
s Universiteit Leiden

Opleiding Informatica

GPS referencing and Data Storage Manipulation

Name: Jelle Sinnige and Tim van Polen

Date: 23/08/2019

1st supervisor: Fons Verbeek

2nd supervisor: Irene Martorelli and Leon Helwerda

BACHELOR THESIS

Leiden Institute of Advanced Computer Science

(LIACS)

Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

2

Abstract
A common problem when working with digitized transcribed location data is that these databases

are often incoherent and incomplete. Another situation which can result in incoherent and

incomplete databases, is when multiple databases are merged together and used as one. Both these

situations result in a lot of hassle to transform them by hand and make the final result clear and

coherent.

During this research project we have worked on creating a system to transform these data-inputs

into coherent and complete databases as well as find a method for the checking and improving of

GPS location data. The designed system is able to perform these operations together as well as

separately and creates an easy and effortless process for the user. The system works efficiently as

well as accurately and is designed to be sustainable and expandable, by making use of several design

implementations.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

3

 Contents
Abstract ... 2

Contents .. 3

1 Introduction .. 5

1.1 GPS Referencing and Data Storage Manipulation ... 5

1.2 Research questions .. 6

1.3 Thesis overview .. 7

1.4 Work division ... 7

2 Material and Method ... 8

2.1 JavaScript ... 8

2.2 JSON ... 8

2.3 Node.js ... 9

2.4 Google Geocoding API ... 10

2.5 Database types ... 11

2.6 GPS coordinates ... 12

3 Design ... 14

3.1 Design choices .. 14

3.2 System overview and major components ... 20

4 Implementation .. 24

4.1 Terminal interface .. 24

4.2 Command and Data flows .. 25

4.3 User Instructions .. 29

4.4 Main modules .. 30

4.5 Support modules .. 34

5 Experiments .. 40

5.1 Support modules validation tests .. 40

5.2 Location module tests .. 45

5.3 Database module tests .. 52

6 Conclusion, Discussion and Future Implementations .. 56

6.1 Conclusion .. 56

6.2 Discussion ... 58

6.3 Future implementations .. 60

Bibliography ... 61

Appendix A – Readme ... 63

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

4

Appendix B – Configuration Syntax Guide .. 67

Appendix C – Usage example .. 74

Appendix D - Support modules validation tests .. 93

Appendix E - Location module tests .. 100

Appendix F - Database module tests ... 107

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

5

1 Introduction

This chapter will provide a short introduction to the topic of the thesis and define the corresponding

research questions and sub-questions. Furthermore, we will give an overview of the remaining

chapters of the thesis and discuss how the work has been divided.

1.1 GPS Referencing and Data Storage Manipulation
Over time a lot of researchers have gathered a lot of information about different organisms on our

planet. This type of data is mostly stored in databases with manually transcribed records. A lot of this

stored (historical) information is used for further research. To make use of these databases for further

research it is of utmost importance that the information within the databases is not only complete but

also coherent.

The project regarding our thesis will focus on two aspects regarding the process in making these

databases complete and coherent as well as checking the information included for errors.

The first problem we will tackle in our thesis is the fact that a lot of these, possible historical, databases

contain location data points. This location data can be incomplete and inconsistent. Furthermore,

different databases can use different formats to store these coordinates. Our thesis will focus on this

problem and provide a way to transform these location data entries to a uniform system so these can

be easily combined. Also, a checking system will be implemented to easily filter out and alter the

incorrect data entries. The to be designed system will contribute towards increasing the consistency

and coherency of the databases.

Another frequently occurring issue when dealing with databases is altering and checking the containing

data and combining information of multiple databases together. Multiple options arise to tackle this

process. It can be done manually, or by writing extensive queries to handle the problem. This process

can be tedious, time consuming and is still very prone to human error. Especially when dealing with

databases with a large number of entries problems can arise easily. The second process of our

application will provide a way to easily combine databases together and manipulate the data in an

orderly and easily managed fashion. Furthermore, it will make it possible to check for errors and

duplicates. Lastly the system will be compatible with different types of databases and will also be able

to transform the data to another type when needed.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

6

1.2 Research questions
The research questions we will try to answer at the end of this paper are stated below. To improve our

ability of providing a complete answer to the 3 research questions, we split them up into sub-questions

where required.

1.2.1 Research question 1

 “How can we find a method to correct location data in existing databases and provide an easy process

for further data entries?

1.2.1.1 Research sub-question 1.1

 “What is the fastest and most reliable way to add and alter the location data in the existing

database, making this data complete and consistent?”

GPS coordinates can be stored using a number of different format styles, or this information can be

non-existent in certain data entries. We will need to find a method to create a complete and

coherent output from these possibly inconsistent input files.

1.2.1.2 Research sub-question 1.2

 “What formatting and input guidelines should be used for future data entries to keep the location

data of the entries added to the database complete and consistent?”

Not every exception can be accounted for within the system, therefore some restrictions and

guidelines will have to be added towards the formatting of the input.

1.2.2 Research question 2

How can we provide a process to easily organize, transform, combine and check databases?

We need to find a method to best transform, combine and check databases combined or separately.

The method needs to work in such a way that processing large files will run smoothly and consistent.

1.2.3 Research question 3

“How can we build a sustainable system that can add and verify GPS location data to databases while

also being able to organize the data, and is compatible with different kind of databases?”

1.2.3.1 Research sub-question 3.1

 “How can we design the system to operate both processes effortlessly alongside each other within

one system?”

The system will need to perform two different processes, which will need to be able to work together

as well as individually.

1.2.3.2 Research sub-question 3.2

 “How can we design the system to be sustainable?”

The system needs to be designed in such a way that it can easily be expanded with extra

functionalities as well as being reliable, consistent and can be used by multiple (types of) databases.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

7

1.3 Thesis overview
In the following chapters we will first explain thoroughly which materials and methods we have used

while creating the application. In chapter 3 we will discuss the design of the system and its core

processes, as well as substantiate on the made design choices. In chapter 4 we will provide you with

the actual implementation of the clarified design of chapter 3, as well as some additional information

to be able to use the system. In chapter 5 we will substantiate on our final implementation with an

overview of the testing process and the outcome of the different sets of tests. Followed by the

conclusion, discussion and future work section. At the end of the paper you will find the bibliography

followed by the appendixes.

Chapters 2 and 3 mainly focus on the design aspect of the research questions, where chapter 4

substantiates further on this on a more technical level. Chapter 5 is used to elaborate on the

substantiation on the claims made in the previous chapters, and help answering the research

questions.

1.4 Work division
During this project we have worked in a team of two. We divided the workload into two and both

worked on our parts of the project. Tim mainly worked on the GPS location transformation system

and Jelle mainly worked on the database transformation part.

The system contains other support and overarching modules which where created and tested in

cooperation. Though Jelle did focus more on the development and Tim on the testing part of the

project.

However, most work was performed together, we assisted each other intensively during the project.

As a result, we created both the application and thesis in cooperation.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

8

2 Material and Method
In the following chapter we will discuss the materials, API’s and libraries used for the development of

our application. Per used material we will first discuss what it does and then what we used it for in

our application, followed by one or more alternatives.

2.1 JavaScript
JavaScript is a widely used interpreted programming language, which means that most of its

implementations execute instructions directly, without the need to first compile the language into

machine-language instructions before the program can be run. Therefore, this language is one of the

core technologies used in the World Wide Web, alongside HTML and CSS. The language is mostly

used to make webpages interactive or to create web applications. (Javascript, sd)

There are a couple reasons that made JavaScript the programming language we have used for our

application.

• One of the key aspects of our application is that it can be used in varying circumstances. It

was very important that the application could be used on every computer and web browser.

This aspect was most easily achieved using the JavaScript programming language.

• The great number of available libraries within the JavaScript programming language also

contributed towards our decision. This wide variety of libraries available to incorporate in our

application, made the development easier and more focused on the crucial parts. Node JS,

one of the libraries used, will be discussed in more detail in subsection 2.3.

• The fact that JavaScript does not work chronically but event based (Javascript, sd). Allowing

to run multiple threads at the same time, reducing our computing time.

The main alternatives to JavaScript would be to use a compiled programming language, such as C++.

However, the problem with using a compiled programming language would be that the whole

program should be initialized first before use. The use of interpreted language gave us more

flexibility within the application.

2.2 JSON
JavaScript Object Notation is a standardized data-interchange format (Introducing JSON, sd). It is easy

for people to read and write information in JSON and easy for machines or applications to parse and

generate. JSON is a text format that is not language dependent (Introducing JSON, sd), which make it

ideal for data exchange between different programs and or languages. It is built on two structures; a

collection of pairs of names and values and an ordered list of values.

We use JSON to store all the information coming into and within the application. The fact that JSON

is language independent, makes it a good fit to use as storage system within our application. It makes

interaction and implementation of and with other applications very easy and thus makes our

application more widely applicable.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

9

An alternative would be to set up a MySQL database. However, all the attributes of our application

would then have to run on our own database. With using JSON format, we can easily use external

data to run the visualization part of the application, as well as communicate between the different

parts of our application.

2.3 Node.js
Node.js is a software platform on which applications can be developed and run on (About Node.js,

sd). Those applications have to be written in JavaScript. Node.js is an asynchronous event driven

JavaScript runtime and designed to support scalable network applications (About Node.js, sd).

However, in contrast to most JavaScript applications they do not have to be executed in a web

browser but are executed in the JavaScript-Engine of Node.js (About Node.js, sd). The applications

can run on any PC with Node.js runtime installed. Also, Node.js offers an alternative method of

server-side scripting with its built-in HTTP-server, which makes it possible to run a webserver without

the use of Apache or Light.

With the use of Node.js we were able to create a webserver without the use of any other languages

besides JavaScript. Furthermore, because Node.js is asynchronous event driven. This gives us the

opportunity to run different processes simultaneously, increasing the efficiency of the system. We

also used a number of Node.js modules, an overview of the most important modules used will be

given below.

2.3.1 Node.js File System Module

The Node.js File System Module allows the system to read, create, update, delete and rename files in

the system (Node.js File System Module, sd). This allows us to create a database like system based

upon JSON files, to keep track of the data available in the system.

2.3.2 Node.js HTTP Module

The built-in HTTP Module of Node.js allows us to transfer data over the Hyper Text Transfer Protocol

(Node.js, sd). In this way we are able to create a webserver, to run all the applications on. In this way

the applications can be accessible at all times and from all computers and web browsers.

2.3.3 Node.js HTTPS Module

The Node.js HTTPS Module allows us to transfer data. Instead of the HTTP module this type of data

transfer will be secured, using a TSL/SSL protocol (Node.js, sd). We will preferably set up this type of

connections when setting up the database, to create a secure and safe webserver.

2.3.4 Node.js Query String Module

The Node.js Query String Module allows us to parse post data (Node.js, sd).

2.3.5 Node.js Request Module

The Node.js Request Module can best be described as a wrapper around Node.js built-in HTTP

module (Node.js, sd). All the functionalities it provides, can also be achieved with the use of just the

HTTP module. However, the Request Module makes this whole process a lot easier.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

10

2.3.6 Node.js Child Process Module

The Node.js Child Process Module allows us to create different child processes (Node.js, sd). Which

allows us to run multiple processes within one application or run various programs on the server.

This ensures that if one part of the application has errors or problems, only that subprocess is

affected by these problems. The rest of the application can continue running.

2.3.7 Node.js Net Module

The Node.js Net module supports inter-process communication (IPC) by creating a network API for

creating stream-based Transmission Control Protocols or IPC servers (Node.js, sd). In our application

we will use this module to control the ports.

2.3.8 Node.js CSV-parse

The Node.js CSV-parse module will make it possible to covert CSV text into objects and arrays

(csv.js.org, sd). This module will make it possible for us to transform incoming CSV data into other

types of database structures.

2.3.9 Node.js CSV-stringify

The Node.js CSV-stringify module is the counterpart of the Node.js CSV-parse module (csv.js.org, sd).

It makes it possible to convert data entries, arrays and objects into CSV text. This module will be used

to transform data handled by our system into CSV output text.

2.3.10 Node.js MySQL

The Node.js MySQL module makes it possible to connect with a MySQL type of database via a Node.js

code/connection (NPM, mysql, 2019).

2.3.11 Node.js MonetDB

The Node.js MonetDB module makes it possible to connect with a MonetDB type of database (NPM,

monetdb, 2016).

2.3.12 Node.js MariaDB

The Node.js MariaDB module makes it possible to connect with a MariaDB type of database (NPM,

mariadb, 2019).

2.4 Google Geocoding API
The Google Geocoding API is an API to transform location information into geographic coordinates. It

is also possible to use the API to perform this process in reverse and receive location information

based on geographic coordinates (Google, Developer Guide, sd).

Within the application the Geocoding API will be used in checking user provided coordinates based

on the included location information as well as providing coordinates when they lack completely in

the provided information.

Because of this main purpose the Google Geocoding API was chosen to be implemented into the

application. When providing the API with areas of interest, the API returns a set of geographic

coordinates based on the edges of the provided area. These coordinate sets can then be used to

check if a user provided coordinate is within the specified area.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

11

An alternative of the Google Geocoding API would be to make use of the Geonames API for the

purpose as explained previously. A problem with making use of the Geonames API is that instead of

returning a set of coordinates for the marking of an area, the API only returns a single point at the

center of this area (Web Services, sd). This would require the application to have knowledge about

the size and shape of the geographical body of interest, to be able to determine if the coordinates fall

within the expected area. The Google Geocoding API requires less knowledge by creating an area of

interest. Therefore, the use of the Google Geocoding API reduces the complexity of the algorithm.

2.5 Database types
To make the system as universally applicable we have chosen a number of wide applied database

system types. Also, we have chosen to implement a couple of text-based storage applications as

those are both widely used for storage and transition of databases. In the following subsections the

implemented storage systems will be discussed and explained. Current implemented database

systems are directed at database types used for storing datasets for which the application was

designed initially. Our focus on implementing multiple databases is directed at making the software

as usable and generic as possible, so a wide variety of systems can make use of it.

2.5.1 MonetDB

MonetDB is an open-source column-oriented database system, and was developed in the

Netherlands (MonetDB.org, sd). Its design is implemented in such a way that it delivers high

performance when operating on complex and extensive queries containing a very high amount of

data entries. Within Leiden University this system is used for research and storage of large databases

containing lots of different kind of information. Further use of the system will be most probable

within Leiden University, we have chosen to make sure the system is compatible with MonetDB.

2.5.2 MariaDB

MariaDB is one of the world’s most highly used database systems, coming in at a twelfth place

worldwide in popularity (DB-Engines, 2019). MariaDB is called a relational database management

system (RDBMS). This type of database management system saves their records in tables, with rows

containing the records and in the columns the information which has to be saved per record

(MariaDB, sd). MariaDB is also mostly compatible with programs using the MySQL system. We have

implemented this system as one of the databases provided for testing the system will be making use

of this type of database management system, furthermore as mentioned previously, it is widely used

worldwide and therefore increases the chance of compatibility of our system with the to be used

databases.

2.5.3 MySQL

MySQL is, as mentioned in the previous section, alike MariaDB. MySQL, however, is even more

popular worldwide then MariaDB, coming at a second place in the worldwide popularity ranking of

databases management systems (DB-Engines, 2019). MySQL is also an opensource RDBMS with at its

core the SQL language to build up databases and performing queries (MySQL-Enterprise, sd). At first

MySQL was mostly used by internet applications, in most cases in combination with the

programming language PHP. Nowadays it is used in many other applications. We have chosen to

implement this system in our application because of compatibility with other database system types.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

12

The following two implementations are not database systems but are widely used to store data and

tables. Therefore, we have chosen to make our system also compatible with these two types of

storage options.

2.5.4 CSV

The comma separated values file type is a widely used implementation to store tabular data

(examples of this are spreadsheets and databases) (Kommagescheiden bestand, sd). As the name

suggests it is a filetype that stores the records in rows, with the information per record separated by

a comma or other type of delimiter. The CSV filetype is also compatible with Microsoft Excel and

other spreadsheet-applications. The main reason for us to allow implementation of this file type is

that a number of the provided test-databases were provided in this format. Furthermore, this type of

data storage is widely used and known worldwide making it a great asset to be compatible with our

system.

2.5.5 JSON

Lastly, we will discuss the JavaScript Object Notation (JSON). As mentioned in section 2.2, JSON is at

the core of our system for exchanging data between the different operating procedures (Introducing

JSON, sd). It allows for an easy and structured data transfer process between the webserver and web

applications. Furthermore, it is a language independent data format, although initially designed for

JavaScript. As this will be the core language used for the design of our application, incorporating

JSON also as an input/output option is of a great essence and easily implemented into the system.

2.5.6 Future implementations

Although currently the system is designed to only connect, receive input and deliver output of data in

the beforementioned database system types. The system will be designed in such a way that any

other database system type could be added to the system. One of the methods this will be provided,

is by making use of the available Node.js modules for the connection with databases. Including

additional modules to increase the number of database systems the application can operate with will

therefore be possible.

2.6 GPS coordinates
GPS coordinates consist of two numbers, the latitude and longitude. Together these two create a

point on a map (Geographic coordinate system, sd). If this data is already available, our application

checks the GPS coordinates, if they correspond with the country, area or city given in the received

data. The application will perform this operation by creating a bounding box around the area, based

on the given geographic coordinates by the Google Geocoding API. If the coordinate of the user is

outside of this box the coordinates will be improved to the center of the area. If no coordinates are

provided by the user, this information will be added by the application by again providing the

coordinates of the center of the created box.

Two main types of storing GPS coordinates exist. The first one, called decimal degrees (DD) expresses

latitude and longitude coordinates as (either positive or negative) decimal values and are very

common in a wide array of geographic information systems (Decimal degrees, sd). This type of GPS

coordinates expressing is also used in a lot of mapping type of web applications, among which is the

Google Geocoding API. Another way of storing GPS coordinates is making use of degrees, minutes

and seconds (DMS) type of expression for storing GPS coordinates (Geographic coordinate system,

sd). Within our system we will make use of the DD type of expression for latitude and longitude

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

13

coordinates, because of the uniformity and ease of use. However, we will make the system

compatible with input of both types of latitude and longitude expressions interchangeably. The

system will translate all of the input geographic coordinates into the DD type of notation.

A great disadvantage of the DMS expression system over the DD expression system is the variation of

notation possibilities within the expression system, making it hard to determine how the given

information should be interpreted (DMS vs DD, 2018). Possible misinterpretations that can happen:

• North/south and east/west can both come as the first coordinate

• N/S and E/W can both be replaced by a plus or minus sign as the notation

• Sometimes one of the 3 values in the notation that equals to zero is omitted

Therefore, we have chosen to make our system work with the DD type of expression system,

although the system will be able to use input of the DMS system type of expression.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

14

3 Design
In the following chapter we will discuss the design and implementation of the system divided over 2

sections. In the first section we will couple the research questions and sub questions, together with

the materials and methods used in an overview in which the major design choices made, will be

discussed and explained. Following we will further clarify the system by giving an overview of the

total system and its major components and processes.

3.1 Design choices
In this section we will elaborate on which choices were made when designing the system and what

made us choose for certain implementations. We have divided this section into a number of

subsections. In each subsection we will discuss one of the choices made when designing the system

or in what way we made sure certain aspects were to be reckoned with.

3.1.1 JavaScript / Node.js

JavaScript is the language we will use when designing our application. As previously discussed in

chapter 2 JavaScript is an ideal language when creating a web application.

There are, however, a couple of drawbacks to using JavaScript over other types of programming

languages:

• First of all, JavaScript is relatively slow compared to a compiling programming language.

When running a compiled language, all compilations are done prior to running the program

therefore these are mostly much faster at executions. The problem however is that C++ or

other languages of a similar type, do not react well with asynchronous web applications.

Which is a part of the design of our application.

• Secondly another drawback is that flexible typing can cause unexpected results and behavior

within the program. Sometimes problems can occur with timing certain processes, as they

will need information provided by a previous subprocess which is not finished yet. This can

cause for unexpected results and behavior. We are aware of these problems and counteract

them we implemented buffer times when possible.

As previously mentioned, an alternative programming language for the application would be c++.

However, when using c++, we would have to take into account the operating dependent libraries and

the system would be less flexible and sustainable. Another alternative would have been Java.

However, Java is not built for asynchronous web applications as well as having a less extensive

libraries as JavaScript, therefore JavaScript was the obvious choice for the design of this application.

Another software platform widely used within the system will be Node.js. This software platform will

allow us to enhance the use of JavaScript with applications we normally would have to use different

languages for, to create the same effect. The wide library of plugins and modules of the Node.js

system allows us to incorporate all these functionalities within our web application with only the use

of the JavaScript language.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

15

3.1.2 JSON

Within the application data is stored and send within and between modules by making use of the

JSON format. We have chosen for this type of data storage and transfer format, because it is

specifically designed for the JavaScript programming language. Furthermore, it is very easy to read

and write information in the JSON format, not only for users but also for generation programs. Once

the structure of the JSON files used within the system is clear, it can be very easy to create an

algorithm to generate these files for the use of the system. This will only enhance the efficiency of

the system further.

3.1.3 Modularity

Figure 1 - System overview

The following design choice becomes apparent when looking at figure 1 and will also be further in

detail explained in subsection 3.2 and chapter 4. The system and the separate modules will be

designed in such a way that they are able to work/ and cooperate together when using the complete

system at once. However, it will also be possible that for a certain application only one of the

modules needs to be used. Therefore, the different modules will also be able to be used separately.

This design choice will make the system applicable for more applications and will run more efficiently

when used for targeted applications.

3.1.4 Types of connections

The types of connections to communicate within and with the system are stated in the legend of

figure 1 and will be more in depth discussed in chapter 4. We have chosen to make the inter-process

communication as universal as possible, in this way the information and signals needed per program

are very similar across modules. Furthermore, in this way it is easier for the User and other programs

to make use of the application. We will incorporate an API connection to make sure external

programs can easily connect and make use of the system. Lastly by designing it in this way, it will be

easier for future implemented modules to interact with the system.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

16

Other connection types are a database connection made when connecting a database to the system.

In this way the system will be able to directly perform its transformations into the connected

database system. We have implemented this in such a way that it will be able to connect with

different types of databases and that it will be possible to easily add other database system types as

connections. There will also be a data file In and output connection which will make it possible for an

external datafile to be altered by one or both of the main modules.

3.1.5 Child processes

As can be seen in figure 2 and 3 and also explained in subsection 3.2, we have chosen for the 2 major

modules to incorporate child processes for the actual applications of the relevant modules. There are

a couple of reasons we have chosen for this type of set up for the design of these modules. First of

all, this allows for the system to run more processes of the same type at once, increasing the speed

and efficiency of the application. By running the same subprocesses in parallel we allow for the same

task to be processed faster and thus contribute towards the efficiency and sustainability of the

system as a whole. Another reason for choosing to incorporate child processes in this way, is to keep

the parent process free and accessible. Especially when processing large and multiple batches of data

at once, in this way the system can capture all the information at once and start with the translation

processes at the same time for all the batches. If we would try to process the same information

without the use of child processes, it would take a lot more time to process all the information all the

while the relevant module will be unavailable for other requests. Therefore, the application of child

processes does not only increase the efficiency of the application but also makes the module

available for further entries while processing simultaneously.

3.1.6 GPS location data control

The locations module will be able to add and check GPS location data. The module will make use of

the Google Maps API when checking and adding the GPS data to the existing data in the datafile.

When checking for the GPS data, the Google Maps API returns a single set of GPS coordinates when

looking for a small area or point on a map. It will return two sets of GPS coordinates when looking for

a bigger area on a map, which will contain a set of the most outlying points on the map, creating a

rectangle area containing the requested country/area/city.

After this the application will check if the provided geographic coordinates correspond with the

returned area based on the provided information. If these correspond, the old coordinates will be

stored in the output. If the provided coordinates do not fall within the created bounding box, the

coordinates are updated to the center of the area.

The application will provide the option to make the provided set of location information binding, or

to give the option to increase the search area if possible. Providing the user the option to see either

at which extend a coordinate corresponds with the given information or improves the given

coordinates as soon as they mismatch with the drawn area. The system will make use of a user-

determined margin of error, which can be altered depending on the type of data used.

There are a number of complications we will have to face when designing this part of the application.

The first one is when creating the area for the control of the GPS data, a square is created of the

outmost points. However, this is not completely accurate when controlling GPS data. For example,

when looking at countries, this area can include neighboring countries or parts of the sea the country

is adjacent to. We tried to counter this problem with the design of working bottom-up, however this

part is not fool-proof and will be further discussed in the discussion.

Another complication is the fact that when working with the Google Maps API only a certain number

of requests (up to 200 euros) is free per month which equals to around 40000 geolocation requests

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

17

per month. In most cases this should be enough, but when working with large databases it could be

the case this number of requests is being transcended. In this case the application cannot further

check/add GPS data to the datafile for that time period. This problem can be omitted by coupling a

bought API key to the system.

3.1.7 Database direct insert

When controlling and transforming database record information we will be implementing a database

direct insert type of system. When using this type of database insertion method, the system will

constantly be in direct contact with the linked database system. In this way we will be able to directly

check for records and insert records into the database system, without storing them in the cache of

our own system.

The main advantages of this type of database system type are:

• We will not have any overlapping ID’s between databases or the database and our own

cache. In this way it will be less prone to making errors when altering the database while

making use of the system for transformations. This will increase the overall sustainability and

security of the system.

• The second advantage is that in case the system crashes, the already handled data will be

stored in the coupled database system and will be saved. This will reduce the amount of

information needed to be done when restarting the system and continuing where the system

crashed.

A possible alternative to the direct insert database insertion method is the cache first insertion

method, which has a couple of advantages and drawbacks compared to the direct insert method.

Advantages:

• Is faster when controlling and manipulating data. As it stores everything in the cache of its

own system, this method loads and manipulates data faster than the direct insert method.

• Uploading bulk quantities of data will be faster when done at once instead of by using

multiple individual connections.

Disadvantages:

• Lose all data in case of a crash. The system would then need to redo the entire operation.

• Does not take into account that data can change in the to be connected database during the

processing of the system, which can result in duplicate information. This can cause errors in

the database, which would be a major inconvenience.

As can be seen there are both some great advantages as well as disadvantages to using the cache

first method. However, we have chosen for our system to be more reliable rather than to increase

the processing speed. When working with large databases, first and foremost must every record be

processed correctly and as reliable as possible.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

18

3.1.8 User configuration files

When performing multiple data transformations on possible multiple databases all at once, a lot of

different parameters are needed to make the process run smoothly. By implementing a certain

standard protocol for the processing of these transformations, we will create a situation where this

will be possible and as efficiently as possible. Furthermore, because we will be making use of the

JSON type of notation, it will be very easy to create a simple generation program for the creation of

the configuration files for the respective modules. Overall the configuration files will increase the

usability and efficiency of the system as a whole.

3.1.9 UI en terminal interface

When designing the system, we will first focus on the working parts of the system. The location

transformation module and database transformation module will be the priority of the system.

Therefore, initially we will design the system to be working with a terminal interface, which allows

the user to give commands via a terminal interface which the system will handle and will act

accordingly. In chapter 4 these commands will be discussed more in depth. We will also try to create

a user interface environment to increase the ease of use of the system, although this will not be a

priority of this project.

3.1.10 Error and crash handling

The system will be designed in such a way that most of the errors and crashes will be omitted.

However, when one of both will occur, the system will need a method to deal with these types of

situations. The error handling will mostly consist of a clear signal connection with the terminal

interface. Within this environment the user will be able to see every type of error and can act

accordingly. Also, when working with datafiles, a separate datafile will be created consisting of the

inputted data which the system was not be able to handle.

The modular design of the system will make it possible for the system to handle crashes in a

sustainable and efficient way. Because of the design, it will be possible that if one of the modules or

sub-modules crashes, only that part of the application will malfunction and the rest can still continue

to work. It will then be further handled as an error within the system and send signals to the terminal

interface to alert the user.

3.1.11 sustainability

When designing the system, it was very important to design it in such a way that it was sustainable

and easy to be used with as much database system types as possible. Sustainability means the

system should be compatible for use of current technology and database system types as well as

easily be made compatible for any future updates and technologies. We will try to achieve this by a

couple of design implementations, of which a number are already mentioned in the previous

subsections. Following we will provide an overview of the (most important) design implementations

regarding sustainability:

• The first implementation is the modularity of the system. The major components can be used

separately or the system can work together as a whole. In this way the system is compatible

for as many applications as possible. Another advantage of this type of design is that the

inter-process communication needs to be standardized, therefore it is easier to implement

further modules and applications for the system in the future.

• A second design implementation made towards increasing the sustainability of the system is

the separation of the support modules from the major modules. These modules contain

processes used by several of the major components of the system. By separating these

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

19

processes, they can be used in all the components by simple function calls. They will also be

easier to be used for further future design implementations.

• When designing the database module, we designed it in such a way that it would be able to

connect with as many database-system-types as possible. By making use of node.js

implementing any future database system type can be done by making use of one of widely

available modules provided for the node.js system. Therefore, it will be possible to use the

system, with some alterations, with almost any database system type available.

• Lastly the design to let the two major components make use of child processes contributes

towards the sustainability, as also already mentioned in 3.1.5. By keeping the parent process

available for handling the requests from the user or API and creating one or multiple child

processes per request, it keeps itself available for further requests at all time. In this way, the

process will be able to handle much more requests at the same time and work much more

efficient.

3.1.12 Efficiency

To increase the efficiency of the system, a couple of design implementations will be made. These

implementations will have an impact on the overall performance of the application.

• The first implementation is that of the above-mentioned child processes. By implementing

this type of processing, we will be able to perform multiple processes, transformations and

calculations at the same time using multiple cores at once. This will increase the speed of the

overall process.

• Another implementation to increase the efficiency of the system is that of the pipeline that

will be created in the location helper process. As can be seen in figure 3, there exists a

constant interaction between the file processor unit and that of the location check and

correct unit. We will implement a pipelined structure to increase the efficiency of this

interaction. This will increase the speed of the overall process of the location helper and

location modules.

• Lastly, we will make use of user configuration files to streamline the process beforehand.

This will make it possible to increase the speed especially when processing large amounts of

information. By initializing all the transformations to be done beforehand in both the

database and locations module, the system can then as efficiently as possible process all the

data in a reliable and fast way.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

20

3.2 System overview and major components

In the following section we will discuss the major processes, components and data flows within the

designed application. We will first discuss a rough overview of the overall system, followed by a more

in-depth overview within the locations, database and webserver modules.

3.2.1 System overview

The system is designed in three major components. First of all, run.js is the center of the program. In

most cases, the user will connect with the system through this component to make further use of the

different modules. Run.js establishes a connection between the user and the system via a terminal

interface, handling the commands given in the command prompt. Also, a web connection is created

between the user and the locations and database modules via the web interface. The web interface

is hosted via the webserver module. It will also be possible for an external program or web

application to connect with the system via an API connection as can be seen in figure 1. Furthermore,

a user will be able to connect directly to one of the modules via the terminal interface, if desirable.

When starting the program, Run.js initiates all the processes and constantly interacts with the main

modules via two types of connections.

1. Command channel will be transferred from the user to the concerning module via the run.js

module.

2. Log/signal channel will be transferred back from the modules towards run.js to be send back

to the user. A further explanation of the logs and signals can be found in section 4.

Run.js besides translating instructions from the user for the modules also handles the start-up and

crash handling of the system. In this way the system will not crash completely in case of crashes or

errors in one of the main modules or their child processes.

3.2.2 locations module

Figure 2 - Location module overview

The locations module handles the process of transformation and validation of the coordinates of a

connected database file, an overview can be seen in figure 2. The user and/or the run.js module will

connect with the module through a terminal interface and a webserver connection. Via these

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

21

connections the user will be able to send commands towards the module and connect or insert their

data with/into the system. For every file that has to be processed, the create child function will

create a child-process which will perform the actual check and transformation process. All the

settings needed for the module to work in a proper way need to be specified in a configuration file

(which will be discussed in chapter 4). Within the location-helper (the child process) every file that

needs to be processed will be handled by its own location-helper process. This setup ensures the

greatest efficiency and keeps its parent process open for further requests.

Within the location helper process the file processor unit will transform the input file in such a way

that the location check / correct unit can process the information correctly. The location check /

correct unit then creates an http connection with google to perform the actual check of the data and

sends the received data back to the file processor unit. The connection between the file processor

unit and location check / correct unit is a pipelined connection to increase the speed and efficiency of

the process. Once the data is checked and again processed by the file processor unit it is then send to

an external output file to be received by the user or API. Also, if in any case a part of the data did not

process correctly, these will be outputted to another external datafile with a summary of the data

containing errors. The DMS/DD transformations and check will also be done by the location check /

correct unit.

During and at the end of the child processes signals and log is being send back to the TTY / terminal

interface of its parent process. Which will then communicate this information back to the run.js

module or directly back to the user.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

22

3.2.3 Database module

Figure 3 - Database module overview

The database module will handle any type of action regarding the adjustment of databases or

database files. It is possible to merge and use different tables and databases at once to create the

desired final product. The design of the database module can be found above in figure 3.

Like the locations module, the database module connects via a terminal connection and webserver

connection with the run.js module or user. The webserver unit and terminal unit of the module will

via a program flow connect with the check config component. This component will check the settings

as stated in the configuration file. This configuration file will be created by the user or can be

generated via another program. In chapter 4 we will describe the precise layout and information

which has to be stated in the configuration file.

Once the configuration file is checked and implemented, the check config unit sends signals to the

create children unit. This unit creates child processes for the transformation of the to be processed

database files, as stated in the configuration file. Every process will be handled separately. By

creating child-processes, the system can handle multiple processes at once and will still be able to

fetch requests. Therefore, this enhances both the sustainability and efficiency of the system.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

23

Finally, when the child processes are finished and all the data is processed, the log / error check unit

fetches all the signals send by its child processes and sends these to the TTY terminal unit and

webserver API unit. When any errors have occurred, the error-codes will be added by the log / error

unit.

Finally, all the data is gathered and information (signals and log) is send back to the user or run.js.

And via the web connection to the other connected modules or API connection.

3.2.3.1 Database helper module

The design of the database helper module can be found in figure 3.

The database helper module will handle the individual processes within the file. It will check for

duplicates and/or errors and save the made alterations in a datafile. The process will start with a test

of the connection, to make sure the processes can be started. First via a direct insert method the

process records are created and the data is checked for duplicates and errors before being inserted

into the datafile. It will also be possible to create a connection with an external database to directly

handle the process from an external database. The types of database management systems the

system can connect with are described in section 2.5. Finally, the altered and checked data is sent

back to the parent process to be merged and checked for errors one final time.

3.2.4 Webserver module and web client

The webserver module can also be seen in figure 1. Although clearly visible in the layout of the

system, the webserver module is not considered one of the main modules of the system. The sole

purpose of the webserver module is to host the webserver and web client. From there the web-client

can connect with the locations and database modules.

The web client is a react app connecting to the API’s of the location and database modules. By

implementing a web interface, it will be easier for users to use and interact with the system.

3.2.5 Support modules

As can be seen in figure 1 a unit called Support Modules is connected to the system as a whole via

function call connections. These modules are part of the system, but created in separate smaller

modules to support the system. Mostly these modules consist of functions which have multiple

applications throughout the system. Therefore, separating them from the major modules and making

them operate individually, is much more efficient and increases the modularity and sustainability of

the system. All the support modules and their functions will be discussed more in depth in chapter 4.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

24

4 Implementation
In the following chapter we will discuss the implementation of the design as mentioned in Chapter 3.

We will discuss per part of the design, the implementations made to make the system as a whole and

its parts individually work. Furthermore, we will also discuss a couple of user related aspects of the

design, such as the different types of commands, the reported logs, warnings and errors and the

initialization and working of the configuration file. All this information is needed to properly work

with and understand the system.

4.1 Terminal interface
The terminal interface will be the communication channel between the user and the system. In the

following section we will discuss the types of commands, arguments and logs a user can use and

receive to communicate with the system. A detailed description on how to set-up the use of the

application and how to use the application can be found in appendix A and B or in the files

configuration and set up guides.

4.1.1 Commands

Commands being used within the application.

exit Closes a process.

mute [1, 2, …, n] Makes it possible to mute the logs of helper processes.

process filepath Lets a file being processed by the system, the user needs to define the

filepath to the file that needs to be processed.

[verbose 0|1|2|3|4] Change the type of log a user wants to receive

When using run.js to run the whole system it is necessary to add modules to commands:

run|database|locations|webserver [command]

Commands used when starting the application

node run|database|locations|webserver Start the application

Arguments:

-[verbose 0|1|2|3|4] Choose log type.

-[noColor] Turn log colors off.

-[noFormat] Turn log format off.

-[customcfg filepath] Turn on own configuration settings.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

25

4.1.2 Log

We differentiate between 5 log types: (used with the command verbose []

0 : ERR Error messages.

1 : WARN Warning messages.

2 : INFO Information messages.

3 : DEBUG Debug messages.

4 : DATADMP Data print messages.

When defining the type of log using the verbose command, all message types with lower number will

also be shown in the outputted log.

4.2 Command and Data flows
When using the system, commands and data flows throughout the system. To give a better

understanding as how these program flows operate within the application, we will give an overview

of the general command flow, the API command flow and the dataflows of the two main modules.

This will provide a clear overview of how the commands and data are being handled by the system.

4.2.1 General command flow

Figure 4 - General command flow overview

In Figure 4 above is the general command flow given. Every command will be handled by the system

in the following way, regardless of the functionality of the system used by the user. Using this

standard flow creates a clear process and makes it easy to find errors and tackle the right processes.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

26

4.2.2 API command flow

Figure 5 - API command flow overview

In figure 5 the overview of the API requests command flow is given. It is possible to perform

operations with the system via API process request. As can be seen in figure 5, when performing an

API process request, while creating the helpers, an API key is generated. This key is then stored in the

key result storage, where eventually the results of the operations will also be stored to be retrieved

by the user. The user can view the progress and result of the performed operation using the given

API response key as generated when creating the request. As can be seen in figure 5, when using the

API key to request results, a look up of the key storage is performed. When the results are finalized

by the underlying processes, these will be given as a response. If the results are not yet stored in the

key result storage, a wait message will be given as a response. The user will be able to reperform this

until the results will be given.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

27

4.2.3 Database data flow

Figure 6 - Database module data flow overview

In Figure 6 above, the data flow within the database and database helper modules is stated. As can

be seen the modules make use of two types of storages for records. The first one stores the type of

instruction given in the configuration files; the second storage is of a temporary record which stores

the modified data along the process. If the process fails to retrieve the external data from the

database it will give out a message that the row or object processing has failed. If the external data

could be retrieved, the select statement with the proper instructions and saved record is being

executed. When found in database, the process is finished and a success message will be given. In

the case that the values could not be found in the connected database an insert statement with the

given instructions and temporary data will be performed. In case this process succeeds or fails a

corresponding message is given.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

28

4.2.4 Locations data flow

Figure 7 - Locations module data flow overview

The dataflow of the locations and location helper modules is given in Figure 7. As can be seen, this

process also uses two types of temporary storages. The first one stores the set of instructions as

stated in the configuration file. The second storage consists of the temporary storage of the object to

be added to the output file. The temporary storage of the object constantly alters during the data

flow process when information is added or altered.

The bottom part of figure 7 describes the process after a google API request has been made. A

couple options arise, if the process response failed. Either another attempt is made with a less

detailed sub-string of the given name or no more attempts are made and the output is stored as is. If

the process response succeeds, the coordinates are checked. In case of a match the old coordinates

are stored and an object is generated.

If the process response succeeds but does not match with the provided coordinates 2 possible

options are provided, depending on the settings (FavorNames) as provided by the user in the

configuration file.

If FavorNames is set to false, a smaller subset of the provided location information is taken and used

for a new Google API request. This will be repeated until a match if found or it is no longer possible to

take smaller subsets. The last used location information subset will be stored as the used name.

When FavorNames is set to true, the location information set in binding. Thus, in case of a mismatch

the new coordinates are saved together with the old location information and put into the output-

file.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

29

4.3 User Instructions
In this subsection we will further elaborate on the use of the previously outlined modules and

working of the system as a whole. We will make use of examples to provide an overview of the

working of the application from a user perspective. The section will be divided into two parts, one to

describe the process to check and improve geographic coordinates and another for the importing

information into existing databases.

4.3.1 Locations module

A couple of files need to be provided by the user in order to be able to process the datasets. These

files are:

• The input datasets in csv or json format, containing at least one field denoting the area

information.

• A configuration file containing the settings to process the input datasets. (The description of

this file can be found in Appendix B. The process as to how to write such a file can be found

in Appendix C).

• (In case of an API request, one needs to define a JavaScript file containing a script for an API

request. The API endpoints and process are described in both Appendix A and C.

A detailed example of how to perform the whole process can be found in Appendix C.

4.3.2 Database module

To be able to perform operations on datasets and insert these into the coupled database systems a

couple of files need and connections need to be made:

• An input file containing the information which needs to be inputted in the connected

database system.

• A configuration file containing the settings to process the input dataset and insert it into the

connected database system. (A description of this file can be found in Appendix B. An

example of how to write this file can be found in Appendix C.)

• A connected database system.

• (In case of an API request, one needs to define a JavaScript file containing a script for an API

request. The API endpoints and process are described in both Appendix A and C.

A detailed example of how to perform the whole process can be found in Appendix C.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

30

4.4 Main modules
In this subsection we will discuss the main modules, which control and operate the system and its

core functionalities. For every module we will first discuss its core operation, followed by its

underlying functions, the internal and external connections and support modules it uses (a

combination of library support modules as well as self-designed). In the database and locations

module this is followed by an explanation of the user configuration files.

4.4.1 Run module

4.4.1.1 Operation

The Run module is the heart of the system. This module controls the other modules and makes sure

they keep running. Furthermore, it handles the information and commands channels between the

modules and the terminal interface.

4.4.1.2 Functions

typeStrToNr transforms log type to number.

processChildMessage processes the messages send by child processes.

checkOpenClients returns if there are any clients open to be used by the system.

crashHandle returns error messages and handles the crash handling of the other modules. This can

be set up to let modules crash alone or let the whole system shut down together.

database create client process for the database module and hooks their events

webserver creates the client process for the webserver module and hooks their events

locations create the client process for the locations module and hooks their events

closeAllClients is a function to close all the client processes.

shutdownTimer checks every increment of time for a possibility to shut down.

parseUserInput is a function to parse user input and translate to usable signals for the system.

4.4.1.3 Connections

The connections within the module are process connections. When communicating with other

modules and the user, the run module handles command channels, log channels to and from the

user and the other modules and the creation of child processes.

4.4.1.4 Support modules

The run module makes use of the args, interfaces and child processes support module.

4.4.2 Database module

4.4.2.1 Operation

Setting up the process for the database transformations by controlling the user configuration file,

testing of the connection and creating and handling of child processes.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

31

4.4.2.2 Functions

parseMessage parses the messages from the parent process (run module). Only in case if run as

client process.

parseUserInput parses the messages given by the user, in case of both stand-alone and when using

the run module.

afterInit handles the actions after the initialization of the process configuration, and handles errors.

testConnection tests the connection with the external database.

processConfFile processes the user configuration file.

handleAPIInstruction handling of the API requests made via the API support module.

4.4.2.3 Connections

Internal connections within the module are process flows and log. External connections are create-

child-process connections both incoming and outgoing. http connections, command and log

channels.

4.4.3 Support module

The support modules used by the database module are: querystring, args, API, config, exit, helper,

interfaces and typehandler.

4.4.3.1 User configuration

The database configuration file is a file made by the user to streamline the database transformation

process. The readme file and configuration syntax guide can be found in respectively Appendix A and

B. The file contains a set of datasets, defined by the square brackets []. Each set (defined by curly

brackets { }) contains a database item and a data set.

The database item contains information regarding the database settings:

• “host”: the server address with which the system needs to connect. (text)

• “port”: the port the system needs to connect with. (num)

• “user”: user login information (text)

• “password”: password login information (text)

• “database”: database type (text)

• “ssl”: this is another item containing “ca” where the ssl certification file needs to be stated.

(text)

The data item contains sets with the following information:

• “table”: the tablename of the table in which the information needs to be stored.

• “id”: the tableID of the table in which the information needs to be stored

• “method”: is an item containing the Booleans:

o “insert”:

o “update”:

o “check_first”:

• “source”: is an item containing information regarding the sourcefile

o “file”: a path to the file which contains the to be manipulated data

o “type”:

o “delimiter”: what space delimiter is used in the sourcefile

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

32

• The last item in data the “mapping” item which again contains a set with a (number of)

mapping item(s), which contains:

o “source”: the name of the sourcefile

4.4.4 Database helper module

4.4.4.1 Operation

Links input to the transform support module and creates SQL code to be inputted in the external

database. The module does this by using a subset of the user configuration file as its settings.

4.4.4.2 Functions

parseMessage handles messages received parent process.

stringDBTypeToNumType transforms stringtype into a numbertype, for internal use.

chooseNullStmt chooses the right statement from a predetermined list of statements according to a

possible occurrence of NULL in the values.

giveConnectionObject generates an object for the creation of a connection to an external database.

checkAllFinished checks if all records are processed.

createConnections creates database connections.

prepareConnections prepares database connections.

direct_insert_flow general program flow for direct insert method of database insertion.

executeExtStmts execute select statements on external databases, for getting external values.

executeSelStmt execute select statements to input database.

executeInsStmt execute insert statement to input database.

checkDone checks if all records are processed.

printResults creates log messages with the results.

checkTargets checks if the configuration file is valid.

4.4.4.3 Connections

Internal connections are a log stream and process flow. External connections consist of child process

connection, log stream, data stream and database connection.

4.4.4.4 Support modules

The support modules used by the database helper module are: mySQL2, monetDB, MariaDB,

csv_parse_stream, filesystem, args, databasesqlgen, exit, interfaces, transform and typehandler.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

33

4.4.5 Location module

4.4.5.1 Operation

Interprets the user configuration file and splits up the commands accordingly for the to be made

helper modules.

4.4.5.2 Functions

processConfFile processes the user configuration file.

processDataset processes the dataset part of the configuration file and creates helper process

accordingly.

ProcessMessage processes the received messages.

parseUserInput parses user input given and executes accordingly.

handleAPIInstruction callback function for process specific API handling.

configCallback in case of error with configuration file, report will be given.

4.4.5.3 Connections

Internal connections within the module are process flows, signals and log. External connections are

create-child-process connections both incoming and outgoing. http connections, command and log

channels.

4.4.5.4 Support modules

The support modules used by the location module are: filesystem, API, args, config, exit, helper,

interfaces and typehandler.

4.4.5.5 User configuration

The location user configuration file is a file made by the user to streamline the data processing. The

Readme file Configuration Syntax Guide can be found in respectively Appendix A and B. It contains a

datasets item which is initiated using square brackets [] . Within the datasets item, multiple datasets

can be defined by the user. Each dataset be defined by braces { }. Within a dataset a number of

settings need to be defined:

• “source”: the path to the file containing the data that needs to be checked or transformed.

(text)

• “target”: the path to the file in which the altered data will be stored. (text)

• “lat” and “lng” or “latlng”: needs to contain the column name(s) in which the latitude and

longitude are stated. (either the “lat” and “lng” column names need to be given, or when

given in one field the “latlng” column name need to be given.)

• “places”: contains another set with all the column name(s) of the columns containing

information regarding the location (e.g. Country, City, Area)

• “margin”: contains the margin of error, the algorithm will take into account when checking

the data.

A user can define the below mentioned Booleans, when left out the default setting of all will be false.

• “includeOld”:

• “includePlaceID”:

• “includeCorrected”:

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

34

4.4.6 Location helper module

4.4.6.1 Operation

Parsing of the input file and correcting and adding of GPS location data to the output file.

4.4.6.2 Functions

process_config processes the part of the configuration file needed for the specific child process.

create_csv_header_obj is a constructor for default header object, used by CSV input and output files.

get_csv_headers_from_file import csv header information from external import file.

get_json_headers_from_file import json header information from external import file.

finish is the callback function for the general process execution of the child process and stopping the

child process.

run initiates the child process and makes sure the pipeline and actual location checks are executed.

4.4.6.3 Connections

The internal connections of the module consist of process flow and data streams. External

connections consist of create-child-process connection, log stream, http connection with the google

API and data streams.

4.4.6.4 Support modules

The support modules used by the location helper module are: csv_parse, csv_stringify, args, exit,

interfaces, typehandler, coordinates, JSONstream and JSONstringify.

4.5 Support modules
In the following subsection we will discuss the support modules present within the system. These

functions can be referenced and used by the main modules and their helpers. For all the support

modules, we will first discuss the goal of the module and then elaborate on the subprocesses it

consists of.

4.5.1 API Module

Hosting of a webAPI and making it possible for modules to interact with each other and external

applications.

4.5.1.1 Subprocesses

addInterfaces connects interfaces module to the API module.

SetSSL sets the SSL key and certificate and restarts the API server if active.

SetNoSSL force disables SSL, can be used both as not setting a SSL in the first place as well as

disabling SSL per user request and restarts the API server if active.

setPort will parse the given port and saves this and restarts the API server if active.

getPort returns the port, the API server will run at.

checkPort will check if a certain port is free to use.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

35

startServer will start the API server.

setAddress will set the address at which the API server runs.

getAddress will return the address the server is running at as [protocol://host-address:port].

closeServer closes the server.

restartServer restarts the server.

4.5.2 Args Module

Interpreting and processing of the arguments of the system when detected and also generate a list of

argument for the helpers.

4.5.2.1 Subprocesses

setExpected defining the actions for certain arguments. The parameter contains an object which

consists of name-function pairs, where the name describes the argument and the function is the

action to be executed when the argument is encountered.

setHelperExpected defining the actions for certain arguments within helper functions. The

parameter contains an object with name-value pairs, where the name is the argument and the value

the number of reserved value spaces behind the initial argument.

getAllArgs returns a list of all the arguments.

getHelperArgs returns a list of all the arguments filtered for a helper process.

addHelperArgs insert a certain argument to the helper argument list.

clearHelperArgs deletes all helper arguments from the list.

removeStripes removes the addon stripes for arguments. To be used internally only.

checkArgs controls the arguments of the process, and checks if present in the expected arguments

list and executes the function associated with the argument.

4.5.3 Config Module

Interpreting the process configuration files and adjusting and checking the settings accordingly.

4.5.3.1 Subprocesses

setSpecialProps sets the module specific properties to be expected in the config file.

addInterfaces connects interfaces module to the config module.

parseProperty parses the properties as stated in the user configuration file to be used by the

program.

openFile opens a process configuration file with a certain filename.

4.5.4 Databasesqlgen

Generating of SQL code from given properties.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

36

4.5.4.1 Subprocesses

typify changes the datatype of a variable to the right datatype.

query_select_simple creates a simple select query using string table (table to access in the

database), array items (the items in the table), nulls (a bit array encoded as a number), parameters

(the where clause of the SQL functions).

query_select_simple_values creates a simple select query using string table (table to access in the

database), array items (the items in the table), array values (values of the items) and optionally array

types (types of the values).

query_select_all_simple creates a simple select all query using string table (table to access in the

database), parameters (the where clause of the SQL functions) and nulls (a bit array encoded as a

number).

query_select_all_simple_values creates a simple select all query using string table (table to access in

the database), parameters (the where clause of the SQL functions), array values (values of the items)

and optionally array types (types of the values).

query_insert_simple creates a simple insert query using string table (table to access in the database)

and array items (the items in the table).

query_insert_simple_values creates a simple insert query using string table (table to access in the

database), array items (the items in the table), array values (values of the items) and optionally array

types (types of the values).

query_update_simple which contains an update query where values will be escaped by the database

handler. The query uses string table (table to access in the database), array items (the items in the

table), where (the where clause of the SQL functions), nulls (a bit array encoded as a number),

relations (in what way the values compare to each other)

query_update_simple_values which contains an update query where values will be escaped by this

module. The query uses string table (table to access in the database), array items (the items in the

table), array values (values of the items), parameters (the items of the where clause of the SQL

functions), parameter values (the values of the where clause of the SQL functions), relations (in what

way the values compare to each other).

4.5.5 Exit Module

Shutting down processes and helper processes.

4.5.5.1 Subprocesses

addInterface connects interfaces module to the exit module.

addHelperModule connects the helper module to the exit module.

exitProcess is a function to shut down processes, using an exit code and timer (to create a delay for

output to flush).

exitProcess_unbinded is the same as exitProcess while not relying on its own properties for

execution. Used for standalone processing.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

37

4.5.6 Helper

Creation of child processes, and handling and sending messages to child processes.

4.5.6.1 Subprocesses

muteHelper mutes a helper with a certain ID.

setHelperFile sets the file to be executed as helper process.

checkCallbacks checks if certain callbacks are set

addInterface connects interfaces module to the helper module.

createHelper creates a helper process.

haltHelpers gives all helper processes a signal to stop.

killHelper forces a certain helper process to stop.

getActiveHelpers returns a list of the active helper processes.

4.5.7 Interfaces Module

Handling the generation and sending of messages. Making them the right format, message, color etc.

4.5.7.1 Subprocesses

setMaster saves if the process is activated by the user or is initiated by another process.

disableFormat turns of the formatting of the log stream.

setDisableColor turns of the color coding of the log stream.

setProgramColor sets a certain color in the log stream.

setProgramTag sets the name of the used module in the log stream.

log_dd/d/i/w/e couples the log message and message type and logs a message.

requestProperty sends request to the parent process for a certain property of a certain module.

4.5.8 Transform Module

Handles the transformation of database file input.

4.5.8.1 Subprocesses

connectInterfaces connects the interfaces to the transform module.

transformSource transforms a data input into another data type according to the given array.

4.5.9 Typehandler

Determining, controlling and processing of the type of variables.

4.5.9.1 Subprocesses

check_defined checks if the object, array, string, number or Boolean is defined.

now returns current date and time.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

38

time returns certain time.

date returns certain date.

datetime returns certain date and time.

integer returns integer.

hex returns a hexadecimal.

float returns a decimal number.

string turns the given input into a string.

bool transforms input into a Boolean type.

check_type checks the data type of a certain input.

create_copy_of_object creates a literal copy of the object, since objects are passed by reference.

set_default_reference_object sets object to which another object can be referenced to.

check_similar_object compares objects by properties, to see if they are the same data type. If no

reference defined, it uses the default_reference_object.

check_equal_object check if objects are of similar type and then if they are equal in value. If no

reference defined, it uses the default_reference_object.

fill_object_gaps fills gaps in the object by filling it using the reference, note, this does not trim or

expand the object. If no reference defined, it uses the default_reference_object.

expand_object_to will add missing properties and set unset properties. If no reference defined, it

uses the default_reference_object.

trim_object_to will delete properties from object if they are not found in the reference. If no

reference defined, it uses the default_reference_object.

sanitize_html removes HTML tags from the inputted string.

4.5.10 Coordinates Module

Reading and transforming of GPS coordinates data.

4.5.10.1 Subprocesses

getCoordFromString returns coordinates from an input string.

convertDMStoDD when DMS type of coordinate notation are found, they are then converted to DD

type of coordinate notation, for separated latitude and longitude type of notation.

convertsingleDMStoDD when DMS type of notation is delivered in a single string, this function splits

the input data into two separate strings. And converts to DD type of coordinate notation.

4.5.11 JSONstream Module

This module converts stringified JSON to a stream of JavaScript objects. Only supports a simple JSON

array.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

39

4.5.11.1 Subprocesses

createJSONstream creates a JSON stream object.

transformFunc executes the transformation of stringified JSON to JavaScript objects.

4.5.12 JSONstringify Module

Convert a string of JavaScript objects to a stringified JSON stream.

4.5.12.1 Subprocesses

createStringifyStream creates a stringified JSON stream object.

objectToStr converts a JavaScript object to a stringified JSON stream.

transFunc parent function of the objectToStr function. And prints start of array if needed.

flushFunc prints end of array.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

40

5 Experiments
In the Experiments section we will discuss the tests we have performed to further substantiate the

design choices and implementations as stated in the previous two sections. First, we will deliberate

on the support modules, for which we have created validation tests to check the working of each of

these modules. Following, we have created efficiency tests for both the locations and database

modules. These efficiency tests will test the speed and accuracy of the application for different

sample sizes and percentages of correct data.

5.1 Support modules validation tests
5.1.1 Interface validation test

The interfaces module makes sure all the messages to the terminal are communicated to the user in

a clear manner. The validation test performed for the interfaces module, tests if with the proper

settings the right information is being shown.

The performed test can be found in Appendix C.1, the results are shown below:

1) Show all
2) Show ERR message:
3) [2019-07-27|16:00,15.675|TestProgram] ERR: This is an error
4) Show WARN message:
5) [2019-07-27|16:00,15.676|TestProgram] WARN: This is a warning
6) Show INFO message
7) [2019-07-27|16:00,15.676|TestProgram] INFO: This is an info message
8) Show DEBUG message
9) [2019-07-27|16:00,15.676|TestProgram] DEBUG: This is a DEBUG message
10) Show data dump
11) [2019-07-27|16:00,15.677|TestProgram] DATADMP: Variable: datadump =

["data","data","data"]
12) Below there should not be any DEBUG or data dump:
13) Show ERR message:
14) [2019-07-27|16:00,15.677|TestProgram] ERR: This is an error
15) Show WARN message:
16) [2019-07-27|16:00,15.677|TestProgram] WARN: This is a warning
17) Show INFO message
18) [2019-07-27|16:00,15.677|TestProgram] INFO: This is an info message
19) Show DEBUG message
20) Show data dump
21) Below there should only be an error
22) Show ERR message:
23) [2019-07-27|16:00,15.678|TestProgram] ERR: This is an error
24) Show WARN message:
25) Show INFO message
26) Show DEBUG message
27) Show data dump
28) Show all messages without color.
29) Show ERR message:
30) [2019-07-27|16:00,15.679|TestProgram] ERR: This is an error
31) Show WARN message:
32) [2019-07-27|16:00,15.679|TestProgram] WARN: This is a warning
33) Show INFO message
34) [2019-07-27|16:00,15.679|TestProgram] INFO: This is an info message
35) Show DEBUG message
36) [2019-07-27|16:00,15.679|TestProgram] DEBUG: This is a DEBUG message
37) Show data dump
38) [2019-07-27|16:00,15.679|TestProgram] DATADMP: Variable: datadump =

["data","data","data"]

As can be seen, line 6 to 16 should show all message types with color coding. Line 17 to 25 should

show all message types except for the DEBUG and datadump message, with color coding. Line 26 to

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

41

32 should only show a color-coded ERROR message. And line 33 to 43 should show all messages

without color coding.

As can be seen in the above shown output, all settings work as expected. Therefore, we can conclude

that the interfaces module works as expected.

5.1.2 Typehandler validation test

The typehandler module is used to check for similarities between objects. The module compares two

objects and the items of the second object should also be present in the first object. To validate the

working of this module a test was created, to see how the module would react to certain inputs.

Also, an expected answer would be given, if both outputs would be the same, the module works

properly.

The code for the typehandler validation test can be found in Appendix C.2. The test resulted the

following output:

Expect output true:
true
Expect output false (failed on key count):
false
Expect output false (failed on not having required keys):
false
Expect output true (original may have more properties than reference):
true
Checking copy and equal
Copying {"a":"nee","b":"ja"}
Expect this obj to be the same: {"a":"nee","b":"ja"}
Expect compare to be true
true

The first comparison should result in true as the second object contains items of the same type as are

present in the first object. The second and third compares should evaluate to false for respectively

containing more items than the object being compared to and not having the same properties as

object being compared to. The fourth instance compares a bigger object to a smaller one, which

evaluates to true because the second object only contains items which are present in the object it

compares to.

Also, the functions copy and equal result in similar objects and work properly.

Thus, as can be seen above, the typehandler module works properly and gives the expected results.

5.1.3 JSON stream and stringify validation test

Apart from the CSV node module which is an implemented module of the Node.js system, the

application needed a similar module for the use of JSON input files. Therefore, a similar module w

created to transform JSON streams to a string of JavaScript objects and the other way around. To

validate the working of these modules we created a simple test which would transform a json test

file into a stream of JavaScript objects which would then be transformed into a new json file.

The code for the test, as can be found in Appendix C.3, would evaluate into the following results.

testjsonstream.json

[

 {

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

42

 "Sample_pk": "SAM000292",

 "Sample Name": "S075",

 "Country": "Argentina",

 "Location": "Arroyo Los Notros",

 "Latitude": -112.6346,

 "Longitude": 0,

 "Amount": 461

 },

 {

 "Sample_pk": "SAM000298",

 "Sample Name": "S081",

 "Country": "Argentina",

 "Location": "Camino a Que?i",

 "Latitude": -111.8066,

 "Longitude": 0,

 "Amount": 516

 }

]

json_stream_output.json

[

 {

 "Sample_pk": "SAM000292",

 "Sample Name": "S075",

 "Country": "Argentina",

 "Location": "Arroyo Los Notros",

 "Latitude": -112.6346,

 "Longitude": 0,

 "Amount": 461

 },

 {

 "Sample_pk": "SAM000298",

 "Sample Name": "S081",

 "Country": "Argentina",

 "Location": "Camino a Que?i",

 "Latitude": -111.8066,

 "Longitude": 0,

 "Amount": 516

 }

]

The expected result would be for both files to be exactly the same. As can be seen above and in the

files, both files contain the exact same information. This means that both the json stream and

stringify modules work properly.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

43

5.1.4 DMS to DD transformation test

The following validation test was to check if the transformation of DMS to DD type GPS notation

within the system performs correctly. We have created a test with 8 different notations, which all

have to translate to the same coordinates. These are also the only types of coordinate notations the

system will be able to handle.

The performed test can be found in Appendix C.4. The test delivered the following results:

coord_1 (52°14'36",5°38'3") evaluates to: 52.24333333333333,5.634166666666666
coord_2 (-52°14'36"S,5°38'3") evaluates to: 52.24333333333333,5.634166666666666
coord_3 (52°14'36",-5°38'3"W) evaluates to: 52.24333333333333,5.634166666666666
coord_4 (-52°14'36"S,-5°38'3"W) evaluates to: 52.24333333333333,5.634166666666666
coord_5 (52°14'36"N,5°38'3"E) evaluates to: 52.24333333333333,5.634166666666666
coord_6 (-5°38'3"W,52°14'36"N) evaluates to: 52.24333333333333,5.634166666666666
coord_7 (5°38'3"E,-52°14'36"S) evaluates to: 52.24333333333333,5.634166666666666
coord_8 (52.24333333,5.63416667) evaluates to: 52.24333333,5.63416667

The first 7 notations are some type of the DMS notation system. The system should be able to check

if the E/W or N/S notation comes first and should be able to handle negative values. Also, it should

not matter if the latitude or longitude notation is ended with N/E/S/W or not.

As can be seen above, all coordinates evaluate to the same location. Therefore, we can conclude that

our DMS to DD transformation module works as expected.

5.1.5 Database SQL generation validation test

For the database module to operate properly, the SQL database operations need to work as

expected. A validation test was created to test the working of these operations. The code for this test

can be found in Appendix C.5, the results are stated below:

Expected: SELECT id FROM testtable WHERE (item1 = ? AND item2 = ? AND item3 = ?)
SELECT `id` FROM `testtable` WHERE (`item1` = ? AND `item2` = ? AND `item3` = ?)
Expected: SELECT * FROM testtable WHERE (item1 = ? AND item2 = ? AND item3 = ?)
SELECT * FROM `testtable` WHERE (`item1` = ? AND `item2` = ? AND `item3` = ?)
Expected: INSERT INTO testtable (item1, item2, item3) VALUES (?, ?, ?)
INSERT INTO `testtable` (`item1`,`item2`,`item3`) VALUES (?, ?, ?)

As can be seen above all the expected commands were also plotted when performing the operations.

Therefore, the Database SQL generation module works properly.

5.1.6 Transform validation module

Another essential support module for the database module to operate is the transform module. This

module handles all the data transformations stated in the configuration files as given by the user. A

test file was created to validate the working of this module. The code of this test file can be found in

Appendix C.6. The results to these tests are stated below:

transform types initial value float (1.2), expect string, number (whole), number
(comma), boo
lean
a1: 1.2 - string
a2: 1 - number
a3: 1.2 - number
a4: true - boolean
transform regexes, input string abababa, regex = a
a5: a
a6: a
a7: null
transform numbers, modulo div and div-float, input is 10, other input 4

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

44

Expect 0 (20%4), 5 (20/4) and 0.5 (20/40)
a8: 0
a9: 5
a10: 0.5
transform char and substring tests: string abcd
a11: abcd
a12: cd
tranform condition and value test
expect b and c
b
c

The tests with results a1 – a4 are type transformations. A value was given and transformed into the

respecting value types. As can be seen all transformations were performed successfully. The test

results a5 and a6 both result to a, by picking the regex value from the input string. The test result a7

evaluates to null, as c is not part of the input string.

Also, number transformations are possible: modulo, divide and divide-float. Which results are stated

at a8 – a10. With a given value of 20 the respecting operations resulted the expected results.

Test results a11 and a12 transformed a string abcd into respectively a character set abcd and a

substring starting at the third character.

Lastly the if statement transformation was tested and the test resulted in the expected results.

With all the parts of the transformation module resulting the expected results, we can conclude that

this module works properly.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

45

5.2 Location module tests
5.2.1 Speed test

To test the speed of the location module of the system we have created a set of test files to check

the speed of the module in different settings. The test sets used for the testing are 3 sets of different

sizes (10, 100 and 1000 input objects) with each 3 sets of different percentages of accurate

information (0, 50 and 100 % correct). These settings were tested with both the FavorNames setting

set to true and false and tested on 3 different systems (Laptop, PC and Server).

We used these settings to test the influence of both size and accuracy of datasets on the duration of

the processing time of the module. By testing the outer limits as well as the exact middle of the

possibilities we were able to show the full range of the possible duration. Furthermore, we wanted to

test the influence of the FavorNames setting on the duration, because of the possible difference in

API requests this function can cause.

An example of the test sets of 10 input objects can be found in tables 1 - 3 below, the test sets of size

100 and 1000 were expanded respectively. The inputs with a longitude of 5.171 are situated in the

Netherlands, the inputs with a longitude of 8.250 are situated outside of the Netherlands, but within

Europe. All tests were performed using the API module of the system.

latitude longitude Continent Country expected

51.345 8.250 Europe Netherlands false

51.346 8.250 Europe Netherlands false

51.347 8.250 Europe Netherlands false

51.348 8.250 Europe Netherlands false

51.349 8.250 Europe Netherlands false

51.350 8.250 Europe Netherlands false

51.351 8.250 Europe Netherlands false

51.352 8.250 Europe Netherlands false

51.353 8.250 Europe Netherlands false

51.354 8.250 Europe Netherlands false
Table 1 - loc_speed_test_10-0

latitude longitude Continent Country expected

51.345 5.171 Europe Netherlands true

51.346 8.250 Europe Netherlands false

51.347 5.171 Europe Netherlands true

51.348 8.250 Europe Netherlands false

51.349 5.171 Europe Netherlands true

51.350 8.250 Europe Netherlands false

51.351 5.171 Europe Netherlands true

51.352 8.250 Europe Netherlands false

51.353 5.171 Europe Netherlands true

51.354 8.250 Europe Netherlands false
Table 2 - loc_speed_test_10-50

latitude longitude Continent Country expected

51.345 5.171 Europe Netherlands true

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

46

51.346 5.171 Europe Netherlands true

51.347 5.171 Europe Netherlands true

51.348 5.171 Europe Netherlands true

51.349 5.171 Europe Netherlands true

51.350 5.171 Europe Netherlands true

51.351 5.171 Europe Netherlands true

51.352 5.171 Europe Netherlands true

51.353 5.171 Europe Netherlands true

51.354 5.171 Europe Netherlands true
Table 3 - loc_speed_test_10-100

Each setting was tested for a total of 5 times per system. The results of those tests can be found in

Appendix E.2 – E.7 and the average results are shown in Table 4 below.

averages FNAAN Laptop PC Server

sample size
%
correct

duration
(ms)

duration
(ms)

duration
(ms)

10 0% 1399 655 392

 50% 1378 642 394

 100% 1401 638 396

100 0% 12797 2984 3342

 50% 12000 2984 3400

 100% 12092 3032 3383

1000 0% 119436 32070 31868

 50% 122104 30327 32229

 100% 125190 31259 32440

averages FNUIT Laptop PC Server

sample size
%
correct

duration
(ms)

duration
(ms)

duration
(ms)

10 0% 2547 905 721

 50% 2044 747 562

 100% 1353 603 398

100 0% 23926 5693 6577

 50% 17594 4326 4889

 100% 11711 2878 3307

1000 0% 246117 59023 68298

 50% 184981 45668 50301

 100% 123495 29334 32556
Table 4 - Average results of the location module speed tests (FavorNames True and FavorNames False)

As can be seen in table 4, there are some clear differences of the speed between the different

systems and settings. These differences are visualized in the graphs in figures 8 and 9 below, to give a

better insight in the comparison of these numbers.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

47

Figure 8 - Comparison speed between systems and settings (FavorNames False)

Figure 9 - Comparison speed between systems and settings (FavorNames True)

As can be seen in figures 8 and 9 above there is a clear difference between the performance of the

Laptop and the other systems when it comes to the speed of the performed tests. Contributing

factors towards this end are the specifications of the systems, which dictates the speed at which the

program can perform its functions. These specifications are given in Appendix D. The differences

between the speed of the tests performed on the PC and Server are marginal. However, the

0% 50% 100% 0% 50% 100% 0% 50% 100%

10 100 1000

Laptop 2547 2044 1353 23926 17594 11711 246117 184981 123495

PC 905 747 603 5693 4326 2878 59023 45668 29334

Server 721 562 398 6577 4889 3307 68298 50301 32556

0

50000

100000

150000

200000

250000

300000

D
u

ra
ti

o
n

 (
m

s)

Percentage correct per sample size

Comparison speed between systems and settings
(FavorNames False)

Laptop PC Server

0% 50% 100% 0% 50% 100% 0% 50% 100%

10 100 1000

Laptop 1399 1378 1401 12797 12000 12092 119436 122104 125190

PC 655 642 638 2984 2984 3032 32070 30327 31259

Server 392 394 396 3342 3400 3383 31868 32229 32440

0

20000

40000

60000

80000

100000

120000

140000

D
u

ra
ti

o
n

 (
m

s)

Percentage correct per sample size

Comparison speed between systems and settings
(FavorNames True)

Laptop PC Server

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

48

performed tests on the server system ran into some complications. Due to the high speed and

efficiency of the system, the tests sometimes ran above the limits allowed by the Google Geocoding

API. These limits allow for a maximum number of 50 requests per second or 5000 requests per 100

seconds. When performing operations using our system with a large sample size (10000+ data

entries), this can result in complications. The system will report this using warning messages,

informing the user the query limit of the API has been reached. The user will need to perform the

process again, using a smaller dataset to prevent the same error from happening again. Because of

the beforementioned problem it is recommended to keep the sample sizes below this threshold or

cut inputs in multiple portions.

When looking at differences in specifications between the systems, a clear difference can be seen

between the network speed of the laptop test and the other 2 systems. This most likely had the most

impact on the clear speed difference when looking at the Laptop performed tests. The reason behind

this is the number of google requests that need to be performed, which require sending and

receiving data via an internet connection.

Another clear difference between the figures 8 and 9 are the differences within the different sample

sizes. When FavorNames is set to true, the speed of the tests is not influenced by the percentage of

correct given GPS coordinates. Whereas if FavorNames is set to false, the speed is extremely

influenced by the changes in percentage of correct given GPS coordinates. In figures 10 – 12 below

the differences between the FavorNames settings are compared for every system.

Figure 10 - Comparison FavorNames True/False Laptop

0% 50% 100% 0% 50% 100% 0% 50% 100%

10 100 1000

FavorNames True 1399 1378 1401 12797 12000 12092 119436 122104 125190

FavorNames False 2547 2044 1353 23926 17594 11711 246117 184981 123495

0

50000

100000

150000

200000

250000

300000

D
u

ra
ti

o
n

 (
m

s)

Percentage correct per sample size

Comparison FavorNames True/False Laptop

FavorNames True FavorNames False

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

49

Figure 11 - Comparison FavorNames True/False PC

Figure 12 - Comparison FavorNames True/False Server

As can be seen in the figures 10 – 12 above the duration of the operations is approximately constant

when the FavorNames is set to true for all given systems. And when FavorNames is set to false the

100% settings are approximately the same as when FavorNames is set to true and respectively the

50% and 0% settings take 1.5 and 2 times as long to finish the test operations. The logical explanation

for this can be seen in the raw data in Appendix D. When FavorNames is set to True, the operation

performs as many requests to Google as there are data entries in the test file. When FavorNames is

set to False, the number of requests depends on the percentage of correct given GPS coordinates

and the possibility to zoom out. In our test cases, also the option to zoom out from ‘the Netherlands’

to ‘Europe’ was an option. Thus, meaning that for every false record, the system performed an extra

data request to Google. This increased the duration of the system appropriately.

0% 50% 100% 0% 50% 100% 0% 50% 100%

10 100 1000

FavorNames True 655 642 638 2984 2984 3032 32070 30327 31259

FavorNames False 905 747 603 5693 4326 2878 59023 45668 29334

0

10000

20000

30000

40000

50000

60000

70000

D
u

ra
ti

o
n

(m
s)

Percentage correct per sample size

Comparison FavorNames True/False PC

FavorNames True FavorNames False

0% 50% 100% 0% 50% 100% 0% 50% 100%

10 100 1000

FavorNames True 392 394 396 3342 3400 3383 31868 32229 32440

FavorNames False 721 562 398 6577 4889 3307 68298 50301 32556

0
10000
20000
30000
40000
50000
60000
70000
80000

D
u

ra
ti

o
n

(m
s)

Percentage correct per sample size

Comparison FavorNames True/False Server

FavorNames True FavorNames False

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

50

5.2.2 Spelling test

An issue of the system is that the Google Geocoding API preferences American names and cities

when given little information or names using a different language. The tests sets given in the tables 5

and 6 below were used to test the complications this could give and if providing more information

with the data entries could tackle this problem.

latitude longitude country

-24.422 -69.290 Chili

-25.422 -69.290 Chile

37.192 -90.680 USA

36.192 -90.680 US

53.124 5.613 Nederland

52.124 5.613 the Netherlands

41.924 12.492 Rome

41.899 12.497 Roma
Table 5 – Spelling test input (country)

latitude longitude continent country

-24.422 -69.290 South America Chili

-25.422 -69.290 South America Chile

-26.422 -69.290 Zuid Amerika Chili

-23.422 -69.290 Zuid Amerika Chile

37.192 -90.680 North America USA

36.192 -90.680 North America US

35.192 -90.680 Noord Amerika USA

34.192 -90.680 Noord Amerika US

53.124 5.613 Europe Nederland

52.124 5.613 Europe the Netherlands

53.378 6.606 Europa Nederland

52.624 5.613 Europa the Netherlands

41.924 12.492 Europe Roma

41.899 12.497 Europe Rome

41.924 12.497 Europa Roma

41.899 12.492 Europa Rome
Table 6 – Spelling test input (continent, country)

As can be seen in tables 5 and 6 the combinations of spelling of English and Dutch were used to test

if the given GPS coordinates would be transformed by the application or that they would be given as

correct (all coordinates are located in the stated areas).

Latitude Longitude Name Old_Latitude Old_Longitude Corrected_Lat Corrected_Lng

37.056 -95.710 Chili -24.422 -69.290 Yes Yes

-25.422 -69.290 Chile -25.422 -69.290 No No

37.192 -90.680 USA 37.192 -90.680 No No

36.192 -90.680 US 36.192 -90.680 No No

39.961 -105.511 Nederland 53.124 5.613 Yes Yes

52.124 5.613 the Netherlands 52.124 5.613 No No

41.924 12.492 Rome 41.924 12.492 No No

36.077 -95.904 Roma 41.899 12.497 Yes Yes

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

51

Table 7 - Results spelling test (country)

Latitude Longitude Name Old_Latitude Old_Longitude Corrected_Lat Corrected_Lng

-24.422 -69.290 South America chili -24.422 -69.290 No No

-25.422 -69.290 South America chile -25.422 -69.290 No No

-26.422 -69.290 Zuid Amerika chili -26.422 -69.290 No No

-23.422 -69.290 Zuid Amerika chile -23.422 -69.290 No No

37.192 -90.680 North America USA 37.192 -90.680 No No

36.192 -90.680 North America US 36.192 -90.680 No No

35.192 -90.680 Noord Amerika USA 35.192 -90.680 No No

34.192 -90.680 Noord Amerika US 34.192 -90.680 No No

53.124 5.613 Europe Nederland 53.124 5.613 No No

52.124 5.613 Europe the Netherlands 52.124 5.613 No No

53.378 6.606 Europa Nederland 53.378 6.606 No No

52.624 5.613 Europa the Netherlands 52.624 5.613 No No

41.924 12.453 Europe Roma 41.924 12.453 No No

41.890 12.497 Europe Rome 41.890 12.497 No No

41.924 12.497 Europa Roma 41.924 12.497 No No

41.899 12.492 Europa Rome 41.890 12.453 No No
Table 8 - Results spelling test (continent, country)

As can be seen in the Tables 5 – 8 above, when only using the country (and city) names, the system

and Google Geocoding API wrongly altered coordinates to places in the United States. However,

when adding a layer of continents to the input information, none of the correct coordinates where

wrongly altered to places in the United States. Therefore, we can conclude that the system can

wrongly detect places and alter coordinates mistakenly. However, when expanding the given input

information, the user can drastically decrease the chance of mistakes by the system. Another

solution is discussed in the discussion and future implementations section.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

52

5.3 Database module tests
5.3.1 ID retrieval and uploading test

For the Database module to work properly the ID retrieval and uploading components of the module

need to work properly. The following validation test, checks if both components of the database

module work properly. The test splits an incoming database into two separate tables, coupled by a

similar ID.

name email

Henk de Vries woeste_pvver@knobhe.ad

Jan Klaassen janklaassen@ohyeah.nl
Table 9 - Input table

Figure 13 - Database table 1 (name)

Figure 14 - Database table 2 (email)

The input coupled to our test file can be seen in table 9, it contains two data entries both containing

a name and email address. The output of the test file can be seen in figure 13 and 14. As can be seen,

the first table only contains the names and coupled id’s as given by the database. The second table

contains email addresses, id’s and name_id’s which are the coupled id’s of the first table. This shows

that the coupling of id’s and uploading of the data is performed successfully.

5.3.2 Speed test

To test the speed of the database module we created multiple test sets. The different test sets

consisted of a variation of test sets with 3 different sample sizes and for each of the sample sizes 3

different settings were tested. The sample sizes used in the testing process were CSV files containing

1000, 10000 and 100000 data entries, consisting of an id, name, email and date. Three different

setups per sample size were created. One where the entire datafile consisted of different entries,

one consisting of 50% duplicate entries and one file containing only duplicate entries (100%).

We used this setup to create an image of the influence of duplicate entries on the processing speed

of the module. By using both the outer limits as well as the median, we wanted to show the duration

range at which the module operates.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

53

Examples of the different settings are given below in tables 10 – 12, for a total of 10 entries, to paint

an image of the testing input files.

id name email date

0 Eulah Walter Candelario@wade.name 13-5-1991

1 Erik Nienow Torrance@shaniya.name 18-11-2006

2 Emory Anderson Arianna@kaitlyn.co.uk 20-7-2009

3 Ms. Katelyn Dickens Madaline.Sauer@therese.net 31-8-2003

4 Johnson Dare Darrick_Walter@elena.tv 30-8-2013

5 Mrs. Reggie Mayert Destinee_Walsh@dane.org 22-10-2012

6 Seamus Mann DVM Gerry.OHara@ashleigh.me 27-1-1994

7 Dixie Morar Ruben.Stroman@ezekiel.net 21-7-2015

8 Rosalyn Wolf Gino@yazmin.me 14-1-2018

9 Dallas Pagac V Shaina@edwardo.name 1-4-2000

10 Kayli Wyman Shanna_Graham@alexander.io 6-3-1992
Table 10 - test input for 0% duplicates example

id name email date

0 Eulah Walter Candelario@wade.name 13-5-1991

1 Erik Nienow Torrance@shaniya.name 18-11-2006

2 Emory Anderson Arianna@kaitlyn.co.uk 20-7-2009

3 Ms. Katelyn Dickens Madaline.Sauer@therese.net 31-8-2003

4 Johnson Dare Darrick_Walter@elena.tv 30-8-2013

5 Mrs. Reggie Mayert Destinee_Walsh@dane.org 22-10-2012

1 Erik Nienow Torrance@shaniya.name 18-11-2006

2 Emory Anderson Arianna@kaitlyn.co.uk 20-7-2009

3 Ms. Katelyn Dickens Madaline.Sauer@therese.net 31-8-2003

4 Johnson Dare Darrick_Walter@elena.tv 30-8-2013

5 Mrs. Reggie Mayert Destinee_Walsh@dane.org 22-10-2012
Table 11 - test input for 50% duplicates example

id name email date

0 Eulah Walter Candelario@wade.name 13-5-1991

1 Eulah Walter Candelario@wade.name 13-5-1991

2 Eulah Walter Candelario@wade.name 13-5-1991

3 Eulah Walter Candelario@wade.name 13-5-1991

4 Eulah Walter Candelario@wade.name 13-5-1991

5 Eulah Walter Candelario@wade.name 13-5-1991

6 Eulah Walter Candelario@wade.name 13-5-1991

7 Eulah Walter Candelario@wade.name 13-5-1991

8 Eulah Walter Candelario@wade.name 13-5-1991

9 Eulah Walter Candelario@wade.name 13-5-1991

10 Eulah Walter Candelario@wade.name 13-5-1991
Table 12 - test input for 100% duplicates example

Files similar to the above pictured situations were created for the respective sizes and settings. These

test files were tested using a Laptop, PC and Server making use of the API module of the application.

The specifications of the different systems can be found in Appendix F.1. The raw output data of the

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

54

tests can also be found in Appendix F.2 – F.4. As can be seen, every setting was tested for a total of 6

times per setting. The averages of all these tests can be found in table 13 below.

averages Laptop PC Server

sample size doubles % duration (ms) duration (ms) duration (ms)

1000 0% 25219 20287 12340

 50% 15217 13128 12318

 100% 14500 9117 1327

10000 0% 236556 183769 111764

 50% 172022 103409 109734

 100% 136475 74619 4157

100000 0% 3688190 2977667 1134281

 50% 3154705 2435349 1087727

 100% 1364544 736447 16644
Table 13 - Average results database module speed test

The above results are visualized in the graph represented in figure 14.

Figure 15 – Database module speed comparison graph

As can be seen in figure 15 above there are some wide variations of the performance between the

different systems. A pattern can be found when comparing the results of both the laptop and pc

tests. With an increasing speed in the operations of the system when increasing the number of

duplicates in the test set. This of course can be explained by the fact that a lot less insert operations

need to be performed, which decreases the overall duration needed for the application to finish all

its operations. There are however some fluctuations as to how much improvement this results in. As

can be seen the speed improvements between the different settings within the 1000 and 10000

sample sizes are present but marginal.

0% 50% 100% 0% 50% 100% 0% 50% 100%

1000 10000 100000

Laptop 25219 15217 14500 236556 172022 136475 3688190 3154705 1364544

PC 20287 13128 9117 183769 103409 74619 2977667 2435349 736447

Server 12340 12318 1327 111764 109734 4157 1134281 1087727 16644

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

D
u

ra
ti

o
n

 (
m

s)

percentage of doubles per sample size

Comparison speed between system and settings

Laptop PC Server

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

55

 Laptop PC Server

sample
size

doubles
%

relative
duration
(base 0% per
sample size)

relative
duration
(base 0% of
sample size
1000)

relative
duration
(base 0% per
sample size)

relative
duration
(base 0% of
sample size
1000)

relative
duration
(base 0% per
sample size)

relative
duration
(base 0%
of sample
size 1000)

1000 0% 1.00 1.00 1.00 1.00 1.00 1.00

 50% 0.60 0.60 0.65 0.65 1.00 1.00

 100% 0.57 0.57 0.45 0.45 0.11 0.11

10000 0% 1.00 9.38 1.00 9.06 1.00 9.06

 50% 0.73 6.82 0.56 5.10 0.98 8.89

 100% 0.58 5.41 0.41 3.68 0.04 0.34

100000 0% 1.00 146.25 1.00 146.77 1.00 91.92

 50% 0.86 125.09 0.82 120.04 0.96 88.15

 100% 0.37 54.11 0.25 36.30 0.01 1.35
Table 14 - Relative duration comparisons of database module speed test

Table 14 states the relative duration of the tests when compared within the sample size per system

as well as when the sample size with 0% doubles is used as base for all instances. As can be seen,

both the laptop and pc tests have a similar pattern with an increasing speed for the test sets

containing only doubles when increasing the sample size and a decreasing relative speed when using

50% doubles. Another pattern which becomes apparent is that the increase of the 100% doubles

instances increase approximately with multiplication of 10 which is the same increase as the sample

size. The other two instances have this same pattern when looking at the lower sample sizes

however this factor increases significantly when looking at the increase in relative duration from a

sample size of 10000 to 100000. This is most probably explained by the fact that the number of insert

operations that the system needs to perform increases a lot and this operation takes relatively a lot

of time.

The server test results do not follow the same pattern as the results from the laptop and pc tests.

They are a lot faster, which can easily be explained by the fact that all the select and insert

operations are performed locally instead of via an internet connection. Another apparent variation is

that of the immense speed increase when using only doubles, in comparison with the two other

systems. Which, again, can be explained with the fact that these operations are now performed

locally and thus take far less time. Lastly, one can see that the values between the test sets

containing 0% and 50% duplicates are almost similar. When looking at the raw data in appendix F.2 –

F.4 it becomes clear that on the server side some complications arose when performing the 50%

duplicates containing tests, which resulted in almost as much insert operations as the tests

containing 0% duplicates. This impacted the results immensely and is something we were not able to

find an explanation for. We presume that it is a result of the difference in processing speed between

select and insert statements. The reason for this assumption is that the problem was visible across all

test sets, but worsened when performing on the local machine.

To conclude we see that our system performs as fast as can for this type of connection, most of the

fluctuations in speed can be explained by differences in internet speed and connections. Also, the

number of insert operations takes a heavy toll on the speed of the overall operations. Locally

performed operations increased the speed of the application immensely however also resulted in

faulty insert operations and errors.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

56

6 Conclusion, Discussion and Future

Implementations

6.1 Conclusion
In this chapter we will summarize and conclude our findings gathered during this project. We will

address the research questions and sub questions as mentioned at the start of this paper.

“How can we find a method to correct location data in existing databases and provide an easy process

for further data entries?”

To answer the main research question, we constructed a set of sub research questions to address the

underlying issues to create a process for the location data correction and alteration.

“What is the fastest and most reliable way to add and alter the location data in the existing database,

making this data complete and consistent?”

To create a process for the user to fast and reliably check location data we created a module

consisting of a parent and multiple child processes. This way the parent process could set up the

child processes, which would perform the actual execution of the location data alteration and check

processes. Combining this set up with a pipelined process within the child processes increased the

speed of the overall execution. The slowest set up combination as tested took a total of 246 seconds

to perform a total of 2000 requests to Google, which is a vast improvement to performing this

process manually. All this is set up by the user, by writing a simple configuration file to set up all the

right information before the procedures, making this process as little time consuming as possible. To

further increase the ease of use of the system, the API component of the system makes it possible to

set up a series of tests sequentially and from external systems.

“What formatting and input guidelines should be used for future data entries to keep the location

data of the entries added to the database complete and consistent?”

The system is set up to always convert the GPS location data to DD type of formatting. Therefore, the

GPS location formatting used in the input data can either be DD or DMS type of formatting. To

increase the effectiveness of the system it is however recommended to provide as much location

data as possible and/or to use English notation for the location data when using the system. During

testing it became apparent that the number of errors decreases when using either of the mentioned

rules.

To conclude, it is clear that the method used to create a consistent and reliable, while also fast

process to check and alter location data consists of a combination of techniques used. The

combination of child processes, pipelining, configuration files, an API setup and the use of an external

location data API resulted in an easy, reliable and fast process to check and alter GPS location data.

The effectiveness of the system is, however, subject to the input as provided by the user.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

57

 “How can we provide a process to easily organize, transform, combine and check databases?”

To create a reliable process for the transformations of databases we created a setup of parent and

child processes. This split system setup resulted in a streamlined process for the alterations of

multiple databases and data input files simultaneously. The direct insert method as used within the

system, creates the most reliable process and connection with the external databases, although this

effected the speed of the process negatively. The combination of the created API process and use of

configuration files created an easy approach for the user with a minimum amount of manual work

To conclude, it is clear that the method used to perform the process of database alterations created

an easy and streamlined process for the user. The combination of the direct insert strategy,

configuration files and the API module, created an easy process with minimal supervision needed by

the user.

“How can we build a sustainable system that can add and verify GPS location data to databases while

also being able to organize the data, and is compatible with different kind of databases?”

To answer the main research question, we constructed a set of sub research questions to address the

underlying issues when creating a combined sustainable system.

“How can we design the system to operate both processes effortlessly alongside each other within

one system?”

As can be seen in the chapters 3 and 4 we have created an overall module to fetch and handle the

communication with the operating modules and the user. This module handles the startup

operations and further command signaling of the application. The two operating modules are

modularly and similarly designed, making use of parent and child processes. The upside to this is that

if errors occur, the underlying reasons can easily be determined, making the system more reliable.

The accompanying webserver module substantiates this effect and makes the communication of the

user (or an external program) with the system easier.

 “How can we design the system to be sustainable?”

A couple of factors contribute extensively towards the sustainability of the system:

1. The modular design of the system makes it possible for future alterations to be made

without the need for rewriting major components of the system.

2. The possibility to run the main operating modules combined or separately makes it possible

for a wide range of applications of the system.

3. The design of the major modules to make use of parent and child processes, increases the

capacity of the modules. Increasing the speed and availability of the system.

4. The design is made to be easily expanded with extra functionalities, f.e. the possibility to

easily expand the database component to be compatible with other database systems.

All the above-mentioned functionalities contribute towards the sustainability of the system.

To conclude a combination of modular design, split processes, configuration files and the support of

the API server side makes the system run the two operational functionalities effortlessly alongside

each other. Combine this with the possibility to easily alter and add functionalities to the designed

system, to result in an overall sustainable and future-proof system.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

58

6.2 Discussion
A couple of issues arose while designing and testing the built system. The major choices and issues

are discussed in this section, explaining the made choices and ways to avoid problems when using

the system.

6.2.1 Location module accuracy

When implementing the module for the checking of the GPS location data compared to given areas,

an issue arose when this area had to be determined. To keep the complexity and thus speed of the

system operationally feasible we decided to create a rectangle area of the 2 outmost points of the

area. Figure 15 and 16 show the difference of these area’s using the Netherlands as example.

Figure 16 - Map of the Netherlands

Figure 17 - Map of the Netherlands with borders used by system

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

59

As can be seen in the figures 16 and 17 above, this adds a lot of extra territory in neighboring

countries as well as the North Sea. The percentage of added area differs widely between areas. To

keep this to a minimum, we advise to use as detailed added location data as possible for the best

results.

Our choice to implement this type of location checking influenced the accuracy of the application. By

the decision to use the user-defined coordinates for the checking of the information, we were forced

to make a trade off decision between speed and accuracy. In our opinion, in this way we could

deliver both an adequate accuracy while maintaining an efficient process.

6.2.2 Google Geocoding limits

Another issue which arose during the testing of the location module was the limits as given within

the Google Geocoding API (Google, Developer Guide, 2019). A couple of restrictions are given for the

(free) use of the API:

1. A maximum of 40000 requests to make use of the API for free.

2. A maximum of 5000 requests per 100 seconds.

3. A maximum of 50 requests per second.

Because the system and module are both designed to be as efficient as possible, problems can arise

when operating with a great number of sets simultaneously or when using sets of large sizes (1000

data entries and more). We therefore recommend to keep the testing restricted to smaller sets and

split sets above the given threshold. Furthermore, we advise to run the system with one set at a

time.

6.2.3 Spelling issue

The last issue of the location module is that the Google Geocoding API preferences English spelling

and places in the USA. Therefore, when using other languages and or little area specifications, it can

happen that the system wrongly alters GPS coordinates to places in the USA with a similar name.

Please be aware, and use as detailed information as possible as well as omitting the use of

abbreviations, when using the application.

Our choice to use the Google Geocoding API influences the results given as correct and incorrect,

when improving coordinates. It also results in a domination of USA based locations and the English

language and spelling. It could be possible that when implementing another API for the checking of

coordinates, these results could differ from the current situation.

6.2.4 Database insert issue

During the testing of the Database module, when running both the application and database on the

same server, the speed of the application increased significantly. However, this also increased the

number of faulty insert operations. As this problem was also present when testing on the other

systems, we suspect this to be the result of a difference in the speed at which the select and insert

operations are being performed. Our decision to implement the direct insert operation instead of a

cache first operation did influence these results, and with the implementation of a cache first system

we would expect these results to improve.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

60

6.3 Future implementations
A couple of implementations which could contribute to the functionality and ease of use of the

system are mentioned in this section as well as possible future usage of the application.

6.3.1 UI

Currently to use the system, the user will have to use a terminal (and the possible API setup) to use

the designed system. To further increase the ease of use of the system for the end user, a User

Interface could be designed.

6.3.2 Cache First

Within the database module we chose for the direct insert type of connection when performing

database operations. This creates a more secure, but also less fast connection with the connected

database system. Another option would be to implement a cache first system, this would locally

process all transformations to upload all at once after this process is finished. This database

connection type would be more prone to errors and connection failing, however could increase the

speed of the operations.

6.3.3 Reverse location lookup

The current lookup system works by using the additional location information to create a possible

area the GPS coordinates need to be part of, to check for the correctness of the coordinates. Another

way would be to perform a request using the given GPS coordinates and check for the received

information with the added location information. Essentially to perform the operations in a

backwards way of the process currently in use by the system. This could result in an increased

accuracy of the system, especially when making use of both techniques combined.

6.3.4 GeoNames layer

As mentioned in Chapter 2 we chose to perform the process of checking and improving geographic

coordinates using the Google Geocoding API because of the option to create areas of interest. A

problem which arose was the fact that the API prefers English spelling and American cities. Although

the GeoNames API would not be ideal for this process, because it only provides one set of

coordinates instead of a bounding box, it could still be useful to implement it as an extra layer for the

preprocessing of names. The API could be used to translate all location information into English as

well as provide missing additional information about areas of interest, before we would check those

locations against googles Geocoding API.

6.3.5 Dataset usage

In the near future the application will be used for the checking and improving of datasets containing

geographic coordinates as well as additional location information. Examples of these datasets are a

Fungi dataset analyzed within the Leiden University by Irene Martorelli and a dataset containing

information regarding the living area of Butterflies found in the Indonesian Island Java. For both

these datasets it is important to know exactly where these organisms are detected. Therefore, both

the Fungi and Butterfly datasets can make use of the system to improve the consistency and integrity

of the mentioned datasets. The application can further be used for any dataset in need for

improvement of geographic coordinates, which can be performed direct inserting this information

into the corresponding database as well as providing separate output files.

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

61

Bibliography
About Node.js. (n.d.). Retrieved from nodejs.org: https://nodejs.org/en/about/

csv.js.org. (n.d.). CSV for Node.js. Retrieved from csv.js.org: https://csv.js.org/

DB-Engines. (2019, July). DB-Engines Ranking. Retrieved from db-engines.com: https://db-

engines.com/en/ranking

Decimal degrees. (n.d.). Retrieved from wikipedia.org:

https://en.wikipedia.org/wiki/Decimal_degrees

DMS vs DD. (2018, February). Retrieved from GISGeography: https://gisgeography.com/decimal-

degrees-dd-minutes-seconds-dms/

Geographic coordinate system. (n.d.). Retrieved from wikipedia.org:

https://en.wikipedia.org/wiki/Geographic_coordinate_system

Google. (2019, June). Developer Guide. Retrieved from google.com:

https://developers.google.com/maps/documentation/geocoding/intro

Google. (n.d.). Developer Guide. Retrieved from developers.google.com:

https://developers.google.com/maps/documentation/geocoding/intro

Google Maps. (n.d.). Retrieved from wikipedia.org: https://nl.wikipedia.org/wiki/Google_Maps

Introducing JSON. (n.d.). Retrieved from json.org: https://www.json.org/

Javascript. (n.d.). Retrieved from wikipedia.org: https://en.wikipedia.org/wiki/JavaScript

Kommagescheiden bestand. (n.d.). Retrieved from wikipedia.org:

https://nl.wikipedia.org/wiki/Kommagescheiden_bestand

MariaDB. (n.d.). About MariaDB. Retrieved from mariadb.org: https://mariadb.org/about/

Ministerie van Binnenlandse Zaken. (2012). Bouwbesluit Online 2012. Retrieved from

rijksoverheid.bouwbesluit.com:

https://rijksoverheid.bouwbesluit.com/Inhoud/docs/wet/bb2012_nvt/artikelsgewijs/hfd4/af

d4-4/algemeen

MonetDB.org. (n.d.). Documentation. Retrieved from monetdb.org:

https://www.monetdb.org/Documentation

MySQL-Enterprise. (n.d.). MySQL Documentation. Retrieved from dev.mysql.com:

https://dev.mysql.com/doc/

Node.js File System Module. (n.d.). Retrieved from w3schools.com:

https://www.w3schools.com/nodejs/nodejs_filesystem.asp

Node.js. (n.d.). Node.js v12.7.0 Documentation. Retrieved from nodejs.org:

https://nodejs.org/api/http.html

NPM. (2016, August). monetdb. Retrieved from npmjs.com:

https://www.npmjs.com/package/monetdb

NPM. (2019, July). mariadb. Retrieved from npmjs.com: https://www.npmjs.com/package/mariadb

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

62

NPM. (2019, May). mysql. Retrieved from npmjs.com: https://www.npmjs.com/package/mysql

Web Services. (n.d.). Retrieved from Geoname.org: https://www.geonames.org/export/web-

services.html

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

63

Appendix A – Readme

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

64

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

65

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

66

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

67

Appendix B – Configuration Syntax Guide

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

68

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

69

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

70

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

71

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

72

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

73

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

74

Appendix C – Usage example

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

75

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

76

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

77

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

78

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

79

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

80

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

81

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

82

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

83

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

84

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

85

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

86

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

87

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

88

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

89

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

90

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

91

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

92

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

93

Appendix D - Support modules validation tests
D.1 Interface validation test code

////interfaces test, Bachelorthesis 2019, Tim van Polen & Jelle Sinnige

'use strict'

let ifs = require('../server/interfaces.js');

ifs.setLogType(5);

ifs.setProgramTag("TestProgram");

console.log("Show all");

console.log("Show ERR message: ");

ifs.log_e("This is an error");

console.log("Show WARN message: ");

ifs.log_w("This is a warning");

console.log("Show INFO message");

ifs.log_i("This is an info message");

console.log("Show DEBUG message");

ifs.log_d("This is a DEBUG message");

console.log("Show data dump");

ifs.log_dd(['data','data','data'],"datadump");

console.log("Below there should not be any DEBUG or data dump:");

ifs.setLogType(2);

console.log("Show ERR message: ");

ifs.log_e("This is an error");

console.log("Show WARN message: ");

ifs.log_w("This is a warning");

console.log("Show INFO message");

ifs.log_i("This is an info message");

console.log("Show DEBUG message");

ifs.log_d("This is a DEBUG message");

console.log("Show data dump");

ifs.log_dd(['data','data','data'],"datadump");

console.log("Below there should only be an error");

ifs.setLogType(0);

console.log("Show ERR message: ");

ifs.log_e("This is an error");

console.log("Show WARN message: ");

ifs.log_w("This is a warning");

console.log("Show INFO message");

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

94

ifs.log_i("This is an info message");

console.log("Show DEBUG message");

ifs.log_d("This is a DEBUG message");

console.log("Show data dump");

ifs.log_dd(['data','data','data'],"datadump");

console.log("Show all messages without color.");

ifs.setDisableColor(true);

ifs.setLogType(5);

console.log("Show ERR message: ");

ifs.log_e("This is an error");

console.log("Show WARN message: ");

ifs.log_w("This is a warning");

console.log("Show INFO message");

ifs.log_i("This is an info message");

console.log("Show DEBUG message");

ifs.log_d("This is a DEBUG message");

console.log("Show data dump");

ifs.log_dd(['data','data','data'],"datadump");

D.2 Typehandler validation test code

//typehandler test, Bachelorthesis 2019, Tim van Polen & Jelle Sinnige

'use strict';

var typehandler = require('../server/typehandler.js');

console.log("Checking similarities: ");

let object_a = {

 prop1: 1,

 prop2: 4,

 prop5: "str"

};

let object_b = {

 prop1: 4,

 prop2: 10

};

console.log("Expect output true: ");

console.log(typehandler.check_similar_object(object_a,object_b));

let object_c = {

 prop2: "henkie",

 prop10: "7"

};

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

95

let object_d = {

 prop1: 124,

 prop2: "piet",

 prop10: "5"

}

console.log("Expect output false (failed on key count):");

console.log(typehandler.check_similar_object(object_c,object_d));

let object_e = {

 prop1: 100,

 prop2: 99,

 prop4: 97,

 prop5: 96

};

let object_f = {

 prop1: 100,

 prop2: 99,

 prop3: 98,

 prop4: 9

};

console.log("Expect output false (failed on not having required keys):");

console.log(typehandler.check_similar_object(object_e,object_f));

let object_g = {

 prop1: 200,

 prop2: 201,

 prop3: 202,

 prop4: 203,

 prop5: 204

};

let object_h = {

 prop1: 200,

 prop2: 201,

 prop3: 202

};

console.log("Expect output true (original may have more properties than

reference):");

console.log(typehandler.check_similar_object(object_g,object_h));

console.log("Checking copy and equal");

let obj = { a: "nee", b: "ja" };

console.log("Copying "+JSON.stringify(obj));

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

96

let copy = typehandler.create_copy_of_object(obj);

console.log("Expect this obj to be the same: "+JSON.stringify(copy));

console.log("Expect compare to be true");

console.log(typehandler.check_equal_object(obj,copy));

D.3 JSON stream and stringify validation test code

//JSONstream test, Bachelorthesis 2019, Tim van Polen & Jelle Sinnige

'use strict';

var { JSONstream } = require('../server/JSONstream.js');

var ifs = require('../server/interfaces.js');

var fs = require('fs');

var { stringifyJSON } = require('../server/JSONstringify.js');

ifs.setLogType(4);

ifs.log_d("Starting test.");

var jsonstr = JSONstream({});

var json_to_str = stringifyJSON();

var fstr = fs.createWriteStream('json_stream_output.json');

var rstr = fs.createReadStream('testjsonstream.json');

//piping to stdout wont work, stdout wont accept objects

rstr.pipe(jsonstr).pipe(json_to_str).pipe(fstr); //this works perfectly

D.4 DMS to DD transformation test code

//DMS to DD test, Bachelorthesis 2019, Tim van Polen & Jelle Sinnige

'use strict';

let coords = require('../server/coordinates.js');

let coord_1 = "52°14'36\",5°38'3\"";

let coord_2 = "-52°14'36\"S,5°38'3\"";

let coord_3 = "52°14'36\",-5°38'3\"W";

let coord_4 = "-52°14'36\"S,-5°38'3\"W";

let coord_5 = "52°14'36\"N,5°38'3\"E";

let coord_6 = "-5°38'3\"W,52°14'36\"N";

let coord_7 = "5°38'3\"E,-52°14'36\"S";

let coord_8 = "52.24333333,5.63416667";

console.log("coord_1 ("+coord_1+") evaluates to:

"+coords.convertSingleDMStoDD(coord_1));

if (coords.error) {

 console.log(coords.error);

}

console.log("coord_2 ("+coord_2+") evaluates to:

"+coords.convertSingleDMStoDD(coord_2));

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

97

if (coords.error) {

 console.log(coords.error);

}

console.log("coord_3 ("+coord_3+") evaluates to:

"+coords.convertSingleDMStoDD(coord_3));

if (coords.error) {

 console.log(coords.error);

}

console.log("coord_4 ("+coord_4+") evaluates to:

"+coords.convertSingleDMStoDD(coord_4));

if (coords.error) {

 console.log(coords.error);

}

console.log("coord_5 ("+coord_5+") evaluates to:

"+coords.convertSingleDMStoDD(coord_5));

if (coords.error) {

 console.log(coords.error);

}

console.log("coord_6 ("+coord_6+") evaluates to:

"+coords.convertSingleDMStoDD(coord_6));

if (coords.error) {

 console.log(coords.error);

}

console.log("coord_7 ("+coord_7+") evaluates to:

"+coords.convertSingleDMStoDD(coord_7));

if (coords.error) {

 console.log(coords.error);

}

console.log("coord_8 ("+coord_8+") evaluates to:

"+coords.convertSingleDMStoDD(coord_8));

if (coords.error) {

 console.log(coords.error);

}

//let coord_2 = "52.24333333,5.63416667";

D.5 Database SQL generation validation test code

//mysqlgen test, Bachelorthesis 2019, Tim van Polen & Jelle Sinnige

let sql = require('../server/databasesqlgen.js');

console.log("Expected: SELECT id FROM testtable WHERE (item1 = ? AND item2 =

? AND item3 = ?)");

console.log(sql.query_select_simple("testtable",["id"],["item1","item2","item3

"],"database"));

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

98

console.log("Expected: SELECT * FROM testtable WHERE (item1 = ? AND item2 = ?

AND item3 = ?)");

console.log(sql.query_select_all_simple("testtable",["item1","item2","item3"])

);

console.log("Expected: INSERT INTO testtable (item1, item2, item3) VALUES (

?, ?, ?)");

console.log(sql.query_insert_simple("testtable",["item1","item2","item3"]));

D.6 Transform validation module code

//mysqlgen test, Bachelorthesis 2019, Tim van Polen & Jelle Sinnige

'use strict';

let tf = require('../server/transform.js');

//type - int - str - float - bool

//regex

//regex-first

//modulo

//div

//div-float

//char

//substr

//value

//if

console.log("transform types initial value float (1.2), expect string, number

(whole), number (comma), boolean")

let val = 1.2;

let t1 = [{ type: "type", value: "string" }];

let t2 = [{ type: "type", value: "int" }];

let t3 = [{ type: "type", value: "float" }];

let t4 = [{ type: "type", value: "bool" }];

let a1 = tf.transformSource(val,t1);

let a2 = tf.transformSource(val,t2);

let a3 = tf.transformSource(val,t3);

let a4 = tf.transformSource(val,t4);

console.log("a1: "+a1+" - "+(typeof a1));

console.log("a2: "+a2+" - "+(typeof a2));

console.log("a3: "+a3+" - "+(typeof a3));

console.log("a4: "+a4+" - "+(typeof a4));

console.log("transform regexes, input string abababa, regex = a");

let val2 = "abababa";

let t5 = [{ type: "regex", value: "a"}];

let t6 = [{ type: "regex_first", value: "a"}];

let t77 = [{ type: "regex", value: "c"}];

let a5 = tf.transformSource(val2,t5);

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

99

let a6 = tf.transformSource(val2,t6);

let a77 = tf.transformSource(val2,t77);

console.log("a5: "+a5);

console.log("a6: "+a6);

console.log("a77: "+a77);

console.log("transform numbers, modulo div and div-float, input is 10, other

input 4");

console.log("Expect 0 (20%4), 5 (20/4) and 0.5 (20/40)");

let val3 = 20;

let t7 = [{ type: "modulo", value: 4 }];

let t8 = [{ type: "divideby", value: 4 }];

let t9 = [{ type: "dividebyfloat", value: 40 }];

let a7 = tf.transformSource(val3,t7);

let a8 = tf.transformSource(val3,t8);

let a9 = tf.transformSource(val3,t9);

console.log("a7: "+a7);

console.log("a8: "+a8);

console.log("a9: "+a9);

console.log("transform char and substring tests: string abcd");

let val4 = "abcd";

let t10 = [{ type: "char", value: 2 }];

let t11 = [{ type: "substring", value: 2 }];

let a10 = tf.transformSource(val4,t10);

let a11 = tf.transformSource(val4,t11);

console.log("a10: "+a10);

console.log("a11: "+a11);

console.log("tranform condition and value test");

let val5 = "a";

let t12 = [{ type: "if", value: "a", value2: "b" }];

let t13 = [{ type: "value", value: "c"}];

let a12 = tf.transformSource(val5,t12);

let a13 = tf.transformSource(val5,t13);

console.log("expect b and c");

console.log(a12);

console.log(a13);

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

100

Appendix E - Location module tests
E.1 Specifications of the systems

LAPTOP specs Processor name Intel Core i7 7700HQ

 CPU max speed 2.80 GHz

 CPU L3 cache size 6 MB

 CPU number of cores 4

 CPU number of threads 8

 Ram type DDR4

 RAM size 2 x 8 GB

 RAM speed 2400 MHz

 Storage type HDD

 Network speed 44,17 Mbps/ 19,91 Mbps (Download / Upload)

 Network ping 12 ms

 Network type WIFI (2.4 GHz)

PC specs Processor name Intel Core i7 4770K

 CPU max speed 3.90 GHz

 CPU L3 cache size 8 MB

 CPU number of cores 4

 CPU number of threads 8

 Ram type DDR3

 RAM size 2 x 8 GB

 RAM speed 1333 MHz

 Storage type SSD

 Network speed 92,89 Mbps/ 87,18 Mbps (Download / Upload)

 Network ping 9 ms

 Network type LAN

Server specs Processor name Intel Xeon E3-1240L v5

 CPU max speed 3.20 GHz

 CPU L3 cache size 8 MB

 CPU number of cores 4

 CPU number of threads 8

 Ram type DDR4

 RAM size 2 x 8 GB

 RAM speed 2133MHz

 Storage type SSD

 Network speed 100,00 Mbps/ 100,00 Mbps (Download / Upload)

 Network ping 3 ms

 Network type LAN (local)
Table 15 - System Specifications

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

101

E.2 Laptop FavorNames True test results

Figure 18 - Test results location speed test (FavorNames True, Laptop)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

102

E.3 Laptop FavorNames False test results

Figure 19 - Test results location speed test (FavorNames False, Laptop)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

103

E.4 PC FavorNames True test results

Figure 20 - Test results location speed test (FavorNames True, PC)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

104

E.5 PC FavorNames False test results

Figure 21 - Test results location speed test (FavorNames False, PC)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

105

E.6 Server FavorNames True test results

Figure 22 - Test results location speed test (FavorNames True, Server)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

106

E.7 Server FavorNames False test results

Figure 23 - Test results location speed test (FavorNames False, Server)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

107

Appendix F - Database module tests
F.1 Specifications of the systems

LAPTOP specs Processor name Intel Core i7 7700HQ

 CPU max speed 2.80 GHz

 CPU L3 cache size 6 MB

 CPU number of cores 4

 CPU number of threads 8

 Ram type DDR4

 RAM size 2 x 8 GB

 RAM speed 2400 MHz

 Storage type HDD

 Network speed 44,17 Mbps/ 19,91 Mbps (Download / Upload)

 Network ping 12 ms

 Network type WIFI (2.4 GHz)

PC specs Processor name Intel Core i7 4770K

 CPU max speed 3.90 GHz

 CPU L3 cache size 8 MB

 CPU number of cores 4

 CPU number of threads 8

 Ram type DDR3

 RAM size 2 x 8 GB

 RAM speed 1333 MHz

 Storage type SSD

 Network speed 92,89 Mbps/ 87,18 Mbps (Download / Upload)

 Network ping 9 ms

 Network type LAN

Server specs Processor name Intel Xeon E3-1240L v5

 CPU max speed 3.20 GHz

 CPU L3 cache size 8 MB

 CPU number of cores 4

 CPU number of threads 8

 Ram type DDR4

 RAM size 2 x 8 GB

 RAM speed 2133MHz

 Storage type SSD

 Network speed 100,00 Mbps/ 100,00 Mbps (Download / Upload)

 Network ping 3 ms

 Network type LAN (local)
Table 16 - System specifications

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

108

F.2 Database module speed test Laptop

Figure 24 - Test results Database speed test (Laptop)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

109

F.3 Database module speed test PC

Figure 25 - Test results database speed test (PC)

GPS referencing and Data Storage Manipulation | Jelle Sinnige and Tim van Polen

110

F.4 Database module speed test Server

Figure 26 - Test results database speed test (Server)

