions in
Rn space. The output vector is given for an input vector multiplied by the
transpose of the weight matrix and taking the activation over the intermediate
output vector [32] with n inputs and k outputs.


y1

y2
...

yk

 = σ(wT ◦ x + b) = σ




w1,1 w2,1 · · · wn,1

w1,2 w2,2 · · · wn,2
...

...
. . .

...

w1,k w2,k · · · wn,k




x1

x2
...

xn

+


b1

b2
...

bk





Chapter 3 Learning Model 17

This can be expanded to generalize over ` layers of perceptrons by using the
output vector as the input vector of the next layer to recursively generate the
entire output vector for the network.

ŷ(`) =

ŷ1 = σ(wT
1 ◦ x + b)

ŷ` = σ(wT
`−1 ◦ ŷ(`− 1) + b)

To optimize the weights of the entire network we perform an iterative pro-
cess from the output to the input called backpropagation. We do this by
performing gradient descent on the output calculated through feed forward
compared to the pre-classified output in the training set by taking the Jaco-
bian matrix of the error in respect to the weight.

∇E(y, ŷ) =



∂E

∂w1,1

∂E

∂w1,2
· · · ∂E

∂w1,k
∂E

∂w2,1

∂E

∂w2,2
· · · ∂E

∂w2,k
...

...
. . .

...
∂E

∂wn,1

∂E

∂wn,2
· · · ∂E

∂wn,k


The chain rule gives us the weight delta using the loss function and activation
function derivative:

∂E

∂wn,k
= ∂E

∂yn

∂yn
∂yn−1

∂yn−1

∂wn,k
= L(yk)

∂

∂x`
σ(x`)yn−1

From this we can derive the update function of the weight matrix:

wi+1 = wi − η∇E(y, ŷ)

3.4 Recurrent Learning

Although regular multi-layer perceptron neural networks can provide a mo-
del for non-linear equations, they have poor performance on continuous
processes with stochastic elements. The first problem is that these networks
cannot effectively handle variable input sizes, relying on a mapping or com-
pression technique which makes the input lossy and reducing the accuracy as
a consequence. Secondly, these networks have no sense of order in which
the data is input, the time-series type data we are studying have stochastic
and temporal dependencies which affect future outcomes.

18 Chapter 3 Learning Model

These classes of problems cannot be solved without memory. To resolve this
we will use a special class of neural networks called the recurrent neural
network (RNN). Instead of learning patterns, the RNN learns sequences in a
specific order by maintaining an internal state. [33] To achieve this the RNN
has an internal state that is modified between each time step and the output
for every t depends on not only the input xt but also the state of the hidden
layer in the previous step denoted by ht−1 shown in Figure 3.4.

Fig. 3.4.: Unrolled RNN Representation [34].

The recursive feed forward process is very similar to the MLP, except now we
also have a factor from the previous layer and three new weights that are
shared across iterations [35].

ŷt = σ(wT
y ◦ ht + by) = σ(wT

y ◦ σ(wT
h ◦ ht−1 + wT

x ◦ xt + bh) + by)

To train a recurrent network we need a modified learning rule called back-
propagation through time. For every time step t, we train the n weights of
the previous t− 1 steps by calculating the error over y and ŷ for t. To perform
this we sum the derivative chain rule over all previous time steps.

∇E(y, ŷ) =
n∑
k=0

∂Ek
∂w

=
n∑
k=0

t∑
i=0

(
∂Ek
∂ŷt

∂ŷt
∂ht

∂ht
∂hi

∂hi
∂w

)

The weights are modified after each time step as usual, substituting the
iterator for the temporal variable:

wt+1 = wt − η∇E(y, ŷ)

Chapter 3 Learning Model 19

There are various schemes available for the recurrent hidden layer within the
RNN, the most simple one being a standard perceptron. While quick to train,
in most cases it does not have optimal convergence properties because of a
problem called the vanishing gradient [36].

The vanishing gradient is a phenomena that arises during training of a
neural network’s weights, in particular relating to deep and recurrent neural
networks. As discussed earlier both within RNN and deep MLP networks, the
gradient is generated by iterating over the derivatives for each node. The
further we backpropagate within the network towards the initial nodes, the
more derivatives are multiplied relative to each other using the chain rule.

As a result, when the network is presented with input which has a section
that has a low derivative, the activation function squashes the data down to a
low factor. Which when multiplied through the layers of the network causes
the derivative of the deeper layers to approach zero, reducing the overall
learning rate significantly.

Fig. 3.5.: The logistic sigmoid function and it’s derivative.

In certain types of time series data this is a particular problem because
between segments of informative data, there may be sections of data with
a low or near-zero derivative. When training a RNN on this type of data
the learning rate will approach zero when encountering these sections of
non-informative data that we would rather not train on.

A solution to this problem is to use a different kind of hidden layer archi-
tecture, one of such is the long-short term memory (LSTM) node [37]. The
LSTM is an architecture that preserves it’s learning rate by using an internal
state to store informative data while discarding uninteresting data.

20 Chapter 3 Learning Model

As such LSTM nodes can store long-term dependencies without overfitting
on data that doesn’t possess the desired features that we want to train on, in
essence we want to train onto the dynamic changes of the data based on it’s
inherent dependencies rather than the scalar property itself.

Fig. 3.6.: A schematic of the LSTM architecture [38].

The main feature of the LSTM is that it utilizes a vector Ct which denotes
the cell state at time step t. The cell has three inputs: the previous cell state
vector C−1, the previous hidden output vector ht−1 and the input vector xt.
The outputs are the new cell state Ct, the hidden layer output ht and the net
output vector yt, see Figure 3.6. The architecture is divided into three distinct
gates that govern the internal state and all lanes are vectorized operating in
parallel on Hadamard products of the inputs [37].

· Forget Gate — decays cell state by factor
ft = σ(wfxt + whht−1 + bf)

· Input Gate — adds to the active cell state
it = σ(wixt + whht−1 + bi)
ĉt = τh(wcxt + whht−1 + bc)

· Output Gate — outputs based on activation and cell state
ct = ft ◦ ct−1 + it ◦ ĉt
ht = σ(wyxt + whht−1 + by) ◦ τ(ct)

Chapter 3 Learning Model 21

4Data Analysis

„"Life is short, and art long, opportunity
fleeting, experimentations perilous, and
judgment difficult."

— Hippocrates

So far we have investigated the mechanics behind cardiac physiology and
electrocardiography. We have assessed that we require a deep learning
approach to generate an appropriate model and we have defined the LSTM
architecture as a viable candidate to model and classify our time series type
data.

In this chapter we will concretely focus on specifying, processing and explo-
ring the data set we have at our disposal. Once we have a candidate input
data set will use a recurrent neural network based on the LSTM architecture
to build a model for the data. During this process we will need to fine tune
the parameters of the architecture to optimize the learning rate and classi-
fication performance on our data set. Finally we will compile and report
our results and compare the effectiveness of our model compared to other
recurrent neural network architectures.

4.1 Data Set

The data set we will be using for this project are anonymized composite ECG
recordings from the PhysioNet database, which were released for the 2017
edition of the Computers in Cardiology (CinC) conference [39].

The data set consists of 8528 recordings from unique patients, each lasting
between 10 and 60 seconds. The sampling rate is a constant 300 Hz at a
resolution of 16 bits, recorded as signed words. The resulting signals contain
3000 to 18000 samples with a dynamic input range of 10 mV, measuring
electrical activity in the frequency range of 0.5 to 40 Hz. The only available
attribute is the voltage at each time frame in millivolts.

22

The recorded data set has been annotated by a clinical expert brought forward
by the CinC committee, resulting in the following labels: Normal (N), Atrial
Fibrillation (A), Other (O) and Noisy (∼). A subset of the entries with low
classification confidence was brought up for majority consensus among the
expert committee. A summary of the labeled data set is given in table 4.1.

Label Count Sample Length (103)
Variation

Coefficient

Mean Median
Standard
Deviation Min Max

N 5050 9.63 9.00 2.99 2.71 18.29 0.31

A 738 9.63 9.00 3.71 3.00 18.06 0.39

O 2456 10.32 9.00 3.52 2.74 18.26 0.34

∼ 284 7.26 9.00 3.10 2.81 18.00 0.43

Total 8528 9.75 9.00 3.21 2.71 18.29 0.33

Table 4.1.: Data set statistics.

Each sample has been filtered using high-pass and low-pass filters to remove
interference from unrelated muscle activity and external sources. By seg-
menting the data into the QRS, P and T components appropriate bandpass
filters can be applied to remove noise outside the working frequency.

For the QRS segment the target frequency is 4 to 20 Hz and for the P and T
segments this lowers to 0.5 and 10 Hz. Note that there is an overlap between
the electrical background noise between range 0 and 0.8 Hz and the target
range which means a certain degree of noise cannot be attenuated in the P
and T segments between 0.5 and 0.8 Hz without presenting data loss. This
presents us with the following distribution for the signals as given in Figure
4.1, which are processed using MATLAB.

Fig. 4.1.: Distribution of the signal output.

Chapter 4 Data Analysis 23

From the processed signal set we can derive the statistics for the output data
in table 4.2. Right away we can observe that the signals containing anomalies
have a substantially higher standard deviation than the normal set, however
these statistics alone are not sufficient to make accurate inferences about
specific cases from the general population.

Label Count Average Voltage (mV)
Variation

Coefficient

Mean Median
Standard
Deviation Min Max

N 5050 7.79 8.13 16.62 – 111.02 114.03 2.13

A 738 9.03 10.17 20.23 – 80.98 80.24 2.24

O 2456 6.91 8.75 25.62 – 437.18 182.41 3.71

∼ 284 4.75 4.04 36.06 – 211.22 211.98 7.59

Total 8528 7.54 8.35 20.17 – 437.18 211.98 2.68

Table 4.2.: Processed output statistics.

Finally we can visualize the target signal classes (N, A and O) to get a better
idea of the structure of the data, which will aid in the preprocessing and
feature extraction processes.

Fig. 4.2.: A normal ECG signal.

In Figure 4.2 a healthy ECG signal can be observed, this can be deduced
from several key features. First of all the P, QRS and T segments are clearly
present. Secondly, the interval between each QRS complex is adequately
consistent. Furthermore, there is no depression indicated in the ST interval
and finally the positive peak potential within the QRS complex is greater
than the negative peak.

24 Chapter 4 Data Analysis

Fig. 4.3.: An ECG signal containing the Afib anomaly.

The ECG trace given by Figure 4.3 shows a very different progression from
the previous signal. The most obvious clue for the Afib diagnosis is the
abnormal P segment, instead of a localized discharge that diminishes before
the QRS complex it keeps rising until the main cardiac action because the
electric current propagates erratically through the atria.

As a result less charge passes through the AV node into the ventricular
myocardium, causing a diminished QRS complex with a lower maximum
positive potential than the T wave on the cardiogram.

Fig. 4.4.: An ECG signal containing an anomaly other than Afib.

Finally we observe in Figure 4.4 an electrocardiogram trace from the class of
all other anomalies. In this particular case the heart rate is very inconsistent
and near the end of the observed segment there is an abnormal delay towards
the next heartbeat.

Chapter 4 Data Analysis 25

From our statistical analysis we have observed that there is quite a large range
of signal lengths. Since the derivatives for recurrent neural networks can get
quite long for large samples, there is a risk for a diminishing or exploding
gradient during long recurrent training. In this case it is better to use the
process of data segmentation to split large samples up into multiple smaller
samples, this not only increases our sample count but is also a requirement
for proper classification if no convolution is used [40].

Fig. 4.5.: Partitioning signal a of length 6000 into b and c.

In this case we will choose to resample each unique signal to a standardized
format, which is a fraction of the median sample length. This works by
splitting the signals up into as many chunks as possible equal to a fraction of
the median length, for example to 3000 frames (10 seconds at 300 Hz). This
is shown in Figure 4.5. The data set is now partitioned in a set of normalized
samples, each retaining the label of the original signal.

Fig. 4.6.: Distribution of the segmented data set.

A final aspect of our data set we have to analyse is the distribution of the data,
which we have plotted in the Figure 4.6. As can be seen the data is quite
unbalanced, which will cause the model to bias it’s loss function towards the
majority class. Several options are available to avoid training bias, however
due to the critical nature of the data only oversampling in the training set is
a viable data augmentation option [41].

26 Chapter 4 Data Analysis

In addition to resampling the data set, we have decided to remove the noisy
signals from the data. In a 2018 revision of the labels of the original data
set these examples were considered too unreliable to present a reasonable
diagnosis criterion for an expert. Finally, after processing all the data we end
up with the following data count in table 4.3.

Subset Label Count Samples Duration (h)

Regular N 15 765 47 295 000 43.79

A 2 317 6 951 000 6.44
Divergent

O 8 237 24 711 000 22.88

26 319 78 957 000 73.11

Table 4.3.: Final dataset sample count after processing.

4.2 Model Architecture

To run our preliminary attempt to classify the data we first need to define a
complete network architecture from the input handler to the output regressor.
For this purpose we will be using MATLAB’s Deep Learning Toolbox (DLT),
which supports the vectorization technique we have defined in the previous
chapter. In addition DLT supports multi-threading and GPU training by using
CUDA vector instructions on the SIMD architecture which will greatly speed
up the training process.

Our architectural goal consists of a series of components connected in a di-
rected graph [42], using everything we have studied so far as building blocks.
Each basic component is an abstraction of the theory we have previously
covered. The components that we can now define are as follows.

· Sequence Input Buffers
The first step in the architecture is to take the set of input data and feed them
forward through the network in a chronological sequence. This input is done
by buffering a set interval of data elements equal to the width of the moving
window over the data, which we call the mini-batch size for discrete sets.

Chapter 4 Data Analysis 27

We want the minibatch size to be small enough to prevent overfitting but
also not too large, which causes the computational complexity to soar. In
this case our data consists of n points per unique sample, as such we want a
mini-batch that is divisible by this amount to make optimal use of our data.
For our initial parameters we may set the input buffering size to b = n

k
points,

which will give us k mini-batches for each of our samples in our data set.

· LSTM – RNN Layers
Next, the input buffer feeds the mini-batch segmented data through the
LSTM-RNN consisting of input width n and h ≥ 1 hidden units. The LSTM is
structured as described in the previous chapter, with the addition of hidden
state transfer across hidden units displayed Figure 4.6.

Fig. 4.7.: Fully unrolled LSTM layer with n2 states.

These lateral state transfers use the same weight as the recurrent weights
because they are technically vectorizations of the data lanes, as such the
learning algorithm doesn’t need to be modified. Rather, it is the vectorized
data that gets transformed with each additional abstraction layer. The higher
the dimensionality of the input data, the more abstractions are possible and
the more informative features we may end up with without overfitting.

This results in 4h(n+ h) = 4nh+ 4h2 trainable weights, 4nh weights for the
inputs n and feature outputs h growing linearly while the 4h2 hidden weights
grow exponentially as also seen in Figure 4.6 when unrolling.

28 Chapter 4 Data Analysis

In our case we implement a LSTM with a n-to-1 paradigm, where only the
last time step outputs a value, this value is a vector of size h as h represents
the bus size that is used within the architecture. By doing this each bus lane
reduces the dimensionality of it’s input to a single dimension feature, giving
us a total of n distinct features.

· Fully Connected Layers
Within the network the LSTM extracts the temporal features from the row
vector and transforms the input down to a linearly separable column vector,
now we need to reduce the column vector down to a desired set of output
features.

Each output node of the final FC layer corresponds to an output class. For
deep neural networks generally ReLU activations are used for the FC, which
provide favourable properties such as not being as susceptible to vanishing
gradient and being less computationally complex. However ReLU activation
is not normalized and not differentiable at every point, so an additional layer
is required.

· Soft-Max Layers
The output from the fully connected layer cannot be used straight away, first
we need to normalize the outputs to a probability distribution over the target
classes and provide a fully differentiable mapping. For this we use a soft-max

layer, which uses the probability distribution softmax = ehi∑n
k=1 e

hk
over the n

different class label outputs.

· Majority Confidence Classifiers
Finally the resulting class label is selected by choosing the class with the
highest confidence probability by using a max function over the n results
of the soft-max layer. This lets us transform a numeric regressor output
column vector from the soft-max layer to a sparse binary column vector
which represents a single categorical classification output value.

For backpropagation training we use the target class y in conjunction with
the output probabilities ŷ, after all for cross-entropy loss it holds for the loss
function that L(ŷ,y) = −∑n

i=1 yi ln ŷi. As such, backpropagation over one-
hot column vectors only propagates towards the target class of the example –
letting the network train each output pathway from the softmax layer towards
a unique categorical class.

Chapter 4 Data Analysis 29

Furthermore, for a one-hot column vector the loss is calculated over ap-
propriate softmax channel, all other column entries result in a zero log
multiplication. This lets the network train towards the specific target class
for each sample. Since we make use of a softmax distribution in the previous
layer ŷ is guaranteed to be non-zero and thus we can always backpropagate
using cross-entropy.

4.3 Preliminary Model

In the previous sections we have laid out the structure of our data and the
components that we can use to create an architecture to train our model.
In this section we will focus to learn the data with the simplest possible
LSTM architecture for categorical classification. Doing so, we can detect
interesting features and resolve problems that might appear before tackling
more computationally complex architectures [43].

The abstraction of our initial architecture is given
in Figure 4.7, which results in the following matrix
operations:

· Input – Input sequence data of n length column
vectors and t data points as matrix: Rn × Rt

· Transform – Transform input length t to h fea-
ture matrix using LSTM: Rn × Rt → Rn × Rh

· Transform – Transform h temporal features to f
feature matrix using FC: Rn × Rh → Rn × Rf

· Operation – Map feature matrix elements using
softmax function: f : X → Y, ∀xi,j ∈ Rn × Rf

· Operation – Map decimal feature matrix ele-
ments to sparse binary representation using max
function on column vectors: f : X10 → Y2, ∀xi,j ∈
Rn × Rf where f(xi,j) = 1 ↔ max(xj) = xi,j ∨
f(xi,j) = 0↔ max(xj) 6= xi,j.

Fig. 4.8.: The simple
architecture.

30 Chapter 4 Data Analysis

Using this schematic we can explore the performance measure on our model.
For our initial run we will specify a mini-batch size of one hundred samples
and a segmentation ratio of 1

3 of the mean, each training session consisting of
a maximum of ten epochs. To prevent overfitting early stopping [44] will be
used when the value of the loss function falls below the minimum threshold
of the local maximum on n consecutive validation passes. Our objective is to
generate the following two models:

· I – Composite Anomaly Detection Set which maps the label set L to normal
set N = {x ∈ L, L(x) = N} and divergent set D = {x ∈ L, L(x) 6= N} to
learn the binary decision problem based on the composite of all anomalous
feature labels.

· II – Specific Anomaly Detection Set which maps the label set L in a 3-way
categorical split with normal set N = {x ∈ L, L(x) = N}, target set A =
N = {x ∈ L, L(x) = A} and control set O = {x ∈ L, L(x) /∈ {N,A}} to
learn diagnosis criteria based on mutual exclusivity of disjoint label sets.

For the initial training specification we produce a cross validation sample
using a partitioning ratio of 0.8, 0.1 and 0.1 for the training, testing and
validation set respectively. The resulting training set contains 21 055 samples,
the testing and validation sets both contain 2 632 uniquely sampled entries
from our data set. After augmenting the training set by oversampling we end
up with a total of 25 242 samples, 12 621 for each individual class for model
I and 37 764 samples, 12 588 for each class with regards to model II.

D N

Target Class

D

N

O
u
tp

u
t
C

la
s
s

Test Accuracy Model I

265

10.1%

766

29.1%

25.7%

74.3%

407

15.5%

1194

45.4%

74.6%

25.4%

39.4%

60.6%

60.9%

39.1%

55.4%

44.6%

A N O

Target Class

A

N

OO
u

tp
u

t
C

la
s
s

Test Accuracy Model II

54

2.1%

134

5.1%

16

0.6%

26.5%

73.5%

331

12.6%

1089

41.4%

151

5.7%

69.3%

30.7%

176

6.7%

598

22.7%

83

3.2%

9.7%

90.3%

9.6%

90.4%

59.8%

40.2%

33.2%

66.8%

46.6%

53.4%

Fig. 4.9.: Test set confusion matrix for the baseline model.

Chapter 4 Data Analysis 31

The results of the initial training of each model with respect to the validation
set has been included in the appendix section C. The model classification
performance against the test set is given in Figure 4.9 on the previous page.

From the training results we find that both models converged based on the
early stopping criteria, however both models failed to converge on a high
degree of accuracy. Clearly, a single layer LSTM cannot find a proper fit on
the raw signal data. Both models show great bias towards the normal class,
but fail to identify the exterior classes. To improve classification performance
we will use two approaches: utilize spectral and time-frequency analysis to
engineer features with better convergence properties and modify the network
to contain more abstraction levels to find a better fit on the data.

4.4 Signal Processing

Modelling abstract features from highly variate sensor data is challenging for
a recurrent neural network, without convolutional layers to select features
it will likely get stuck in a local minima and then overfit towards a poor
model [43]. In our initial training this was the case, the model quickly found
a local minima during it’s first training epoch. Without these convolutional
layers we need to guide the model in the right direction.

Such abstract features, based on mathematical frameworks instead of domain
knowledge, can be derived from the data through a process called feature
extraction. The resulting augmented feature sets form an intermediate form,
which we can use in the training and classification process while retaining
the original labels.

First we will resample the full raw signals to make them useable for spectral
and time-frequency analysis. We do this by applying the Savitzky-Golay filter
on the raw signals. The S-G filter uses a convolutional method by fitting
same-order polynomials on the data points of adjacent sets using linear least
squares. For a given central hinge point Yn it follows:

Yn =

m−1
2∑

i= 1−m
2

Ci yn+i = C1−m
2
y
n−1−m

2
+ . . .+ C0yn + . . .+ Cm−1

2
y
n+m−1

2

32 Chapter 4 Data Analysis

Where m ≥ 1, muneven is the segment width, Yn is the nth hinge point and Ci
is the convolution coefficient associated to each data point y. Each coefficient
within the segment is an element of the kth order convolution kernel:

C = (STS)−1ST, S =



y0
n−i . . . ykn−i
... . .

. ...

y0
n . . . ykn
...

. . .
...

y0
n+i . . . ykn+i



After applying the Savitzky-Golay analytic filtering function to map mean
segmented samples on the entire data set using a third order kernel we get
the resampling result as shown in Figure 4.10.

200 400 600 800 1000 1200 1400 1600 1800

Time Step

-300

-200

-100

0

100

200

300

V
o

lt
a

g
e

Unfiltered Signal

200 400 600 800 1000 1200 1400 1600 1800

Time Step

-300

-200

-100

0

100

200

300

V
o

lt
a

g
e

Filtered Signal

Fig. 4.10.: Sample data before and after resampling.

From the resampled signals we can start to extract new features. The first
feature we would like to look at is the local entropy measure, since a higher
degree of local signal entropy compared to the model fit is a primary indicator
of an anomaly [45]. Using signal processing equations we can extract the
instantaneous spectral entropy from a time series with a constant frequency
using the local time-frequency power spectrum.

Chapter 4 Data Analysis 33

First we calculate the time-frequency power density of continuous signal m
for each t and over all frequency channels f using the spectral density S:

P (t,m) = S(t,m)∑
f S(t, f)

From the power density of each t we can calculate the entropy as usual.

H(t) = −
N∑
m=1

P (t,m) log2 P (t,m)

Since we are dealing with a non-deterministic source signal, we can apply
non-stationary analysis [46]. Since we know the signal was recorded at f =
300Hz we can derive the instantaneous frequency of every t from the Fourier
signal transform m. First we need to determine the analytic representation
of our real-valued m : u(τ) using Hilbert transform, imparting a π

2 phase
shift on negative frequency Fourier components and π

2 on positive frequency
components.

H(u)(t) = 1
π

∫ ∞
−∞

u(τ)
t− τ

dτ

From there finding the instantaneous frequency for value t is straight for-
ward:

fi(t) = 1
2π

du(ψ)
dt

With these new feature measures we can generate feature sets with reduced
time-complexity and better convergence properties on our model, reducing
samples size from in excess of 4096 bytes to 512 bytes at the cost of transfor-
mation overhead. One problem with using the composite of different feature
sets is that they use different measures, which can be seen in table 4.4 below,
averaging over all the data in our set.

Feature Output Value
Variation

Coefficient

Mean Median
Standard
Deviation Min Max

H(t) 0.57 0.57 0.05 0.45 0.77 0.09

fi(t) 3.36 2.97 1.51 1.25 23.55 0.45

Table 4.4.: Feature set statistics.

34 Chapter 4 Data Analysis

To regularize our feature vectors we need to apply statistical normaliza-
tion [47], which makes the data invariant to the base unit.

∀yi ∈ y, zi = yi − ȳ
σ

This gives us the normalized z-statistics for each vector element in the signal
over our total feature matrix in table 4.5 below.

Feature z Value
Variation

Coefficient

Mean Median
Standard
Deviation Min Max

H(t) 0.00 −0.01 1.00 −2.44 4.36 ∼

fi(t) 0.00 −0.25 1.00 −1.40 13.40 ∼

Table 4.5.: Normalized feature set statistics.

Finally to account for the disproportionate validation set loss over the training
loss we modify our training rule to add the L2 regularization term λ

∑n
i=0 w

2
i

to each weight modification iteration. This adds a squared penalty to the
loss function, scaling greatly with the scalar weight of the individual weights,
reducing the likelihood of overfitting [48].

Using a mean segmentation ratio plus L2 regularized training on the feature
set we find a significant improvement for both models as shown in Figure
4.11, the training graphs for each model can be found in appendix C.

D N

Target Class

D

N

O
u

tp
u

t
C

la
s
s

Test Accuracy Model I

253

30.6%

88

10.7%

74.2%

25.8%

73

8.8%

412

49.9%

84.9%

15.1%

77.6%

22.4%

82.4%

17.6%

80.5%

19.5%

A N O

Target Class

A

N

OO
u

tp
u

t
C

la
s
s

Test Accuracy Model II

56

6.8%

6

0.7%

11

1.3%

76.7%

23.3%

5

0.6%

412

49.9%

73

8.8%

84.1%

15.9%

51

6.2%

97

11.7%

115

13.9%

43.7%

56.3%

50.0%

50.0%

80.0%

20.0%

57.8%

42.2%

70.6%

29.4%

Fig. 4.11.: Test set confusion matrix after signal processing.

Chapter 4 Data Analysis 35

4.5 Deep Learning Models

So far we have studied an architecture with a single LSTM layer followed by
a single fully connected layer as our trainable model. Even though this can
be rather quickly trained and generalizes well, the feature complexity that
can be effectively modelled is limited.

To further improve the classification accuracy we need to expand the scope
of the applied deep learning paradigm from the single LSTM layer to the
broader architecture. We will discuss two such ways to apply a deep learning
architecture, which is represented as a tree topology in the form of a directed
acyclic graph (DAG) of learning layers [49].

· Width Topology

The abstraction of our n = 2 width
architecture is given in Figure 4.12.
Within this architecture we apply
a paradigm called width learning,
by learning the same feature set
on n parallel layers. Each layer
has it’s own hyperparameters. for
example in our two-width network
we use one LSTM with 128 hidden
units and one LSTM with 64
hidden units, each initialized with
semi-random weights.

At the end of each of these lay-
ers they are normalized and weig-
hted to a specific feature count.
The weighted results are passed
through an activation function and
added together. The result gives a
weighted output of smaller layers
that generalize better and bigger
layers that can achieve a greater
degree of fitting.

Fig. 4.12.: Width based
learning topology.

36 Chapter 4 Data Analysis

Each LSTM in this DAG has its own specific temporal feature encoding, which
will specifically help us find outliers in the form of anomalies – as with each
additional encoding, the conjugate from each encoding will exacerbate the
anomalous features. As a result a model of this complexity benefits from a
smaller learning rate, each changes in weights has a greater effect on the
overall network. In addition, by keeping our weights small by using L2 and
regularization a low learning rate we can prevent overfitting.

After training this new network architecture of width n = 2 we find a small
improvement in overall accuracy compared to a n = 1 width network, as
shown in Figure 4.13. Most notably, the false-negative rate on anomalous
features has gone down significantly.

D N

Target Class

D

N

O
u

tp
u

t
C

la
s
s

Test Accuracy Model I

255

30.9%

69

8.4%

78.7%

21.3%

68

8.2%

434

52.5%

86.5%

13.5%

78.9%

21.1%

86.3%

13.7%

83.4%

16.6%

A N O

Target Class

A

N

OO
u

tp
u

t
C

la
s
s

Test Accuracy Model II

65

7.9%

2

0.2%

8

1.0%

86.7%

13.3%

18

2.2%

424

51.3%

65

7.9%

83.6%

16.4%

46

5.6%

87

10.5%

111

13.4%

45.5%

54.5%

50.4%

49.6%

82.7%

17.3%

60.3%

39.7%

72.6%

27.4%

Fig. 4.13.: Test set confusion matrix using width learning.

· Depth Topology
Another way we can increase the complexity of our model is by stacking
multiple LSTM layers in a series. One of the problems of temporally encoding
very large series of data is that it is very prone to under- and overfitting
based on the feature count. Reducing a large amount of temporal features
using fully connected layers doesn’t preserve the temporal properties in the
reduction phase.

By using a m depth LSTM we can sample temporal features down through
multiple iterations. The m−1 top layers output sequence data reduced to the
feature count, each reducing the amount of encoded features in downward
cascading sequence.

Chapter 4 Data Analysis 37

The final layer takes the encoded input sequence that is output by the penul-
timate layer and then encodes it down to a single output feature for each
hidden unit. Even though this output has a lower feature count, each abstract
feature has been selected through the conjugation of multiple temporal enco-
dings of the input features. This allows us to perform our initial encodings
on high temporal feature counts without overfitting on the end result.

Our m = 2 depth architecture shown in Figure 4.14 uses a top layer LSTM
with 128 hidden units outputting a sequence and the final layer LSTM outputs
a single feature for each of the 64 hidden units.

Fig. 4.14.: Depth based learning topology.

Training this model gives us the confusion matrix results on the test set as
displayed in Figure 4.15. Once again overall accuracy is slightly increased, the
depth learning method seems to decrease false-negatives over the categorical
split to a greater degree whereas it is less effective on the binary split for
anomaly detection.

D N

Target Class

D

N

O
u

tp
u

t
C

la
s
s

Test Accuracy Model I

234

28.3%

90

10.9%

72.2%

27.8%

61

7.4%

441

53.4%

87.8%

12.2%

79.3%

20.7%

83.1%

16.9%

81.7%

18.3%

A N O

Target Class

A

N

OO
u

tp
u

t
C

la
s
s

Test Accuracy Model II

63

7.6%

5

0.6%

4

0.5%

87.5%

12.5%

17

2.1%

399

48.3%

64

7.7%

83.1%

16.9%

44

5.3%

90

10.9%

140

16.9%

51.1%

48.9%

50.8%

49.2%

80.8%

19.2%

67.3%

32.7%

72.9%

27.1%

Fig. 4.15.: Test set confusion matrix using depth learning.

38 Chapter 4 Data Analysis

· Hybrid Topology
Finally, we can combine both width and depth learning in a single archi-
tecture, as given below in Figure 4.16 using n = 3, m = 2. This combines
both abstraction through using different LSTM encoding resolutions late-
rally as well as downsampling to smaller temporal feature sets to improve
generalization.

Fig. 4.16.: Hybrid learning topology.

With out final model we achieve the following metrics in Figure 4.17.

D N

Target Class

D

N

O
u

tp
u

t
C

la
s
s

Test Accuracy Model I

284

34.4%

45

5.4%

86.3%

13.7%

86

10.4%

411

49.8%

82.7%

17.3%

76.8%

23.2%

90.1%

9.9%

84.1%

15.9%

A N O

Target Class

A

N

OO
u

tp
u

t
C

la
s
s

Test Accuracy Model II

57

6.9%

2

0.2%

8

1.0%

85.1%

14.9%

21

2.5%

423

51.2%

54

6.5%

84.9%

15.1%

85

10.3%

52

6.3%

124

15.0%

47.5%

52.5%

35.0%

65.0%

88.7%

11.3%

66.7%

33.3%

73.1%

26.9%

Fig. 4.17.: Test set confusion matrix using hybrid learning.

Chapter 4 Data Analysis 39

To determine the significance found between the initial simple model and the
hybrid model for the augmented anomaly feature set that was deterministi-
cally derived from our ECG data set, we will be performing the McNemar’s
Test (α = 0.05) on the contingency table of the predictions of these models
on the test set (n = 826).

Assume that T1 is the prediction result from the simple model and T2 is the
prediction result from the proposed hybrid model. Assume for our hypothesis
H0 : T1 = T2, Ha : T1 6= T2.

Model T1 True T1 False
T2 True T2 False T2 True T2 False

I 619 52 78 71

II 405 51 31 339

Table 4.6.: Test Set Cross Table.

From the table we can calculate the McNemar Chi-Square test statistic:

χ2
I = (nT,F − nF,T)2

nT,F + nF,T
= (52− 78)2

52 + 78 = 51
5

χ2
II = (nT,F − nF,T)2

nT,F + nF,T
= (51− 31)2

51 + 31 = 436
41

And we know for the degrees of freedom using T1 and T2 as parameters
it holds df = N − 1 = 1, so then we can calculate the P value from the
Chi-Square statistic. We will use cumulative distribution function as below to
evaluate our χ2 values in R.

P (χ2, df) =
∫ χ2

0

x df−2
2 e−

x
2

2 df
2 Γ(df2)

 dx, Γ(df) =
∫ ∞

0
(xdf−1e−x)dx

Evaluating the P value from the χ2 values of each of the models gives us a
residual probability of 1 − P (χ2

I) = 0.0226 and 1 − P (χ2
II) = 0.0272 , which

are both well below the significance level of α = 0.05. As such we can reject
H0 and can infer that it is over two standard deviations improbable that the
differences between T1 and T2 are due to chance, thus the improvements of
our hybrid model are statistically significant.

40 Chapter 4 Data Analysis

5Conclusion

The 2017 Computing in Cardiology (CinC) data set comprises of single dimen-
sional time series data of electrocardiogram recordings, mapping band-passed
voltage readings to static frequency time steps. The voltage range is highly
variate between QRS segments while lowly variate outside of those segments
whilst also retaining backward dependencies from previous segments. Those
properties make it difficult to model and to make inferences over such data
using traditional mathematical techniques.

In this research project we have employed a subset of deep neural networks
called recurrent neural networks, with a specific focus on long short-term
memory cells which have advantageous properties when regarding data
where the derivative is irregular between segments. These techniques use
a statistical learning based approach. Instead of modelling the signal using
static analysis, the model is optimized using stochastic gradient descent with
every example from our data set we present it with.

We have employed such models to perform anomaly detection on two target
groups, Model I being binary anomaly detection between the normal group
and all other non-normal groups. Model II trains on a three-way anomaly
detection problem between a baseline group, a target group and a residual
group. Initial training on the raw data gave us a poor maximum accuracy
threshold compared to using a feature selection approach, see Figure 5.1.

1 20 40 60 80 1000.4

0.5

0.6

0.7

0.8

0.9

1

Raw Set

Feature Set

Epoch

Va
lid

at
io

n
A

cc
ur

ac
y

Fig. 5.1.: Sparse model I training plot for the raw data set.

41

By filtering the raw data and then performing spectral and time-frequency
analysis on our signal to extract informative features, we managed to make
the data much more suitable for temporal encoding by our LSTM. From there
we generated several models, of which the performance is compiled in Figure
5.2 below.

Classification Accuracy Model I

0.500Random

0.554Baseline

0.805Simple

0.834Width

0.817Depth

0.841Hybrid

0 0.25 0.5 0.75 1

Classification Accuracy Model II

0.333Random

0.466Baseline

0.706Simple

0.726Width

0.729Depth

0.731Hybrid

0 0.25 0.5 0.75 1

Fig. 5.2.: Final Model Performance Graph.

From our quantitative analysis and significance test we can confirm that for a
binary anomaly detection, we can achieve 84.1 percent accuracy on the test
data. For the more complex problem of categorical anomaly detection the
final model achieves an accuracy of 73.1 percent on the test set.

Concluding, LSTMs provide a suitable technique to extract temporal features
from processed ECG data. However, the measure of performance is highly
dependant on the quality and informativeness of the feature extraction
techniques used. Given a good feature representation, performance can be
further enhanced by broadening and deepening the network.

42 Chapter 5 Conclusion

6Future Work

From our research we have studied and implemented a subset of the recurrent
neural network class called the long short-term memory network. As a result
we have found an optimized model to perform anomaly detection of a desired
subset class on static ECG data recordings. However, the method we have
used is still limited and can be improved in various novel ways and as a result
form interesting topics for further research.

· Real-Time Analytics is the first topic of interest regarding our original
research topic. In our current implementation an ECG recording needs to
be stored on a file and is then read into the memory, from the memory the
data is written to the input sequence buffer in chunks equal to the mini-batch
size before being processed by the network. What we would want is for the
device driver to write it’s data straight to our sequence input buffer.

Fig. 6.1.: Signal Processing Schematic

Real-time classification introduces a broad set of challenges, which is a
forth-going subject of study [50]. In addition to extracting the raw data it
is common practice to produce augmented features, such as averages and
peaks, which provide additional metrics. These metrics can aid in monitoring
exceptions and can be used as part of the classification process, in Figure 6.1
a sample MATLAB implementation is given of direct signal processing.

Current challenges within this topic relate to automated normalization of
source data, minimizing the latency between the source signal and the
processed data, handling signal drops, adjustments for signal quality and
determining the classification confidence at an arbitrary time frame.

43

· Clinical Computing has different goals and requirements than general
purpose computing. As such it is important to cooperate with clinical experts
to implement domain knowledge and requirements within a model that can
be deployed within a clinical setting [51].

This results into a different goal from standard machine learning, where
often the mean accuracy over a data set is to be maximized. When dealing
with data-based diagnosis criteria, Type II errors are much more dangerous
than Type I errors. In other words: we’d rather let a medical monitoring
device be overly sensitive, causing an acceptable amount of false positives,
than have it provide a false-negative which can have serious consequences. A
domain expert can help shape appropriate weights for each classification to
optimize for minimal Type II error count.

Fig. 6.2.: Augment model with Transfer Learning [52].

Using further domain knowledge can also be incorporated in the model itself
by using transfer learning techniques as displayed in Figure 6.2. Since each
patient has different baseline biometrics, we can augment the model by
introducing expert-classified samples from the patient themselves into the
model. This is especially useful for long-term monitoring.

· Advanced Techniques can be studied to further improve upon the architec-
ture. One of such state-of-the-art techniques is the Temporal Convolutional
Networks (TCN) [53]. We can utilize the max pooling of features from CNNs
and use them as input into the temporal encoding functionality of RNNs. The
main purpose of this is to reduce overfitting and automate feature extraction
by pooling feature abstractions, allowing us to train on data with a higher
sampling rate and dimensionality while still being able to generalize.

Another advanced technique is to use ensemble learning [54]. We can use
additional biometric signals, such as EEG, to utilize their interaction features
as informative data. We train different models on multiple synchronized
signals towards the same output labels. By using the weighted consensus of
all our models we can reduce the bias and variance in our classifications.

44 Chapter 6 Future Work

AAppendix

A - Matlab Code
1 function [XData , YData] = readData ()
2 % E x t r a c t Data Package
3 i f ~ex i s t (’ . / data ’ , ’ d i r ’)
4 unzip (’ . / data . z ip ’)
5 end
6 cd data
7

8 % E x t r a c t F i l e L i s t i n g and L a b e l s
9 YF i l e = readtable (’DATA. csv ’ , ’ ReadVariableNames ’ , f a l s e) ;

10 YF i l e . P r o p e r t i e s . VariableNames = { ’ Filename ’ , ’ Label ’ } ;
11

12 % D e l e t e the Noisy Data
13 idx = strcmp (YF i l e . Label , ’~ ’) ;
14 YF i l e (idx , :) = [] ;
15

16 % A l l o c a t e the Output Data
17 YData = categor ica l (YF i l e . Label) ;
18 XData = c e l l (height (YF i l e) ,1) ;
19

20 % Read each Data F i l e
21 for i = 1: height (YF i l e)
22 Buf fe r = load ([YF i l e . Filename { i } , ’ . mat ’]) ;
23 XData{ i } = Buf fe r . va l ;
24 end
25

26 % Return to Root
27 cd . .
28 end

Listing A.1: Reading Data (modification of MathWorks implementation)

1 function [XData , YData] = segmentData (XData , YData , len)
2 % A l l o c a t e the new B u f f e r i n g C e l l
3 XBuffer = {} ;
4 YBuf fer = {} ;
5

6 % Segment each Data e l ement
7 for i = 1: s ize (XData ,1)
8 % Get sou r c e Data and Labe l

45

9 x = XData{ i } (:) ;
10 y = YData (i) ;
11

12 % Dis card Data s ma l l e r than l en
13 i f length (x) < len
14 continue ;
15 end
16

17 % Segment Data in Chunks and r e p e a t L a b e l s
18 chunks = f loor (length (x) / len) ;
19 x = x (1: chunks* len) ;
20 y = repmat (y , [chunks , 1]) ;
21

22 % B u f f e r the Segmented Data
23 XBuffer = [XBuffer ; mat2cell (reshape (x , len , chunks) . ’ , ones

(chunks ,1))] ;
24 YBuf fer = [YBuf fer ; c e l l s t r (y)] ;
25 end
26

27 % P l a c e B u f f e r s to Output
28 XData = XBuffer ;
29 YData = categor ica l (YBuf fer ;
30 end

Listing A.2: Data Segmentation (modification of MathWorks implementation)

1 function [XTrain , XTest , XVal , YTrain , YTest , YVal] = p a r t i t i o n D a t a (
XData , YData , mode)

2

3 % Modify l a b e l s to Binary S p l i t i f mode i s s e t
4 i f nargin > 2 && mode
5 YData = renamecats (YData , ’A ’ , ’D ’) ;
6 YData = mergecats (YData , { ’D ’ , ’O ’ }) ;
7 end
8

9 % P a r t i t i o n the Tra in ing Se t
10 cv = cvpar t i t ion (s ize (XData ,1) , ’ HoldOut ’ , 0 .8) ;
11 idx = cv . t e s t ;
12 XHold = XData(~idx , :) ;
13 XTrain = XData (idx , :) ;
14 YHold = YData(~idx , :) ;
15 YTrain = YData (idx , :) ;
16

17 % P a r t i t i o n the T e s t and V a l i d a t i o n Se t
18 cv = cvpar t i t ion (s ize (XHold ,1) , ’ HoldOut ’ , 0 .5) ;
19 idx = cv . t e s t ;
20 XTest = XHold(~idx , :) ;
21 XVal = XHold(idx , :) ;

46 Chapter A Appendix

22 YTest = YHold(~idx , :) ;
23 YVal = YHold (idx , :) ;
24 end

Listing A.3: Data Partitioning

1 function [XData , YData] = augmentData (XData , YData)
2 % Ordered c a t e g o r i c a l count s
3 s t a t = [c e l l s t r (unique (YData)) , . . .
4 num2cell (arrayfun (@(x)sum(YData==x) , unique (YData)))] ;
5 [max_val ,~] = max([s t a t { : , 2}]) ;
6

7 % Determine the Und e r r e p r e s en t a t i o n Count
8 for i = 1: s ize (s t a t , 1)
9 s t a t { i ,3} = max_val − s t a t { i , 2 } ;

10 end
11

12 % Concatenate input Data and L a b e l s i n t o Composite
13 XYData = [c e l l s t r (YData) , XData] ;
14

15 % I t e r a t e over a l l C a t e g o r i e s
16 for i = 1: s ize (s t a t , 1)
17 % Generate Sampling Pool f o r each Category
18 idx = strcmp (s t a t { i , 1} , XYData (: , 1)) ;
19 pool = XYData ;
20 pool (any(~idx ,2) , :) = [] ;
21

22 % S e l e c t n Samples from Pool with Replacement
23 XYData (end+1:end+s t a t { i , 3 } , :) = datasample (pool , s t a t { i

, 3}) ;
24 end
25

26 % S h u f f l e XYData
27 XYData = XYData (randperm(s ize (XYData ,1)) , :) ;
28

29 % S p l i t A back i n t o YTrainA and XTrainA
30 XData = XYData (: , 2) ;
31 YData = categor ica l (XYData (: , 1)) ;
32 end

Listing A.4: Data Augmentation

1 function [XData] = featData (XData , order , len , f r eq)
2 % F i l t e r data us ing Sav i t zky−Golay
3 XData = ce l l fun (@(x) s g o l a y f i l t (x , order , len) ’ , XData , ’

UniformOutput ’ , f a l s e) ;
4

5 % E x t r a c t F e a t u r e s x1 , x2 , . . .

Chapter A Appendix 47

6 XData = ce l l fun (@(x1 , x2) [x1 ; x2] , . . .
7 ce l l fun (@(x) pentropy (x , f r eq) , XData , ’ UniformOutput ’ , f a l s e) ,

. . .
8 ce l l fun (@(x) in s t f req (x , f r eq) , XData , ’ UniformOutput ’ , f a l s e) ,

. . .
9 ’ UniformOutput ’ , f a l s e) ;

10

11 % Normalize Fea ture Se t
12 XData = ce l l fun (@(x) (x−mean([XData { : }] , 2)) . / std ([XData

{ : }] , [] , 2) , . . .
13 XData , ’ UniformOutput ’ , f a l s e) ;
14 end

Listing A.5: Feature Extraction

B - Final Model Specification

DAGNetwork with properties:

Layers: [21x1 nnet.cnn.layer.Layer]
Connections: [23x2 table]

21x1 Layer array with Layers:

1 ’sequence_1’ Sequence Input Sequence input with 2 dimensions
2 ’lstm_2’ LSTM LSTM with 64 hidden units
3 ’lstm_3’ LSTM LSTM with 128 hidden units
4 ’lstm_4’ LSTM LSTM with 64 hidden units
5 ’fc_5’ Fully Connected 16 fully connected layer
6 ’relu_6’ ReLU ReLU
7 ’lstm_7’ LSTM LSTM with 32 hidden units
8 ’fc_8’ Fully Connected 16 fully connected layer
9 ’relu_9’ ReLU ReLU

10 ’addition_10’ Addition Element-wise addition of 2 inputs
11 ’relu_11’ ReLU ReLU
12 ’lstm_12’ LSTM LSTM with 64 hidden units
13 ’lstm_13’ LSTM LSTM with 32 hidden units
14 ’fc_14’ Fully Connected 16 fully connected layer
15 ’relu_15’ ReLU ReLU
16 ’addition_16’ Addition Element-wise addition of 2 inputs
17 ’relu_17’ ReLU ReLU
18 ’addition_18’ Addition Element-wise addition of 2 inputs

48 Chapter A Appendix

19 ’fc_19’ Fully Connected auto fully connected layer
20 ’softmax_20’ Softmax softmax
21 ’classoutput_21’ Classification Output crossentropyex

23x2 Table with Connections:

Source Destination
____________ ________________

’sequence_1’ ’lstm_2’
’sequence_1’ ’lstm_3’
’sequence_1’ ’lstm_12’
’lstm_2’ ’lstm_7’
’lstm_3’ ’lstm_4’
’lstm_4’ ’fc_5’
’fc_5’ ’relu_6’
’relu_6’ ’addition_10’
’relu_6’ ’addition_16’
’lstm_7’ ’fc_8’
’fc_8’ ’relu_9’
’relu_9’ ’addition_10’
’addition_10’ ’relu_11’
’relu_11’ ’addition_18’
’lstm_12’ ’lstm_13’
’lstm_13’ ’fc_14’
’fc_14’ ’relu_15’
’relu_15’ ’addition_16’
’addition_16’ ’relu_17’
’relu_17’ ’addition_18’
’addition_18’ ’fc_19’
’fc_19’ ’softmax_20’
’softmax_20’ ’classoutput_21’

Chapter A Appendix 49

C - Training Plots

Fig. A.1.: Binary Raw Data Training

Fig. A.2.: Categorical Raw Data Training

50 Chapter A Appendix

Fig. A.3.: Binary Simple Model Training

Fig. A.4.: Categorical Simple Model Training

Chapter A Appendix 51

Fig. A.5.: Binary Width Model Training

Fig. A.6.: Categorical Width Model Training

52 Chapter A Appendix

Fig. A.7.: Binary Depth Model Training

Fig. A.8.: Categorical Depth Model Training

Chapter A Appendix 53

Fig. A.9.: Binary Hybrid Model Training

Fig. A.10.: Categorical Hybrid Model Training

54 Chapter A Appendix

BReferences

Literature

[1] Office for National Statistics; UK Statistics Authority. Decennial Life Tables.
2015 (cit. on p. 1).

[2] European Heart Network. European Cardiovascular Disease Statistics. 2017
(cit. on p. 1).

[3] J. Pinnell; S. Turner; S. Howell. Cardiac Muscle Physiology. 2007 (cit. on
pp. 2, 11).

[5] J.T. Ottesen; M.S. Olufsen; J.K. Larsen. Applied Mathematical Models in
Human Physiology. 2004 (cit. on p. 2).

[6] H. Fukuta; W.C. Little. The Cardiac Cycle and the Physiologic Basis of Left
Ventricular Contraction, Ejection, Relaxation, and Filling. 2008 (cit. on p. 3).

[7] N. Sperelakis; Y. Kurachi; A. Terzic; M. Cohen. Heart Physiology and
Pathophysiology 4th Edition. Elsevier, 2000. ISBN: 9780126569759 (cit. on
pp. 3, 4, 10, 13).

[9] G.A. Langer. The Myocardium. Academic Press, 1997. ISBN: 9780124365704
(cit. on pp. 4, 10).

[11] B. Freedman; J. Camm; H. Calkins. Screening for Atrial Fibrillation. Circu-
lation Journal Vol 135 Issue 19, 2017 (cit. on p. 4).

[12] F. Violi; E.Z. Soliman; P. Pignatelli; D. Pastori. Atrial Fibrillation and
Myocardial Infarction: A Systematic Review and Appraisal of Pathophysiologic
Mechanisms. Journal of the American Heart Association Vol 5 Issue 5, 2016
(cit. on pp. 4, 10).

[13] V. Ruddox; I. Sandven; J. Munkhaugen; J. Skattebu; T. Edvardsen; J.E.
Otterstad. Atrial Fibrillation and the Risk for Myocardial Infarction, All-Cause
Mortality and Heart Failure: A Systematic Review and Meta-Analysis. European
Journal of Preventive Cardiology Vol 24 Issue 14, 2017 (cit. on p. 4).

[14] T.B. Garcia. 12-Lead ECG: The Art of Interpretation. Jones Bartlett Learning,
2001. ISBN: 0763712841 (cit. on pp. 5, 10, 11).

[15] J.P. Madeiro; P. Cortez; J.M. Filho; A.R. Brayner. Developments and Applica-
tions for ECG Signal Processing. Academic Press, 2018. ISBN: 9780128140352
(cit. on p. 5).

55

[16] M. AlGhatrif; J. Lindsay. A Brief Review: History to Understand Fundamen-
tals of Electrocardiography. 2012 (cit. on p. 5).

[17] R. Zetterstorm. Nobel Prize to Willem Einthoven in 1924 for the Discovery
of the Mechanisms Underlying the Electrocardiogram. 2009 (cit. on p. 6).

[19] A.L. Goldberger. Goldbergers Clinical Electrocardiography 9th Edition.
Elsevier, 2006. ISBN: 9780323401692 (cit. on pp. 6, 11–13).

[20] S. Meek; F. Morris. ABC of Clinical Electrocardiography: Leads, Rate,
Rhythm, and Cardiac Axis. 2006 (cit. on p. 6).

[21] S. Nedios; I. Romero; J.H. Gerds-Li; E. Fleck; C. Kriatselis. Precordial
Electrode Placement for Optimal ECG Monitoring. 2014 (cit. on p. 8).

[24] I.B. Wilkinson. Oxford Handbook of Clinical Medicine. Oxford University
Press, 2017. ISBN: 9780199689903 (cit. on pp. 9, 13).

[26] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain. Psychological Review, 1958 (cit. on p. 13).

[27] A.M. Emad; A. Shenouda. A Quantitative Comparison of Different MLP
Activation Functions in Classification. International Symposium on Neural
Networks, 2006 (cit. on p. 14).

[28] A. Nur; N.H. Radzi; A.O. Ibrahim. Artificial Neural Network Weight Opti-
mization: A Review. 2014 (cit. on p. 15).

[30] S. Ruder. An Overview of Gradient Descent Optimization Algorithms. 2017
(cit. on p. 16).

[31] P. Norvig; S.J. Russell. Artificial Intelligence: A Modern Approach. Pearson,
2009. ISBN: 0136042597 (cit. on p. 17).

[32] B.K. Christensen. Matrix representation of a Neural Network. 2003 (cit. on
p. 17).

[33] L.R. Medsker. Recurrent Neural Networks: Design and Applications. CRC
Press, 1999. ISBN: 0849371813 (cit. on p. 19).

[35] Z.C. Lipton; J. Berkowitz. A Critical Review of Recurrent Neural Networksfor
Sequence Learning. 2015 (cit. on p. 19).

[36] R. Pascanu; T. Mikolov; Y. Bengio. On the Difficulty of Training Recurrent
Neural Networks. 2012 (cit. on p. 20).

[37] A. Sherstinsky. Fundamentals of Recurrent Neural Network and Long Short-
Term Memory Network. 2018 (cit. on pp. 20, 21).

[39] G. Clifford; C. Liu; B. Moody; L.H. Lehman; I. Silva; Q. Li; A. Johnson;
R.G. Mark. AF Classification from a Short Single Lead ECG Recording the
PhysioNet Computing in Cardiology Challenge 2017. Computing in Cardiology
Vol 44 2017, 2017 (cit. on p. 22).

56 Chapter B References

[40] J. Namikawa; J. Tani. A Model for Learning to Segment Temporal Sequences
Utilizing a Mixture of RNN Experts Together with Adaptive Variance. 2008
(cit. on p. 26).

[41] S.C. Wong; A. Gatt; V. Stamatescu; M.D. McDonnell. Understanding Data
Augmentation for Classification when to Warp. 2016 (cit. on p. 26).

[42] Z. Alom; T.M. Taha; C. Yakopcic. A State of the Art Survey on Deep Learning
Theory and Architectures. 2019 (cit. on p. 27).

[43] S. Bai; J.Z. Kolter; V. Koltun. An Empirical Evaluation of Generic Convolu-
tional and Recurrent Networks for Sequence Modeling. 2018 (cit. on pp. 30,
32).

[44] R. Caruana; S. Lawrence; L. Giles. Overfitting in Neural Nets Backpropaga-
tion Conjugate Gradient and Early Stopping. 2001 (cit. on p. 31).

[45] C. Kamath. Quantification of Electrocardiogram Rhythmicity to Detect
Life Threatening Cardiac Arrhythmias using Spectral Entropy. Journal of
Engineering Science and Technology, 2017 (cit. on p. 33).

[46] L. Qiu; G. Li. Representation of ECG Signals based on the Instantaneous
Frequency Estimation. IEEE Conference on Signal Processing, 1996 (cit. on
p. 34).

[47] T. Jayalakshmi; A.Santhakumaran. Statistical Normalization and Back
Propagation for Classification. International Journal of Computer Theory and
Engineering Vol 3 No 1, 2011 (cit. on p. 35).

[48] A.Y. Ng. Feature Selection L1 vs L2 Regularization and Rotational Invariance.
Stanford University ICML 04 Proceedings, 2004 (cit. on p. 35).

[49] H. Cheng; L. Koc; J. Harmsen. Wide and Deep Learning for Recommender
Systems. 2016 (cit. on p. 36).

[50] B. Eskofier S.Gradl; P. Kugler; C. Lohmuller. Real-time ECG Monitoring
and Arrhythmia Detection using Android-Based Mobile Devices. 2012 (cit. on
p. 43).

[51] T.H. Payne. Introduction and Overview of Clinical Computing Systems
within a Medical Center. 2015 (cit. on p. 44).

[53] S. Bai; J.Z. Kolter; V. Koltun. An Empirical Evaluation of Generic Convoluti-
onal and Recurrent Networksfor Sequence Modeling. 2018 (cit. on p. 44).

[54] T.G. Dietterich. Ensemble Methods in Machine Learning. 2000 (cit. on
p. 44).

Chapter B References 57

Figures

[4] E. Pierce. Diagram of the Human Heart. Wikimedia Commons. GNU Free
Documentation License. June 2, 2006. URL: https://commons.wikimedia.
org/wiki/File:Diagram_of_the_human_heart_(cropped).svg (cit. on
p. 2).

[8] C.R. Nave. The Heart’s Electrical Sequence. Georgia State University. 2016.
URL: http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ecg.
html (cit. on p. 3).

[10] Atrial Fibrillation. Harvard Medical School. Dec. 2018. URL: https://www.
health.harvard.edu/a_to_z/atrial-fibrillation-a-to-z (cit. on
p. 4).

[18] String Galvanometer. London National Heart Hospital. 1916 (cit. on p. 6).

[22] E.A. Ashley; J. Niebauer. Cardiology Explained - Conquering the ECG.
Remedica. 2004 (cit. on pp. 8, 10).

[23] Understanding the ECG: Reading the Waves. Harvard Medical School.
Feb. 2011. URL: https://www.health.harvard.edu/heart- health/
understanding-the-ecg-reading-the-waves (cit. on p. 9).

[25] Cardiac Conduction. CardioNetworks. Creative Commons BYNCSA 3.0
License. July 24, 2011. URL: https://en.ecgpedia.org/index.php?
title=File:Conduction_ap.svg (cit. on p. 12).

[29] M. Gallagher. Gradient Descent. University of Queensland. 2018 (cit. on
p. 15).

[34] F.M. Bianchi; E. Maiorino; M.C. Kampffmeyer; A. Rizzi; R. Jenssen. Proper-
ties and Training in Recurrent Neural Networks. Springer Briefs in Computer
Science. Nov. 10, 2017 (cit. on p. 19).

[38] S. Yan. Understanding LSTM and its diagrams. ML Review. Mar. 13, 2016.
URL: https://medium.com/mlreview/understanding-lstm-and-its-
diagrams-37e2f46f1714 (cit. on p. 21).

[52] S. Saadatnejad; M. Oveisi; M. Hashemi. LSTM Based ECG Classification
for Continuous Monitoring on Personal Wearable Devices. IEEE Journal of
Biomedical and Health Informatics. 2018 (cit. on p. 44).

58 Chapter B References

https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ecg.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/ecg.html
https://www.health.harvard.edu/a_to_z/atrial-fibrillation-a-to-z
https://www.health.harvard.edu/a_to_z/atrial-fibrillation-a-to-z
https://www.health.harvard.edu/heart-health/understanding-the-ecg-reading-the-waves
https://www.health.harvard.edu/heart-health/understanding-the-ecg-reading-the-waves
https://en.ecgpedia.org/index.php?title=File:Conduction_ap.svg
https://en.ecgpedia.org/index.php?title=File:Conduction_ap.svg
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

CIndex

List of Figures

1.1 Circulatory structure of the heart [4]. 2
1.2 The heart’s electrical system [8]. 3
1.3 The difference in cardiac conductivity patterns [10]. 4

2.1 The String Galvanometer [18]. 6
2.2 Limb Lead Placement. 7
2.3 Electrically Equilateral Triangle Circuit. 7
2.4 Precordial Electrode Placement. 8
2.5 A standardized 12-lead ECG Recording [22]. 8
2.6 Segmented Cardiac Wave [23]. 9
2.7 Healthy pattern compared to the Afib type pattern [22]. 10
2.8 The complete waveform model of the heart [25]. 12

3.1 Perceptron Model. 14
3.2 Stochastic Gradient Descent along a Convex Plane [29]. 15
3.3 Multilayer Perceptron Architecture. 17
3.4 Unrolled RNN Representation [34]. 19
3.5 The logistic sigmoid function and it’s derivative. 20
3.6 A schematic of the LSTM architecture [38]. 21

4.1 Distribution of the signal output. 23
4.2 A normal ECG signal. 24
4.3 An ECG signal containing the Afib anomaly. 25
4.4 An ECG signal containing an anomaly other than Afib. 25
4.5 Partitioning signal a of length 6000 into b and c. 26
4.6 Distribution of the segmented data set. 26
4.7 Fully unrolled LSTM layer with n2 states. 28
4.8 The simple architecture. 30
4.9 Test set confusion matrix for the baseline model. 31
4.10 Sample data before and after resampling. 33

59

4.11 Test set confusion matrix after signal processing. 35
4.12 Width based learning topology. 36
4.13 Test set confusion matrix using width learning. 37
4.14 Depth based learning topology. 38
4.15 Test set confusion matrix using depth learning. 38
4.16 Hybrid learning topology. 39
4.17 Test set confusion matrix using hybrid learning. 39

5.1 Sparse model I training plot for the raw data set. 41
5.2 Final Model Performance Graph. 42

6.1 Signal Processing Schematic . 43
6.2 Augment model with Transfer Learning [52]. 44

A.1 Binary Raw Data Training . 50
A.2 Categorical Raw Data Training 50
A.3 Binary Simple Model Training 51
A.4 Categorical Simple Model Training 51
A.5 Binary Width Model Training 52
A.6 Categorical Width Model Training 52
A.7 Binary Depth Model Training 53
A.8 Categorical Depth Model Training 53
A.9 Binary Hybrid Model Training 54
A.10 Categorical Hybrid Model Training 54

List of Tables

3.1 Common Activation Functions. 14

4.1 Data set statistics. 23
4.2 Processed output statistics. 24
4.3 Final dataset sample count after processing. 27
4.4 Feature set statistics. 34
4.5 Normalized feature set statistics. 35
4.6 Test Set Cross Table. 40

60

	1 Introduction
	1.1 Cardiac Physiology
	1.2 Cardiac Electrical System

	2 The Electrocardiogram
	2.1 The History
	2.2 Clinical Measurement
	2.3 Cardiac Waveform

	3 Learning Model
	3.1 Linear Classification
	3.2 Gradient Descent
	3.3 Non-Linear Classification
	3.4 Recurrent Learning

	4 Data Analysis
	4.1 Data Set
	4.2 Model Architecture
	4.3 Preliminary Model
	4.4 Signal Processing
	4.5 Deep Learning Models

	5 Conclusion
	6 Future Work
	A Appendix
	B References
	C Index

